JP2010193846A - Lactic acid fermentation method - Google Patents
Lactic acid fermentation method Download PDFInfo
- Publication number
- JP2010193846A JP2010193846A JP2009045262A JP2009045262A JP2010193846A JP 2010193846 A JP2010193846 A JP 2010193846A JP 2009045262 A JP2009045262 A JP 2009045262A JP 2009045262 A JP2009045262 A JP 2009045262A JP 2010193846 A JP2010193846 A JP 2010193846A
- Authority
- JP
- Japan
- Prior art keywords
- lactic acid
- carrier
- acid fermentation
- fermentation
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、糸状菌を用いた乳酸発酵方法に関する。 The present invention relates to a lactic acid fermentation method using filamentous fungi.
乳酸は、醸造、漬物、清涼飲料の酸味料などの食品用、医療用、塗料、溶剤、生分解性プラスチックなどの工業用といろいろな分野で用いられており、その需要が増加している。従来より、乳酸の製造方法として、食用バイオマスを主原料とし、乳酸菌により発酵製造する方法が行われている。ここで、乳酸菌による乳酸の製造では、発酵条件の制御が容易で、乳酸収率が高いという利点があるが、乳酸菌の培養に多くの栄養素を必要とし、培地組成が複雑でコストがかかる、また、乳酸菌は自身の生産する乳酸の酸性で死滅しやすいため、発酵は炭酸カルシウムなどのアルカリを添加して生成乳酸を中和しながら行う必要があるが、このとき副生される石膏の処理にコストがかかる、などの問題点があった。
また、培地に副原料が多量に残っている場合には、高純度の乳酸を得ることは困難である。これらの課題を解消するために、糸状菌を用いて乳酸を製造する方法が各種開発されている。糸状菌を用いて乳酸を製造する方法では、培地成分としては炭素源と無機塩であればよく、製造コストを低減することができる。また、光学純度の高いL-乳酸を生成することができる。更に、非食用バイオマスを原料とすることができる。このような技術として、例えば、特許文献1には、糸状菌の胞子を液体培地に植菌し、通気による撹拌を行いつつ培養することにより生成する菌体集合物(ペレット)を液体培地中に浮遊させて発酵を行わせることを特徴とする乳酸の製造方法が開示されている。
In addition, when a large amount of auxiliary material remains in the medium, it is difficult to obtain high purity lactic acid. In order to solve these problems, various methods for producing lactic acid using filamentous fungi have been developed. In the method for producing lactic acid using filamentous fungi, the medium components may be a carbon source and an inorganic salt, and the production cost can be reduced. Moreover, L-lactic acid with high optical purity can be produced. Furthermore, non-edible biomass can be used as a raw material. As such a technique, for example,
しかし、糸状菌は、胞子接種量、培地組成、pH変化、攪拌の強さなどの培養条件によりその形態が大きく変動し、菌糸が培地の液面に浮上したり、発酵装置の内壁に付着したりして、発酵効率が悪くなりやすい。そのため、上述のような技術では、糸状菌をペレット状にするために、培養条件を高度に制御する必要があり、培養操作が難しいという問題があった。 However, the form of filamentous fungi varies greatly depending on the culture conditions such as the amount of spore inoculation, medium composition, pH change, and strength of stirring, and the mycelium floats on the liquid surface of the medium or adheres to the inner wall of the fermentation apparatus. Or the fermentation efficiency tends to deteriorate. For this reason, the above-described technique has a problem that it is difficult to perform the culture operation because it is necessary to control the culture conditions highly in order to form the filamentous fungus into a pellet.
そこで、本発明は、糸状菌の形態制御が容易な乳酸発酵方法を実現することを目的とする。 Then, an object of this invention is to implement | achieve the lactic-acid-fermentation method with easy form control of filamentous fungi.
この発明は、上記目的を達成するため、請求項1に記載の発明では、乳酸発酵方法において、連通した気孔を備え圧縮性を有するスポンジ様多孔質材料からなる担体に、乳酸生成能を有する糸状菌を担持し、当該担体を液体培地中に浮遊させて乳酸発酵を行わせる、という技術的手段を用いる。 In order to achieve the above object, according to the first aspect of the present invention, in the lactic acid fermentation method, in the lactic acid fermentation method, the carrier made of a sponge-like porous material having continuous pores and having compressibility has a filamentous form having lactic acid-producing ability. A technical means is used in which bacteria are carried and the carrier is suspended in a liquid medium to cause lactic acid fermentation.
請求項1に記載の発明によれば、乳酸生成能を有する糸状菌をスポンジ様多孔質材料からなる担体に担持して乳酸発酵に用いるため、糸状菌の菌糸の増殖は担体内に限定され、糸状菌を胞子接種量や培養の流動条件に依存せずに一定サイズの均一なペレット形態とすることができ、培養容器などへの付着を防止することができる。担体は連通した気孔を備えた多孔質材料からなるため、糸状菌の菌糸が増殖しやすく、多量に担持させることができるので、乳酸の製造効率を高くすることができる。また、連通した気孔を備え圧縮性を有しているため、内部の空気を容易に抜くことができ、担体が液体培地表面に浮き上がることがなく、担体を液体培地中に懸濁させることができる。更に、液体培地のみを容易に分離できるため、菌体を繰り返し用いる反復回分培養や連続培養を容易に行うことができる。
According to the invention described in
請求項2に記載の発明では、請求項1に記載の乳酸発酵方法において、前記担体は、気孔率が90%以上である、という技術的手段を用いる。 According to a second aspect of the present invention, in the lactic acid fermentation method according to the first aspect, a technical means that the carrier has a porosity of 90% or more is used.
請求項2に記載の発明では、担体は気孔率が90%以上と極めて高い気孔率を有するため、多くの糸状菌を担持することができるので、乳酸の製造効率を高くすることができる。
In the invention described in
請求項3に記載の発明では、請求項1または請求項2に記載の乳酸発酵方法において、前記担体は、外形寸法が1〜7mmの塊状に形成されている、という技術的手段を用いる。 According to a third aspect of the present invention, in the lactic acid fermentation method according to the first or second aspect, a technical means is used in which the carrier is formed in a lump shape having an outer dimension of 1 to 7 mm.
糸状菌を用いた乳酸発酵において、菌の様相が1〜7mmのペレット状の場合に乳酸収率が高く発酵速度が早いことが知られており、請求項3に記載の発明のように、外形寸法が1〜7mmの塊状に形成されている担体は、乳酸の製造効率を高くすることができるので、好適に用いることができる。なお、塊状とは、各種形態を包括するものであり、立方体、球形、不定形などの形態を採用することができる。 In lactic acid fermentation using filamentous fungi, it is known that the lactic acid yield is high and the fermentation rate is high when the bacterial appearance is in the form of pellets of 1 to 7 mm. Since the carrier formed in a lump shape with a size of 1 to 7 mm can increase the production efficiency of lactic acid, it can be suitably used. The lump includes various forms, and forms such as a cube, a sphere, and an indeterminate form can be adopted.
請求項4に記載の発明では、請求項1ないし請求項3のいずれか1つに記載の乳酸発酵方法において、前記糸状菌は、リゾプス(Rhizopus)属に属する菌体である、という技術的手段を用いる。
In the invention according to
請求項4に記載の発明のように、リゾプス(Rhizopus)属に属する菌体は、無機塩と炭素源だけで生育でき、生成されるL−乳酸の純度が高い。また、ヘキソースだけでなくペントースからも乳酸を得ることができるため、非食用バイオマス(木質・草本系バイオマス)を原料とすることもできる。特に、リゾプス オリゼ(Rhizopus oryzae:和名クモノスカビ)はL−乳酸を多量に生産することができることから好適に用いることができる。
Like invention of
本発明における乳酸発酵方法について、図を参照して説明する。図1は、担体の構造を示す説明図である。 The lactic acid fermentation method in the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing the structure of the carrier.
本発明の乳酸発酵方法において用いる担体は、例えば、図1に示すような連通した気孔を備えた多孔質材料からなる担体10である。担体10は連通した気孔11を備えた高気孔率の多孔質材料12からなるため、糸状菌の菌糸が増殖しやすく、多量に担持させることができるので、乳酸の製造効率を高くすることができる。ここで、気孔率は90%以上であると、十分に糸状菌の菌糸が増殖しやすく好ましい。
The carrier used in the lactic acid fermentation method of the present invention is, for example, a
担体10は連通した気孔11を備え圧縮性を有しているため、内部の空気を容易に抜くことができ、担体10が液体培地表面に浮き上がることがなく、担体10を液体培地中に懸濁させることができる。
Since the
上述のような担体10は、例えば、ポリウレタンフォームなどのスポンジ様の多孔質材料により立方体状に形成される。
The
乳酸発酵は、以下の手順で実施する。ここでは、糸状菌として、リゾプス(Rhizopus)属に属するリゾプス オリゼ(Rhizopus oryzae:和名クモノスカビ)を用いる。リゾプス(Rhizopus)属に属する菌体は、無機塩と炭素源だけで生育でき、生成されるL−乳酸の純度が高い。また、ヘキソースだけでなくペントースからも乳酸を得ることができるため、非食用バイオマス(木質・草本系バイオマス)を原料とすることもできる。リゾプス オリゼ(Rhizopus oryzae:和名クモノスカビ)はL−乳酸を多量に生産することができることから好適に用いることができる。 Lactic acid fermentation is performed according to the following procedure. Here, Rhizopus oryzae (Japanese name Kumonosukabi) belonging to the genus Rhizopus is used as the filamentous fungus. Bacteria belonging to the genus Rhizopus can grow only with inorganic salts and a carbon source, and the purity of the produced L-lactic acid is high. Moreover, since lactic acid can be obtained not only from hexose but also from pentose, non-edible biomass (woody / herbaceous biomass) can be used as a raw material. Rhizopus oryzae can be suitably used because it can produce a large amount of L-lactic acid.
まず、リゾプス オリゼの胞子をポテトデキストロース寒天(PDA)培地などで培養し、無菌水などでミキシングすることにより所定の初発濃度の胞子懸濁液を作製する。無菌水にはTween80などのTween系界面活性剤などを添加することもできる。これにより、胞子を無菌水中に効果的に分散させることができ、均質な懸濁液を得ることができる。 First, Rhizopus oryzae spores are cultured in a potato dextrose agar (PDA) medium or the like, and mixed with sterile water to prepare a spore suspension having a predetermined initial concentration. Tween surfactants such as Tween 80 can be added to the sterile water. Thereby, spores can be effectively dispersed in sterile water, and a homogeneous suspension can be obtained.
次に、乳酸発酵に用いる液体培地を用意する。液体培地は、グルコースやキシロースなどの炭素源に、硝酸アンモニウム、硫酸アンモニウムなどの少量の無機塩を添加して作製する。なお、液体培地としては、糸状菌の菌体を生育できる通常の液体培地であれば種類は問わない。 Next, a liquid medium used for lactic acid fermentation is prepared. The liquid medium is prepared by adding a small amount of inorganic salt such as ammonium nitrate or ammonium sulfate to a carbon source such as glucose or xylose. The liquid medium may be of any type as long as it is a normal liquid medium that can grow filamentous fungi.
続いて、発酵容器に液体培地と担体を装入し、オートクレーブで滅菌処理した後に、胞子懸濁液を無菌的に植菌する。担体は、液体培地内で押圧することにより容易に脱気することができる。ここで、担体は、滅菌処理で加熱(121℃)されるため、当該温度での耐久性が要求される。 Subsequently, a liquid medium and a carrier are placed in a fermentation vessel, sterilized by an autoclave, and then a spore suspension is aseptically inoculated. The carrier can be easily degassed by pressing in the liquid medium. Here, since the carrier is heated by sterilization (121 ° C.), durability at the temperature is required.
リゾプス オリゼによる乳酸発酵は好気性発酵であるため、液体培地と担体とを撹拌翼やエア−リフトなどにより撹拌しながら、所定の温度、pHなどの発酵条件により、リゾプス オリゼを増殖させながら乳酸発酵を行う。ここで、担体は脱気されているため、液体培地中で良好に懸濁される。 Since lactic acid fermentation by Rhizopus oryzae is aerobic fermentation, lactic acid fermentation is carried out while growing Rhizopus oryzae according to fermentation conditions such as predetermined temperature and pH while stirring the liquid medium and the carrier with a stirring blade or air lift. I do. Here, since the carrier is deaerated, it is well suspended in the liquid medium.
ここで、リゾプス オリゼは、担体に担持されて増殖が担体内に限定されるため、胞子接種量や流動などの培養条件に依存せずに一定サイズの均一なペレット形態とすることができ、培養容器などへの付着を防止することができる。ここで、担体は、外形寸法が1〜7mmの塊状に形成されていることが好ましい。糸状菌を用いた乳酸発酵においては、菌の様相が1〜7mmのペレット状の場合に乳酸収率が高く発酵速度が早いためである。このとき、例えば、担体1mlあたり105〜106個の糸状菌が担持されている。なお、塊状とは、各種形態を包括するものであり、立方体、球形、不定形などの形態を採用することができる。 Here, since Rhizopus oryzae is supported on a carrier and growth is limited within the carrier, it can be made into a uniform pellet form of a certain size without depending on culture conditions such as spore inoculation amount and flow. Adhesion to a container or the like can be prevented. Here, the carrier is preferably formed in a lump shape having an outer dimension of 1 to 7 mm. This is because, in lactic acid fermentation using filamentous fungi, the yield of lactic acid is high and the fermentation rate is high when the bacterial appearance is in the form of pellets of 1 to 7 mm. At this time, for example, 10 5 to 10 6 filamentous fungi are carried per ml of the carrier. The lump includes various forms, and forms such as a cube, a sphere, and an indeterminate form can be adopted.
リゾプス オリゼはほとんど担体にのみ増殖しているため、液体培地とリゾプス オリゼとの分離は、液体培地と担体とを分離することにより、容易に行うことができる。これにより、菌体は担体に残存するため、菌体を繰り返し用いる反復回分培養や連続培養を容易に行うことができる。 Since Rhizopus oryzae mostly grows only on the carrier, the liquid medium and Rhizopus oryzae can be easily separated by separating the liquid medium and the carrier. Thereby, since the microbial cells remain in the carrier, repeated batch culture and continuous culture using the microbial cells repeatedly can be easily performed.
上述の工程では、リゾプス オリゼを発酵とともに担体に担持したが、発酵前に担体に担持することもできる。また、担持方法としては、上述の方法以外に物理的に吸着させたり、他の方法を採用することもできる。 In the above-described process, Rhizopus oryzae was supported on a carrier together with fermentation, but it can also be supported on a carrier before fermentation. Moreover, as a carrying | support method, it can also be made to adsorb | suck physically besides the above-mentioned method, and another method can also be employ | adopted.
(実施例)
以下、実施例により本発明を詳細に説明するが、本発明に係わる担体、菌体、発酵方法などは実施例に限定されない。
(Example)
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the support | carrier, microbial cell, fermentation method, etc. which concern on this invention are not limited to an Example.
担体粒子としては、連続気孔を有するスポンジ様の気孔率95〜96%のポリウレタンフォームを3.5mm角の立方体形状に成型されたものを用いた。 As the carrier particles, a polyurethane foam having continuous pores and having a porosity of 95 to 96% molded into a 3.5 mm square cubic shape was used.
菌株は、独立行政法人製品評価技術基盤機構バイオテクノロジー本部から入手しRhizopus oryzae NBRC4707を用いた。 As a strain, Rhizopus oryzae NBRC4707 was obtained from the National Institute of Technology and Evaluation Biotechnology Headquarters.
液体培地は、表1の組成で作製した各Stock solutionを表2の割合で混合したものを用いた。初発のpHは5.26であった。 The liquid medium used was a mixture of each stock solution prepared with the composition shown in Table 1 at a ratio shown in Table 2. The initial pH was 5.26.
胞子の調製法を以下に示す。入手した菌株の胞子を復水液に懸濁し、2枚のPDA寒天培地に塗布し、インキュベータで1週間30℃の条件で培養した。得られた寒天培地上に生育した胞子に滅菌した0.03%Tween80水溶液を適量入れ、スプレッダ−やスパーテルで集めて、20枚のPDA寒天培地上に塗布し、インキュベータで1週間30℃の条件で培養した。得られた胞子は0.03%Tween80水溶液+40%
glycerol水溶液(1:1)の溶液で胞子懸濁液をつくった。このように得られた胞子懸濁液を0.01%Tween80水溶液で適当に希釈し、トーマ血球計によって顕微鏡下で一定容積中の菌数を繰り返し数え、胞子懸濁液の濃度とした。この胞子懸濁液は−80℃で保存した。胞子の初発接種量は、2×106/mLとした。
A method for preparing spores is shown below. Spores of the obtained strain were suspended in a condensate, applied to two PDA agar media, and cultured in an incubator at 30 ° C. for 1 week. Appropriate amount of 0.03% Tween 80 aqueous solution sterilized in the spore grown on the obtained agar medium is collected, collected with a spreader or a spatula, applied on 20 PDA agar mediums, and kept at 30 ° C. for 1 week in an incubator. In culture. The obtained spores were 0.03% Tween 80 aqueous solution + 40%
A spore suspension was made with a solution of aqueous glycerol (1: 1). The spore suspension thus obtained was appropriately diluted with a 0.01% Tween 80 aqueous solution, and the number of bacteria in a fixed volume was repeatedly counted under a microscope with a toma hemocytometer to obtain the concentration of the spore suspension. This spore suspension was stored at -80 ° C. The initial inoculation amount of spore was 2 × 10 6 / mL.
(実施例1)
胞子懸濁液を融解した後に、均一な状態にした胞子懸濁液2×106/mLを300ml容量の三角フラスコ内の滅菌済みの液体培地に接種し、37℃、攪拌速度150rpmの条件で振とう培養を行った。担体は液体培地50mLに対して300個の割合で使用した。炭素源以外の液体培地にスポンジ担体を装入し、パンチングメタルを介して押圧し、担体内の空気を脱気した。発酵生成したL−乳酸の量は、発酵液を毎日500μLずつ採取し、原子吸光法により分析した。三角フラスコは、バッフル付のものとバッフルがないものを用意し、担体の影響とともにバッフルの有無の影響も調べた。
Example 1
After the spore suspension is thawed, 2 × 10 6 / mL of the spore suspension in a uniform state is inoculated into a sterilized liquid medium in a 300 ml Erlenmeyer flask at 37 ° C. and a stirring speed of 150 rpm. Shaking culture was performed. The carrier was used at a ratio of 300 to 50 mL of liquid medium. A sponge carrier was placed in a liquid medium other than the carbon source, pressed through a punching metal, and the air in the carrier was deaerated. The amount of L-lactic acid produced by fermentation was analyzed by atomic absorption method by collecting 500 μL of the fermentation broth every day. Conical flasks with and without baffles were prepared, and the influence of the presence or absence of baffles as well as the influence of the carrier was examined.
図2にL−乳酸生産量の経時変化を示す。担体及びバッフル付三角フラスコを用いた場合がL−-乳酸の収率が高く、最大乳酸生成速度も早かった。菌体が担体に入って均一な状態になったこと、バッフルによって通常に比べて攪拌・通気効果が上がったことにより収率が上がったと考えられる。担体を使用した場合には、菌体は担体内部でのみ増殖したが、担体を使用しなかった場合、菌体は三角フラスコ内壁に付着したり、大きな塊となり液体培地に浮遊したりしていた。 FIG. 2 shows the change over time in the amount of L-lactic acid produced. When a conical flask with a carrier and a baffle was used, the yield of L-lactic acid was high and the maximum lactic acid production rate was also fast. It is thought that the yield increased due to the fact that the microbial cells entered the carrier and became uniform, and the baffle improved the agitation / aeration effect compared to normal. When the carrier was used, the cells grew only inside the carrier, but when the carrier was not used, the cells adhered to the inner wall of the Erlenmeyer flask or floated in the liquid medium as a large lump. .
(実施例2)
実施例1をスケールアップさせて、ファーメンターでの培養を行った。滅菌後、装置をセットし、約37℃で表1に記載のA(炭素源)を接種口から流しいれた。その後、均一にした胞子懸濁液2×106/mLになるように接種口から接種し、37℃、攪拌速度250rpmの条件で培養を開始した。全量は1.5Lとした。担体は液体培地50mLに対して300個の割合で使用した。
(Example 2)
Example 1 was scaled up and cultured in a fermenter. After sterilization, the apparatus was set, and A (carbon source) shown in Table 1 was poured from the inoculation port at about 37 ° C. Then, it inoculated from the inoculation opening so that it might become
図3に培養後の菌体の形態を示す。図3(A)では担体を用いなかった場合の菌体の形態、図3(B)では担体を用いた場合の菌体の形態を示す。図3(A)に示すように、担体を用いなかった場合では、菌体は、液体培地中に塊になって浮遊したり、内壁や攪拌羽、攪拌棒にパルプ状に付着したりしたため、装置が作動しなくなってしまった。一方、図3(B)に示すように、担体を用いた場合では、担体中に菌体が均一に入っており、内壁などに菌体が付着することはなかった。 FIG. 3 shows the form of the cells after culturing. FIG. 3 (A) shows the form of bacterial cells when no carrier is used, and FIG. 3 (B) shows the form of bacterial cells when a carrier is used. As shown in FIG. 3 (A), in the case where no carrier was used, the bacterial cells floated in a lump in the liquid medium, or adhered to the inner wall, stirring blade, stirring rod in the form of pulp. The device has stopped working. On the other hand, as shown in FIG. 3B, when the carrier was used, the cells were uniformly contained in the carrier, and the cells did not adhere to the inner wall or the like.
(実施例3)
担体中の菌体量の経時変化を調べた。培養条件は、37℃、攪拌速度150rpmで、9日間の培養を行った。図4に担体に担持された菌体量の経時変化を示す。菌体量は3日までは急増し、その後は緩やかに増加し、約0.5mg/担体で一定となった。液体培地はほぼ透明であり、菌体が担体内でのみ成長することが確認された。
(Example 3)
The time course of the amount of cells in the carrier was examined. The culture conditions were 37 ° C. and a stirring speed of 150 rpm for 9 days. FIG. 4 shows the change over time in the amount of cells supported on the carrier. The amount of cells rapidly increased until 3rd day, and then increased gradually and became constant at about 0.5 mg / carrier. The liquid medium was almost transparent, and it was confirmed that the cells grew only in the carrier.
(実施例4)
実施例1と同様の培養条件により、繰り返し回分培養を行った。L−乳酸の生産量がが12〜13g/Lになった時点で、クリーンベンチ内で液体培地を除き、滅菌済みの液体培地をいれて一度担体を洗い、新しい滅菌済みの液体培地を加えて培養機へ戻した。この操作を10回繰り返し行った。発酵生成したL−乳酸の量は、発酵液を毎日500μLずつ採取し、原子吸光法により分析した。なお、4回目の培養のみキシロースの濃度を60g/Lとした。
Example 4
Repeated batch culture was performed under the same culture conditions as in Example 1. When the production amount of L-lactic acid reaches 12 to 13 g / L, remove the liquid medium in the clean bench, add the sterilized liquid medium, wash the carrier once, and add a new sterilized liquid medium. Returned to the incubator. This operation was repeated 10 times. The amount of L-lactic acid produced by fermentation was analyzed by atomic absorption method by collecting 500 μL of the fermentation broth every day. Note that the concentration of xylose was 60 g / L only in the fourth culture.
図5に繰り返し回分培養でのL−乳酸生産量の経時変化を示す。L−乳酸生産量の経時変化は、繰り返し回数に依存せず、ほぼ一定の挙動を示し、4回目を除き、乳酸収率は約0.4g/gと良好な結果を示した。これにより、本発明の担体を用いて繰り返し回分培養を良好な条件で実施することができることが確認された。 FIG. 5 shows changes with time in the amount of L-lactic acid produced by repeated batch culture. The change over time in the amount of L-lactic acid produced did not depend on the number of repetitions, showed almost constant behavior, and the lactic acid yield was about 0.4 g / g except for the fourth time, indicating a good result. Thereby, it was confirmed that repeated batch cultures can be performed under good conditions using the carrier of the present invention.
(実施例5)
初発胞子量のL−乳酸生産量への影響を調べた。初発胞子量は、2×104/mL、2×105/mL、2×106/mL、2×107/mLの4水準とし、担体とバッフル付三角フラスコを用いて、実施例1と同じ培養条件で培養を行った。発酵生成したL−乳酸の量は、発酵液を毎日500μLずつ採取し、原子吸光法により分析した。
(Example 5)
The effect of the amount of initial spores on L-lactic acid production was examined. The amount of initial spores is 2 × 10 4 / mL, 2 × 10 5 / mL, 2 × 10 6 / mL, 2 × 10 7 / mL, and Example 1 using a conical flask with a carrier and a baffle. The culture was performed under the same culture conditions. The amount of L-lactic acid produced by fermentation was analyzed by atomic absorption method by collecting 500 μL of the fermentation broth every day.
図6に異なった初発胞子量によるL−乳酸生産量の経時変化を示す。L−乳酸の収率及び最大乳酸生産速度は、初発胞子量2×105/mLの場合が最も高い値を示した。初発胞子量が少なくなるのにつれて、L−乳酸が生産され始める時間も遅くなった。また、目視によると、初発胞子量2×107/mLの場合は、三角フラスコの上部内壁に多量の菌体が付着していた。接種胞子数が多ければ多いほどL−乳酸の生成速度や収率が上がるわけではないことから、担体粒子1個当りの初発胞子量に上限値があり、それ以上多くしても胞子は担体内に入りきれないと考えられた。 FIG. 6 shows the change with time in the amount of L-lactic acid produced by different amounts of initial spores. The yield of L-lactic acid and the maximum lactic acid production rate showed the highest values when the amount of initial spores was 2 × 10 5 / mL. As the amount of initial spores decreased, the time at which L-lactic acid began to be produced was also delayed. Moreover, visually, when the amount of initial spores was 2 × 10 7 / mL, a large amount of cells adhered to the upper inner wall of the Erlenmeyer flask. As the number of inoculated spores increases, the production rate and yield of L-lactic acid do not increase, so there is an upper limit on the amount of initial spores per carrier particle. It was thought that I could not fit in.
(実施例6)
異なる炭素源でのL−乳酸生産量の経時変化を調べた。実施例1〜5で用いた炭素源ヘキソースであるXyloseに加え、ペントースであるGlucoseを用いて、実施例3と同様の条件で最大10日間の培養を行った。図7にL−乳酸生産量の経時変化を示す。図中の直線は、最大乳酸生成速度を求めるための近似直線である。表3に最大乳酸生成速度及びL−乳酸の収率を示す。
(Example 6)
The time course of L-lactic acid production with different carbon sources was examined. In addition to Xylose, which is a carbon source hexose used in Examples 1 to 5, culturing was performed for up to 10 days under the same conditions as in Example 3 using Glucose, which is pentose. FIG. 7 shows changes with time in the amount of L-lactic acid produced. The straight line in the figure is an approximate line for obtaining the maximum lactic acid production rate. Table 3 shows the maximum lactic acid production rate and the yield of L-lactic acid.
最大乳酸生成速度は、Glucoseを用いた場合がXyloseを用いた場合よりも約2倍速かった。乳酸の収率は、いずれも約0.5g/gであり、Glucose、Xyloseともに乳酸発酵に好適に用いることができる。これにより、ヘキソースだけでなくペントースからも乳酸を得ることができることが確認された。 The maximum lactic acid production rate was about twice as fast when using Glucose than when using Xylose. The yield of lactic acid is about 0.5 g / g, and both Glucose and Xylose can be suitably used for lactic acid fermentation. Thereby, it was confirmed that lactic acid can be obtained not only from hexose but also from pentose.
なお、各実施例では、菌株として、Rhizopus oryzae NBRC4707を用いたが、これに限定されるものではなく、例えば、Rhizopus oryzae NBRC5384も好適に用いることができる。 In each example, Rhizopus oryzae NBRC4707 was used as a strain, but the present invention is not limited to this. For example, Rhizopus oryzae NBRC5384 can also be suitably used.
[最良の実施形態の効果]
(1)本発明の乳酸発酵方法によれば、乳酸生成能を有する糸状菌をスポンジ様多孔質材料からなる担体に担持して乳酸発酵に用いるため、糸状菌の菌糸の増殖は担体内に限定され、糸状菌を胞子接種量や培養の流動条件に依存せずに一定サイズの均一なペレット形態とすることができ、培養容器などへの付着を防止することができる。担体は連通した気孔を備えた多孔質材料からなるため、糸状菌の菌糸が増殖しやすく、多量に担持させることができるので、乳酸の製造効率を高くすることができる。また、連通した気孔を備え圧縮性を有しているため、内部の空気を容易に抜くことができ、担体が液体培地表面に浮き上がることがなく、担体を液体培地中に懸濁させることができる。更に、液体培地のみを容易に分離できるため、菌体を繰り返し用いる反復回分培養や連続培養を容易に行うことができる。
[Effect of Best Embodiment]
(1) According to the lactic acid fermentation method of the present invention, filamentous fungi having a lactic acid-producing ability are supported on a carrier made of a sponge-like porous material and used for lactic acid fermentation. Thus, the filamentous fungus can be made into a uniform pellet form of a certain size without depending on the spore inoculation amount or the flow conditions of the culture, and can be prevented from adhering to the culture vessel. Since the carrier is made of a porous material having continuous pores, the mycelium of filamentous fungi is easy to grow and can be supported in a large amount, so that the production efficiency of lactic acid can be increased. In addition, since it has communicating pores and has compressibility, the internal air can be easily removed, and the carrier can be suspended in the liquid medium without floating on the surface of the liquid medium. . Furthermore, since only the liquid medium can be easily separated, repeated batch culture or continuous culture using the cells can be easily performed.
(2)担体は気孔率が90%以上と極めて高い気孔率を有するため、多くの糸状菌を担持することができるので、乳酸の製造効率を高くすることができる。 (2) Since the carrier has a very high porosity of 90% or more, it can carry a large number of filamentous fungi, so that the production efficiency of lactic acid can be increased.
(3)糸状菌を用いた乳酸発酵において、菌の様相が1〜7mmのペレット状の場合に乳酸収率が高く発酵速度が早いことが知られており、請求項3に記載の発明のように、外形寸法が1〜7mmの塊状に形成されている担体は、乳酸の製造効率を高くすることができるので、好適に用いることができる。なお、塊状とは、各種形態を包括するものであり、立方体、球形、不定形などの形態を採用することができる。 (3) In lactic acid fermentation using filamentous fungi, it is known that the yield of lactic acid is high and the fermentation rate is high when the appearance of the bacteria is in the form of pellets of 1 to 7 mm, as in the invention of claim 3 In addition, since the carrier formed in a lump shape with an outer dimension of 1 to 7 mm can increase the production efficiency of lactic acid, it can be preferably used. The lump includes various forms, and forms such as a cube, a sphere, and an indeterminate form can be adopted.
(4)リゾプス(Rhizopus)属に属する菌体は、無機塩と炭素源だけで生育でき、生成されるL−乳酸の純度が高い。また、ヘキソースだけでなくペントースからも乳酸を得ることができるため、非食用バイオマス(木質・草本系バイオマス)を原料とすることもできる。特に、リゾプス オリゼ(Rhizopus oryzae:和名クモノスカビ)はL−乳酸を多量に生産することができることから好適に用いることができる。 (4) Bacteria belonging to the genus Rhizopus can grow only with inorganic salts and carbon sources, and the purity of the produced L-lactic acid is high. Moreover, since lactic acid can be obtained not only from hexose but also from pentose, non-edible biomass (woody / herbaceous biomass) can be used as a raw material. In particular, Rhizopus oryzae can be suitably used because it can produce a large amount of L-lactic acid.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009045262A JP2010193846A (en) | 2009-02-27 | 2009-02-27 | Lactic acid fermentation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009045262A JP2010193846A (en) | 2009-02-27 | 2009-02-27 | Lactic acid fermentation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010193846A true JP2010193846A (en) | 2010-09-09 |
Family
ID=42819258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009045262A Pending JP2010193846A (en) | 2009-02-27 | 2009-02-27 | Lactic acid fermentation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010193846A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013161674A1 (en) * | 2012-04-27 | 2013-10-31 | 花王株式会社 | Method for producing lactic acid |
JP2013236624A (en) * | 2012-04-19 | 2013-11-28 | Kao Corp | Method for producing lactic acid |
JPWO2015068645A1 (en) * | 2013-11-05 | 2017-03-09 | 関西化学機械製作株式会社 | Method for producing lactic acid |
JP2020500516A (en) * | 2016-11-29 | 2020-01-16 | ピュラック バイオケム ビー. ブイ. | Fermentation process |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06253871A (en) * | 1993-03-02 | 1994-09-13 | Musashino Kagaku Kenkyusho:Kk | Production of lactic acid |
-
2009
- 2009-02-27 JP JP2009045262A patent/JP2010193846A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06253871A (en) * | 1993-03-02 | 1994-09-13 | Musashino Kagaku Kenkyusho:Kk | Production of lactic acid |
Non-Patent Citations (4)
Title |
---|
JPN6013037931; Biochem. Engineer. J. 3[1](1999) p.87-90 * |
JPN6013037934; Ind. Eng. Chem. Res., 38[9](1999) p.3290-3295 * |
JPN6013037937; Biotechnol. Techniq., 10[11](1996) p.809-814 * |
JPN6013037939; Bioprocess. Eng., 19[2](1998) p.155-157 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013236624A (en) * | 2012-04-19 | 2013-11-28 | Kao Corp | Method for producing lactic acid |
WO2013161674A1 (en) * | 2012-04-27 | 2013-10-31 | 花王株式会社 | Method for producing lactic acid |
CN104245948A (en) * | 2012-04-27 | 2014-12-24 | 花王株式会社 | Method for producing lactic acid |
CN104245948B (en) * | 2012-04-27 | 2017-08-25 | 花王株式会社 | The manufacture method of lactic acid |
JPWO2015068645A1 (en) * | 2013-11-05 | 2017-03-09 | 関西化学機械製作株式会社 | Method for producing lactic acid |
JP2019146596A (en) * | 2013-11-05 | 2019-09-05 | 関西化学機械製作株式会社 | Method for producing lactic acid |
JP2020500516A (en) * | 2016-11-29 | 2020-01-16 | ピュラック バイオケム ビー. ブイ. | Fermentation process |
US11136602B2 (en) | 2016-11-29 | 2021-10-05 | Purac Biochem Bv | Fermentation process |
JP7033593B2 (en) | 2016-11-29 | 2022-03-10 | ピュラック バイオケム ビー. ブイ. | Fermentation process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets | |
CN102442726B (en) | Fungi-mediated microalgae immobilization wastewater treatment method | |
Pa’e et al. | Production of biopolymer from Acetobacter xylinum using different fermentation methods | |
CN108192889B (en) | Method for treating wastewater by using bacterial cellulose immobilized microalgae | |
CN104388375B (en) | Microorganism growth promoter and preparation method | |
CN104311348A (en) | Improved liquid fermentation culture medium of pleurotus eryngii and method for culturing liquid strain of pleurotus eryngii by utilizing improved liquid fermentation culture medium | |
CN103882072B (en) | A kind of method utilizing schizochytrium limacinum to produce docosahexenoic acid | |
CN109082393A (en) | One kind can be used for Treating Municipal Sewage microbial bacterial agent and preparation method thereof | |
CN105385607A (en) | Lentinus edodes liquid submerged fermentation culture medium formula and fermentation technology | |
CN103602591B (en) | A kind of schizochytrium limacinum and the method for the production of docosahexaenoic acid grease | |
JP2010193846A (en) | Lactic acid fermentation method | |
WO2015085631A1 (en) | Method for culturing botryococcus spp. with high yield | |
CN101984827A (en) | Plant growth bacterial agent and preparation method thereof | |
CN101130754B (en) | High-density ferment method for petroleum hydrocarbon degradation bacterium | |
CN110205250A (en) | One plant of cellulase high-yield and its screening technique and application | |
CN101153294B (en) | Immobilized cell single-tank high-strength continuous fermentation process for succinic acid | |
CN107245451A (en) | Schizochytrium limacinum WZYU011 and its method for producing renin | |
CN105385608A (en) | Lentinus edodes liquid strain submerged fermentation technology | |
CN104357324B (en) | A kind of shake platform for bioreactor | |
CN102823427B (en) | Method for producing cordyceps militaris microparticle liquid strain by rough rices | |
CN102676408A (en) | Method for producing rhodotorula benthica by subsurface fermentation of high-density liquid | |
CN102283012B (en) | Utilization method of restaurant-kitchen garbage degreased wastewater | |
Zhu et al. | Fluid flow induced shear stress affects cell growth and total flavone production by Phellinus igniarius in stirred-tank bioreactor | |
CN111718968B (en) | Method for increasing yield of medium-chain fatty acid of mucor circinelloides WJ11 | |
CN100590191C (en) | Rhizopus oryzae non-carrier immobilization cell culturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120224 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130801 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20131203 Free format text: JAPANESE INTERMEDIATE CODE: A02 |