JP2010193936A - Muscle rigidity degree quantitative evaluation apparatus - Google Patents
Muscle rigidity degree quantitative evaluation apparatus Download PDFInfo
- Publication number
- JP2010193936A JP2010193936A JP2009038972A JP2009038972A JP2010193936A JP 2010193936 A JP2010193936 A JP 2010193936A JP 2009038972 A JP2009038972 A JP 2009038972A JP 2009038972 A JP2009038972 A JP 2009038972A JP 2010193936 A JP2010193936 A JP 2010193936A
- Authority
- JP
- Japan
- Prior art keywords
- electromyogram
- value
- average
- moving average
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 208000002740 Muscle Rigidity Diseases 0.000 title claims abstract description 31
- 238000011158 quantitative evaluation Methods 0.000 title claims description 20
- 230000033001 locomotion Effects 0.000 claims abstract description 43
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 210000001364 upper extremity Anatomy 0.000 claims abstract description 34
- 238000004458 analytical method Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 26
- 210000000245 forearm Anatomy 0.000 claims abstract description 15
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 210000000707 wrist Anatomy 0.000 claims abstract description 14
- 210000002310 elbow joint Anatomy 0.000 claims abstract description 8
- 206010052904 Musculoskeletal stiffness Diseases 0.000 claims description 35
- 238000001228 spectrum Methods 0.000 claims description 22
- 230000003183 myoelectrical effect Effects 0.000 claims description 17
- 230000010354 integration Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 6
- 230000004220 muscle function Effects 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 20
- 230000001114 myogenic effect Effects 0.000 abstract 3
- 238000011156 evaluation Methods 0.000 description 42
- 208000018737 Parkinson disease Diseases 0.000 description 27
- 210000003205 muscle Anatomy 0.000 description 6
- 208000016285 Movement disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 4
- 230000003387 muscular Effects 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000013399 early diagnosis Methods 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011425 standardization method Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 229940017517 flexall Drugs 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本発明はヒトの上肢動作を解析する装置に関するものであり、上肢を他動的に屈伸させて定量評価をおこなう筋固縮度定量評価装置に関する。 The present invention relates to an apparatus for analyzing human upper limb movements, and relates to a muscular rigidity quantitative evaluation apparatus for performing quantitative evaluation by flexing and stretching the upper limb dynamically.
筋固縮は手足の関節を他動的に屈伸させた時、筋緊張が亢進する現象であり、例えば、パーキンソン病の患者ではガクガクと断続的な抵抗を示す歯車様固縮がみられる。この筋固縮は日常診療において、安静状態で上肢を弛緩させた被験者に対して、医師である験者が上肢を肘のところで伸ばしたり、曲げたりしたときに感じた抵抗や、手首を回転させたときに感じた抵抗に基づき、主観的に5段階に評価されている。臨床診断でよく用いられるUnified Parkinson‘s Disease Rating Scale(UPDRS)においては、筋固縮が無い場合を0点、軽微またはミラームーブメントないし他の運動で誘発できる程度が1点、軽度ないし中等度の固縮がある場合が2点、高度の固縮があるものの関節可動域は正常な場合が3点、著明な固縮があり関節可動域に制限ある場合が4点と評価される。このUPDRSの評価は主観的なものであり、筋固縮度を客観的かつ定量的に評価する装置が、評価の普遍性を確保するために必要とされている。 Muscle stiffness is a phenomenon in which muscle tone increases when joints of the limbs are flexed and stretched dynamically. For example, in patients with Parkinson's disease, gear-like stiffness that shows intermittent resistance is observed. This muscular stiffness was caused by the resistance felt when the upper extremity was stretched or bent at the elbow or the wrist was rotated by the examiner who was a doctor against subjects who had relaxed their upper limbs in a daily state. Based on the resistance felt at times, it is subjectively rated on a five-point scale. In Unified Parkinson's Disease Rating Scale (UPDRS) often used in clinical diagnosis, 0 points when there is no muscle rigidity, 1 point that can be induced by minor or mirror movements or other movements, mild to moderate It is evaluated as 2 points when there is rigidity, 3 points when the joint movement is normal, but 4 points when there is significant rigidity and the joint movement is limited. The UPDRS evaluation is subjective, and an apparatus that objectively and quantitatively evaluates the degree of muscular rigidity is required to ensure the universality of the evaluation.
パーキンソン病は運動障害を主徴とする神経変性疾患の代表的疾患であり、筋固縮以外に、安静時振戦、無動、姿勢保持障害等の運動障害がみられる。こうした運動障害について、その重症度を評価する方法には、Hoehn−Yahr重症度分類やUPDRSがあり、いずれの手法も医師の主観に基づく評価である。パーキンソン病の臨床重症度を判断するため運動障害を客観的、定量的に評価することは、臨床診断上も薬物療法への反応を評価する上でも大変重要であることから、これまでにも定量評価方法や定量評価装置が提案されている。 Parkinson's disease is a typical neurodegenerative disease mainly characterized by movement disorders. In addition to muscle stiffness, movement disorders such as resting tremors, immobility, and posture maintenance disorders are observed. Methods for evaluating the severity of such movement disorders include Hoehn-Yahr severity classification and UPDRS, and both methods are based on the subjectivity of doctors. Objective and quantitative evaluation of movement disorders to determine the clinical severity of Parkinson's disease is very important for clinical diagnosis and response to pharmacotherapy. Evaluation methods and quantitative evaluation devices have been proposed.
例えば、特許文献1では、プログラムに従って供給される画像信号にもとづき音声信号を合図に運動動作をおこない、運動の反応時間や動作時間に基づき運動評価をおこなう方法が提案されている。この方法は比較的容易に測定可能であるが、臨床的によく用いられているUPDRSやHoehn−Yahr重症度分類と直接対応しない。
For example,
また、特許文献2では、臨床的なUPDRSの評価方法と同様の方法を用いて、上肢を肘のところで伸ばしたり、曲げたりしたときに感じた抵抗を測定する装置を例示している。この装置は屈伸角度位置の時間的経過に対応したトルクを記録表示することで、筋固縮のある被験者を区別しようとしているが、パーキンソン病患者にみられる歯車様固縮は検出できていない。
Further,
非特許文献1では、UPDRSに含まれる評価方法のひとつである指タップを定量化する手法を提案しているが、筋固縮の定量化はおこなわれていない。
Non-Patent
非特許文献2では、上腕から得られた表面筋電図の周波数解析にもとづき筋固縮を評価しているが、定量化の方法は提案されていない。
In
非特許文献3では、臨床的なUPDRSの評価方法と同様の方法を用いて、上腕から得られた表面筋電図の解析値にもとづき筋固縮を定量評価する装置を例示している。しかし、例示された装置は、制御装置の誤作動により予期せぬ動きを生じ、被験者に怪我を与える可能性がある。また、測定例が少なく、運動障害を客観的かつ定量的に評価するためには、移動平均に用いる窓関数の値をどうすべきであるか不明であり、周波数解析に基づく定量評価方法も例示されていない。
Non-Patent
この発明は、上述した事情に鑑みてなされたものであって、その目的はUPDRSで用いられている測定方法と同一の方法である他動的な上肢屈曲動作を被験者にあたえながら筋固縮を測定し、特に歯車様固縮についてその測定結果を定量的に評価する装置を提供することを目的とする。また、評価装置は誤作動により被験者に無理な動きをさせないよう安全装置が組み入れられていなければならない。本発明の更に他の目的は、特にパーキンソン病等の筋固縮を伴う疾患の診断、早期診断、重症度評価、薬効評価、および外科的治療効果判定などに利用できる筋固縮度定量評価装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and its purpose is to perform muscle stiffness while giving a subject the passive movement of the upper limb, which is the same method as the measurement method used in UPDRS. An object of the present invention is to provide an apparatus for measuring and particularly quantitatively evaluating the measurement result of gear-like stiffness. In addition, the evaluation device must incorporate a safety device to prevent the subject from making excessive movements due to malfunction. Still another object of the present invention is to provide an apparatus for quantitatively evaluating the degree of muscle rigidity that can be used for diagnosis, early diagnosis, severity evaluation, drug efficacy evaluation, surgical treatment effect determination, and the like, particularly for diseases involving muscle rigidity such as Parkinson's disease. The purpose is to provide.
本発明は、上肢を肘関節と手首で固定する手段を備えたアームに直接接続されたギヤボックスを用いて動作トルクを増大した、ステッピングモーターを利用した他動的に被験者に上肢屈曲動作を与える動作手段と、筋電位を測定する筋電位測定手段と、前腕位置を変位ケーブルにより位置変換器で測定する前腕位置測定手段と、を備え、筋電位に関する生体情報を取り込んで得られたディジタルデータについて解析値を算出し、その解析値の算出データに基づいて筋固縮の定量評価を行なうことを特徴とする筋固縮度定量評価装置である。 The present invention provides a subject with flexing motion of the upper limb by using a stepping motor having increased operating torque using a gear box directly connected to an arm having means for fixing the upper limb with an elbow joint and a wrist. Digital data obtained by taking in biological information on myoelectric potential, comprising operating means, myoelectric potential measuring means for measuring myoelectric potential, and forearm position measuring means for measuring the forearm position with a position converter using a displacement cable An apparatus for quantitatively evaluating the degree of stiffness of muscles characterized by calculating an analysis value and performing quantitative evaluation of muscle stiffness based on the calculated data of the analysis value.
前記解析値のひとつの例は、複数回の測定から得られた筋電位を取り込んで得られたディジタルデータから抽出した1回の測定について筋電位の絶対値に窓関数を用い移動平均処理をおこなった単一移動平均筋電図を算出し、算出された複数回の単一移動平均筋電図の平均値から平均筋電図を算出し、算出された平均筋電図の積分値から平均筋電図積分値を算出し、1回の測定について、単一移動平均筋電図と平均筋電図の差の絶対値の積分値から単一移動平均筋電図偏差積分値を算出し、平均筋電図積分値に対する単一移動平均筋電図偏差積分値の比率である単一移動平均筋電図偏差比率を算出し、複数回の測定から得られた単一移動平均筋電図偏差比率の平均値である。 One example of the analysis value is a moving average process using a window function for the absolute value of myoelectric potential for one measurement extracted from digital data obtained by taking myoelectric potential obtained from a plurality of measurements. Single moving average electromyogram is calculated, average electromyogram is calculated from the average value of the calculated multiple single moving average electromyograms, and the average muscle is calculated from the integrated value of the calculated average electromyogram Calculating the electrogram integral value, and calculating the single moving average electromyogram deviation integral value from the integral value of the absolute value of the difference between the single moving average electromyogram and the average electromyogram for one measurement. Calculate the single moving average electromyogram deviation ratio, which is the ratio of the single moving average electromyogram deviation integrated value to the EMG integral value, and obtain the single moving average electromyogram deviation ratio obtained from multiple measurements. Is the average value.
前記移動平均処理に用いる窓関数について、窓関数時間だけ1であり、他は0である関数を用い、前記窓関数時間として10msから20msを用いることが好ましい。 As for the window function used for the moving average process, it is preferable to use a function in which only the window function time is 1 and others are 0, and the window function time is 10 ms to 20 ms.
また、他の解析値の例は、複数回の測定から得られた筋電位を取り込んで得られたディジタルデータの絶対値について高速フーリエ変換を施し、その高速フーリエ変換処理の結果に対して周波数パワースペクトルを算出し、複数回の測定からえられた周波数パワースペクトルの平均値である平均周波数パワースペクトルを算出し、前記平均周波数パワースペクトルの非特定周波数帯域の成分および特定周波数帯域の成分についてそれぞれ積分をおこない、前記非特定周波数成分についての積分値に対する特定周波数周波数帯域成分の積分値の比率である。 Another example of the analysis value is to perform fast Fourier transform on the absolute value of digital data obtained by taking in myoelectric potential obtained from multiple measurements, and to calculate the frequency power for the result of the fast Fourier transform processing. Calculate a spectrum, calculate an average frequency power spectrum, which is an average value of frequency power spectra obtained from a plurality of measurements, and integrate each of the non-specific frequency band component and the specific frequency band component of the average frequency power spectrum. And the ratio of the integral value of the specific frequency frequency band component to the integral value of the non-specific frequency component.
前記非特定周波数帯域成分としてパワースペクトルの2−20Hz成分を用い、前記特定周波数帯域成分として6−9Hzの成分を用いることが好ましい。 It is preferable to use a 2-20 Hz component of a power spectrum as the non-specific frequency band component and a 6-9 Hz component as the specific frequency band component.
本発明の筋固縮評価方法によれば、症候の重症度を客観的、定量的に行うことが可能であり、評価の普遍性を確保し、診断上も簡便に利用できる。パーキンソン病等の筋固縮を伴う疾患の診断、早期診断、重症度評価、薬効評価、および外科的治療効果判定などにも有用である。 According to the muscular rigidity evaluation method of the present invention, the severity of symptoms can be objectively and quantitatively ensured universality of evaluation and can be easily used for diagnosis. It is also useful for diagnosis of diseases with muscle rigidity such as Parkinson's disease, early diagnosis, severity evaluation, drug efficacy evaluation, and surgical treatment effect determination.
以下図面を参照して、本発明の筋固縮度定量評価装置について実施の形態を詳しく説明する。 Embodiments of the muscular stiffness measurement apparatus according to the present invention will be described in detail below with reference to the drawings.
図1は、上腕11と前腕12からなる上肢を肘関節で固定する手段7と手首で固定する手段10を備えたアーム4に直接接続されたギヤボックス2を用いて動作トルクを増大したステッピングモーター1を利用した他動的に被験者に上肢屈曲動作を与える動作手段を示したものである。肘関節や手首を固定する手段にはローラースケート等の防護具が利用できる。図2は手首を固定する手段7であるローラースケートの防護具を除いた状態を示したもので、防護具を固定するための手首固定具用金具6と、手首固定具用金具6をアーム4に固定するための固定金具5が示されている。図3は上肢屈曲動作を与える動作手段を図2とは反対側から示した図である。
FIG. 1 shows a stepping motor having an increased operating torque using a
ギヤボックスを利用せずステッピングモーターを単独で用いた場合は前腕を運動させるだけの充分な力を得ることができなかったが、30N・mのトルクを有するギヤボックス2を利用することで、パーキンソン病患者を含む10人の被験者全員の上肢を屈曲動作させることが可能であった。
When a stepping motor was used alone without using a gear box, sufficient force to move the forearm could not be obtained, but by using the
ステッピングモーター1に接続した制御装置をコンピュータに接続し、動作プログラムを作成することで、前腕の位置を容易に設定可能である。角度検出器を備えたステッピングモーターを利用すれば、前腕の位置を制御するとともに、前腕の位置を測定することも可能である。しかし、シリアルインターフェースを利用して制御装置とコンピュータを接続すると、通信速度が遅い場合、位置制御と同時に位置の測定ができない。また、ステッピングモーターを利用して位置を測定する場合、制御装置の誤作動により、誤った位置に前腕を動かそうとするため、特にトルクの大きい動作手段を利用した場合、被験者に怪我を与える可能性があった。そこで、前腕の位置は複数の方法で取得しておかなければならないことが理解された。
By connecting a control device connected to the stepping
アーム4の位置を検出する手段として、変位ケーブル9の長さを測定する位置変換器8が利用できる。変位ケーブル9の一端はアーム4に固定されており上肢の屈曲動作に応じてその長さが変化する。上肢を伸ばした状態で変位ケーブル9の長さが一番短く、上肢を屈曲させるにつれて、変位ケーブル9の長さが長くなるように、位置変換器8を取り付ける。位置変換器8は変位ケーブル9を内部のばねを利用して常に張力のかかった状態とし、変位ケーブル9が巻きついた円筒の回転角度について角度検出器を利用して測定することで、変位ケーブル9の長さを測定する装置である。このような位置変換器には例えば、SpaceAge Control社製の位置変換器がある。
As a means for detecting the position of the
位置変換器8は変位ケーブル9の長さを長さに比例した抵抗値に変換し、外部から電圧を加えることで、変位ケーブル9の長さに比例した電圧を得ることができる。この電圧についてアナログ−ディジタル変換器を利用してディジタルデータにすることで、コンピュータにアーム4の位置を記録することができる。
The
この変位ケーブル9の長さに比例した電圧を複数の装置で記録することで、制御装置の誤作動により生じるアーム4の予期せぬ動きを防ぐことができる。
By recording a voltage proportional to the length of the
例えば、制御装置とは別の安全装置に記録された電圧が一定電圧以上もしくは一定電圧以下になれば、前腕を無理な位置に動かしたことになる。そこで、安全装置から停止信号を送り、ステッピングモーター1へ供給される電力を遮断すれば、アーム4の予期せぬ動きを防ぎ、被験者の怪我を防ぐことができる。
For example, if the voltage recorded in a safety device different from the control device is equal to or higher than a certain voltage or less than a certain voltage, the forearm is moved to an unreasonable position. Therefore, if a stop signal is sent from the safety device and the power supplied to the stepping
筋電位を測定する測定手段として、表面筋電図を利用することができる。筋電図測定用表面電極を貼付しやすいことから、屈曲時に収縮する上腕二頭筋の筋電図を取得することが容易であるが、上腕二頭筋以外にも、拮抗筋である上腕三頭筋等、他の筋電図を利用してもよい。表面電極には銀−塩化銀電極など表面筋電図を測定可能な様々な種類の電極を用いることができる。表面電極で測定された電位は増幅器により、その電位を増幅した後、アナログ−ディジタル変換器を利用してディジタルデータにすることで、コンピュータに筋電位を取り込む。アナログ−ディジタル変換器でのサンプリング周波数は最低でも100Hzは必要であるが、アナログ−ディジタル変換器の性能の許す限り、高いサンプリング周波数を利用することが望ましい。初段増幅器を内蔵したDelsys社のパラレルバー表面電極はノイズが少なく有用な表面電極であり、信号増幅器としてDelsys社のBagnoli−2 EMG Systemを利用することができる。 A surface electromyogram can be used as a measuring means for measuring myoelectric potential. Since it is easy to apply a surface electrode for electromyogram measurement, it is easy to obtain an electromyogram of the biceps that contracts during flexion. Other electromyograms such as head muscles may be used. As the surface electrode, various types of electrodes capable of measuring a surface electromyogram such as a silver-silver chloride electrode can be used. The potential measured at the surface electrode is amplified by an amplifier and converted into digital data using an analog-digital converter, whereby the myoelectric potential is taken into the computer. The sampling frequency in the analog-digital converter needs to be at least 100 Hz, but it is desirable to use a high sampling frequency as long as the performance of the analog-digital converter allows. The Delsys parallel bar surface electrode with a built-in first-stage amplifier is a useful surface electrode with less noise, and the Delsys Bagnoli-2 EMG System can be used as a signal amplifier.
被験者の肘関節と手首を筋固縮度定量評価装置に固定し、表面筋電図を上腕に貼り付ける。表面筋電図を貼り付けた直後は信号雑音が大きいため、表面筋電図を測定しながら、およそ5分から15分程度測定信号が安定するまで時間をおく。 The subject's elbow joint and wrist are fixed to the device for quantitatively evaluating muscle stiffness, and a surface electromyogram is attached to the upper arm. Since the signal noise is large immediately after the surface electromyogram is pasted, it takes time to stabilize the measurement signal for about 5 to 15 minutes while measuring the surface electromyogram.
上肢屈曲動作の動作範囲を決定するため、アーム4を手動で動かし、上肢を伸展させた伸展位置を位置変換器8により測定し記録する。さらにアーム4を手動で動かし、上肢を屈曲させた屈曲位置を測定し記録する。上肢屈曲動作の動作範囲はこの伸展位置から屈曲位置までの間となる。
In order to determine the motion range of the upper limb bending motion, the
屈曲動作の動作速度は、被験者が負担にならない範囲で任意に決定することができるが、医師が臨床で利用している測定法とほぼ同じ速度になるよう2秒で1回屈伸−屈曲動作を繰り返すよう設定することが望ましい。 The movement speed of the bending movement can be arbitrarily determined within a range that does not burden the subject, but the bending / extension movement is performed once in 2 seconds so that the speed is almost the same as the measurement method used in the clinic by the doctor. It is desirable to set to repeat.
表面電極の貼付具合や被験者によって、筋電図の測定電位は異なるため、筋電図の測定電位を標準化することが望ましい。標準化の方法として、上肢を動作していない時の安静時筋電図をおよそ20秒測定し、安静時筋電図の平均値と分散に基づき標準化する筋電図電位標準化手法が利用できる。具体的には、上肢屈曲動作時に測定した屈曲動作時筋電図から安静時筋電図の平均値を減じ、安静時筋電図の分散で除することで標準化する方法である。 Since the electromyogram measurement potential varies depending on how the surface electrode is applied and the subject, it is desirable to standardize the electromyogram measurement potential. As a standardization method, an electromyogram potential standardization method can be used in which an electromyogram at rest when the upper limb is not moving is measured for about 20 seconds and standardized based on an average value and variance of the electromyogram at rest. Specifically, it is a method of standardization by subtracting the average value of the resting electromyogram from the electromyogram during flexion measured during the flexion motion of the upper limb and dividing by the variance of the resting electromyogram.
図4に健常な被験者に表面電極を貼付し、屈曲動作をさせたときの筋電図とアーム4の位置を図示した。被験者には動作中、上肢を弛緩させ能動的な動作をしないよう指示した。筋電図は前記手法により標準化したのち絶対値を示している。位置変換器で測定したアーム4の位置について、伸展時が0、屈曲時が1となるよう値を変換して示している。健常な被験者では屈曲動作時筋電図の電位が小さく、電位にばらつきがないことがわかる。
FIG. 4 illustrates an electromyogram and the position of the
一人の被験者に対して、最低でも10回は上肢屈曲動作をおこなうことで、複数回の屈曲動作時筋電図を得る。 An electromyogram at the time of a plurality of bending motions is obtained by performing an upper limb bending motion at least 10 times for one subject.
複数回の測定から得られた筋電位に関する生体情報を取り込んで得られたディジタルデータについて、筋固縮の定量評価を行なうため、その解析値を算出する必要がある。 In order to perform quantitative evaluation of muscular rigidity for digital data obtained by taking in biological information related to myoelectric potential obtained from multiple measurements, it is necessary to calculate an analysis value thereof.
測定された屈曲動作時筋電図は高周波成分が多く、そのままでは定量評価が難しいため、低周波フィルタを用いて高周波成分を除去する。低周波フィルタのひとつとして窓関数を用いた移動平均処理が利用できる。窓関数は例えば窓関数時間だけ1であり、他は0である関数である。1回の屈伸−屈曲動作時に測定された屈曲動作時筋電図を単一測定筋電図として、この単一測定筋電図と前記窓関数の畳み込み積分をすることで、窓関数時間の移動平均処理をおこなった単一移動平均筋電図が得られる。 The measured electromyogram during flexion has many high-frequency components and is difficult to quantitatively evaluate as it is, so the high-frequency components are removed using a low-frequency filter. As one of the low frequency filters, moving average processing using a window function can be used. The window function is a function in which, for example, the window function time is 1 only and the others are 0. The electromyogram at the time of flexion movement measured at the time of bending-extension-flexion movement is regarded as a single measurement electromyogram, and the window function time is shifted by performing convolution integration of the single measurement electromyogram and the window function. A single moving average electromyogram subjected to the averaging process is obtained.
図5の細点線はパーキンソン病患者の上肢屈曲動作を与えたときの上腕二頭筋の単一測定筋電図である。また、太破線は前記上腕二頭筋の筋電図を窓関数時間10msの移動平均処理をおこなった単一移動平均筋電図であり、太実線は10回の屈伸−屈曲動作から得られた複数の単一測定筋電図をそれぞれ、窓関数時間10msで移動平均処理をおこなった単一移動平均筋電図を算出し、10回の測定値の平均値を計算した平均筋電図である。図は最も屈曲した位置を0秒として、上肢の伸展時の筋電図を0.5秒まで示した。パーキンソン病患者ではおよそ100から150msで筋固縮に伴う著しい筋電図の亢進が見られており、移動平均処理をおこなった単一移動平均筋電図でその周期が顕著に認められる。 The thin dotted line in FIG. 5 is a single measurement electromyogram of the biceps brachii when the upper limb flexion motion is given to a Parkinson's disease patient. The thick broken line is a single moving average electromyogram obtained by subjecting the biceps electromyogram to a moving average process with a window function time of 10 ms, and the thick solid line is obtained from 10 flexion-extension / bending operations. It is the average electromyogram which calculated the single moving average electromyogram which performed the moving average process for each of several single measurement electromyograms by the window function time of 10 ms, and calculated the average value of 10 times of measured values. . In the figure, the most bent position is 0 second, and the electromyogram during the extension of the upper limb is shown up to 0.5 seconds. In patients with Parkinson's disease, a marked increase in electromyogram accompanying muscle rigidity is observed in about 100 to 150 ms, and the period is remarkably observed in a single moving average electromyogram subjected to moving average processing.
図5の単一移動平均筋電図で顕著に認められる筋固縮に伴う筋電図の亢進について定量評価するため、平均筋電図の積分値に対する、単一移動平均筋電図と平均筋電図の差の絶対値の積分値の比率である単一移動平均筋電図偏差比率を算出した。図6の斜線で示した領域の面積が平均筋電図の積分値である平均筋電図積分値であり、図7の斜線で示した領域の面積が単一移動平均筋電図と平均筋電図の差の絶対値の積分値である移動平均筋電図偏差積分値である。平均筋電図に対する移動平均筋電図偏差積分値の比率である単一移動平均筋電図偏差比率を算出すれば、単一移動平均筋電図偏差比率が大きいほど、筋固縮が亢進していることを示している。10回の測定から、10個の単一移動平均筋電図偏差比率が得られ、この単一移動平均筋電図偏差比率の平均値を被験者の移動平均による筋固縮の評価値として利用することができる。 In order to quantitatively evaluate the enhancement of the electromyogram accompanying the muscular rigidity, which is noticeable in the single moving average electromyogram in FIG. 5, the single moving average electromyogram and the average muscle with respect to the integrated value of the average electromyogram A single moving average electromyogram deviation ratio, which is a ratio of integral values of absolute values of electrogram differences, was calculated. The area indicated by the hatched area in FIG. 6 is the average electromyogram integrated value, which is the integrated value of the average electromyogram, and the area indicated by the hatched area in FIG. 7 is the single moving average electromyogram and the average muscle. It is a moving average electromyogram deviation integral value that is an integral value of an absolute value of an electrogram difference. If the single moving average electromyogram deviation ratio, which is the ratio of the moving average electromyogram deviation integrated value to the average electromyogram, is calculated, the greater the single moving average electromyogram deviation ratio, the greater the muscle stiffness. It shows that. Ten single moving average electromyogram deviation ratios are obtained from ten measurements, and the average value of the single moving average electromyogram deviation ratios is used as an evaluation value of muscle stiffness by the moving average of the subject. be able to.
複数回の測定の平均値を計算する場合、筋電図に明らかな外来雑音が含まれる測定は除外することが望ましい。また、図5の例では0.5秒分の測定データについて計算方法を説明したが、実際はおよそ2秒にわたる屈曲−伸張―屈曲1連の動作全体の筋電図を1回の測定として評価値を計算することが望ましい。 When calculating the average value of multiple measurements, it is desirable to exclude measurements that include obvious external noise in the electromyogram. In the example of FIG. 5, the calculation method has been described for the measurement data for 0.5 seconds, but actually, the evaluation value is obtained by measuring the electromyogram of the entire operation of flexion-extension-flexion over about 2 seconds as one measurement. It is desirable to calculate
筋固縮の定量評価を行なうため、移動平均値から得られた筋固縮の評価値以外にも、周波数解析法を適用して定量評価する方法が利用できる。 In order to perform quantitative evaluation of muscular rigidity, in addition to the evaluation value of muscular rigidity obtained from the moving average value, a method of quantitative evaluation by applying a frequency analysis method can be used.
図8の細点線はパーキンソン病患者に上肢屈曲動作を与えたときの上腕二頭筋の筋電図の絶対値について高速フーリエ変換を施し、算出した周波数パワースペクトルを複数回の測定について重ねて示したものである。実線は複数回の測定から得られた周波数パワースペクトルの平均値を示した。パーキンソン病患者ではおよそ8Hz近傍に筋固縮に伴う顕著なピークが見られる。 The thin dotted line in FIG. 8 shows the absolute value of the electromyogram of the biceps brachii when the upper limb flexion motion is given to a patient with Parkinson's disease, and the calculated frequency power spectrum is superimposed on multiple measurements. It is a thing. The solid line shows the average value of the frequency power spectrum obtained from multiple measurements. In Parkinson's disease patients, a prominent peak associated with muscle stiffness is seen around 8 Hz.
図8の周波数解析で顕著に認められる筋固縮に伴うピークについて定量評価するため、複数回の測定から得られた周波数パワースペクトルの平均値を算出し、当該平均周波数パワースペクトルの非特定周波数帯域成分のデータおよび特定周波数帯域の成分のデータについてそれぞれ積分をおこない、前記非特定周波数成分についての積分値に対する特定周波数周波数帯域成分の積分値の比率を計算する。 In order to quantitatively evaluate the peak due to muscle stiffness observed in the frequency analysis of FIG. 8, an average value of the frequency power spectrum obtained from a plurality of measurements is calculated, and the non-specific frequency band of the average frequency power spectrum is calculated. The integration is performed for the component data and the specific frequency band component data, respectively, and the ratio of the integration value of the specific frequency frequency band component to the integration value for the non-specific frequency component is calculated.
図9の実線は複数回の測定から得られた周波数パワースペクトルの平均値を示している。非特定周波数帯域として2−20Hzの周波数成分を用い、特定周波数帯域として6−9Hzの周波数成分をもちいると、左下がり斜線の領域の積分値に対する右下がり斜線の領域の積分値の比率が周波数解析による筋固縮の評価値となる。周波数解析による筋固縮の評価値が大きいほど筋固縮が亢進していることを示している。 The solid line in FIG. 9 indicates the average value of the frequency power spectrum obtained from a plurality of measurements. When a frequency component of 2-20 Hz is used as the non-specific frequency band and a frequency component of 6-9 Hz is used as the specific frequency band, the ratio of the integral value of the lower right oblique line region to the integral value of the lower left oblique line region is the frequency. It becomes an evaluation value of muscle stiffness by analysis. It shows that muscle stiffness is increased as the evaluation value of muscle stiffness by frequency analysis is larger.
複数回の測定のうち、1回の測定について周波数解析による筋固縮の評価値を計算し、複数回の測定の評価値を平均して被験者の評価値としても良いが、複数回の測定からえられた周波数パワースペクトルの平均値を算出し、平均周波数パワースペクトルから周波数解析による筋固縮の評価値を計算するほうが誤差も少なく、より簡便である。 Among multiple measurements, the evaluation value of muscle stiffness by frequency analysis is calculated for one measurement, and the evaluation value of multiple measurements may be averaged to obtain the evaluation value of the subject. It is simpler to calculate an average value of the obtained frequency power spectrum and calculate an evaluation value of muscular rigidity by frequency analysis from the average frequency power spectrum with less errors.
次に実施例を挙げて、本発明の方法につき更に詳しく説明する。 Next, the method of the present invention will be described in more detail with reference to examples.
図1、図2、図3に示す筋固縮度定量評価装置を9人のパーキンソン病患者と、1人の健常者に適用し、前述の移動平均による筋固縮の評価値や周波数解析による筋固縮の評価値に基づき、筋固縮の定量評価が可能であるかどうかを調べた。 1, 2, and 3 are applied to nine Parkinson's disease patients and one healthy person, and the above-mentioned moving average evaluation values and frequency analysis are performed. Based on the evaluation value of muscular rigidity, it was investigated whether quantitative evaluation of muscular rigidity was possible.
図4は健常な被験者に表面電極を貼付し、屈曲動作をさせたときの筋電図とアーム4の位置を図示したものであり、図10はパーキンソン病患者の1被験者について測定した筋電図とアーム4の位置を図示したものである。被験者には動作中上肢を弛緩させ能動的な動作をしないよう指示した。筋電図は筋電図電位標準化手法により標準化したのち絶対値を示した。位置変換器で測定したアーム4の位置について、伸展時が0、屈曲時が1となるよう値を変換して示した。健常な被験者では屈曲動作時筋電図の電位が小さく、電位にばらつきがないことがみられる。一方、パーキンソン病患者では、筋固縮に伴う著しい筋電位の亢進と筋電位のばらつきがみられる。
FIG. 4 shows an electromyogram when the surface electrode is applied to a healthy subject and the bending motion is performed, and the position of the
図11は移動平均処理の窓関数時間を変化させて、移動平均による筋固縮の評価値を計算した結果を示す。黒四角の点は9人のパーキンソン病患者から計算された評価値であり、白三角の点は健常被験者から計算された評価値である。白丸は乱数時系列に同様の評価をおこなった結果である。移動平均による筋固縮の評価値はパーキンソン病患者で大きく、健常被験者では小さい。この違いは特に、移動平均の窓時間が10msから20msとしたときに顕著である。また、乱数時系列から算出した値は健常被験者の値と同様小さい値を示し、移動平均による筋固縮の評価値が筋固縮の適切な定量評価法であることを示している。 FIG. 11 shows the result of calculating the evaluation value of muscle stiffness by moving average while changing the window function time of moving average processing. The black square points are the evaluation values calculated from 9 Parkinson's disease patients, and the white triangle points are the evaluation values calculated from healthy subjects. White circles are the results of a similar evaluation performed on a random time series. The evaluation value of muscle stiffness by moving average is large in Parkinson's disease patients and small in healthy subjects. This difference is particularly noticeable when the moving average window time is 10 ms to 20 ms. In addition, the value calculated from the random time series is as small as the value of the healthy subject, and the evaluation value of muscle stiffness by moving average indicates that it is an appropriate quantitative evaluation method of muscle stiffness.
図8の細点線はパーキンソン病患者に上肢屈曲動作を与えたときの上腕二頭筋の筋電図の絶対値について算出した周波数パワースペクトルを複数回の測定について重ねて示したものである。実線は複数回の測定から得られた周波数パワースペクトルの平均値を示した。また、図12は同様に健常被験者について複数回の測定の周波数パワースペクトルを細点線で示し、その平均値を実線で示した。パーキンソン病患者ではおよそ8Hz近傍に筋固縮に伴う顕著なピークが見られるのに対して、健常被験者はパワースペクトルの値が全体的に小さく、顕著なピークも見られない。 The thin dotted line in FIG. 8 shows the frequency power spectrum calculated for the absolute value of the electromyogram of the biceps brachii when the upper limb flexion motion is given to a patient with Parkinson's disease, with multiple measurements repeated. The solid line shows the average value of the frequency power spectrum obtained from multiple measurements. Similarly, FIG. 12 shows the frequency power spectrum of a plurality of measurements for healthy subjects as a thin dotted line and the average value as a solid line. In Parkinson's disease patients, a prominent peak associated with muscle stiffness is seen around 8 Hz, whereas healthy subjects have a generally small power spectrum value and no prominent peak.
図13はパーキンソン病患者と健常被験者について、周波数解析による筋固縮の評価値を計算した結果を示す。白三角の点は9人のパーキンソン病患者から計算された評価値であり、黒丸の点は健常被験者から計算された評価値である。顕著なピークが無い白色雑音用のパワースペクトルでは、周波数解析による筋固縮の評価値はその面積比から理論的におよそ0.17を示す。健常被験者ではほぼ、0.17を示し、パーキンソン病患者では概ね0.19以上の値であった。移動平均による筋固縮の評価値に比べばらつきはあるものの、周波数解析による筋固縮の評価値が筋固縮の定量評価法として利用できることを示している。 FIG. 13 shows the result of calculating an evaluation value of muscle stiffness by frequency analysis for Parkinson's disease patients and healthy subjects. White triangle points are evaluation values calculated from nine Parkinson's disease patients, and black circle points are evaluation values calculated from healthy subjects. In the power spectrum for white noise with no remarkable peak, the evaluation value of muscle stiffness by frequency analysis theoretically shows about 0.17 from the area ratio. In healthy subjects, it was about 0.17, and in Parkinson's disease patients, it was about 0.19 or more. Although there is variation compared to the evaluation value of muscle stiffness by moving average, it shows that the evaluation value of muscle stiffness by frequency analysis can be used as a quantitative evaluation method of muscle stiffness.
本実施例で測定した9人のパーキンソン病患者は症状の軽い患者がほとんどであり、医師が実施した主観的な評価では筋固縮を認めづらい患者もいた。こうした症状の軽い患者に対しても定量評価値が計算でき、健常被験者との違いが検出されることは本評価装置の有用性を示していると考えられる。本発明の筋固縮評価方法によれば、パーキンソン病等の筋固縮を伴う疾患の早期診断も可能であると考えられた。 Nine Parkinson's disease patients measured in the present example were mostly patients with mild symptoms, and it was difficult to recognize muscle rigidity in a subjective evaluation conducted by a doctor. A quantitative evaluation value can be calculated even for a patient with such mild symptoms, and the fact that a difference from a healthy subject is detected is considered to indicate the usefulness of the evaluation apparatus. According to the muscle stiffness evaluation method of the present invention, it was considered that early diagnosis of diseases associated with muscle stiffness such as Parkinson's disease is possible.
1 ステッピングモーター、2 ギヤボックス、3 アーム固定具、4 アーム、5 固定金具、6 手首固定具用金具、7 肘関節固定具、8 位置変換器、9 変位ケーブル、10 手首固定具、11 上腕、12 前腕 1 stepping motor, 2 gear box, 3 arm fixture, 4 arm, 5 fixture, 6 wrist fixture, 7 elbow joint fixture, 8 position transducer, 9 displacement cable, 10 wrist fixture, 11 upper arm, 12 Forearm
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009038972A JP2010193936A (en) | 2009-02-23 | 2009-02-23 | Muscle rigidity degree quantitative evaluation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009038972A JP2010193936A (en) | 2009-02-23 | 2009-02-23 | Muscle rigidity degree quantitative evaluation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010193936A true JP2010193936A (en) | 2010-09-09 |
Family
ID=42819317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009038972A Pending JP2010193936A (en) | 2009-02-23 | 2009-02-23 | Muscle rigidity degree quantitative evaluation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010193936A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011193941A (en) * | 2010-03-18 | 2011-10-06 | Waseda Univ | System for suppressing involuntary movement, movement recognition device, and program for the movement recognition device |
WO2016166702A1 (en) | 2015-04-14 | 2016-10-20 | Inesc Tec - Instituto De Engenharia De Sistemas E Computadores, Tecnologia E Ciência | Wrist rigidity assessment device for use in deep brain stimulation surgery |
JP2019080792A (en) * | 2017-10-31 | 2019-05-30 | 日本ライフライン株式会社 | Myoelectric potential signal determination device, defibrillation system, and ablation system |
JPWO2019130840A1 (en) * | 2017-12-28 | 2020-12-24 | 日本電気株式会社 | Signal processing equipment, analysis system, signal processing method and signal processing program |
JP2021522054A (en) * | 2018-05-04 | 2021-08-30 | ザ・バイオニクス・インスティテュート・オブ・オーストラリア | Systems and methods for characterization of joints |
-
2009
- 2009-02-23 JP JP2009038972A patent/JP2010193936A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011193941A (en) * | 2010-03-18 | 2011-10-06 | Waseda Univ | System for suppressing involuntary movement, movement recognition device, and program for the movement recognition device |
WO2016166702A1 (en) | 2015-04-14 | 2016-10-20 | Inesc Tec - Instituto De Engenharia De Sistemas E Computadores, Tecnologia E Ciência | Wrist rigidity assessment device for use in deep brain stimulation surgery |
JP2019080792A (en) * | 2017-10-31 | 2019-05-30 | 日本ライフライン株式会社 | Myoelectric potential signal determination device, defibrillation system, and ablation system |
JPWO2019130840A1 (en) * | 2017-12-28 | 2020-12-24 | 日本電気株式会社 | Signal processing equipment, analysis system, signal processing method and signal processing program |
JP2021522054A (en) * | 2018-05-04 | 2021-08-30 | ザ・バイオニクス・インスティテュート・オブ・オーストラリア | Systems and methods for characterization of joints |
JP7295941B2 (en) | 2018-05-04 | 2023-06-21 | ザ・バイオニクス・インスティテュート・オブ・オーストラリア | Systems and devices for joint stiffness characterization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102556074B1 (en) | Wearable Technologies for Joint Health Assessment | |
KR101656611B1 (en) | Method for obtaining oxygen desaturation index using unconstrained measurement of bio-signals | |
JP4958128B2 (en) | Muscle tonus measuring device | |
JP6190466B2 (en) | Biological signal measuring instrument and contact state estimation method | |
Rissanen et al. | Analysis of EMG and acceleration signals for quantifying the effects of deep brain stimulation in Parkinson’s disease | |
McGibbon et al. | Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system | |
Perera et al. | A palm-worn device to quantify rigidity in Parkinson’s disease | |
JP2010193936A (en) | Muscle rigidity degree quantitative evaluation apparatus | |
Mak et al. | Quantitative measurement of trunk rigidity in parkinsonian patients | |
Nordez et al. | Assessment of muscle hardness changes induced by a submaximal fatiguing isometric contraction | |
Formstone et al. | Quantification of motor function post-stroke using novel combination of wearable inertial and mechanomyographic sensors | |
Herrera-González et al. | Knee functional state classification using surface electromyographic and goniometric signals by means of artificial neural networks | |
Tsuji et al. | Quantification of patellar tendon reflex using portable mechanomyography and electromyography devices | |
Ullal et al. | Non-invasive monitoring of vital signs for older adults using recliner chairs | |
Tyagi et al. | Neurophysiological, muscular, and perceptual adaptations of exoskeleton use over days during overhead work with competing cognitive demands | |
Qaisar et al. | Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning | |
KR101071214B1 (en) | Apparatus for measurement of angular velocity in disease patients and analysis system for the same | |
Zavanelli et al. | Continuous real-time assessment of acute cognitive stress from cardiac mechanical signals captured by a skin-like patch | |
Perez-Macias et al. | Spectral analysis of snoring events from an Emfit mattress | |
Dai et al. | Quantitative assessment of tremor during deep brain stimulation using a wearable glove system | |
WO2015123753A1 (en) | Method and system for evaluating a noise level of a biosignal | |
US20210228107A1 (en) | Systems and methods for characterization of joints | |
CN106983511B (en) | Method and device for identifying muscle strength and muscle tension state mutation points | |
Song et al. | Validation of a wearable position, velocity, and resistance meter for assessing spasticity and rigidity | |
Daniels et al. | Impaired performance of rapid grip in people with Parkinson's disease and motor segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100611 |