JP2010195218A - Road surface condition detection method and road surface condition detection device - Google Patents
Road surface condition detection method and road surface condition detection device Download PDFInfo
- Publication number
- JP2010195218A JP2010195218A JP2009042968A JP2009042968A JP2010195218A JP 2010195218 A JP2010195218 A JP 2010195218A JP 2009042968 A JP2009042968 A JP 2009042968A JP 2009042968 A JP2009042968 A JP 2009042968A JP 2010195218 A JP2010195218 A JP 2010195218A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- analysis
- group
- surface condition
- discriminant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims description 44
- 238000005457 optimization Methods 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims description 38
- 230000008569 process Effects 0.000 claims description 30
- 238000004364 calculation method Methods 0.000 claims description 27
- 230000002068 genetic effect Effects 0.000 claims description 10
- 230000006870 function Effects 0.000 abstract description 16
- 238000012545 processing Methods 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 206010062519 Poor quality sleep Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 238000010202 multivariate logistic regression analysis Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
本発明は、車両が走行する路面の状況を検出する路面状況検出方法及び路面状況検出装置に関する。 The present invention relates to a road surface state detection method and a road surface state detection device that detect a road surface state on which a vehicle travels.
従来、自動四輪車などの車両が走行する路面の状況(以下、路面状況と適宜省略する)を推定する装置が開示されている(例えば、特許文献1)。具体的に、特許文献1に記載された装置は、タイヤの内部圧力に応じて路面状況(路面粗さ)を推定している。
2. Description of the Related Art Conventionally, an apparatus that estimates a road surface condition (hereinafter, appropriately abbreviated as a road surface condition) on which a vehicle such as an automobile is traveling has been disclosed (for example, Patent Document 1). Specifically, the device described in
ところが、上述した路面荒さ推定装置は、タイヤの内部圧力Pを各々検出する圧力センサ35〜38及び車輪の車輪速度信号を各々検出する車輪速センサ31〜34を備える。つまり、路面荒さ推定装置は、車両に組み込まれている。また、路面状況の推定に、タイヤ内圧、車輪速、サスペンションの共振周波数等を使用している。タイヤ内圧、車輪速、サスペンションの共振周波数等の検出される値は、車種、タイヤの種類、サスペンションの種類によって異なることが予想されるため、路面荒さ推定装置を稼働させる前のキャリブレーションが難しい。 However, the road surface roughness estimation apparatus described above includes pressure sensors 35 to 38 that detect the internal pressure P of the tire, and wheel speed sensors 31 to 34 that detect wheel speed signals of the wheels, respectively. That is, the road surface roughness estimation device is incorporated in a vehicle. Further, tire internal pressure, wheel speed, suspension resonance frequency, and the like are used for estimation of road surface conditions. Since detected values such as tire internal pressure, wheel speed, suspension resonance frequency, and the like are expected to vary depending on the vehicle type, tire type, and suspension type, calibration before operating the road surface roughness estimation device is difficult.
一般的に、目的の推定値を算出するにあたり、推定値に関わりのあるパラメータが少ないほど演算が簡易的であり、的確な値が得られる。そこで、路面状況の推定においても、路面状況を直接的に知ることができる新たな指標が求められている。 Generally, in calculating a target estimated value, the fewer the parameters related to the estimated value, the simpler the operation and the more accurate value can be obtained. Therefore, a new index that can directly know the road surface condition is also required in the estimation of the road surface condition.
そこで、本発明は、より直接的に路面状況を表すことが可能な路面状況検出方法及び路面状況検出装置を提供することを目的とする。 Then, an object of this invention is to provide the road surface condition detection method and road surface condition detection apparatus which can represent a road surface condition more directly.
上述した課題を解決するため、本発明の第1の特徴は、次のような特徴を有する。車両が所定の路面を走行する際に、前記路面の状況を検出する路面状況検出方法であって、国際法10−20法に基づいて前記乗員の前頭極部に配置された電極から電気信号を取得する信号取得工程と、前記走行が開始された時刻からの経過時間に応じて前記電気信号に時間周波数解析を施す解析工程と、前記時間周波数解析によって求められた前記電気信号の周波数成分からなる第N群に適応度関数を用いて最適化処理を施すことにより前記第N群から周波数成分を選択する最適化工程と、前記最適化工程において選択された周波数成分からなる第N+1群に重判別分析を施すことにより前記第N+1群に含まれる個々の周波数成分の尤度を表す判別的中率を算出する分析工程とを有し、前記分析工程において算出された前記判別的中率を前記適応度関数に代入し、前記最適化工程を再度実行し、再度実行される前記最適化工程では、前記判別的中率が代入された適応度関数を用いて前記第N+1群に含まれる個々の周波数成分から周波数成分を選択し、再度実行される前記最適化工程において選択された周波数成分からなる第N+2群に重判別分析を施すことにより前記第N+2群に含まれる個々の周波数成分の尤度を表す判別的中率を算出し、前記分析工程とを最適化工程とを繰り返し実行することによって選択された前記電気信号の周波数成分の組み合わせを前記路面の状況を表す指標に決定することを要旨とする。 In order to solve the above-described problem, the first feature of the present invention has the following feature. A road surface condition detection method for detecting a road surface condition when a vehicle travels on a predetermined road surface, wherein an electric signal is transmitted from an electrode disposed at a frontal pole portion of the occupant based on the International Law 10-20. A signal acquisition step of acquiring, an analysis step of performing a time-frequency analysis on the electrical signal according to an elapsed time from the time when the travel was started, and a frequency component of the electrical signal obtained by the time-frequency analysis An optimization process for selecting a frequency component from the Nth group by applying an optimization process to the Nth group using a fitness function, and a multiple discrimination for the (N + 1) th group consisting of the frequency components selected in the optimization process An analysis step of calculating a discriminant median representing the likelihood of each frequency component included in the N + 1th group by performing an analysis, and the discriminant median calculated in the analysis step is Substituting into the fitness function, the optimization step is executed again, and in the optimization step executed again, each of the N + 1th group is included in the optimization step using the fitness function into which the discriminant probability is substituted. The frequency components are selected from the frequency components, and the multiple discriminant analysis is performed on the N + 2 group consisting of the frequency components selected in the optimization step that is executed again, whereby the likelihood of each frequency component included in the N + 2 group is estimated. Calculating a discriminatory probability representing a degree, and repeatedly executing the analysis step and the optimization step to determine a combination of frequency components of the electrical signal selected as an index representing the road surface condition. The gist.
本発明の第1の特徴によれば、国際法10−20法に基づいて乗員の前頭極部に配置された電極から取得した電気信号に適応度関数を用いた最適化処理と、重判別分析とを組み合わせて繰り返し実行する。これにより、乗員から取得された信号のうち抽出された周波数のみを用いることで直接的に路面状況を表すことができる。 According to the first aspect of the present invention, an optimization process using an fitness function for an electrical signal acquired from an electrode arranged at the frontal pole portion of an occupant based on the International Law 10-20, and a multiple discriminant analysis Are executed repeatedly in combination. Thereby, a road surface condition can be directly expressed by using only the frequency extracted from the signal acquired from the passenger | crew.
本発明の第2の特徴は、本発明の第1の特徴に係り、前記信号取得工程では、国際法10−20法に基づくFp1に配置される電極から電気信号を取得することを要旨とする。 The second feature of the present invention relates to the first feature of the present invention, and the gist of the present invention is that the signal acquisition step acquires an electrical signal from an electrode arranged at Fp1 based on the International Law 10-20. .
本発明の第2の特徴によれば、Fp1に配置される電極1箇所から電気信号を取得するため、乗員にかかる負担が低減される。また、電極は、1箇所に付ければ良いため、測定装置を装着することのストレスの影響を受けて、測定結果が不正確になることを防止できる。 According to the second feature of the present invention, since an electric signal is acquired from one electrode arranged at Fp1, the burden on the passenger is reduced. Moreover, since an electrode should just be attached to one place, it can prevent that a measurement result becomes inaccurate under the influence of the stress of mounting | wearing a measuring apparatus.
本発明の第3の特徴は、本発明の第1の特徴に係り、前記適応度関数は、遺伝的アルゴリズムであることを要旨とする。 A third feature of the present invention relates to the first feature of the present invention, and is summarized in that the fitness function is a genetic algorithm.
遺伝的アルゴリズムと重判別分析とを併用することにより、取得した電気信号を示す周波数成分のうち、路面状況に反応する成分を確実に抽出することができる。 By using the genetic algorithm and the multiple discriminant analysis together, it is possible to reliably extract a component that reacts to the road surface condition from among the frequency components indicating the acquired electrical signal.
本発明の第4の特徴は、車両が所定の路面を走行する際に、前記路面の状況を検出する路面状況検出装置であって、国際法10−20法に基づいて前記乗員の前頭極部に配置された電極から電気信号を取得する信号取得部と、前記走行が開始された時刻からの経過時間に応じて前記電気信号に時間周波数解析を施す解析部と、前記時間周波数解析によって求められた前記電気信号の周波数成分からなる第N群に適応度関数を用いて最適化処理を施すことにより前記第N群から周波数成分を選択する最適化演算部と、前記最適化演算部において選択された周波数成分からなる第N+1群に重判別分析を施すことにより前記第N+1群に含まれる個々の周波数成分の尤度を表す判別的中率を算出する分析部とを有し、前記分析部において算出された前記判別的中率を前記適応度関数に代入し、前記最適化演算部において前記最適化処理を再度実行し、再度実行される前記最適化処理では、前記判別的中率が代入された適応度関数を用いて前記第N+1群に含まれる個々の周波数成分から周波数成分を選択し、再度実行される前記最適化処理において選択された周波数成分からなる第N+2群に重判別分析を施すことにより前記第N+2群に含まれる個々の周波数成分の尤度を表す判別的中率を算出し、前記分析部における重判別分析と、前記最適化演算部における最適化処理とを繰り返し実行することによって選択された前記電気信号の周波数成分の組み合わせを前記路面の状況を表す指標に決定することを要旨とする。 According to a fourth aspect of the present invention, there is provided a road surface condition detecting device for detecting a road surface condition when a vehicle travels on a predetermined road surface, wherein the frontal pole portion of the occupant is based on the International Law 10-20. A signal acquisition unit that acquires an electrical signal from an electrode disposed on the electrode, an analysis unit that performs time-frequency analysis on the electrical signal according to an elapsed time from the time when the travel is started, and the time-frequency analysis. An optimization calculation unit that selects a frequency component from the Nth group by performing an optimization process using an fitness function on the Nth group of frequency components of the electrical signal, and is selected by the optimization calculation unit. An analysis unit that calculates a discriminant probability representing the likelihood of each frequency component included in the N + 1th group by performing a multiple discriminant analysis on the (N + 1) th group consisting of the frequency components. Calculated Substituting the discriminant probability into the fitness function, re-execution of the optimization process in the optimization calculation unit, and in the optimization process executed again, the fitness with the discriminant probability substituted By selecting a frequency component from the individual frequency components included in the N + 1th group using a function, and performing a multiple discriminant analysis on the N + 2th group consisting of the frequency components selected in the optimization process executed again. It is selected by calculating a discriminant probability representing the likelihood of each frequency component included in the N + 2 group, and repeatedly executing a multiple discriminant analysis in the analysis unit and an optimization process in the optimization calculation unit. The gist of the invention is to determine a combination of frequency components of the electrical signal as an index representing the road surface condition.
本発明によれば、より直接的に路面状況を表すことができる路面状況検出方法及び路面状況検出装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the road surface condition detection method and road surface condition detection apparatus which can express a road surface condition more directly can be provided.
次に、本発明に係る路面状況検出方法及び路面状況検出装置の実施形態について、図面を参照しながら説明する。 Next, embodiments of a road surface condition detection method and a road surface condition detection device according to the present invention will be described with reference to the drawings.
具体的には、(1)路面状況検出装置の構成、(2)路面状況検出方法の説明、(3)作用・効果、(4)その他の実施形態について説明する。 Specifically, (1) the configuration of the road surface condition detection device, (2) the description of the road surface condition detection method, (3) the action and effect, (4) other embodiments will be described.
(1)路面状況検出装置の構成
図1を参照して、路面状況検出装置1について説明する。具体的には、(1−1)乗員から電気信号を取得する試験、(1−2)路面状況検出装置の構成、について説明する。
(1) Configuration of Road Surface Condition Detection Device The road surface
(1−1)乗員から電気信号を取得する試験
図1は、路面状況検出装置1を使用して行われる路面状況のタイヤ性能の評価試験を説明する模式図である。
(1-1) Test for Acquiring an Electric Signal from an Occupant FIG. 1 is a schematic diagram for explaining a road performance tire performance evaluation test performed using the road surface
路面状況検出装置1は、評価装置本体10と、信号取得部20とを有する。路面状況検出装置1は、タイヤ101が装着された車両100が所定の路面(後述する)を走行する際に乗員3から取得可能な電気信号を用いて路面状況を表す。評価装置本体10の詳細は後述する。
The road surface
信号取得部20は、国際法10−20法に基づいて乗員3の前頭極部に配置された電極から電気信号を取得する。信号取得部20は、電極21と、電極22とを有する。電極21は、Fp1に配置され、Fp1における電気信号を取得する。電極22は、基準電極である。電極22は、例えば、耳たぶ等に配置される。電極21における電位と電極22における電位との差を差動アンプにより増幅している。これにより、ノイズを除去し、微弱な脳波信号を正確に抽出することができる。
The
乗員3は、Fp1箇所に信号取得部20を装着した状態で、車両100に搭乗する。路面状況検出装置1は、車両が所定のテストコースを走行する間、信号取得部20を介して、乗員3のFp1から取得可能な電気信号を取得する。
The
(1−2)路面状況検出装置の構成
図2は、路面状況検出装置1を説明する構成図である。路面状況検出装置1は、評価装置本体10と、信号取得部20とを有する。信号取得部20は、電極である。信号取得部20は、乗員3の前頭極部のFp1に取り付けられる。
(1-2) Configuration of Road Surface Condition Detection Device FIG. 2 is a configuration diagram illustrating the road surface
評価装置本体10は、信号取得部20において取得された電気信号が供給される信号入力部11と、信号入力部11に供給された電気信号から路面状況を算出する演算部12と、演算部12による解析の結果を表示する表示部13とを有する。
The
また、評価装置本体10は、使用者からの入力を受け付けるキーボード、マウス等の入力部14や、ハードディスクドライブ、半導体メモリ等で構成される記憶部15を備える。
The evaluation apparatus
具体的に、演算部12は、周波数解析演算部121と、最適化演算部122と、分析演算部123とを有する。
Specifically, the
周波数解析演算部121は、電気信号の時間周波数解析を行う。心理学において、脳波は、周波数帯域によって、δ波、θ波、α波、β波の4つに大別される。例えば、δ波は、4Hz未満の周波数帯域の脳波である。δ波は、覚醒時には出現せず、深い睡眠状態の時に頻繁に出現する。θ波は、4Hz以上8Hz未満の周波数帯域の脳波である。浅い睡眠時に頻繁に出現する。α波は、8Hz以上13Hz未満の周波数帯域の脳波である。閉眼安静状態のとき、後頭部側に目立って出現し、開眼すると出現が抑制される。また、リラックスを評価する指標とされている。β波は、13Hz以上の周波数帯域の脳波である。前頭部、側頭部に優勢に見られる。規則性も少ない。
The frequency
本実施形態では、Fp1から取得される電気信号を解析することによって、上述した周波数帯域の脳波を分離する。周波数解析としては、高速フーリエ変換、ウェーブレット変換等を用いることができる。本実施形態では、高速フーリエ変換を用いる。 In the present embodiment, the electroencephalogram in the frequency band described above is separated by analyzing the electrical signal acquired from Fp1. As the frequency analysis, fast Fourier transform, wavelet transform, or the like can be used. In this embodiment, fast Fourier transform is used.
脳波は、複数の因子が複雑に絡み合った時系列信号であるため、周波数解析のみでは脳波の特徴量を抽出することは難しい。本実施形態では、多変数解析を使用して特徴を抽出する。 Since the electroencephalogram is a time series signal in which a plurality of factors are intertwined in a complicated manner, it is difficult to extract the feature quantity of the electroencephalogram only by frequency analysis. In this embodiment, features are extracted using multivariable analysis.
最適化演算部122は、時間周波数解析によって求められた電気信号の周波数成分からなる第N群に適応度関数を用いて最適化処理を施すことにより第N群から周波数成分を選択する。本実施形態では、最適化演算部122は、最適化処理の手法の一例として、遺伝的アルゴリズムを用いる。時間周波数解析によって求められた電気信号の周波数成分に対して最適化処理を施す。
The
分析演算部123は、最適化演算部122において選択された周波数成分からなる第N+1群に重判別分析を施すことにより第N+1群に含まれる個々の周波数成分の尤度を表す判別的中率を算出する。
The
路面状況検出装置1では、分析演算部123において算出された判別的中率を適応度関数に代入し、最適化演算部122において最適化処理を再度実行する。再度実行される最適化処理では、判別的中率が代入された適応度関数を用いて、第N+1群に含まれる個々の周波数成分から周波数成分を選択する。
In the road surface
再度実行される最適化処理において、第N+1群から選択された周波数成分からなる第N+2群に重判別分析を施す。これにより、第N+2群に含まれる個々の周波数成分の尤度を表す判別的中率を算出する。 In the optimization process executed again, a multiple discriminant analysis is performed on the (N + 2) th group composed of frequency components selected from the (N + 1) th group. As a result, a discriminant median representing the likelihood of each frequency component included in the (N + 2) th group is calculated.
路面状況検出装置1では、分析演算部123における重判別分析と、最適化演算部122における最適化処理とを繰り返し実行することによって、最終的に抽出された電気信号の周波数成分の組み合わせを路面の状況を表す指標として決定する。
In the road surface
(2)路面状況検出方法の説明
次に、図面を参照して、路面状況検出方法について説明する。具体的に、(2−1)路面状況検出方法の全体説明、(2−2)ステップS1、(2−3)ステップS2、(2−4)ステップS3、について説明する。
(2) Description of Road Surface Condition Detection Method Next, the road surface condition detection method will be described with reference to the drawings. Specifically, (2-1) description of the entire road surface condition detection method, (2-2) step S1, (2-3) step S2, and (2-4) step S3 will be described.
(2−1)路面状況検出方法の全体説明
図3は、路面状況検出方法を説明するフローチャートである。図3に示すように、路面状況検出方法は、ステップS1〜S3を有する。ステップS1は、信号取得工程である。ステップS1において、乗員3の前頭極部に配置された電極から電気信号を取得する。ステップS2は、解析工程である。解析工程には、走行が開始された時刻からの経過時間に応じて電気信号に時間周波数解析を施す解析工程と、時間周波数解析によって求められた前記電気信号の周波数成分からなる群に適応度関数を用いて最適化処理を施すことによって周波数成分を選択する最適化工程と、最適化工程において選択された周波数成分からなる群に重判別分析を施すことにより、個々の周波数成分の尤度を表す判別的中率を算出する分析工程とが含まれる。ステップS3は、路面状況の指標を決定する決定工程である。ステップS2の処理の詳細は後述する。
(2-1) General Description of Road Surface Condition Detection Method FIG. 3 is a flowchart illustrating the road surface condition detection method. As shown in FIG. 3, the road surface condition detection method includes steps S1 to S3. Step S1 is a signal acquisition process. In step S <b> 1, an electrical signal is acquired from an electrode disposed on the frontal pole portion of the
(2−2)ステップS1:乗員から電気信号を取得する処理
ステップS1において、具体的に、乗員から電気信号を取得する処理について説明する。乗員は、前頭極部に電極を装着した状態で、評価対象のタイヤが装着された車両でテストコースを走行する。
(2-2) Step S1: Process for Acquiring an Electric Signal from an Occupant In step S1, a process for acquiring an electric signal from an occupant will be specifically described. The occupant travels on the test course in a vehicle in which the evaluation target tire is mounted with the electrode mounted on the frontal pole portion.
テストコースは、一般舗装路、一般舗装路よりも平坦でない荒れた路面、うねり路面、轍路、コーナリング、ウェット路面、着雪路面、凍結路面などを有する。一般舗装路では、直進安定性、レーンチェンジ性能、コーナリング安定性等の操縦安定性を評価する。荒れた路面及びうねり路面では、不整路における操縦安定性を評価する。轍路では、ウォブリング等の轍路における操縦安定性を評価する。ウェット路面、着雪路面、凍結路面では、ウェット路・氷雪路における操縦安定性を評価する。また、一般舗装路や荒れた路面における騒音、振動、段差における乗り心地、不整路における乗り心地を評価する。更に、制動性能、加速・減速性能を評価する。 The test course has a general paved road, a rough road surface that is not flatter than a general paved road, a wavy road surface, a narrow road, cornering, a wet road surface, a snowy road surface, a frozen road surface, and the like. For general paved roads, the driving stability such as straight running stability, lane change performance and cornering stability will be evaluated. For rough roads and wavy roads, steering stability on rough roads is evaluated. In Kushiro, we will evaluate the handling stability in the Kushiro such as wobbling. For wet roads, snowy roads, and frozen roads, steering stability on wet and icy roads will be evaluated. In addition, noise and vibration on general paved roads and rough roads, riding comfort on steps, and riding comfort on uneven roads will be evaluated. Furthermore, the braking performance and acceleration / deceleration performance are evaluated.
図4は、テストコースの一例を説明する模式図である。テストコース200は、少なくとも、平坦に舗装された直進路面R1と、荒れた路面R2と、R2よりも起伏の大きい荒れた路面R3と、轍路R4と、バンク角の大きいコーナR5と、うねり路面R6と、バンク角の小さいコーナR7とを有する。 FIG. 4 is a schematic diagram illustrating an example of a test course. The test course 200 includes at least a straight paved straight road surface R1, a rough road surface R2, a rough road surface R3 having a undulation larger than R2, a narrow road R4, a corner R5 having a large bank angle, and a wavy road surface. R6 and a corner R7 having a small bank angle.
走行時に、車両100が各セクション(R1〜R7)に差し掛かると、脳波の測定開始を意味するタイムスタンプが脳波とともに記録されてもよい。またセクションを通過し終わったとき、終了を意味するタイプスタンプが脳波とともに記録されてもよい。これにより、車両が所定のセクションを走行する期間(開始タイムスタンプから終了タイムスタンプでの期間)の脳波が抽出し易くなる。
When the
(2−3)ステップS2:解析処理
次に、図5を用いてステップS2において実行される具体的な工程について説明する。ステップS2は、更に、ステップS21乃至S25を有する。
(2-3) Step S2: Analysis Processing Next, specific steps executed in step S2 will be described with reference to FIG. Step S2 further includes steps S21 to S25.
まず、ステップS21において、信号取得部20から供給された電気信号の時間周波数解析を行う。具体的に、走行が開始された時刻からある時間経過した後にFp1から取得される脳波の電気信号を高速フーリエ変換を用いて複数の周波数帯域(4Hz〜22Hz)に分解する。
First, in step S21, the time frequency analysis of the electric signal supplied from the
続いて、ステップS22において、複数の周波数帯域(4Hz〜22Hz)に対して初期の遺伝子集団を決定する。すなわち、複数の周波数帯域(4Hz〜22Hz)に対してランダムに発生させた0又は1の値を割り当てる。なお、ここでは、0又は1でなくてもよい。アナログ値であってもよい。 Subsequently, in step S22, an initial gene population is determined for a plurality of frequency bands (4 Hz to 22 Hz). That is, a value of 0 or 1 generated at random is assigned to a plurality of frequency bands (4 Hz to 22 Hz). Here, it may not be 0 or 1. It may be an analog value.
図6は、遺伝子表現の一例を示す。複数の周波数帯域(4Hz〜22Hz)に対して最初に割り当てられた遺伝子表現を第1世代(第N群に相当)という。 FIG. 6 shows an example of gene expression. The gene expression initially assigned to a plurality of frequency bands (4 Hz to 22 Hz) is referred to as the first generation (corresponding to the Nth group).
ステップS23において、ステップS22において決定された遺伝子表現を有する複数の周波数帯域(4Hz〜22Hz)に対して重判別分析を施し、複数の周波数帯域(4Hz〜22Hz)に含まれる判別的中率を算出する。重判別分析としては、マハラノビス汎距離による判別分析を用いる。判別的中率を遺伝的アルゴリズムの適応度関数に代入し、遺伝的アルゴリズムの固体(初回は、第1世代)の適応度を算出する。 In step S23, the multiple discriminant analysis is performed on the plurality of frequency bands (4 Hz to 22 Hz) having the gene expression determined in step S22, and the discriminant intermediate rate included in the plurality of frequency bands (4 Hz to 22 Hz) is calculated. To do. As the multiple discriminant analysis, discriminant analysis based on Mahalanobis general distance is used. The discriminative predictive value is substituted into the fitness function of the genetic algorithm, and the fitness of the individual genetic algorithm (first generation is the first generation) is calculated.
ステップS24において、適用度が終了条件に達した否か判別する。終了条件に達した場合には、ステップS3に進む。 In step S24, it is determined whether or not the degree of application has reached an end condition. If the end condition is reached, the process proceeds to step S3.
一方、ステップS24において、適用度が終了条件に達しない場合には、ステップS23に戻り、第1世代に対して重判別分析を施すことによって第1世代から選択された第2世代(第N+1群に相当)の周波数成分の判別的中率を算出する。判別的中率を遺伝的アルゴリズムの適応度関数に代入し、第2世代の遺伝子表現を有する複数の周波数帯域(4Hz〜22Hz)の適応度を算出する。 On the other hand, if the applicability does not reach the end condition in step S24, the process returns to step S23, and the second generation (N + 1th group) selected from the first generation by performing the multiple discriminant analysis on the first generation. The discriminative probability of the frequency component is calculated. The discriminative predictive value is substituted into the fitness function of the genetic algorithm, and the fitness of a plurality of frequency bands (4 Hz to 22 Hz) having the second generation gene expression is calculated.
ステップS24において、適用度が終了条件に達しない場合には、ステップS23の工程に戻る前に、遺伝的アルゴリズムにおける「選択(selection)」を行って適応度を調整する。選択(selection)には、ルーレット方式、スケーリング方式、ランク方式、トーナメント方式、エリート保存戦略方式等がある。また、遺伝的アルゴリズムにおける「交叉(crossover)」を行って遺伝子表現を組み替える。交叉(crossover)には、1点交叉、複数点交叉、一様交叉等がある。また、遺伝的アルゴリズムにおける「突然変異(mtation)」を行って遺伝子表現を組み替えてもよい。終了条件に達するまでステップS23〜ステップS25を繰り返し行う。 In step S24, when the applicability does not reach the end condition, the fitness is adjusted by performing “selection” in the genetic algorithm before returning to the process of step S23. The selection includes a roulette method, a scaling method, a rank method, a tournament method, an elite preservation strategy method, and the like. Also, the gene expression is rearranged by performing “crossover” in the genetic algorithm. Crossover includes one-point crossover, multiple-point crossover, uniform crossover, and the like. In addition, gene expression may be rearranged by performing “mutation” in a genetic algorithm. Steps S23 to S25 are repeated until the end condition is reached.
(2−4)ステップS3
決定工程S3では、解析工程S2における処理に基づき、最終的に抽出された遺伝子表現によって表される周波数帯域の群を路面状況を表す指標として決定する。図7は、路面状況を特徴付ける周波数帯域の一例を示す図である。図7において、1が割り当てられた周波数帯域(ABDFIJKPQR)を、ある状態の路面Rnを表す指標として扱うことができる。
(2-4) Step S3
In the determination step S3, based on the processing in the analysis step S2, a group of frequency bands represented by the finally extracted gene expression is determined as an index representing the road surface condition. FIG. 7 is a diagram illustrating an example of a frequency band that characterizes road surface conditions. In FIG. 7, the frequency band (ABDFIJKPQR) to which 1 is assigned can be treated as an index representing the road surface Rn in a certain state.
(3)作用・効果
路面状況検出装置1によれば、国際法10−20法に基づいて乗員の前頭極部に配置された電極から取得した電気信号に適応度関数を用いた最適化処理と、重判別分析とを組み合わせて繰り返し実行する。これにより、乗員から取得された信号のうち抽出された周波数のみを用いることで直接的に路面状況を表すことができる。
(3) Action / Effect According to the road surface
路面状況検出装置1によれば、国際法10−20法に基づくFp1に配置される電極から電気信号を取得する。このように、Fp1に配置される電極1箇所から電気信号を取得するため、路面状況検出装置1によれば、乗員にかかる負担が低減される。また、電極は、1箇所に付ければ良いため、測定装置を装着することのストレスの影響を受けて、測定結果が不正確になることを防止できる。
According to the road surface
(4)その他の実施形態
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(4) Other Embodiments As described above, the contents of the present invention have been disclosed through the embodiments of the present invention. However, it is understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. Should not. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
1…タイヤ性能評価装置、3…乗員、10…評価装置本体、11…信号入力部、12…演算部、13…表示部、14…入力部、15…記憶部、20…信号取得部、21…電極、22…電極、100…車両、101…タイヤ、121…周波数解析演算部、122…最適化演算部、123…分析演算部、200…テストコース
DESCRIPTION OF
Claims (5)
国際法10−20法に基づいて前記車両の乗員の前頭極部に配置された電極から電気信号を取得する信号取得工程と、
前記走行が開始された時刻からの経過時間に応じて前記電気信号に時間周波数解析を施す解析工程と、
前記時間周波数解析によって求められた前記電気信号の周波数成分からなる第N群に適応度関数を用いて最適化処理を施すことにより前記第N群から周波数成分を選択する最適化工程と、
前記最適化工程において選択された周波数成分からなる第N+1群に重判別分析を施すことにより前記第N+1群に含まれる個々の周波数成分の尤度を表す判別的中率を算出する分析工程とを有し、
前記分析工程において算出された前記判別的中率を前記適応度関数に代入し、前記最適化工程を再度実行し、
再度実行される前記最適化工程では、前記判別的中率が代入された適応度関数を用いて前記第N+1群に含まれる個々の周波数成分から周波数成分を選択し、
再度実行される前記最適化工程において選択された周波数成分からなる第N+2群に重判別分析を施すことにより前記第N+2群に含まれる個々の周波数成分の尤度を表す判別的中率を算出し、
前記分析工程とを最適化工程とを繰り返し実行することによって選択された前記電気信号の周波数成分の組み合わせを前記路面の状況を表す指標に決定する路面状況検出方法。 A road surface condition detection method for detecting the condition of the road surface when the vehicle travels on a predetermined road surface,
A signal acquisition step of acquiring an electrical signal from an electrode disposed on a frontal pole portion of an occupant of the vehicle based on international law 10-20;
An analysis step of performing a time-frequency analysis on the electrical signal according to an elapsed time from the time when the traveling was started;
An optimization step of selecting a frequency component from the Nth group by applying an optimization process to the Nth group of frequency components of the electrical signal obtained by the time-frequency analysis using an fitness function;
An analysis step of calculating a discriminant median representing the likelihood of each frequency component included in the N + 1 group by performing a multiple discriminant analysis on the N + 1 group of frequency components selected in the optimization step. Have
Substituting the discriminant probability calculated in the analysis step into the fitness function, and executing the optimization step again,
In the optimization step executed again, a frequency component is selected from the individual frequency components included in the N + 1th group using a fitness function into which the discriminant probability is substituted,
A discriminant median representing the likelihood of each frequency component included in the N + 2 group is calculated by performing multiple discriminant analysis on the N + 2 group consisting of the frequency components selected in the optimization step executed again. ,
A road surface condition detection method for determining a combination of frequency components of the electrical signal selected by repeatedly executing the analysis process and the optimization process as an index representing the road surface condition.
国際法10−20法に基づいて前記車両の乗員の前頭極部に配置された電極から電気信号を取得する信号取得部と、
前記走行が開始された時刻からの経過時間に応じて前記電気信号に時間周波数解析を施す解析部と、
前記時間周波数解析によって求められた前記電気信号の周波数成分からなる第N群に適応度関数を用いて最適化処理を施すことにより前記第N群から周波数成分を選択する最適化演算部と、
前記最適化演算部において選択された周波数成分からなる第N+1群に重判別分析を施すことにより前記第N+1群に含まれる個々の周波数成分の尤度を表す判別的中率を算出する分析部とを有し、
前記分析部において算出された前記判別的中率を前記適応度関数に代入し、前記最適化演算部において前記最適化処理を再度実行し、
再度実行される前記最適化処理では、前記判別的中率が代入された適応度関数を用いて前記第N+1群に含まれる個々の周波数成分から周波数成分を選択し、
再度実行される前記最適化処理において選択された周波数成分からなる第N+2群に重判別分析を施すことにより前記第N+2群に含まれる個々の周波数成分の尤度を表す判別的中率を算出し、
前記分析部における重判別分析と、前記最適化演算部における最適化処理とを繰り返し実行することによって選択された前記電気信号の周波数成分の組み合わせを前記路面の状況を表す指標に決定する路面状況検出装置。 When the vehicle travels on a predetermined road surface, the road surface state detection device detects the road surface state,
A signal acquisition unit for acquiring an electrical signal from an electrode disposed on a frontal pole portion of an occupant of the vehicle based on International Law 10-20;
An analysis unit for performing a time-frequency analysis on the electrical signal according to an elapsed time from the time when the traveling was started;
An optimization calculation unit that selects a frequency component from the N-th group by performing an optimization process using an fitness function on the N-th group including the frequency components of the electrical signal obtained by the time-frequency analysis;
An analysis unit for calculating a discriminant intermediate ratio representing the likelihood of each frequency component included in the N + 1 group by performing a multiple discriminant analysis on the N + 1 group of frequency components selected by the optimization calculation unit; Have
Substituting the discriminant probability calculated in the analysis unit into the fitness function, and executing the optimization process again in the optimization calculation unit,
In the optimization process executed again, the frequency component is selected from the individual frequency components included in the N + 1th group using the fitness function in which the discriminant probability is substituted,
A discriminant median representing the likelihood of each frequency component included in the N + 2 group is calculated by performing a multiple discriminant analysis on the N + 2 group consisting of the frequency components selected in the optimization process executed again. ,
Road surface condition detection that determines a combination of frequency components of the electrical signal selected by repeatedly executing the multiple discriminant analysis in the analysis unit and the optimization process in the optimization calculation unit as an index representing the road surface condition apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042968A JP5187850B2 (en) | 2009-02-25 | 2009-02-25 | Road surface state detection method and road surface state detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042968A JP5187850B2 (en) | 2009-02-25 | 2009-02-25 | Road surface state detection method and road surface state detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010195218A true JP2010195218A (en) | 2010-09-09 |
JP5187850B2 JP5187850B2 (en) | 2013-04-24 |
Family
ID=42820409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009042968A Active JP5187850B2 (en) | 2009-02-25 | 2009-02-25 | Road surface state detection method and road surface state detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5187850B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012184958A (en) * | 2011-03-03 | 2012-09-27 | Bridgestone Corp | Vehicle vibration detection method and vehicle vibration detection apparatus |
JP2013151272A (en) * | 2011-12-26 | 2013-08-08 | Univ Of Tokyo | Measurement device, measurement method, road surface state estimation method, road surface state estimation device, and detection device |
CN111433100A (en) * | 2017-12-07 | 2020-07-17 | 日产自动车株式会社 | Road surface state determination method and road surface state determination device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010052690A (en) * | 2008-08-29 | 2010-03-11 | Bridgestone Corp | Tire performance assessment method and tire performance assessment apparatus |
JP2010190874A (en) * | 2009-02-20 | 2010-09-02 | Bridgestone Corp | Method and apparatus for evaluating tire performance |
-
2009
- 2009-02-25 JP JP2009042968A patent/JP5187850B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010052690A (en) * | 2008-08-29 | 2010-03-11 | Bridgestone Corp | Tire performance assessment method and tire performance assessment apparatus |
JP2010190874A (en) * | 2009-02-20 | 2010-09-02 | Bridgestone Corp | Method and apparatus for evaluating tire performance |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012184958A (en) * | 2011-03-03 | 2012-09-27 | Bridgestone Corp | Vehicle vibration detection method and vehicle vibration detection apparatus |
JP2013151272A (en) * | 2011-12-26 | 2013-08-08 | Univ Of Tokyo | Measurement device, measurement method, road surface state estimation method, road surface state estimation device, and detection device |
CN111433100A (en) * | 2017-12-07 | 2020-07-17 | 日产自动车株式会社 | Road surface state determination method and road surface state determination device |
CN111433100B (en) * | 2017-12-07 | 2023-06-23 | 日产自动车株式会社 | Road surface state determination method and road surface state determination device |
Also Published As
Publication number | Publication date |
---|---|
JP5187850B2 (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9841359B2 (en) | Extraction of tire characteristics combining direct TPMS and tire resonance analysis | |
JP5837341B2 (en) | Road surface condition determination method and apparatus | |
Singh et al. | Estimation of tire–road friction coefficient and its application in chassis control systems | |
EP1878596B1 (en) | Apparatus and method for evaluating a degree of a safety in traveling of a vehicle | |
US9527352B2 (en) | Indirect tire pressure monitoring systems and methods using multidimensional resonance frequency analysis | |
JP5184252B2 (en) | Estimating the effective grip margin of tires during rolling | |
JP4830015B2 (en) | Tire pressure drop detection device and method, and tire pressure drop detection program | |
JP5557569B2 (en) | Road surface condition estimation method | |
US11846502B2 (en) | Tire device | |
US20200391559A1 (en) | Road surface condition determination device | |
JP5187850B2 (en) | Road surface state detection method and road surface state detection device | |
JP5689105B2 (en) | Tire pressure drop detection device, method and program | |
EP3020579B1 (en) | Tire pressure decrease detection apparatus, method, and program | |
JP5610332B2 (en) | Tire performance evaluation method and tire performance evaluation apparatus | |
JP2010052690A (en) | Tire performance assessment method and tire performance assessment apparatus | |
JP4073476B2 (en) | Vehicle travel safety evaluation device and vehicle travel safety evaluation method | |
JP5126048B2 (en) | Tire pressure monitoring device | |
JP5241556B2 (en) | Road surface condition estimation device | |
JP5404062B2 (en) | Tire pressure drop detection device and method, and tire pressure drop detection program | |
JP3391486B2 (en) | Tire pressure detector | |
JP2011158402A (en) | Method and apparatus for evaluating tire performance | |
JP5808550B2 (en) | Bicycle maneuverability evaluation method and bicycle maneuverability evaluation apparatus | |
JP5802024B2 (en) | Vehicle vibration detection method and vehicle vibration detection device | |
JP5464580B2 (en) | Tire resonance frequency decompression sensitivity estimation apparatus and method, and tire resonance frequency decompression sensitivity estimation program | |
JP2017096642A (en) | Device and method for estimating degree of fatigue damage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5187850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |