JP2010193623A - Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them - Google Patents

Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them Download PDF

Info

Publication number
JP2010193623A
JP2010193623A JP2009035504A JP2009035504A JP2010193623A JP 2010193623 A JP2010193623 A JP 2010193623A JP 2009035504 A JP2009035504 A JP 2009035504A JP 2009035504 A JP2009035504 A JP 2009035504A JP 2010193623 A JP2010193623 A JP 2010193623A
Authority
JP
Japan
Prior art keywords
core
cage rotor
rotating shaft
squirrel
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035504A
Other languages
Japanese (ja)
Inventor
Hiromichi Hiramatsu
広道 平松
Masaichi Baba
政一 馬場
Yoshimi Setachi
良美 瀬立
Daisuke Kitajima
大輔 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009035504A priority Critical patent/JP2010193623A/en
Publication of JP2010193623A publication Critical patent/JP2010193623A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a squirrel cage rotor for a electric motor in which a rotary shaft is penetrated through a core shaft hole at the center of a laminated core formed by laminating a plurality of thin electromagnetic steel plates, a plurality of conductors are respectively penetrated through each core slot formed on the circumference of the laminated core, an end ring and the conductors are joined to each other, and a high-performance rust-preventing layer is formed by simple treatment on each surface of the laminated core and the rotary shaft without using chemicals or the like in the materials. <P>SOLUTION: The squirrel cage rotor for a electric motor is configured as follows. A laminated core is formed by laminating a plurality of thin electromagnetic steel plates. A plurality of conductors are arranged annularly around the axis of the laminated core. An annular end ring has a plurality of slots connected with the plurality of conductors. The laminated core, the plurality of conductors, and the annular end ring are assembled. Then, a rotary shaft is assembled at the axial center of the core. Subsequently, a rust-preventing layer made of a triiron tetroxide oxide is formed by steam treatment on the surface of the core and the surface of the rotary shaft. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電動機用かご形回転子、かご形回転子を備えた電動機、回転電動機を備えた水中ポンプ及びそれらの製造方法に関するものである。   The present invention relates to a squirrel-cage rotor for an electric motor, an electric motor provided with a squirrel-cage rotor, a submersible pump provided with the rotary electric motor, and methods for manufacturing the same.

各種回転電動機では、性能向上のために、様々な対応が進められている。この中で回転子に対する方策では、コア部品として使用する電磁鋼板や導体の材質変更による特性向上や、導体の占積率向上やコア形状の変更、コア外周表面の平坦度向上による磁気回路効率改善、コア表面に発生する錆によって発生するコア鉄板間の短絡を防止する防錆処理が挙げられる。   Various types of rotary electric motors are being promoted in various ways to improve performance. Among them, the measures for rotors are to improve characteristics by changing the materials of the electromagnetic steel sheets and conductors used as core parts, improve the space factor of the conductors, change the core shape, and improve the magnetic circuit efficiency by improving the flatness of the outer surface of the core. A rust prevention treatment for preventing a short circuit between core iron plates caused by rust generated on the core surface can be mentioned.

図11に、従来の電動機回転子の構成例を示す。薄い電磁鋼板の中央にコアシャフト穴12、円周上に概台形形状としたコアスロット11を複数形成したコア1を、所定高さとなるように複数枚積層し、その軸方向両端にコア1と概同形状をしたエンドリング2を配置し、コア1中央部のコアシャフト穴12にシャフト3を貫通させ、コア1及びエンドリング2のコアスロット11をまたがるように導体バー4を貫通させた後、エンドリング2と導体バー4をろう付けなどの各種方法で接合し、電気的導通を図る。更に積層コア1やエンドリング2の外周表面上に、エポキシ樹脂等を主成分とする塗料の焼付処理を代表とする、エポキシ樹脂防錆層52を形成することで、電動機のかご形回転子を形成する。   FIG. 11 shows a configuration example of a conventional electric motor rotor. A plurality of cores 1 each having a core shaft hole 12 formed in the center of a thin electromagnetic steel sheet and a plurality of core slots 11 each having a substantially trapezoidal shape on the circumference are laminated so as to have a predetermined height. After the end ring 2 having the substantially same shape is arranged, the shaft 3 is passed through the core shaft hole 12 in the center of the core 1, and the conductor bar 4 is passed through the core slot 11 so as to straddle the core slot 11 of the core 1 and the end ring 2. The end ring 2 and the conductor bar 4 are joined by various methods such as brazing to achieve electrical conduction. Furthermore, by forming an epoxy resin rust prevention layer 52 typified by a baking process of a paint mainly composed of an epoxy resin on the outer peripheral surface of the laminated core 1 or the end ring 2, a cage rotor of an electric motor can be formed. Form.

この構成において、エンドリング2と導体バー4を別部品として準備し、積層したコア1に組み立てた後で接合する方法を述べたが、ダイキャスト製法では、積層したコア1のコアスロット11をキャビティとして、溶融させた金属を流し込み、一度にエンドリング2と導体バー4を形成する方法が適用されている。この方法においても、積層コア1やエンドリング2の外周表面上に防錆層が必要となることから、エポキシ樹脂等を主成分とする塗料の焼付処理等を実施していた。   In this configuration, the end ring 2 and the conductor bar 4 are prepared as separate parts, and the method of joining them after assembling to the laminated core 1 has been described. However, in the die casting method, the core slot 11 of the laminated core 1 is a cavity. As a method, a molten metal is poured to form the end ring 2 and the conductor bar 4 at a time. Also in this method, since a rust prevention layer is required on the outer peripheral surface of the laminated core 1 or the end ring 2, a baking treatment of a paint mainly composed of an epoxy resin or the like has been performed.

しかし、この積層コア1やエンドリング2の外周表面上に防錆層を形成するための、エポキシ樹脂等を主成分とする塗料の焼付処理では、良好な防錆層を得るために、下地の洗浄を行う前処理を必要とし、塗料のスプレー吹付け塗布や刷毛塗りを行い、その後で炉内に入れて温度管理する焼付処理を実施する。製品によっては、より高い防錆効果を発揮させるために、塗料の塗布から焼付処理までを2回以上繰り返すものもある。   However, in the baking process of the paint mainly composed of epoxy resin or the like for forming a rust prevention layer on the outer peripheral surface of the laminated core 1 or the end ring 2, in order to obtain a good rust prevention layer, Pre-treatment for cleaning is required, and spray coating and brushing of paint are performed, and then baking is performed in the furnace for temperature control. Depending on the product, in order to exhibit a higher rust prevention effect, there are those in which the coating from coating to baking is repeated twice or more.

そこで、最初の電動機回転子の構成で述べた通り、積層コアやエンドリングの外周表面上に防錆層が必要となることから、現在主となっているエポキシ樹脂等を主成分とする焼付塗装を行う方法以外の他の方法が検討されている。例えば、特許文献1では、液中電動機用回転子の回転子コア外表面にセルロースを主体とする天然樹脂系塗料を塗布、あるいは、焼付塗装することにより防錆塗膜を形成する技術が提案されている。   Therefore, as described in the configuration of the first electric motor rotor, a rust prevention layer is required on the outer peripheral surface of the laminated core and end ring. Other methods other than the method of performing the above are being studied. For example, Patent Document 1 proposes a technique for forming a rust-preventing coating film by applying a natural resin-based paint mainly composed of cellulose to the outer surface of a rotor core of a rotor for submerged electric motors or by baking. ing.

また、特許文献2には、モータ用の積層鉄心の中央部の穴にシャフトを圧入固定した状態で、モータの鉄心とシャフトに絶縁処理を施す方法が提案されており、絶縁処理として、電着処理、化成処理、黒染処理、スチーム処理の例が示され、スチーム処理によって積層鉄心の表面に四三酸化鉄(Fe3O4)の酸化皮膜を形成することも示されている((段落[0111]〜[0112]参照)。   Patent Document 2 proposes a method of insulating the motor core and shaft in a state where the shaft is press-fitted and fixed in the hole in the center of the laminated core for the motor. Examples of treatment, chemical conversion treatment, blackening treatment, and steam treatment are shown, and it is also shown that an oxide film of triiron tetroxide (Fe3O4) is formed on the surface of the laminated iron core by the steam treatment ((paragraph [0111] To [0112]).

実開昭63−176341号公報Japanese Utility Model Publication No. 63-176341 特開2005−57859号公報JP 2005-57859 A

しかしながら、上記特許文献1の発明は、セルロースを主体とする天然樹脂系塗料を塗布、あるいは、焼付塗装して、天然樹脂系塗料により回転子コアとエンドリング等の外表面を覆うに過ぎず、天然樹脂系塗料の摩耗や欠損が発生した場合に、天然樹脂系塗料が塗布されていない回転子内部の構成部材表面の防錆ができず、耐久性が不十分であるという問題点があった。   However, the invention of the above-mentioned Patent Document 1 only applies a natural resin-based paint mainly composed of cellulose, or is baked to cover the outer surface of the rotor core and the end ring with the natural resin-based paint, When natural resin paint is worn or damaged, there is a problem in that the surface of the components inside the rotor where the natural resin paint is not applied cannot be rusted and the durability is insufficient. .

また、上記特許文献2には、スチーム処理で四三酸化鉄(Fe3O4)の酸化皮膜を形成する例がされているが、特許文献2記載の回転子は、シャフト4と鉄心9を組み合わせた簡単な構造のものであり、複数の薄い電磁鋼板にコアスロットを複数形成し複数の導体バーを配置してエンドリングで固定するかご形回転子のものとは構造が相違し、酸化皮膜も積層鉄心の表面に四三酸化鉄の皮膜を形成するものに過ぎず、耐久性が不十分であるという問題点があった。   Further, in Patent Document 2, an example in which an oxide film of triiron tetroxide (Fe3O4) is formed by steam treatment is described. However, the rotor described in Patent Document 2 is a simple combination of the shaft 4 and the iron core 9. The structure is different from that of a squirrel-cage rotor in which a plurality of core slots are formed in a plurality of thin electromagnetic steel sheets, a plurality of conductor bars are arranged and fixed with an end ring, and an oxide film is also a laminated iron core. However, it has only a problem that its durability is insufficient.

本発明が解決しようとする課題は、薄い電磁鋼板の中央にコアシャフト穴、円周上のコアスロットを複数形成したコアを、所定高さとなるように複数枚積層し、その軸方向両端にコアと概同形状をしたエンドリングを配置し、コア中央部のコアシャフト穴にシャフトを貫通させ、コア及びエンドリングのコアスロットをまたがるように導体部を貫通させ、エンドリングと導体部を接合した電動機用かご形回転子に防錆処理を行う方法において、処理自体が簡易で材料に薬品等を使用することなく、高い防錆層を形成した電動機のかご形回転子を実現することである。   The problem to be solved by the present invention is to stack a plurality of cores each having a core shaft hole and a plurality of core slots on the circumference in a center of a thin electromagnetic steel sheet so as to have a predetermined height, and cores at both ends in the axial direction. An end ring with the same shape as that of the core is placed, the shaft is passed through the core shaft hole in the center of the core, the conductor is passed through the core and the core slot of the end ring, and the end ring and the conductor are joined. In a method of performing a rust prevention treatment on a cage rotor for an electric motor, the treatment itself is simple, and it is to realize a cage rotor for an electric motor having a high rust prevention layer formed without using chemicals or the like as a material.

本発明の電動機用かご形回転子は、薄鉄板を複数枚積層したコアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子であって、前記コアと前記回転シャフトの表面に四酸化三鉄の防錆層が形成されていることを特徴とする。   A squirrel-cage rotor for an electric motor according to the present invention includes a core in which a plurality of thin iron plates are stacked, a rotating shaft disposed at the center of the core axis, a plurality of conductor portions disposed annularly around the axis of the rotating shaft, and the plurality A squirrel-cage rotor for an electric motor in which an annular end ring having a plurality of slot portions connected to a conductor portion of the motor is disposed, and a rust prevention layer of triiron tetraoxide is formed on the surface of the core and the rotating shaft. It is characterized by being.

また、本発明の電動機用かご形回転子の製造方法は、薄鉄板を複数枚積層したコアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子の製造方法において、コア軸中心に回転シャフトを配置する回転シャフトの組立工程後、前記組立工程時の焼き嵌め温度よりも高い処理温度で、ナノメータレベルの大きさの水蒸気分子によるスチーム処理を前記コアの表面と前記回転シャフトの表面に施し、四酸化三鉄の防錆層を形成することを特徴とする。   In addition, the method of manufacturing a squirrel-cage rotor for an electric motor according to the present invention includes a core in which a plurality of thin iron plates are stacked, a rotating shaft arranged at the center of the core axis, and a plurality of conductors arranged annularly around the axis of the rotating shaft. In the method of manufacturing a cage rotor for an electric motor in which an annular end ring having a plurality of slots connected to a plurality of slots and a plurality of slot portions connected to the plurality of conductors is disposed, after the assembly process of the rotating shaft in which the rotating shaft is disposed at the center of the core axis Then, steam treatment with water vapor molecules of nanometer level is performed on the surface of the core and the surface of the rotating shaft at a processing temperature higher than the shrink fitting temperature at the time of the assembly process, and a rust prevention layer of triiron tetraoxide is formed. It is characterized by forming.

本発明によれば、電動機のかご形回転子の積層コアやエンドリングの表面上に、防錆処理を行う方法において、回転子コアを組み立てた後に、シャフト組立を行い、その後にスチーム処理を実施することで、防錆層厚が薄く、固着力が強く、界面での熱伝導率が高く、コア外周面だけでなく内部まで浸透する等の良好な性能を有する防錆層が得られる。   According to the present invention, in the method of performing the rust prevention treatment on the surface of the laminated core or end ring of the cage cage rotor of the electric motor, after assembling the rotor core, the shaft is assembled, and then the steam treatment is performed. By doing so, a rust prevention layer having a thin rust prevention layer thickness, strong adhesion, high thermal conductivity at the interface, and good performance such as penetration not only to the outer peripheral surface of the core but also to the inside can be obtained.

また、防錆層を最後に形成するため、部材の取り扱いによる防錆層の破損防止や、加熱による積層コアの精度の劣化防止が可能となる。   Moreover, since the rust preventive layer is formed last, it is possible to prevent damage to the rust preventive layer due to handling of members and prevent deterioration of the accuracy of the laminated core due to heating.

図1は本発明の実施例1の水中ポンプの構造の説明図である。FIG. 1 is an explanatory diagram of the structure of a submersible pump according to a first embodiment of the present invention. 図2は本発明の実施例2の電動機用かご形回転子の構造の説明図である。FIG. 2 is an explanatory view of the structure of a squirrel-cage rotor for an electric motor according to a second embodiment of the present invention. 図3は本発明の実施例3の電動機用かご形回転子の正面図(a)及び斜視図(b)である。FIG. 3: is the front view (a) and perspective view (b) of the cage rotor for electric motors of Example 3 of this invention. 図4は本発明の実施例3の電動機用かご形回転子の積層コアの構造の説明図である。FIG. 4 is an explanatory view of the structure of the laminated core of the squirrel-cage rotor for an electric motor according to the third embodiment of the present invention. 図5は本発明の実施例3の電動機用かご形回転子の積層コアの製造方法の説明図である。FIG. 5 is an explanatory diagram of a method for manufacturing a laminated core of a squirrel-cage rotor for an electric motor according to a third embodiment of the present invention. 図6は本発明の実施例3の電動機用かご形回転子の積層コアの製造方法の説明図である。FIG. 6 is an explanatory diagram of a method for manufacturing a laminated core of a squirrel-cage rotor for an electric motor according to a third embodiment of the present invention. 図7は本発明の実施例3の回転子の積層コアと回転シャフトとの組立体の説明図である。FIG. 7 is an explanatory diagram of an assembly of a rotor laminated core and a rotating shaft according to the third embodiment of the present invention. 図8は本発明の実施例3の電動機用かご形回転子の製造方法の説明図である。FIG. 8 is an explanatory diagram of a method for manufacturing a squirrel-cage rotor for an electric motor according to a third embodiment of the present invention. 図9は参考例1の電動機用かご形回転子の製造方法の説明図である。FIG. 9 is an explanatory diagram of a method for manufacturing a squirrel-cage rotor for an electric motor of Reference Example 1. 図10は参考例2の電動機用かご形回転子の製造方法の説明図である。FIG. 10 is an explanatory diagram of a method for manufacturing a squirrel-cage rotor for an electric motor of Reference Example 2. 図11は従来の電動機回転子の説明図である。FIG. 11 is an explanatory diagram of a conventional electric motor rotor.

本発明を適用する電動機のかご形回転子は、導体として銅材料の使用が求められる高効率電動機や、積層コア部分の厚さがコア外径に対して長く導体バーの使用が求められる水中ポンプ用電動機を始めとする各種電動機のかご形回転子に使用することが可能である。
以下、本発明の詳細について図面を用いながら説明する。
The cage rotor of the electric motor to which the present invention is applied is a high-efficiency electric motor that requires the use of a copper material as a conductor, or a submersible pump in which the thickness of the laminated core portion is longer than the core outer diameter and the use of a conductor bar is required It can be used for a squirrel-cage rotor of various electric motors including an electric motor.
Hereinafter, the details of the present invention will be described with reference to the drawings.

最初に、本発明の実施例1として、積層コア部分の厚さがコア外径に対して長い導体バーを使用する必要がある水中ポンプの例を、図1を用いて説明する。この水中ポンプは回転シャフト3に取り付けた羽根車9と、該羽根車9を収納する中間ケーシング10、該中間ケーシング10の一部に設けた吐出口などから構成されたポンプ部と、該ポンプ部の矢印で示す吐出口と反対側に配置した電動機部から成る。   First, as Example 1 of the present invention, an example of a submersible pump in which a laminated bar portion needs to use a conductor bar whose thickness is longer than the core outer diameter will be described with reference to FIG. The submersible pump includes an impeller 9 attached to the rotary shaft 3, an intermediate casing 10 that houses the impeller 9, a pump unit that includes a discharge port provided in a part of the intermediate casing 10, and the pump unit. It consists of the electric motor part arrange | positioned on the opposite side to the discharge port shown by arrow.

この電動機部は、回転シャフト3の軸線方向に薄鉄板を複数枚積層したコア1と、該コア1の軸方向両端に配置したエンドリング2と、コア1を経由して両端のエンドリング2を接続する複数の導体バー4からかご形回転子を形成する。また、このかご形回転子に相対して、回転シャフト3の同心円上に配置された固定子コア7、この固定子コア7に組み込まれ電流を流す固定子巻線71、回転シャフト3の回転を円滑にする軸受72、固定子コア7及びかご形回転子を収納する外枠8が構成される。   This electric motor section includes a core 1 in which a plurality of thin steel plates are laminated in the axial direction of the rotating shaft 3, end rings 2 disposed at both ends in the axial direction of the core 1, and end rings 2 at both ends via the core 1. A cage rotor is formed from a plurality of conductor bars 4 to be connected. Further, relative to the squirrel-cage rotor, the stator core 7 disposed on the concentric circle of the rotary shaft 3, the stator winding 71 incorporated in the stator core 7 and allowing current to flow, and the rotary shaft 3 are rotated. A smooth bearing 72, a stator core 7 and an outer frame 8 for housing the cage rotor are configured.

水中ポンプの電動機用かご形回転子の薄鉄板を複数枚積層したコア1とコア1の軸中心に配置した回転シャフト3の表面には後述のように四酸化三鉄の防錆層51が形成されている。   As will be described later, a rust preventive layer 51 of triiron tetraoxide is formed on the surface of the core 1 in which a plurality of thin iron plates of a squirrel-cage rotor for an electric motor of a submersible pump are laminated and the axis of the core 1. Has been.

次に、本発明の実施例2である電動機用かご形回転子について説明する。このかご形回転子は電動機に適用され、上述の水中ポンプの水中ポンプの電動機用かご形回転子として用いられる。   Next, a squirrel-cage rotor for an electric motor that is Embodiment 2 of the present invention will be described. This squirrel-cage rotor is applied to an electric motor, and is used as a squirrel-cage rotor for an electric motor of the above-described submersible pump.

電動機用かご形回転子の薄鉄板を複数枚積層した積層コア1と回転シャフト3を締結した組立品に対して、スチーム処理(500〜600℃)を行い、積層コア1の外周面、積層コア1の複数の薄鉄板間を始めとするコア表面全体や、回転シャフト3の積層コア1の中心に配置された部分を含む表面全体や、積層コア1を形成するエンドリング3や導体バー4などの各構成要素の表面を含む全表面にスチーム処理による四酸化三鉄の防錆層を形成する。シャフト組立を完了させた回転子コアへのスチーム処理が完了した状態を図2に示す。   Steam assembly (500-600 ° C.) is performed on the laminated core 1 in which a plurality of thin iron plates of a squirrel-cage rotor for an electric motor and the rotating shaft 3 are fastened, and the outer peripheral surface of the laminated core 1 and the laminated core The entire core surface including a portion between a plurality of thin iron plates, the entire surface including a portion arranged at the center of the laminated core 1 of the rotating shaft 3, the end ring 3 and the conductor bar 4 forming the laminated core 1, etc. A rust preventive layer of triiron tetroxide is formed by steam treatment on the entire surface including the surface of each component. FIG. 2 shows a state in which the steam processing to the rotor core that has completed the shaft assembly is completed.

図2の(a)は本発明の実施例2の電動機用かご形回転子の一部断面外観図、図2の(b)はAA断面図、図2の(c)は図2の(a)の拡大図、図2の(d)は図2の(b)の拡大図を示す。   2 (a) is a partially sectional external view of a squirrel-cage rotor for an electric motor according to a second embodiment of the present invention, FIG. 2 (b) is an AA sectional view, and FIG. 2 (c) is FIG. ) And FIG. 2 (d) show an enlarged view of FIG. 2 (b).

図2の(a)において、コア1外周面、回転シャフト3の表面に対する防錆層51の形成位置を示す。また、エンドリング2の表面、導体バー4の表面にも防錆層51が形成されている。   In FIG. 2A, the formation position of the rust prevention layer 51 with respect to the outer peripheral surface of the core 1 and the surface of the rotary shaft 3 is shown. A rust prevention layer 51 is also formed on the surface of the end ring 2 and the surface of the conductor bar 4.

図2の(b)において、回転シャフト3を配置するコアシャフト穴12の表面、複数の導体バー4が挿入されるコアスロット11の表面にも防錆層51を形成することができる。   In FIG. 2B, the rust preventive layer 51 can also be formed on the surface of the core shaft hole 12 in which the rotating shaft 3 is disposed and the surface of the core slot 11 into which the plurality of conductor bars 4 are inserted.

また、図2の(c)において、積層コア1の複数の薄鉄板の積層間に対する防錆層51の形成位置を示す。そして、図2の(d)において、積層コア1の外周面、積層コア1のコアスロット11内面、導体バー4外周面に対する防錆層51の形成位置を示す。後述するように、μm(マイクロメートル)レベルのわずかな隙間でもナノメートルレベルのスチームの微粒子が浸透し、防錆層51を形成している。   Moreover, in FIG.2 (c), the formation position of the antirust layer 51 with respect to between the lamination | stacking of several thin iron plates of the lamination | stacking core 1 is shown. 2D shows the formation position of the rust prevention layer 51 on the outer peripheral surface of the laminated core 1, the inner surface of the core slot 11 of the laminated core 1, and the outer peripheral surface of the conductor bar 4. FIG. As will be described later, nanometer-level steam fine particles permeate even in a slight gap of μm (micrometer) level to form a rust prevention layer 51.

図3に、本発明の実施例3の電動機用かご形回転子の外観図を示す。図3の(a)は正面図、図3の(b)は斜視図である。押圧成形によりエンドリング2の複数の導体バー4に対応する位置に複数の機械的かつ電気的接続部23が形成されている。   In FIG. 3, the external view of the cage rotor for electric motors of Example 3 of this invention is shown. 3A is a front view, and FIG. 3B is a perspective view. A plurality of mechanical and electrical connection portions 23 are formed at positions corresponding to the plurality of conductor bars 4 of the end ring 2 by press molding.

実施例3の電動機用かご形回転子では、実施例2の電動機用かご形回転子と同様に、積層コア1の外周面、積層コア1の複数の薄鉄板間を始めとするコア表面全体や、回転シャフト3の積層コア1の中心に配置された部分を含む表面全体や、積層コア1を形成するエンドリング3や導体バー4などの各構成要素の表面を含む全表面にスチーム処理による四酸化三鉄の防錆層が形成されると共に、更に、押圧成形によりエンドリング2の複数の導体バー4に対応する位置に形成される複数の機械的かつ電気的接続部23の表面にも、四酸化三鉄の防錆層が形成される。   In the squirrel-cage rotor for electric motors of Example 3, as with the squirrel-cage rotor for electric motors of Example 2, the entire core surface including the outer peripheral surface of the laminated core 1 and the plurality of thin iron plates of the laminated core 1 The entire surface including the portion arranged at the center of the laminated core 1 of the rotating shaft 3 and the entire surface including the surfaces of the respective constituent elements such as the end ring 3 and the conductor bar 4 forming the laminated core 1 are subjected to steam treatment. In addition to the formation of a rust prevention layer of triiron oxide, the surface of a plurality of mechanical and electrical connection portions 23 formed at positions corresponding to the plurality of conductor bars 4 of the end ring 2 by press molding, A rust preventive layer of triiron tetraoxide is formed.

図4は、本発明の実施例3の電動機用かご形回転子の積層コアの構造を示している。図2と同様に、図4(a)は一部断面外観図、図4(b)はAA断面図を示している。薄い電磁鋼板の中央にコアシャフト穴12、円周上に概台形形状としたコアスロット11を複数形成したコア1を、所定高さとなるように複数枚積層し、その軸方向両端にコア1と概同形状をしたエンドリング2を配置し、コア1及びエンドリング2のコアスロット11をまたがるように導体バー4を貫通させる。   FIG. 4 shows the structure of the laminated core of the squirrel-cage rotor for an electric motor according to the third embodiment of the present invention. Similar to FIG. 2, FIG. 4A shows a partially sectional external view, and FIG. 4B shows an AA sectional view. A plurality of cores 1 each having a core shaft hole 12 formed in the center of a thin electromagnetic steel sheet and a plurality of core slots 11 each having a substantially trapezoidal shape on the circumference are laminated so as to have a predetermined height. An end ring 2 having a substantially identical shape is disposed, and the conductor bar 4 is passed through the core 1 and the core slot 11 of the end ring 2.

図4の電動機用かご形回転子の積層コアでは、エンドリング2と導体バー4の機械的かつ電気的接続部は、図5及び図6の製造方法に示すように押圧成形手法によって形成される。   In the laminated core of the squirrel-cage rotor for the motor shown in FIG. 4, the mechanical and electrical connection between the end ring 2 and the conductor bar 4 is formed by a pressing method as shown in the manufacturing method of FIGS. .

[押圧成形]
図5に、本発明の電動機用かご形回転子の積層コアの製造方法の例を示す。これはシャフト3の軸線方向から、エンドリング2と導体バー4の端面を見た図である。図5の(a)は押圧部材5が、積層されたコア1の軸方向両端に配置されたエンドリング2の外周に対して、接触しない距離をもって、待機した状態である。
[Press molding]
In FIG. 5, the example of the manufacturing method of the laminated core of the cage rotor for electric motors of this invention is shown. This is a view of the end faces of the end ring 2 and the conductor bar 4 from the axial direction of the shaft 3. FIG. 5A shows a state in which the pressing member 5 stands by at a distance where it does not come into contact with the outer periphery of the end ring 2 disposed at both axial ends of the stacked cores 1.

積層されたコア1の軸方向両端に配置されたエンドリング2の、コア1とは接触しない端面に概合致するように、導体バー4の端面を配置する。押圧部材5の幅は、概エンドリング2の幅以上であり、押圧部材5のシャフト3の軸線方向位置は、積層されたコア1の端面延長面に接触しない位置となっている。   The end faces of the conductor bars 4 are arranged so as to roughly match the end faces of the end rings 2 arranged at both ends in the axial direction of the laminated cores 1 and not in contact with the core 1. The width of the pressing member 5 is approximately equal to or greater than the width of the end ring 2, and the axial direction position of the shaft 3 of the pressing member 5 is a position that does not contact the end surface extension surface of the laminated core 1.

これらの位置関係から、図示しない押圧部材移動機構によって、図5の(b)に示すように、押圧部材5がエンドリング2の外周に向かって移動し、押圧部材5がエンドリング2の外周に接触した後も移動することで、エンドリング2の外周表面近くで、導体バー4が貫通する穴により薄肉となっている薄肉部22が変形する。   From these positional relationships, the pressing member moving mechanism (not shown) moves the pressing member 5 toward the outer periphery of the end ring 2 as shown in FIG. By moving even after the contact, the thin-walled portion 22 that is thin due to the hole through which the conductor bar 4 passes is deformed near the outer peripheral surface of the end ring 2.

この変形により、エンドリング2の薄肉部22と導体バー4のすき間が減少し、なくなった後も図示しない押圧部材移動機構の移動が継続することで、エンドリング2の薄肉部22単独、もしくはエンドリング2の薄肉部22と導体バー4が相互に塑性変形することで、エンドリング2と導体バー4の接続が強固で安定したものとなる。   Due to this deformation, the gap between the thin portion 22 of the end ring 2 and the conductor bar 4 is reduced, and the movement of the pressing member moving mechanism (not shown) continues even after the gap is eliminated, so that the thin portion 22 of the end ring 2 alone or the end Since the thin portion 22 of the ring 2 and the conductor bar 4 are plastically deformed with each other, the connection between the end ring 2 and the conductor bar 4 becomes strong and stable.

図6の(a)は待機状態、図6の(b)は接続部23が形成された状態、図6の(c)はろう材24を追加した状態を示している。図6(b)の押圧部材移動機構の移動の終了位置は、移動量や発生する力を検出し、設定した値で終了とする。図6の(b)に示すように、この状態においてエンドリング2と導体バー4の電気的導通が図られている。図6の(c)に示すように、このエンドリング2と導体バー4の端面や、塑性変形により形成されたすき間部分にろう材(銀ろう、りん銅ろう等)を付着させ、所定のろう材溶融温度まで加熱することで、エンドリング2と導体バー4の電気的導通が更に強化され安定した性能となる。   6A shows a standby state, FIG. 6B shows a state in which the connecting portion 23 is formed, and FIG. 6C shows a state in which the brazing material 24 is added. The end position of the movement of the pressing member moving mechanism shown in FIG. 6B is detected by detecting the amount of movement and the generated force, and ending with the set value. As shown in FIG. 6B, the end ring 2 and the conductor bar 4 are electrically connected in this state. As shown in FIG. 6 (c), a brazing material (silver brazing, phosphor copper brazing, etc.) is attached to the end faces of the end ring 2 and the conductor bar 4 and the gaps formed by plastic deformation. By heating to the material melting temperature, the electrical continuity between the end ring 2 and the conductor bar 4 is further strengthened and stable performance is obtained.

[回転シャフトの焼きばめ]
上記に示す工程を実施することで、図4に示す回転子コアの組立完了状態となる。次にコア軸中心に回転シャフト3を配置する。この時の固定方法として、焼きばめ方法がある。このシャフト組立に利用する焼きばめは、常温(20℃前後)においてコアの穴径よりもわずか(0〜20μm)に大きい外径を持つ製品シャフトに対して、コアだけを加熱(200〜300℃)して膨張させることで、穴径を拡大させておき、そこに製品シャフトを挿入・位置決めした後、全体を冷却させることで、製品シャフトとコアを強固に締結させる方法である。回転子コアへのシャフト組立完了状態を図7に示す。
[Rotating shaft shrink fit]
By performing the above-described steps, the rotor core is assembled as shown in FIG. Next, the rotating shaft 3 is arranged at the center of the core axis. As a fixing method at this time, there is a shrink fit method. The shrink-fit used for this shaft assembly is heating only the core (200 to 300) against a product shaft having an outer diameter slightly larger (0 to 20 μm) than the core hole diameter at room temperature (around 20 ° C.). This is a method in which the diameter of the hole is enlarged by expanding it, and the product shaft is inserted and positioned therein, and then the whole is cooled to firmly fasten the product shaft and the core. FIG. 7 shows a state where the shaft is assembled to the rotor core.

[スチーム処理]
次に、この回転子コアとシャフトを締結した組立品に対して、スチーム処理(500〜600℃)を行い、コア外周面、コア積層間を始めとするコア表面全体や、シャフトの表面に、四酸化三鉄の防錆層を形成する。シャフト組立を完了させた回転子コアへのスチーム処理が完了した状態が図7に対応する。
[Steam processing]
Next, steam processing (500 to 600 ° C.) is performed on the assembly in which the rotor core and the shaft are fastened, and the entire core surface including the core outer peripheral surface and between the core laminations, or the surface of the shaft, Form a rust prevention layer of triiron tetroxide. FIG. 7 corresponds to a state in which the steam processing to the rotor core that has completed the shaft assembly is completed.

以上の製造工程内容に対して、防錆層形成のために、従来から実施されてきた焼付塗装とスチーム処理の相違について述べる。   With respect to the contents of the manufacturing process described above, the difference between the baking process and the steam process that have been conventionally performed for forming the rust-preventing layer will be described.

まずコア表面に形成された防錆層の相違については、
(1)焼付塗装の代表的な材料であるエポキシ樹脂の耐熱性(100〜250℃)に対して、スチーム処理は塗料の固着ではなく、四酸化三鉄となる母材表面の改質であるため、母材である鉄材料の耐熱性に準じるため、非常に高い耐熱性を有する。同じ理由から、固着力も高くなり、電動機の運転中の防錆層脱落による不具合を防止できる。
First, regarding the difference in the rust prevention layer formed on the core surface,
(1) For the heat resistance (100 to 250 ° C.) of epoxy resin, which is a representative material for baking coating, the steam treatment is not the adhesion of the paint but the modification of the surface of the base material that becomes triiron tetroxide. Therefore, since it conforms to the heat resistance of the iron material as the base material, it has very high heat resistance. For the same reason, the adhering force is also increased, so that it is possible to prevent problems due to the rust-proof layer falling off during operation of the electric motor.

(2)焼付塗装では、母材とは別材料を表面に付けることから、界面で熱の伝導率が変わるため放熱面での損失が発生する可能性がある。スチーム処理では、四酸化三鉄となる母材表面の改質であることから、界面での変化が少なく、放熱面での損失も発生しにくい。 (2) In baking coating, since a material different from the base material is applied to the surface, the heat conductivity changes at the interface, so that there is a possibility that loss on the heat radiation surface may occur. In the steam treatment, since the surface of the base material that becomes triiron tetroxide is modified, there is little change at the interface, and loss on the heat radiating surface hardly occurs.

(3)スチーム処理では、防錆層の厚さを防錆性能を満足した上で、0〜5μmとすることが可能であり、厚さが極めて薄いため、コアの積厚精度を向上させることで、外周面の切削工程が不要となる。また、焼付塗装のように別材料を付着させないことから、回転に関するアンバランス発生を抑止できる。 (3) In the steam treatment, the thickness of the rust prevention layer can be set to 0 to 5 μm after satisfying the rust prevention performance, and the thickness is extremely thin, so that the core thickness accuracy is improved. Thus, an outer peripheral surface cutting step is not required. Moreover, since another material is not attached like baking coating, generation | occurrence | production of the imbalance regarding rotation can be suppressed.

(4)スチーム処理で利用する水蒸気分子の大きさはnmレベルであり、通常の表面粗さや、コア積層に対して行われる部材間の締付による隙間は、μmレベルであることから水蒸気分子の浸透が容易である。焼付塗装で用いられるスプレーやブラシの塗布とは異なり、方向性が少ないため、防錆層のムラが生じにくい。 (4) The size of the water vapor molecules used in the steam treatment is on the nm level, and the normal surface roughness and gaps due to tightening between the members performed on the core stack are on the μm level. Easy to penetrate. Unlike spraying and brushing used in baking coating, the rust-proof layer is less likely to be uneven because it has less directionality.

(5)焼付塗装では、回転子外周面だけで防錆性能を確保しているため、防錆層の一部の破損であっても裏面への回りこみが発生し、防錆性能に対する影響が大きい。スチーム処理では、回転子外周面だけでなく、その部材であるコアの外周面、端面の表裏、シャフトの外周面に至る全面に防錆層を形成するため、一部の破損が生じても、他の部分への影響拡大が極めて小さい。 (5) In baked coating, rust prevention performance is ensured only on the outer peripheral surface of the rotor, so even if part of the rust prevention layer is broken, wraparound to the back surface occurs, which has an effect on rust prevention performance. large. In the steam treatment, not only the rotor outer peripheral surface, but also the outer peripheral surface of the core that is the member, the front and back of the end surface, the entire surface reaching the outer peripheral surface of the shaft, so even if some damage occurs, The effect on other parts is extremely small.

(6)焼付塗装では、30〜50μmとなっていた防錆層の厚さが、スチーム処理により5μm以下とすることが可能となるため、モータの磁気回路を形成する回転子と固定子の間隔を狭くすることが出来、その結果モータ効率の向上が期待できる。 (6) In baking coating, the thickness of the rust-preventing layer, which has been 30-50 μm, can be reduced to 5 μm or less by steam treatment, so the distance between the rotor and stator that forms the magnetic circuit of the motor As a result, improvement in motor efficiency can be expected.

防錆層を形成するための工程の相違については、
(7)焼付塗装では、塗料の固着力を高めるために、鏡面仕上げよりもある程度の均一な面粗さを必要とするが、スチーム処理では、母材表面の改質であるため面粗さの程度は問題としない。焼付塗装では、塗料の固着力を高めるために、りん酸洗浄等の前処理が必要となる。スチーム処理では、表面の清浄度状況によっては、不要となる。
About difference of process to form rust prevention layer,
(7) Bake coating requires a uniform surface roughness to some extent as compared with mirror finish to increase the adhesion of the paint, but the steam treatment is a modification of the surface of the base material due to the modification of the base material surface. The degree does not matter. In baking painting, pretreatment such as phosphoric acid cleaning is required to increase the adhesion of the paint. Steam treatment is not necessary depending on the cleanliness of the surface.

(8)焼付塗装で必要となる塗装材料を始めとする副資材が、スチーム処理では水分だけとなることから、費用の低減が可能。またスチーム処理では溶剤を使用しないので廃棄物の処理や排気環境の整備が不要である。 (8) Sub-materials such as coating materials required for baking coating are only moisture in the steam treatment, so the cost can be reduced. In addition, since no solvent is used in the steam treatment, it is not necessary to dispose of waste or to maintain an exhaust environment.

次に、回転子を完成させるまでの工程とスチーム処理の工程順に関する相違は、
(1)回転子コア組立後、先にスチーム処理を行い、後でシャフト組立を行った場合には、既に形成されているスチーム処理の四酸化三鉄の防錆層に、シャフトが接触して、防錆層にダメージを与える可能性がある。また、回転子コアの取り扱いには、外周または内周の防錆層に接触する必要があり、これも防錆層にダメージを与える可能性がある。これらの問題に対して、回転子コア組立後、先にシャフト組立を行い、後でスチーム処理を行った場合には、全体の取り扱いとして、防錆性能を要求されないシャフトの端部を把持することができ、防錆性能が重要である回転子コアの外周に接触する必要がない。
Next, the difference between the process until the rotor is completed and the order of the steam process is
(1) After assembling the rotor core, when the steam treatment is performed first and the shaft assembly is performed later, the shaft comes into contact with the rust preventive layer of the steam-treated ferrous oxide. There is a possibility of damaging the rust prevention layer. Further, in handling the rotor core, it is necessary to contact the outer or inner rust preventive layer, which may also damage the rust preventive layer. For these problems, after assembling the rotor core, the shaft is assembled first, and when the steam treatment is performed later, as a whole, grip the end of the shaft that does not require rust prevention performance. It is not necessary to contact the outer periphery of the rotor core, where rust prevention performance is important.

(2)積層する前のコア材単体にスチーム処理を行った部材を利用する場合には、コア積層から始まる回転子コアの組立工程で、防錆層にダメージを与える可能性がある。また、途中工程で発生する不良によって利用できない場合に対して、回転子コアの状態まで組立られた状態であれば、無駄にスチーム処理を行う必要がないため、生産歩留りも向上する。 (2) When a member subjected to steam treatment is used for the core material before lamination, there is a possibility that the rust preventive layer may be damaged in the assembly process of the rotor core starting from the core lamination. Further, in the case where the rotor core cannot be used due to a defect that occurs in the middle of the process, it is not necessary to perform the steam process wastefully, so that the production yield is improved.

(3)温度変化を考慮した通常の加工順序では、加熱による変形を早い段階で発生させておき、後工程側で前工程の変形を修正しながら新たな加工を加える方法が取られている。つまり前工程側の処理温度を高くしておき、後工程側の処理温度は前工程に対して低くする設定である。 (3) In a normal processing order considering temperature change, a method is adopted in which deformation by heating is generated at an early stage, and new processing is performed while correcting the deformation of the previous process on the subsequent process side. That is, the process temperature on the front process side is set high, and the process temperature on the back process side is set lower than that of the front process.

この時の、加熱順によるコア締結状況を確認した。ここでは、各工程の処理温度を次のように仮定する。回転子コア組立を常温(20℃前後)、スチーム処理を520℃、シャフト組立としての焼きばめを270℃とし、鉄、銅、アルミの代表的な線膨張係数(/°K)は、12×10−6、18×10−6、24×10−6である。コア積厚を100mmとした場合の加熱による変形は次の通りである。   At this time, the core fastening condition according to the heating order was confirmed. Here, the processing temperature of each process is assumed as follows. The rotor core assembly is at room temperature (around 20 ° C.), the steam treatment is 520 ° C., the shrink fitting as the shaft assembly is 270 ° C., and the typical linear expansion coefficient (/ ° K) of iron, copper, and aluminum is 12 × 10-6, 18 × 10-6, and 24 × 10-6. The deformation due to heating when the core thickness is 100 mm is as follows.

回転子コアの組立では、コア積層間隔のばらつきを低減させるために、コア積層方向に圧力をかけた状態で、積層コアの両端部に配置されたエンドリングと軸線方向に貫通された導体部を固定させることで、加圧力を保持させている。常温(20℃前後)で回転子コア組立を行い、この状態から、スチーム処理の520℃まで加熱することで、温度差ΔTが発生する。   In the assembly of the rotor core, in order to reduce the dispersion of the core stacking interval, the end rings arranged at both ends of the stacked core and the conductor portions penetrating in the axial direction are provided with pressure applied in the core stacking direction. The pressure is maintained by fixing. When the rotor core is assembled at room temperature (around 20 ° C.) and heated from this state to 520 ° C. for steam treatment, a temperature difference ΔT is generated.

この温度差に、コア積厚100mm、線膨張係数を乗ずることで、各材料の長さの変化が求められる。実態として、鉄の、0.6mmの増加に対して、銅では0.9mm、アルミでは1.2mmとなる。これにより、回転子コアの組立時点で、印加していた圧力が開放されることになる。   By multiplying this temperature difference by the core stack thickness of 100 mm and the linear expansion coefficient, a change in the length of each material is obtained. As a matter of fact, for iron, the increase of 0.6 mm is 0.9 mm for copper and 1.2 mm for aluminum. Thereby, the applied pressure is released when the rotor core is assembled.

(4)シャフト組立としての焼きばめは、常温においてコアの穴径よりもわずか(0〜20μm)に大きい外径を持つ製品シャフトに対して、コアだけを加熱して膨張させることで、穴径を拡大させておき、そこに製品シャフトを挿入・位置決めした後、全体を冷却させることで、製品シャフトとコアを強固に締結させる方法である。 (4) Shrink fitting as a shaft assembly is performed by heating and expanding only the core of a product shaft having an outer diameter slightly larger (0 to 20 μm) than the core hole diameter at room temperature. In this method, the product shaft and the core are firmly fastened by expanding the diameter, inserting and positioning the product shaft therein, and then cooling the whole.

これに対して、組立用シャフトを用いて仮組みする方法は、積層したコア内径の同軸度を向上させるが、最終的には、引き抜く必要があるため、コアの穴径よりもわずかに小さい外径とする必要がある。このために、コア内径と組立用シャフト外径との間に空隙が必要であり、組立シャフトにコアを積層する場合の作業性を考慮すると、20〜60μmとなっている。   On the other hand, the method of temporarily assembling using the assembly shaft improves the coaxiality of the laminated core inner diameters, but ultimately, it is necessary to pull out, so that the outer diameter is slightly smaller than the core hole diameter. It is necessary to make the diameter. For this reason, a gap is required between the inner diameter of the core and the outer diameter of the assembly shaft, and the workability when the core is laminated on the assembly shaft is 20 to 60 μm.

(5)積層コアとエンドリングと導体部を組み立てたものに、組立シャフトを配置しない状態でスチーム処理した場合には、先程説明した線膨張係数の違いから、積層コアに対する圧力が解放されて、コアの積層精度が崩れ、軸方向の拘束を行っている積層コアのスロットと導体部のクリアランス(コア内径のクリアランスよりも広く0.1〜0.4mm程度)までずれる可能性がある。また、その後に行うシャフト組立としての焼きばめは200〜300℃であることから、先のスチーム処理温度(500〜600℃)より低いために、積層コアに対する圧力の解放が不充分で、製品シャフトの精度に倣うことができず、その曲がりや積層精度が悪いまま残存する可能性がある。 (5) When the laminated core, the end ring, and the conductor portion are assembled and steam-treated without the assembly shaft, the pressure on the laminated core is released from the difference in the linear expansion coefficient described above, There is a possibility that the stacking accuracy of the core is lost, and the clearance between the slot of the stacked core that is restraining in the axial direction and the clearance of the conductor portion (wider than the clearance of the core inner diameter is about 0.1 to 0.4 mm). Further, since the shrink fitting as the shaft assembly to be performed thereafter is 200 to 300 ° C., it is lower than the previous steam processing temperature (500 to 600 ° C.), so that the pressure release to the laminated core is insufficient, and the product The accuracy of the shaft cannot be imitated, and there is a possibility that the bending and lamination accuracy may remain poor.

図8〜図10に、工程順序と、各工程での処理温度推移を併記した図を示す。
図8は、本発明の実施例である、コア外周面への防錆層形成にスチーム処理を実施する場合の、コア組立後にシャフト組立を行い、その後にスチーム処理とした時の処理温度推移を示す。回転子コア組立は常温(20℃前後)で行い、シャフト組立に焼きばめ(200〜300℃)を実施した後で、コア外周面への防錆層形成にスチーム処理(500〜600℃)を施した時の概略処理温度推移である。
FIGS. 8 to 10 show the process sequence and the processing temperature transition in each process.
FIG. 8 is an example of the present invention, in the case where steam processing is performed to form a rust-preventing layer on the outer peripheral surface of the core, the shaft temperature is assembled after the core is assembled, and then the processing temperature transition when the steam processing is performed is shown. Show. The rotor core is assembled at room temperature (around 20 ° C.), and after shrink fitting (200 to 300 ° C.) on the shaft assembly, steam treatment (500 to 600 ° C.) is performed to form a rust-proof layer on the outer peripheral surface of the core. It is a rough process temperature transition when it was given.

図9は、参考例1である、コア外周面への防錆層形成に従来の焼付塗装を行った場合の処理温度推移を示す。回転子コア組立は常温(20℃前後)で行い、シャフト組立に焼きばめ(200〜300℃)を実施した後で、コア外周面への防錆層形成に焼付塗装(200〜300℃)を施した時の概略処理温度推移である。   FIG. 9 shows the transition of the processing temperature when the conventional baking coating is performed for forming the rust-preventing layer on the outer peripheral surface of the core, which is Reference Example 1. The rotor core is assembled at room temperature (around 20 ° C), and the shaft assembly is shrink-fitted (200-300 ° C) and then baked (200-300 ° C) to form a rust-proof layer on the outer peripheral surface of the core. It is a rough process temperature transition when it was given.

図10は、参考例2である、コア外周面への防錆層形成にスチーム処理を実施する場合の、熱処理工程の中で温度が高い工程から順に実施した時の処理温度推移を示す。回転子コア組立は常温(20℃前後)で行い、コア外周面への防錆層形成にスチーム処理(500〜600℃)を実施した後で、シャフト組立に焼きばめ(200〜300℃)を施した時の概略処理温度推移である。   FIG. 10 shows the transition of the treatment temperature when the steam treatment is performed for forming the rust-proof layer on the outer peripheral surface of the core, which is Reference Example 2, when the heat treatment step is performed in order from the highest temperature step. The rotor core is assembled at room temperature (around 20 ° C), and after steaming (500 to 600 ° C) to form a rust-preventing layer on the outer peripheral surface of the core, the shaft assembly is shrink-fitted (200 to 300 ° C). It is a rough process temperature transition when it was given.

以上述べたように、積層コアとエンドリングと導体部を組み立てたものに、先に製品シャフトを組み立てる焼きばめ等の組立工程を実施してから、焼きばめ温度より高い温度でナノメートルレベルの微細な水蒸気粒子によるスチーム処理を行って防錆層を形成することによって、上記各種問題を解決することが可能となる。   As described above, the assembly process such as shrink fitting that assembles the product shaft is first performed on the assembly of the laminated core, end ring, and conductor, and then the nanometer level at a temperature higher than the shrink fitting temperature. The above-mentioned various problems can be solved by forming a rust preventive layer by performing a steam treatment with fine water vapor particles.

尚、本発明の説明では、回転子コア組立において、導体バーとエンドリングを接続する例を示したが、ダイキャスト製法のように、積層したコアのスロット部をキャビティとみなして、溶融金属を注入する方法で形成した回転子コアであっても構わない。また、回転子コアと回転シャフトの組立に、焼きばめする方法を示したが、キー溝を使用した構成であっても構わない。   In the description of the present invention, an example in which the conductor bar and the end ring are connected in the rotor core assembly has been shown. However, as in the die-cast method, the slot portion of the stacked core is regarded as a cavity, and the molten metal is A rotor core formed by an injection method may be used. In addition, although a method of shrink fitting is shown for assembling the rotor core and the rotating shaft, a configuration using a keyway may be used.

1 積層コア
2 エンドリング
3 回転シャフト
4 導体バー
5 押圧部材
7 固定子コア
8 外枠
9 羽根車
10 中間ケーシング
11 コアスロット
12 コアシャフト穴
21 エンドリングスロット
22 薄肉部
23 接続部
24 ろう材
51 四酸化三鉄防錆層
52 エポキシ樹脂防錆層
71 固定子巻線
72 軸受
DESCRIPTION OF SYMBOLS 1 Laminated core 2 End ring 3 Rotating shaft 4 Conductor bar 5 Press member 7 Stator core 8 Outer frame 9 Impeller 10 Intermediate casing 11 Core slot 12 Core shaft hole 21 End ring slot 22 Thin part 23 Connection part 24 Brazing material 51 Four Triiron oxide rust prevention layer 52 Epoxy resin rust prevention layer 71 Stator winding 72 Bearing

Claims (10)

薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子であって、前記積層コアの表面と前記回転シャフトの表面に、四酸化三鉄の防錆層を形成したことを特徴とする電動機用かご形回転子。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions A squirrel-cage rotor for an electric motor in which an annular end ring is disposed, wherein an anticorrosive layer of triiron tetraoxide is formed on the surface of the laminated core and the surface of the rotary shaft. A cage rotor. 薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子であって、前記複数枚の薄鉄板の表面を含む前記積層コアの全表面と前記コア軸中心に配置した部分を含む前記回転シャフトの全表面に、四酸化三鉄の防錆層を形成したことを特徴とする電動機用かご形回転子。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions A squirrel-cage rotor for an electric motor having a ring-shaped end ring having the entire surface of the laminated core including the surfaces of the plurality of thin iron plates and a portion disposed at the center of the core axis. A squirrel-cage rotor for electric motors characterized in that a rust prevention layer of triiron tetraoxide is formed on the entire surface. 薄鉄板を複数枚積層したコアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した導体部と、該導体部と接続するスロット部を有する環状のエンドリングを配置し、前記エンドリングの外表面から押圧する手段を用いて、前記エンドリングの外表面の導体に対応する位置に押圧成形を施して機械的かつ電気的接続部を形成した電動機用かご形回転子であって、前記複数枚の薄鉄板の表面を含む前記積層コアの全表面と前記コア軸中心に配置した部分を含む前記回転シャフトの全表面と前記押圧成形を施して形成した機械的かつ電気的接続部の表面とを含む電動機用かご形回転子の表面に、四酸化三鉄の防錆層を形成したことを特徴とする電動機用かご形回転子。   A core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a conductor part arranged in an annular shape around the axis of the rotating shaft, and an annular end ring having a slot part connected to the conductor part A squirrel-cage rotation for a motor in which mechanical and electrical connection portions are formed by pressing and molding at positions corresponding to conductors on the outer surface of the end ring using means for placing and pressing from the outer surface of the end ring Mechanical and formed by pressing the entire surface of the laminated core including the surfaces of the plurality of thin iron plates and the entire surface of the rotating shaft including a portion disposed at the center of the core axis. A squirrel-cage rotor for a motor, wherein a rust prevention layer of triiron tetraoxide is formed on a surface of a squirrel-cage rotor for an electric motor including a surface of an electrical connection portion. 薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子と、前記かご形回転子に相対して、前記回転シャフトの同心円上に配置された固定子コアとこの固定子コアに組み込まれ電流を流す固定子巻線と前記回転シャフトの回転を円滑にする軸受を備えた電動機であって、前記かご形回転子の前記積層コアの表面と前記回転シャフトの表面に、四酸化三鉄の防錆層を形成したことを特徴とする電動機。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions A squirrel-cage rotor having a ring-shaped end ring, a stator core disposed on a concentric circle of the rotary shaft relative to the squirrel-cage rotor, and an electric current incorporated in the stator core. An electric motor comprising a stator winding for flowing and a bearing for smooth rotation of the rotating shaft, wherein the surface of the laminated core of the squirrel-cage rotor and the surface of the rotating shaft are rust-proofed with ferric oxide. An electric motor characterized by forming a layer. 薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子と、前記かご形回転子に相対して、前記回転シャフトの同心円上に配置された固定子コアとこの固定子コアに組み込まれ電流を流す固定子巻線と前記回転シャフトの回転を円滑にする軸受を備えた電動機と、前記回転シャフトに取り付けた羽根車と、該羽根車を収納する中間ケーシングと、該中間ケーシングの一部に設けた吐出口から構成されたポンプ部と、を備えた水中ポンプであって、前記電動機用かご形回転子の前記積層コアの表面と前記回転シャフトの表面に、四酸化三鉄の防錆層を形成したことを特徴とする水中ポンプ。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions A squirrel-cage rotor having a ring-shaped end ring, a stator core disposed on a concentric circle of the rotary shaft relative to the squirrel-cage rotor, and an electric current incorporated in the stator core. An electric motor provided with a stator winding to be flown and a bearing for smooth rotation of the rotary shaft, an impeller attached to the rotary shaft, an intermediate casing for storing the impeller, and a part of the intermediate casing A submersible pump comprising a discharge port, and a rust preventive layer of triiron tetraoxide on the surface of the laminated core and the surface of the rotary shaft of the squirrel-cage rotor for an electric motor. Formation Water pump, characterized in that the. 薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子の製造方法において、前記コア軸中心に前記回転シャフトを配置する回転シャフトの組立工程後、前記組立工程時の焼き嵌め温度よりも高い処理温度で、ナノメータレベルの大きさの水蒸気分子によるスチーム処理を前記コアの表面と前記回転シャフトの表面に施し、四酸化三鉄の防錆層を形成することを特徴とする電動機用かご形回転子の製造方法。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions In a method for manufacturing a squirrel-cage rotor having a ring-shaped end ring, the processing is higher than the shrink-fit temperature during the assembly process after the assembly process of the rotary shaft in which the rotary shaft is disposed in the center of the core axis. A squirrel-cage rotor for an electric motor characterized in that a steam treatment with water vapor molecules having a nanometer level is applied to the surface of the core and the surface of the rotary shaft to form a rust prevention layer of ferric oxide. Manufacturing method. 請求項6記載の電動機用かご形回転子の製造方法において、前記積層コアと前記積層コアの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを組み立てた後に、コア軸中心に回転シャフトを組み立て、その後に前記複数枚の薄鉄板の表面を含む前記積層コアの全表面と前記コア軸中心に配置した部分を含む前記回転シャフトの全表面に、四酸化三鉄の防錆層を形成することを特徴とする電動機用かご形回転子の製造方法。   The method of manufacturing a cage rotor for an electric motor according to claim 6, wherein the laminated core, a plurality of conductor portions arranged annularly around an axis of the laminated core, and a plurality of slot portions connected to the plurality of conductor portions. After assembling the annular end ring, the rotary shaft is assembled at the core axis center, and then the rotation including the entire surface of the laminated core including the surfaces of the plurality of thin steel plates and the portion disposed at the core axis center A method of manufacturing a squirrel-cage rotor for an electric motor, wherein a rust prevention layer of ferric oxide is formed on the entire surface of the shaft. 請求項6記載の電動機用かご形回転子の製造方法において、前記薄鉄板を複数枚積層したコアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した導体部と、該導体部と接続するスロット部を有する環状のエンドリングを配置した電動機用かご形回転子の製造方法において、前記エンドリングの外表面から押圧する手段を用いて、前記エンドリングの外表面の導体に対応する位置に押圧成形を施して機械的かつ電気的接続部を形成した後に、コア軸中心に回転シャフトを組み立て、その後に前記複数枚の薄鉄板の表面を含む前記積層コアの全表面と前記コア軸中心に配置した部分を含む前記回転シャフトの全表面と前記押圧成形を施して形成した機械的かつ電気的接続部の表面とを含む電動機用かご形回転子の表面に、四酸化三鉄の防錆層を形成することを特徴とする電動機用かご形回転子の製造方法。   7. The method of manufacturing a squirrel-cage rotor for an electric motor according to claim 6, wherein a core obtained by laminating a plurality of the thin iron plates, a rotating shaft arranged at the center of the core axis, and a conductor portion arranged annularly around the axis of the rotating shaft. And an outer surface of the end ring using means for pressing from the outer surface of the end ring in a method for manufacturing a cage rotor for an electric motor in which an annular end ring having a slot portion connected to the conductor portion is disposed. After forming a mechanical and electrical connection portion by pressing at a position corresponding to the conductor of the assembly, a rotary shaft is assembled at the center of the core axis, and then the entire laminated core including the surfaces of the plurality of thin iron plates is assembled. A squirrel-cage rotor for an electric motor including a surface, the entire surface of the rotating shaft including a portion disposed at the center of the core axis, and a surface of a mechanical and electrical connection portion formed by pressing. On the surface, a manufacturing method of an electric motor for cage rotor and forming a rust-preventive layer of triiron tetroxide. 薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子と、前記かご形回転子に相対して、前記回転シャフトの同心円上に配置された固定子コアとこの固定子コアに組み込まれ電流を流す固定子巻線と前記回転シャフトの回転を円滑にする軸受を備えた電動機の製造方法であって、前記かご形回転子の前記コア軸中心に前記回転シャフトを配置する回転シャフトの組立工程後、前記組立工程時の焼き嵌め温度よりも高い処理温度で、ナノメータレベルの大きさの水蒸気分子によるスチーム処理を前記コアの表面と前記回転シャフトの表面に施し、四酸化三鉄の防錆層を形成することを特徴とする電動機の製造方法。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions A squirrel-cage rotor having a ring-shaped end ring, a stator core disposed on a concentric circle of the rotary shaft relative to the squirrel-cage rotor, and an electric current incorporated in the stator core. A method of manufacturing an electric motor having a stator winding to be flown and a bearing for smooth rotation of the rotating shaft, wherein the rotating shaft is arranged at the center of the core axis of the cage rotor. The surface of the core and the surface of the rotary shaft are subjected to a steam treatment with water vapor molecules of a nanometer level at a treatment temperature higher than the shrink-fit temperature during the assembly process, and tetraoxidation is performed. Method for manufacturing a motor and forming a rust-preventive layer of iron. 薄鉄板を複数枚積層した積層コアと、コア軸中心に配置した回転シャフトと、該回転シャフトの軸周りに環状に配置した複数の導体部と、該複数の導体部と接続する複数のスロット部を有する環状のエンドリングを配置した電動機用かご形回転子と、前記かご形回転子に相対して、前記回転シャフトの同心円上に配置された固定子コアとこの固定子コアに組み込まれ電流を流す固定子巻線と前記回転シャフトの回転を円滑にする軸受を備えた電動機と、前記回転シャフトに取り付けた羽根車と、該羽根車を収納する中間ケーシングと、該中間ケーシングの一部に設けた吐出口から構成されたポンプ部と、を備えた水中ポンプの製造方法であって、前記電動機用かご形回転子の前記コア軸中心に前記回転シャフトを配置する回転シャフトの組立工程後、前記組立工程時の焼き嵌め温度よりも高い処理温度で、ナノメータレベルの大きさの水蒸気分子によるスチーム処理を前記コアの表面と前記回転シャフトの表面に施し、四酸化三鉄の防錆層を形成することを特徴とする水中ポンプの製造方法。   A laminated core in which a plurality of thin iron plates are laminated, a rotating shaft arranged at the center of the core axis, a plurality of conductor portions arranged annularly around the axis of the rotating shaft, and a plurality of slot portions connected to the plurality of conductor portions A squirrel-cage rotor having a ring-shaped end ring, a stator core disposed on a concentric circle of the rotary shaft relative to the squirrel-cage rotor, and an electric current incorporated in the stator core. An electric motor provided with a stator winding to be flown and a bearing for smooth rotation of the rotary shaft, an impeller attached to the rotary shaft, an intermediate casing for storing the impeller, and a part of the intermediate casing A submersible pump manufacturing method comprising: a pump unit configured with a discharge port, wherein the rotary shaft is arranged in the center of the core axis of the cage rotor for electric motor After that, the surface of the core and the surface of the rotating shaft are subjected to steam treatment with water vapor molecules of a nanometer level at a processing temperature higher than the shrink fitting temperature at the time of the assembly process, and the anticorrosion of triiron tetraoxide is performed. A method of manufacturing a submersible pump, characterized by forming a layer.
JP2009035504A 2009-02-18 2009-02-18 Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them Pending JP2010193623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035504A JP2010193623A (en) 2009-02-18 2009-02-18 Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035504A JP2010193623A (en) 2009-02-18 2009-02-18 Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them

Publications (1)

Publication Number Publication Date
JP2010193623A true JP2010193623A (en) 2010-09-02

Family

ID=42819064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035504A Pending JP2010193623A (en) 2009-02-18 2009-02-18 Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2010193623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437672A (en) * 2011-12-28 2012-05-02 南车株洲电机有限公司 Motor as well as drive end rust-proof device and method thereof
CN104702069A (en) * 2013-12-04 2015-06-10 伊顿有限公司 High Slip Variable Frequency Induction Motors
CN105471138A (en) * 2015-12-28 2016-04-06 天津中科华瑞电气技术开发有限公司 Rotor for submerged motor
WO2020190537A1 (en) * 2019-03-15 2020-09-24 Baker Hughes Oilfield Operations Llc Power generation with speed dependent magnetic field control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583553A (en) * 1981-06-29 1983-01-10 Mitsubishi Electric Corp Rotor for rotary electric machine
JPH04351451A (en) * 1991-05-28 1992-12-07 Matsushita Seiko Co Ltd Manufacture of rotor conductor of induction motor
JPH06261508A (en) * 1991-03-20 1994-09-16 Gold Star Co Ltd Rotor of motor for canned pump
JPH1098858A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Rotor for rotating electric machine
JP2005057952A (en) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd Small diameter motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583553A (en) * 1981-06-29 1983-01-10 Mitsubishi Electric Corp Rotor for rotary electric machine
JPH06261508A (en) * 1991-03-20 1994-09-16 Gold Star Co Ltd Rotor of motor for canned pump
JPH04351451A (en) * 1991-05-28 1992-12-07 Matsushita Seiko Co Ltd Manufacture of rotor conductor of induction motor
JPH1098858A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Rotor for rotating electric machine
JP2005057952A (en) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd Small diameter motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437672A (en) * 2011-12-28 2012-05-02 南车株洲电机有限公司 Motor as well as drive end rust-proof device and method thereof
CN104702069A (en) * 2013-12-04 2015-06-10 伊顿有限公司 High Slip Variable Frequency Induction Motors
EP2892133B1 (en) * 2013-12-04 2018-10-10 Eaton Intelligent Power Limited High slip variable frequency induction motors
CN105471138A (en) * 2015-12-28 2016-04-06 天津中科华瑞电气技术开发有限公司 Rotor for submerged motor
WO2020190537A1 (en) * 2019-03-15 2020-09-24 Baker Hughes Oilfield Operations Llc Power generation with speed dependent magnetic field control

Similar Documents

Publication Publication Date Title
US20190288584A1 (en) Stator for an axial flux machine and method for producing the same
EP1575146B1 (en) Soft Magnetic composite powder metal cores
JP5463357B2 (en) Equipment and manufacturing process for electrical machines
US9806589B2 (en) Basket-type rotor production method and basket-type rotor
US9219399B2 (en) Method for fabricating rotor for induction motor
CN113014023A (en) Housing unit for an electric machine
US8674580B2 (en) Electric machine with end ring and supporting tab
JP5843980B2 (en) Method for manufacturing cage rotor and method for manufacturing induction motor
WO2014102950A1 (en) Rotating electrical machine
JP4665454B2 (en) motor
JP2009165273A (en) Stator core structure for rotary electric machine and its manufacturing method
JP2010193623A (en) Squirrel cage rotor for electric motor, electric motor, submersible pump, and method of manufacturing them
US7728480B2 (en) Dynamoelectric machine
CN113678345A (en) Winding head device for rotating electric machine
JP2020089119A (en) Stator of rotary electric machine
JP2011521616A (en) Rotor with salient poles for multi-pole synchronous electric machine
US9899900B2 (en) Method of manufacturing the rotor assembly for an electric motor
JP2013219904A (en) Manufacturing method of stator and stator
JP2011166984A (en) Motor
US11398754B2 (en) Stator assembly and motor
JP5244721B2 (en) Rotating electrical machine rotor
US20170222498A1 (en) Motor Stator and Method for Forming Motor Stator
Akita et al. A new core
JP5993696B2 (en) Rotating electric machine and manufacturing method thereof
JP5915096B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110913

A131 Notification of reasons for refusal

Effective date: 20121211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A02 Decision of refusal

Effective date: 20130507

Free format text: JAPANESE INTERMEDIATE CODE: A02