JP2010193515A - Image processing method - Google Patents

Image processing method Download PDF

Info

Publication number
JP2010193515A
JP2010193515A JP2010106173A JP2010106173A JP2010193515A JP 2010193515 A JP2010193515 A JP 2010193515A JP 2010106173 A JP2010106173 A JP 2010106173A JP 2010106173 A JP2010106173 A JP 2010106173A JP 2010193515 A JP2010193515 A JP 2010193515A
Authority
JP
Japan
Prior art keywords
filter
coefficient
image
value
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010106173A
Other languages
Japanese (ja)
Inventor
Takafumi Enami
隆文 枝並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010106173A priority Critical patent/JP2010193515A/en
Publication of JP2010193515A publication Critical patent/JP2010193515A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image processing method for performing processing such as edge enhancement, which includes smoothing processing and edge enhancement processing and improves image quality. <P>SOLUTION: The method includes: a step of calculating a value which indicates a degree of flatness or a degree of steepness per pixel or per pixels of an input image; a step of obtaining a filter coefficient based on the value indicating a degree of flatness or a degree of steepness; and a step of performing filtering processing for pixels using the obtained filter coefficient. The method also includes a step of obtaining the value indicating the degree of flatness or the degree of steepness as a coefficient for performing smoothing filter processing when the value indicates a flat part, and as a coefficient for performing edge enhancement filter processing when the value indicates a steep part, obtaining an intermediate value between the flat part and the steep part as a coefficient continuously changing from the coefficient of the smoothing filter to that of the edge enhancement filter, extracting a value of a quantizing step for each decoded macro block, and controlling so as to reduce intensity of edge enhancement as the value of the quantizing step increases. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、静止画や動画等の画像の美化を図るフィルタ処理を含む画像処理方法に関する。   The present invention relates to an image processing method including a filter process for beautifying an image such as a still image or a moving image.

人物や風景等を含む一般的な画像について、エッジ(境界)部分の特性をそのまま維持して、平坦部分は、より一層平坦化することにより、例えば、人物の顔の輪郭や目又は口の周りのシャープさを保存したまま、しわや、しみ等を除去して、画像全体の美化を図る手段が提案されている。   For general images including people and landscapes, the characteristics of the edge (boundary) part are maintained as they are, and the flat part is further flattened. Means have been proposed for beautifying the entire image by removing wrinkles, spots and the like while preserving the sharpness of the image.

又動画像符号化伝送等に於いては、復号化した画像中に存在するブロックノイズやモスキートノイズを除去する為のフィルタ処理の適用が提案されている。このブロックノイズを消去する目的としてデブロッキングフィルタが知られているが、このフィルタによってはモスキートノイズを消去することができない。   In moving picture encoding transmission and the like, application of a filter process for removing block noise and mosquito noise present in a decoded picture has been proposed. A deblocking filter is known for the purpose of eliminating this block noise, but this filter cannot eliminate mosquito noise.

又画素毎にその周辺の画像情報を用いて適応的にフィルタリングを行い、高画質化を図る場合には、低域フィルタ(平滑化フィルタ)、原画、高域フィルタ(エッジ強調フィルタ)の出力を切替えることが提案されている。その場合、切替える為の閾値設定手段を容易には実現できないことから、エッジ領域等に於いて不必要なボケや画像の乱れが発生する欠点がある。   In addition, if the image is adaptively filtered for each pixel using the surrounding image information to improve the image quality, the output of the low-pass filter (smoothing filter), the original image, and the high-pass filter (edge enhancement filter) It has been proposed to switch. In this case, since threshold setting means for switching cannot be easily realized, there is a disadvantage that unnecessary blurring or image disturbance occurs in an edge region or the like.

従来、人物の顔の画像中の、例えば、しわ、しみ、肌荒れ等を修正することを目的として、図8に示すイプシロンフィルタによる画像処理手段が提案されている(例えば、特許文献1参照)。同図に於いて、111は差分検出部、112は閾値判定部、113は乗算部、114は加算部を示し、差分検出部111により、入力画素の座標m,nの注目画素Xm,nとその周囲の8個の画素との差分をそれぞれ求め、閾値判定部112に於いてそれぞれの差分値の絶対値と閾値THとを比較し、差分値の絶対値が閾値THより小さい、例えば、Δm−1,n−1,Δm−1,n,Δm,n+1,Δm+1,n,Δm+1,n+1 が得られた場合を示し、乗算部113に於いて所定の係数Ai,j(i=1,0,−1, j=1,0,−1)をそれぞれ乗算し、加算部114に於いて、それぞれの乗算値と注目画素とを加算して出力画素とする。従って、画像のエッジ部分については原画のエッジ状態を保持し、平坦部分を更に平滑化することにより、しわやしみ等の好ましくない部分を除去した画像とすることができる。 Conventionally, an image processing means using an epsilon filter shown in FIG. 8 has been proposed for the purpose of correcting, for example, wrinkles, spots, rough skin, etc. in an image of a person's face (see, for example, Patent Document 1). In the figure, reference numeral 111 denotes a difference detection unit, 112 denotes a threshold value determination unit, 113 denotes a multiplication unit, and 114 denotes an addition unit. The difference detection unit 111 causes the pixel of interest X m, n at the coordinates m and n of the input pixel to be displayed. And the threshold value determination unit 112 compares the absolute value of each difference value with the threshold value TH, and the absolute value of the difference value is smaller than the threshold value TH, for example, Δm −1, n−1 , Δm −1, n , Δm , n + 1 , Δm + 1, n , Δm + 1, n + 1 are shown. In the multiplication unit 113, predetermined coefficients A i, j (i = 1, 0, −1, j = 1, 0, −1) are respectively multiplied, and the adder 114 adds the respective multiplied values and the target pixel to form an output pixel. Therefore, by maintaining the edge state of the original image for the edge portion of the image and further smoothing the flat portion, it is possible to obtain an image from which undesirable portions such as wrinkles and spots are removed.

又図9に示すRTF(Ripple Trimmed Filter)と称されるフィルタを用いてテレビジョン画像の人物の顔の中のしわ等の不要な成分を低減する手段が提案されている(例えば、特許文献2参照)。同図に於いて、121〜123はそれぞれ1水平走査線分の遅延回路、124は加重加算回路、125,127は減算回路、126は係数を記憶したメモリ(ROM)を示す。   Further, there has been proposed a means for reducing unnecessary components such as wrinkles in a human face of a television image using a filter called RTF (Ripple Trimmed Filter) shown in FIG. 9 (for example, Patent Document 2). reference). In the figure, reference numerals 121 to 123 denote delay circuits for one horizontal scanning line, 124 denotes a weighted addition circuit, 125 and 127 denote subtraction circuits, and 126 denotes a memory (ROM) storing coefficients.

入力画像信号Xk,iが初段の遅延回路121に入力されて順次遅延回路122,123により遅延され、点線で囲む部分のそれぞれの遅延出力信号を加重加算回路124に入力し、遅延出力信号に係数を乗算して加算する。この加重加算回路124の出力信号は、入力画像信号を低域フィルタ処理した信号に相当する。この出力信号と、遅延回路122の出力信号とを減算回路125に入力して差分を求め、この差分をアドレスとしてメモリ126から係数を読出して減算回路127に入力し、遅延回路122の出力信号から減算することにより、所望の画像信号を得ることができる。 The input image signal Xk, i is input to the first delay circuit 121 and sequentially delayed by the delay circuits 122 and 123, and the respective delay output signals surrounded by the dotted lines are input to the weighted addition circuit 124 to be used as delay output signals. Multiply by coefficient and add. The output signal of the weighted addition circuit 124 corresponds to a signal obtained by subjecting the input image signal to low-pass filtering. This output signal and the output signal of the delay circuit 122 are input to the subtraction circuit 125 to obtain a difference, and the coefficient is read from the memory 126 using this difference as an address and input to the subtraction circuit 127. By subtracting, a desired image signal can be obtained.

又画像の輪郭のぼけの問題やノイズの問題をそれぞれ単独で処理して、見やすい画像を得ることを目的として、図10に示す画像処理装置が知られている(例えば、特許文献3参照)。同図に於いて、131は画像入力部、132は画像処理部、133は画素抽出部、134は画像選択スイッチ(SW1,SW2,SW3)、135は画像統合部、136は画像出力部を示す。   Also, an image processing apparatus shown in FIG. 10 is known for the purpose of obtaining an easy-to-see image by independently processing the image outline blurring problem and noise problem (see, for example, Patent Document 3). In the figure, 131 is an image input unit, 132 is an image processing unit, 133 is a pixel extraction unit, 134 is an image selection switch (SW1, SW2, SW3), 135 is an image integration unit, and 136 is an image output unit. .

又画像処理部132は、平滑化部221とエッジ強調部222とディレイ調整部223,224,225とを含む構成を有し、画素抽出部133は、エッジ画素抽出部231と、輪郭抽出部232と、ノイズ画素抽出部233と、非エッジ画素抽出部234と、輪郭面積算出部235と、ディレイ調整部236〜239とを含む構成を有し、画像統合部135は、セレクタ251〜253と、画像合成部254とを含む構成を有する。   The image processing unit 132 includes a smoothing unit 221, an edge enhancement unit 222, and delay adjustment units 223, 224, and 225. The pixel extraction unit 133 includes an edge pixel extraction unit 231 and a contour extraction unit 232. A noise pixel extraction unit 233, a non-edge pixel extraction unit 234, a contour area calculation unit 235, and delay adjustment units 236 to 239. The image integration unit 135 includes selectors 251 to 253, And an image composition unit 254.

画像処理部132は、平滑化部231によりノイズを除去したノイズ除去画像信号と、エッジ強調部232によりエッジを強調したエッジ強調画像信号と、無処理の画像信号とを画像統合部135に入力する。又画素抽出部133は、輪郭画素抽出部232により抽出した輪郭画素と、ノイズ画素抽出部233により抽出したノイズ画素と、非エッジ画素抽出部234により抽出した非エッジ画素とを画像統合部135に入力する。   The image processing unit 132 inputs the noise-removed image signal from which noise has been removed by the smoothing unit 231, the edge-enhanced image signal in which the edge is enhanced by the edge enhancement unit 232, and the unprocessed image signal to the image integration unit 135. . The pixel extraction unit 133 also adds the contour pixel extracted by the contour pixel extraction unit 232, the noise pixel extracted by the noise pixel extraction unit 233, and the non-edge pixel extracted by the non-edge pixel extraction unit 234 to the image integration unit 135. input.

画像統合部135のセレクタ251〜253には、画像処理部132からの無処理画像信号と、ノイズ除去画像信号と、エッジ強調画像信号とがそれぞれ入力され、又画素抽出部133からの輪郭画素がセレクタ251に、又ノイズ画素がセレクタ252に、又非エッジ画素がセレクタ253にそれぞれ入力されて、それらの画素が“1”で、且つ画像選択スイッチSW1〜SW3による無処理画像とノイズ除去画像とエッジ強調画像との何れかの選択制御により、入力された無処理画像信号とノイズ除去画像信号とエッジ強調画像信号との何れかを、画像合成部254に入力して画像合成を行うものである。それにより、ノイズ画素に対してエッジ強調処理が行われたり、或いは、エッジ画素に対してノイズ除去処理が行われたりすることがなく、ノイズ除去処理とエッジ強調処理とを単独で行うことができる。   To the selectors 251 to 253 of the image integration unit 135, the unprocessed image signal, the noise-removed image signal, and the edge-enhanced image signal from the image processing unit 132 are input, respectively, and the contour pixels from the pixel extraction unit 133 are received. The selector 251, the noise pixel is input to the selector 252, and the non-edge pixel is input to the selector 253. These pixels are “1”, and the unprocessed image and the noise-removed image by the image selection switches SW 1 to SW 3 are displayed. Any one of the input unprocessed image signal, noise-removed image signal, and edge-enhanced image signal is input to the image composition unit 254 by performing selection control of any of the edge-enhanced images and image synthesis is performed. . As a result, the edge enhancement process is not performed on the noise pixel, or the noise removal process is not performed on the edge pixel, and the noise removal process and the edge enhancement process can be performed independently. .

特開2000−105815号公報JP 2000-105815 A 特開2000−295497号公報JP 2000-295497 A 特開平7−152908号公報JP-A-7-152908

従来の例えば図8に示すイプシロンフィルタを用いた画像処理手段は、しわや、しみ等の細かい顔の中の不要な成分を除去することが可能であるが、エッジ部分については、現画像のエッジ状態を保存することしかできず、エッジ強調処理を実現することができない問題がある。又積和演算の中に判定処理を含む為、演算量が過大となる問題がある。更に、注目画素とその周辺画素との差分を閾値と比較する処理を含む為、グラデーションのある画像領域では、フィルタリング効果が少なく、不安定な処理となる問題がある。   The conventional image processing means using the epsilon filter shown in FIG. 8, for example, can remove unnecessary components in a fine face such as wrinkles and spots, but the edge portion of the current image There is a problem that only the state can be saved and the edge enhancement processing cannot be realized. In addition, since the product-sum operation includes a determination process, there is a problem that the amount of calculation becomes excessive. Furthermore, since it includes the process of comparing the difference between the pixel of interest and its surrounding pixels with a threshold value, there is a problem that an image area with gradation has less filtering effect and becomes unstable.

又前述の図9に示すRTFを用いた場合、前述のイプシロンフィルタを用いた場合に比較して演算量を低減することができるが、ノイズ除去に対する効果は、フィルタ切替えを行った部分で不連続な特性となり、この点では前述のイプシロンフィルタを用いた場合に比較して劣る問題がある。   Further, when the RTF shown in FIG. 9 is used, the amount of calculation can be reduced as compared with the case where the above-described epsilon filter is used. In this respect, there is a problem inferior to the case where the above-mentioned epsilon filter is used.

又前述の図10に示す従来例に於いては、画像の平坦部分では平滑化処理を行い、エッジ部分ではエッジ強調処理を行うことにより、細かなノイズ成分を平坦化して、見やすい画像を生成することができるが、セレクタ251〜253による選択処理の為の閾値設定を適切に行う必要があり、この閾値設定が適切でない場合、エッジ部分や画像中の細かな領域で不均一な画素を出力することになる。それにより、例えば、高域強調された画素に、平滑化された画素が混在したり、逆に、平滑化された画素に、エッジ強調された画素が混在して、画質改善ができない問題がある。又演算量も多いものとなるから、高速処理が困難である問題もある。   In the conventional example shown in FIG. 10 described above, smoothing processing is performed on the flat portion of the image, and edge enhancement processing is performed on the edge portion, thereby flattening the fine noise components and generating an easy-to-view image. However, it is necessary to appropriately set a threshold value for selection processing by the selectors 251 to 253, and when this threshold value setting is not appropriate, nonuniform pixels are output in an edge portion or a fine area in the image. It will be. As a result, for example, smoothed pixels are mixed with high-frequency emphasized pixels, and conversely, edge-enhanced pixels are mixed with smoothed pixels, and image quality cannot be improved. . In addition, since the amount of calculation is large, there is a problem that high-speed processing is difficult.

本発明の画像処理方法は、入力された画像の単一又は複数の画素毎に平坦度合い又は急峻度合いを示す値を算出する過程と、前記平坦度合い又は急峻度合いを示す値を基にフィルタ係数を求める過程と、該過程により求めた前記フィルタ係数により前記画素に対するフィルタリング処理を行う過程とを含み、前記フィルタ係数を求める過程に於いて、前記平坦度合い又は急峻度合いを示す値が、平坦部分を示す時に平滑化フィルタの処理を行う係数として求め、急峻部分を示す時にエッジ強調フィルタの処理を行う係数として求め、前記平坦部分と前記急峻部分との中間部分を示す時に前記平滑化フィルタの係数から前記エッジ強調フィルタの係数に連続的に変化する係数として求める過程を有し、且つ復号化されたマクロブロック毎に量子化ステップの値を抽出し、抽出した該量子化ステップの値が大きくなるに従ってエッジ強調の強度を小さくなるように制限する処理過程を有する。   The image processing method of the present invention calculates a filter coefficient based on a process of calculating a flatness or a steepness value for each pixel or a plurality of pixels of an input image, and the flatness or steepness value. And a process of performing filtering processing on the pixel by the filter coefficient obtained by the process, and in the process of obtaining the filter coefficient, the value indicating the flatness or steepness indicates a flat portion. Sometimes obtained as a coefficient for performing smoothing filter processing, obtained as a coefficient for performing edge enhancement filter processing when showing a steep portion, and when showing an intermediate portion between the flat portion and the steep portion, the coefficient of the smoothing filter The process of obtaining the coefficients of the edge enhancement filter as coefficients that change continuously, and for each decoded macroblock The value of the step extracted, the value of the extracted said amount Coca step has a process of limiting to be smaller the intensity of the edge enhancement in accordance with increase.

入力画像の単一又は複数の画素毎に平坦度合い又は急峻度合いを示す値、例えば、エッジ強度を求め、この値に従って、平滑化フィルタ、全域通過フィルタ、エッジ強調フィルタの特性が連続的に変化するフィルタ係数を求めることにより、不連続点を含まない状態で、画像の平滑化とエッジ強調との処理を実行することが可能であり、従って、美化処理した画像を得ることができる。又通常の2次元線形フィルタリング処理とエッジ量演算処理とフィルタ係数算出処理で済み、フィルタ係数算出処理は、フィルタ係数をテーブル化することができるから、演算は2次元フィルタリング処理によるものが殆どとなり、従来のイプシロンフィルタやフィルタ切替えによる画像強調手段に比較して演算量の削減が可能となる。又マクロブロック毎の量子化ステップを参照して、フィルタリング特性を制御することにより、ブロックノイズが発生している可能性が高くなるに従って、エッジ強調の強度を制御して、ブロックノイズやモスキートノイズを平滑化処理して低減し、画質を向上させることができる。   A value indicating flatness or steepness, for example, edge strength, is obtained for each pixel or a plurality of pixels of the input image, and the characteristics of the smoothing filter, all-pass filter, and edge enhancement filter change continuously according to this value. By obtaining the filter coefficient, it is possible to execute the processing of image smoothing and edge enhancement without including discontinuous points, and thus a beautified image can be obtained. In addition, the normal two-dimensional linear filtering process, the edge amount calculation process, and the filter coefficient calculation process are sufficient, and the filter coefficient calculation process can table the filter coefficient, so the calculation is mostly based on the two-dimensional filtering process. The amount of calculation can be reduced as compared with the conventional epsilon filter or image enhancement means by filter switching. Also, by referring to the quantization step for each macroblock and controlling the filtering characteristics, the block emphasis intensity is controlled so that block noise and mosquito noise are reduced as the possibility that block noise is generated increases. The image quality can be improved by performing a smoothing process.

本発明の実施例の画像処理装置の要部説明図である。It is principal part explanatory drawing of the image processing apparatus of the Example of this invention. 本発明の実施例のフィルタ構成の要部説明図である。It is principal part explanatory drawing of the filter structure of the Example of this invention. フィルタ係数の配置説明図である。It is arrangement | positioning explanatory drawing of a filter coefficient. フィルタ係数の変化の説明図である。It is explanatory drawing of the change of a filter coefficient. フィルタ係数とフィルタ特性との関係説明図である。It is a relation explanatory view of a filter coefficient and a filter characteristic. 画像伝送システムの説明図である。It is explanatory drawing of an image transmission system. 画像伝送システムの説明図である。It is explanatory drawing of an image transmission system. 従来例の説明図である。It is explanatory drawing of a prior art example. 従来例の説明図である。It is explanatory drawing of a prior art example. 従来例の説明図である。It is explanatory drawing of a prior art example.

本発明の画像処理方法は、入力された画像の単一又は複数の画素毎に平坦度合い又は急峻度合いを示す値を算出する過程と、平坦度合い又は急峻度合いを示す値を基にフィルタ係数を求める過程と、この過程により求めたフィルタ係数により、画素に対するフィルタリング処理を行う過程とを含み、前記フィルタ係数を求める過程に於いて、平坦度合い又は急峻度合いを示す値が、平坦部分を示す時に平滑化フィルタの処理を行う係数として求め、急峻部分を示す時にエッジ強調フィルタの処理を行う係数として求め、平坦部分と急峻部分との中間部分を示す時に、平滑化フィルタの係数からエッジ強調フィルタの係数に連続的に変化する係数として求める過程を有し、且つ復号化されたマクロブロック毎に量子化ステップの値を抽出し、抽出した量子化ステップの値が大きくなるに従ってエッジ強調の強度を小さくなるように制限する処理過程を含むものである。   According to the image processing method of the present invention, a filter coefficient is obtained based on a process of calculating a value indicating a flatness or steepness for each pixel or a plurality of pixels of an input image and a value indicating the flatness or steepness. And a process of filtering the pixel by the filter coefficient obtained in this process. In the process of obtaining the filter coefficient, smoothing is performed when the value indicating the flatness or steepness indicates a flat portion. Obtained as a coefficient for filter processing, obtained as a coefficient for edge enhancement filter processing when showing a steep portion, and changed from a smoothing filter coefficient to a coefficient for an edge enhancement filter when showing an intermediate portion between a flat portion and a steep portion A process for obtaining continuously changing coefficients, and a quantization step value is extracted for each decoded macroblock. The value of the quantization step is intended to include process of limiting to be smaller the intensity of the edge enhancement in accordance with increases.

図1は、本発明の実施例の要部説明図であり、1はマスク走査部、2はエッジ量演算部、3はフィルタ係数演算部、4は2次元フィルタ演算部を示す。マスク走査部1に対する入力画像Xi,jをフィルタ処理して出力画像Yi,jを得るもので、マスク走査部1は、フィルタ構成に対応した例えば3×3のマスク走査構成とすることができる。又エッジ量演算部2は、単一又は複数の画素毎に、平坦度合い又は急峻度合いを算出するもので、以下急峻度合いとしてのエッジ量(エッジ強度)を算出する場合について説明する。即ち、マスク走査部1からの単一又は複数の画素毎に、入力画像Xi,jのエッジ量を算出し、フィルタ係数演算部3に入力し、フィルタ係数を求めて2次元フィルタ演算部4に入力し、マスク走査部1からの画像信号に対してフィルタ処理し、出力画像Yi,jを得るものである。 FIG. 1 is an explanatory diagram of a main part of an embodiment of the present invention, where 1 is a mask scanning unit, 2 is an edge amount calculation unit, 3 is a filter coefficient calculation unit, and 4 is a two-dimensional filter calculation unit. The input image X i, j to the mask scanning unit 1 is filtered to obtain an output image Y i, j , and the mask scanning unit 1 has, for example, a 3 × 3 mask scanning configuration corresponding to the filter configuration. it can. The edge amount calculation unit 2 calculates a flatness or a steepness for each pixel or a plurality of pixels. Hereinafter, a case where an edge amount (edge strength) as a steepness is calculated will be described. That is, the edge amount of the input image X i, j is calculated for each pixel or a plurality of pixels from the mask scanning unit 1, input to the filter coefficient calculation unit 3, and the filter coefficient is obtained to obtain the two-dimensional filter calculation unit 4. And the image signal from the mask scanning unit 1 is filtered to obtain an output image Y i, j .

又入力画像をXm,n、出力画像をYm,nとし、フィルタ係数をWi,jとすると、一般的な正規化された出力が得られる2次元フィルタは、
m,n=(ΣWi,j*Xm+i,n+j)/ΣWi,j ・・・(1)
と表すことができる。
If the input image is X m, n , the output image is Y m, n , and the filter coefficient is Wi, j , a two-dimensional filter that can obtain a general normalized output is
Y m, n = (ΣW i, j * X m + i, n + j ) / ΣW i, j (1)
It can be expressed as.

正規化された出力が得られる条件としては、ΣWi,jの値が一定となるように予めフィルタバンクに設定しておくことにより、除算が不要となるから、演算量の削減が可能となり、この条件下で重み係数の絶対値として、低域フィルタ、全域通過フィルタ、高域強調フィルタを形成することができる。 As a condition for obtaining a normalized output, by setting the filter bank in advance so that the value of ΣW i, j is constant, division is not necessary, so that the amount of calculation can be reduced. Under these conditions, a low-pass filter, an all-pass filter, and a high-frequency emphasis filter can be formed as the absolute value of the weighting coefficient.

複数のフィルタ係数の中から画素毎に係数を変更する手段としては、画素毎の周辺エッジ量によって切替える手段を適用することが一般的である。例えば、エッジ強度を求める為の演算としては、
ラプラシアン
EPi,j=|Xi,j−(Xi−1,j−1+Xi−1,j+Xi−1,j+1+Xi,j−1+Xi,j+1+Xi+1,j−1+Xi+1,j+Xi,j+1)/8| ・・・(2)
ロバーツオペレータ
EPi,j=|Xi,j−Xi+1,j+1|+|Xi,j+1−Xi+1,j| ・・・(3)
上下方向のエッジ強度
EPi,j=|Xi−1,j−Xi+1,j|+|Xi,j−1−Xi,j+1| ・・・(4)
を使用することができる。
As means for changing a coefficient for each pixel from among a plurality of filter coefficients, it is general to apply means for switching according to the peripheral edge amount for each pixel. For example, as a calculation for obtaining the edge strength,
Laplacian EP i, j = | X i, j- (X i-1, j-1 + X i-1, j + X i-1, j + 1 + X i, j-1 + X i, j + 1 + X i + 1, j-1 + X i + 1, j + X i, j + 1 ) / 8 | (2)
Roberts operator EP i, j = | X i, j −X i + 1, j + 1 | + | X i, j + 1 −X i + 1, j | (3)
Edge strength EP i, j = | X i−1, j −X i + 1, j | + | X i, j−1 −X i, j + 1 | (4)
Can be used.

係数の制約条件として、3×3マスク2次元フィルタで、ΣWm,n=4とした場合の平滑化フィルタと、全域通過フィルタと、エッジ強調フィルタとの例を下記に示す。 Examples of the smoothing filter, the all-pass filter, and the edge emphasis filter in the case where ΣW m, n = 4 in the 3 × 3 mask two-dimensional filter as the constraint condition of the coefficient are shown below.

全域通過フィルタ
i,j={0,0,0,0,4,0,0,0,0}
平滑化フィルタ
i,j={0,1,0,1,0,1,0,1,0}
i,j={1,0,1,0,1,0,1,0,1}
高域強調フィルタ
i,j={0,−1,0,−1,8,−1,0,−1,0}
i,j={−1,−1,−1,−1,12,−1,−1,−1,−1}
All-pass filter W i, j = {0,0,0,0,4,0,0,0,0}
Smoothing filter W i, j = {0, 1, 0, 1, 0, 1, 0, 1, 0}
W i, j = {1,0,1,0,1,0,1,0,1}
High-frequency emphasis filter Wi, j = {0, -1, 0, -1, 8, -1, 0, -1, 0}
W i, j = {− 1, −1, −1, −1,12, −1, −1, −1, −1}

ここで、全域通過フィルタと平滑化フィルタと高域強調フィルタとのそれぞれの係数に注目すると、
i,j={0,0,0,0,4,0,0,0,0}
i,j={0,1,0,1,0,1,0,1,0}
i,j={0,−1,0,−1,8,−1,0,−1,0}
の組合せの場合、(i,j)=(1,0),(0,1),(2,1),(1,2)の個所が同一係数であり、係数全体の総和のC=ΣWi,jであることが条件となる。
Here, paying attention to the coefficients of the all-pass filter, the smoothing filter, and the high-frequency emphasis filter,
W i, j = {0,0,0,0,4,0,0,0,0}
W i, j = {0,1,0,1,0,1,0,1,0}
W i, j = {0, −1, 0, −1, 8, −1, 0, −1, 0}
In the case of the combination of (i, j) = (1, 0), (0, 1), (2, 1), (1, 2) are the same coefficient, and the sum of all coefficients C = ΣW The condition is that i and j .

中心以外の非0の係数をB、中心の係数をAとすると、係数に対する拘束条件は、
C=ΣWi,j=A+4B
となる(尚、Cは周波数0Hzに於ける出力を正規化する為の係数)。
If the non-zero coefficient other than the center is B and the center coefficient is A, the constraint condition for the coefficient is
C = ΣW i, j = A + 4B
(Where C is a coefficient for normalizing the output at a frequency of 0 Hz).

平坦部にスムージングを行い、境界部分にエッジ強調を行う為には、EPm,nの値が大きい場合は、Bの値が負の値であり、EPm,nの値が0に近い場合は、Bの値が正の値となり、中域では、B=0となることが望ましい。これらの条件を持つ値としてBを計算する為に、例えば、
B=max(min(α(L−EP(m,n)),E),F) ・・・(5)
を用いることができる。尚、Eは係数Bの上限値、Fは係数Bの下限値、αは平滑化フィルタとエッジ強調フィルタとの切替えの度合いを示す。又Lは全域通過としたい領域を示す。
In order to perform smoothing on the flat part and edge enhancement on the boundary part, when the value of EP m, n is large, the value of B is negative and the value of EP m, n is close to 0 It is desirable that the value of B is a positive value, and B = 0 in the middle range. To calculate B as a value with these conditions, for example:
B = max (min ([alpha] (L-EP (m, n)), E), F) (5)
Can be used. E is the upper limit value of the coefficient B, F is the lower limit value of the coefficient B, and α is the degree of switching between the smoothing filter and the edge enhancement filter. L indicates a region where the entire region is desired to pass.

図2は、図1に於けるマスク走査部1を3×3マスク構成とした場合の画像処理装置のフィルタ構成の要部を示し、図1と同一符号は同一部分を示す。又マスク走査部1のL−Dはラインバッファ、Dは画素記憶部であり、3×3=9個の出力信号を2次元フィルタ演算部4に入力する。又エッジ量演算部2のSUBABSは差分の絶対値算出部、+は加算部を示す。又フィルタ係数演算部3は、フィルタ係数をテーブル化したフィルタ係数ROMにより構成した場合を示す。又2次元フィルタ演算部4のMは乗算部、+は加算部を示す。   FIG. 2 shows a main part of the filter configuration of the image processing apparatus when the mask scanning unit 1 in FIG. 1 has a 3 × 3 mask configuration, and the same reference numerals as those in FIG. Further, L-D of the mask scanning unit 1 is a line buffer, D is a pixel storage unit, and 3 × 3 = 9 output signals are input to the two-dimensional filter calculation unit 4. In the edge amount calculation unit 2, SUBABS indicates a difference absolute value calculation unit, and + indicates an addition unit. Further, the filter coefficient calculation unit 3 shows a case where it is configured by a filter coefficient ROM in which filter coefficients are tabulated. In the two-dimensional filter calculation unit 4, M indicates a multiplication unit and + indicates an addition unit.

エッジ量演算部2は、マスク走査部1からの出力画素の差分の絶対値を求めて、平坦度合い又は急峻度合いを示すエッジ量を求めて、フィルタ係数演算部3に入力する。このフィルタ係数演算部3は、エッジ量をアドレスとしてフィルタ係数を読出すフィルタ係数ROMとした場合を示し、読出したフィルタ係数は、前述の係数A,Bから構成され、2次元フィルタ演算部4に入力する。この2次元フィルタ演算部4は、マスク走査部1からの出力信号に対してフィルタ係数による積和演算を行い、フィルタ係数に従って、平滑化フィルタと全域通過フィルタと高域通過フィルタ(エッジ強調フィルタ)との特性を連続的に変更して、平坦部分は平滑化して滑らかな画像とし、急峻部分はエッジ強調により明確な画像とし、その他はそのままの画像とし、それらの間は連続的に遷移する状態の画像とするものである。   The edge amount calculation unit 2 obtains an absolute value of the difference between the output pixels from the mask scanning unit 1, obtains an edge amount indicating a flatness or a steepness, and inputs it to the filter coefficient computation unit 3. The filter coefficient calculation unit 3 shows a case where a filter coefficient ROM is used to read out the filter coefficient using the edge amount as an address. The read filter coefficient is composed of the above-described coefficients A and B, and is sent to the two-dimensional filter calculation unit 4. input. The two-dimensional filter operation unit 4 performs a product-sum operation on the output signal from the mask scanning unit 1 using a filter coefficient, and a smoothing filter, an all-pass filter, and a high-pass filter (edge enhancement filter) according to the filter coefficient. The characteristic is continuously changed, the flat part is smoothed to make a smooth image, the steep part is made clear by edge enhancement, the other is made as it is, and the state transitions continuously between them. This is an image.

図3は、フィルタ係数の配置説明図であり、同図の(A),(B)は、3×3のエッジ検出フィルタの係数の例を示し、(A)はロバーツ(Roberts)エッジ検出フィルタの係数配置を示す。又(B)は水平方向及び垂直方向のエッジ検出フィルタの係数配置を示す。又同図の(C),(D)は、3×3の適応フィルタ係数配置の説明図であり、(C)は隣接4点からのフィルタリングを行う場合の係数配置を示し、(D)は隣接8点からのフィルタリングを行う場合の係数配置を示す。   FIG. 3 is an explanatory diagram of the arrangement of filter coefficients. (A) and (B) of FIG. 3 show examples of coefficients of a 3 × 3 edge detection filter, and (A) is a Roberts edge detection filter. The coefficient arrangement of is shown. (B) shows the coefficient arrangement of the edge detection filters in the horizontal and vertical directions. Also, (C) and (D) in the figure are explanatory diagrams of the 3 × 3 adaptive filter coefficient arrangement, (C) shows the coefficient arrangement in the case of filtering from four adjacent points, and (D) The coefficient arrangement | positioning in the case of performing filtering from adjacent 8 points is shown.

図4は、フィルタ係数の変化の説明図であり、エッジ強度の絶対値|EP|に対する係数Bの変化を示し、Eは係数Bの上限値、Fは係数Bの下限値、Lは全域通過の領域を示す。同図の(A)は、|EP|が小さい時は、係数Bを上限値Eとし、|EP|が大きい時は、係数Bを下限値Fとし、|EP|がそれらの間の値の時に、|EP|の値に対応して、係数Bが、0を通過して連続的に変化するように制御した場合を示す。この時、係数Aは、C=ΣWi,jの条件により、
A=C−4B
として求めることができる。
FIG. 4 is an explanatory diagram of the change of the filter coefficient, showing the change of the coefficient B with respect to the absolute value | EP | of the edge strength, where E is the upper limit value of the coefficient B, F is the lower limit value of the coefficient B, and L is all-pass Indicates the area. (A) in the figure shows that when | EP | is small, the coefficient B is an upper limit value E, and when | EP | is large, the coefficient B is a lower limit value F, and | EP | In some cases, the coefficient B is controlled so as to continuously change through 0 corresponding to the value of | EP |. At this time, the coefficient A depends on the condition of C = ΣW i, j .
A = C-4B
Can be obtained as

このような係数A,Bを有するフィルタは、
i,j={0,B,0,B,A,B,0,B,0}
となり、EP<Lの範囲では平滑化フィルタ、EP=Lの周辺では全域通過フィルタ、EP>Lの範囲では高域強調(エッジ強調)フィルタとして動作して、画像処理を実行することができる。又係数Bは、図示のように上限値Eから下限値Fに連続的に変化する。
A filter having such coefficients A and B is
W i, j = {0, B, 0, B, A, B, 0, B, 0}
Thus, it is possible to perform image processing by operating as a smoothing filter in the range of EP <L, an all-pass filter in the vicinity of EP = L, and a high-frequency emphasis (edge emphasis) filter in the range of EP> L. The coefficient B continuously changes from the upper limit value E to the lower limit value F as shown in the figure.

又図4の(B)は、高域強調フィルタとして動作する場合に、エッジ強度の絶対値が大きくなるに従って係数Bを下限値Eから次第に0に変化させ、エッジ強調大からエッジ強調小に変化するフィルタ特性とした場合を示す。即ち、エッジ強度の絶対値が大きい急峻な輪郭の領域の強調度合いを低くし、少し急峻な領域に対しては、より急峻な領域となるように処理して画質を向上させることができる。   4B, when operating as a high frequency emphasis filter, the coefficient B is gradually changed from the lower limit value E to 0 as the absolute value of the edge strength increases, and the edge enhancement is changed from large edge enhancement to small edge enhancement. The case where it is set as the filter characteristic to perform is shown. In other words, it is possible to improve the image quality by reducing the emphasis degree of the steep contour region where the absolute value of the edge intensity is high and processing the steep region to be a steep region.

又図4の(C)は、エッジ強度の絶対値が大きい時に、係数Bを下限値Fより大きい値の(a),(b),(c),(d)の値に制限する場合を示し、平滑化処理は、(A),(B)に示す場合と同様であるが、エッジ強調処理の度合いを制限することができる。この制限は、入力画像の性質に従って段階的或は連続的に選択することができるものであり、又画像伝送システムに於けるポストフィルタとして適用することができる。   FIG. 4C shows a case where the coefficient B is limited to values (a), (b), (c), and (d) that are larger than the lower limit F when the absolute value of the edge strength is large. The smoothing process is the same as that shown in (A) and (B), but the degree of the edge enhancement process can be limited. This limitation can be selected stepwise or continuously according to the nature of the input image, and can be applied as a post filter in an image transmission system.

又1次元のフィルタWi,j={B,A,B}について、係数A,Bに対する拘束条件として、A=C−2B、且つC=1とし、係数Bを、1,0.5,0,−1の4種類に変更すると、それぞれ平滑化フィルタ、全域通過フィルタ、エッジ強調(弱)フィルタ、エッジ強調(強)フィルタとなる。この特性の変化について、Wi,j={B,A,B}をフーリエ変換して周波数特性により表すと、図5に示すものとなる。即ち、係数A=3,B=−1の場合は、周波数が高い程、出力が大きくなるエッジ強調フィルタ、係数A=2,B=−0.5の場合は、エッジ強調(弱)フィルタ、係数A=1,B=0の場合は、周波数が変化しても出力が一定の全域通過フィルタ、係数A=−1,B=1の場合は、周波数が高い程、出力が小さくなる平滑化フィルタの特性となる。尚、係数は正規化されており、従って、周波数0Hzに於ける出力は1.0である。このように、係数の制御により、平滑化フィルタ(ローパスフィルタ)と高域強調フィルタ(ハイパスフィルタ)の特性の切替えを円滑に行うことができる。 For the one-dimensional filter W i, j = {B, A, B}, A = C−2B and C = 1 are set as constraints on the coefficients A and B, and the coefficient B is set to 1, 0.5, If it is changed to four types of 0 and -1, they become a smoothing filter, an all-pass filter, an edge enhancement (weak) filter, and an edge enhancement (strong) filter, respectively. Regarding the change in the characteristics, when Wi, j = {B, A, B} is Fourier-transformed and expressed by the frequency characteristics, it is as shown in FIG. That is, when the coefficients A = 3 and B = −1, an edge enhancement filter whose output increases as the frequency increases, and when the coefficients A = 2 and B = −0.5, an edge enhancement (weak) filter, When the coefficients A = 1 and B = 0, the output is constant all-pass filter even if the frequency changes. When the coefficients A = −1 and B = 1, the higher the frequency, the smoother the output becomes smaller. It becomes the characteristic of the filter. Note that the coefficients are normalized, so the output at a frequency of 0 Hz is 1.0. As described above, the characteristics of the smoothing filter (low-pass filter) and the high-frequency emphasis filter (high-pass filter) can be smoothly switched by controlling the coefficients.

前述のように、対象画素周辺のエッジ強度を求め、このエッジ強度からフィルタ係数を求め、このフィルタ係数を用いて2次元フィルタ処理を行うことにより、画像の中の平坦な部分に対しては平滑化処理を実施し、エッジ強度の大きい境界部分に対してはエッジ強調処理を実施するものである。即ち、対象画素周辺のエッジ強度に従って、平滑化フィルタと、全域通過フィルタと、エッジ強調フィルタとの特性を連続的に変化させることが可能となり、且つ、比較的シンプルな処理であるから、ソフトウェア処理の場合に高速演算が可能となり、又ハードウェア規模については、従来例に比較して小さくすることが可能となる。   As described above, the edge strength around the target pixel is obtained, the filter coefficient is obtained from the edge strength, and the two-dimensional filter processing is performed using the filter coefficient, thereby smoothing a flat portion in the image. The edge emphasis process is performed, and the edge emphasis process is performed on the boundary portion having a large edge strength. That is, it is possible to continuously change the characteristics of the smoothing filter, the all-pass filter, and the edge enhancement filter according to the edge strength around the target pixel, and the software processing is relatively simple. In this case, high-speed computation is possible, and the hardware scale can be reduced as compared with the conventional example.

又本発明の画像処理に於けるフィルタリング処理は、通常の2次元線形フィルタリング処理と、エッジ量計算処理と、エッジ量からのフィルタ係数の計算処理とを含むものであり、フィルタ係数の計算処理は、図2に示すように、フィルタ係数ROM等によるテーブル化することができるから、従来のイプシロンフィルタを用いた場合や、フィルタ切替えによる手段に比較して、演算量の削減により高速演算が可能となる。   The filtering process in the image processing of the present invention includes a normal two-dimensional linear filtering process, an edge amount calculation process, and a filter coefficient calculation process from the edge amount. As shown in FIG. 2, since it can be tabulated by a filter coefficient ROM or the like, it is possible to perform high-speed computation by reducing the amount of computation when using a conventional epsilon filter or by means of filter switching. Become.

図6は、画像伝送システムの説明図であり、21はテレビカメラ、22はエンコーダ(ENCODER)、23はデコーダ(DECODER)、24はポストフィルタ(P〜ST−FILTER)、25は表示装置(DISP)を示す。テレビカメラ21とエンコーダ22とによる送信側から画像伝送方式に従った符号化方式により符号化した符号化画像信号を送信する。受信側では、デコーダ23により符号化画像信号を復号化し、ポストフィルタ24により、前述の本発明の実施例によるフィルタリング処理を行って、表示装置25により画像を表示する。従って、画像の平坦部分は平滑化処理され、境界部分はエッジ強調処理されて、表示装置25に表示される。   FIG. 6 is an explanatory diagram of an image transmission system, in which 21 is a television camera, 22 is an encoder (ENCODER), 23 is a decoder (DECODER), 24 is a post filter (P to ST-FILTER), and 25 is a display device (DISP). ). The encoded image signal encoded by the encoding method according to the image transmission method is transmitted from the transmission side by the television camera 21 and the encoder 22. On the reception side, the encoded image signal is decoded by the decoder 23, the post-filter 24 performs the filtering process according to the above-described embodiment of the present invention, and the display device 25 displays the image. Therefore, the flat part of the image is smoothed and the boundary part is edge-enhanced and displayed on the display device 25.

図7は、画像伝送システムの説明図であり、31はテレビカメラ、32はプレフィルタ、33はデコーダ、34はエンコーダ、35はポストフィルタを示し、受信側の表示装置は図示を省略している。送信側のプレフィルタ32によりテレビカメラ31による画像信号に対して、前述の実施例によりエッジ強調処理等を施し、デコーダ33により符号化して送信する。受信側では、エンコーダ34により復号化し、ポストフィルタ35により、ブロックノイズやモスキートノイズを除去する。即ち、このポストフィルタ35は、例えば、図4の(C)に示すようにエッジ強度により変化する係数Bを用いて画像処理する特性とし、低レート伝送に於いて発生し易いブロックノイズや、強調したエッジ周辺で発生し易いモスキートノイズを除去して、見やすい画像を表示することができる。   FIG. 7 is an explanatory diagram of an image transmission system, in which 31 is a television camera, 32 is a pre-filter, 33 is a decoder, 34 is an encoder, 35 is a post filter, and a display device on the receiving side is not shown. . The image signal from the television camera 31 is subjected to edge enhancement processing or the like according to the above-described embodiment by the prefilter 32 on the transmission side, and is encoded by the decoder 33 and transmitted. On the reception side, decoding is performed by the encoder 34, and block noise and mosquito noise are removed by the post filter 35. That is, the post filter 35 has a characteristic of performing image processing using a coefficient B that varies depending on edge strength as shown in FIG. 4C, for example, block noise or emphasis that is likely to occur in low-rate transmission. It is possible to remove mosquito noise that tends to occur around the edge and display an easy-to-view image.

又画像の符号化単位のマクロブロック毎に決定される量子化ステップの値が大きく、低ビットレートで伝送する場合、隣接するマクロブロックとの間に、ブロックノイズが発生する可能性が高くなる。このブロックノイズが発生している領域に対して、前述のエッジ強調処理を含むフィルタリング処理を施すと、ブロックノイズ部分に存在するエッジ成分を強調処理することになり、画質が劣化する。そこで、復号化マクロブロック毎の量子化ステップの値を基に、エッジ強調特性をリアルタイムに変更する。即ち、前述の図4の(C)に示すように、量子化ステップの値が大きくなるに従って、係数Bの負(下限値F側)の値を(a),(b),(c)のように制限し、最終的には、(d)に示すように、エッジ強調を行わない特性とし、ブロックノイズが発生する可能性が高い場合でも、ブロックノイズ除去フィルタとしての特性として復号処理することができる。   Further, the value of the quantization step determined for each macroblock of the image coding unit is large, and when transmitting at a low bit rate, there is a high possibility that block noise occurs between adjacent macroblocks. When the filtering process including the edge enhancement process described above is performed on the area where the block noise is generated, the edge component existing in the block noise part is enhanced, and the image quality deteriorates. Therefore, the edge enhancement characteristic is changed in real time based on the value of the quantization step for each decoded macroblock. That is, as shown in FIG. 4C, the negative value (lower limit F side) of the coefficient B is set to (a), (b), (c) as the quantization step value increases. Finally, as shown in (d), the edge enhancement is not performed, and even when there is a high possibility of occurrence of block noise, decoding processing is performed as a block noise removal filter characteristic. Can do.

1 マスク走査部
2 エッジ量演算部
3 フィルタ係数演算部
4 2次元フィルタ演算部
DESCRIPTION OF SYMBOLS 1 Mask scanning part 2 Edge amount calculating part 3 Filter coefficient calculating part 4 Two-dimensional filter calculating part

Claims (1)

入力された画像の単一又は複数の画素毎に平坦度合い又は急峻度合いを示す値を算出する過程と、
前記平坦度合い又は急峻度合いを示す値を基にフィルタ係数を求める過程と、
該過程により求めた前記フィルタ係数により前記画素に対するフィルタリング処理を行う過程とを含み、
前記フィルタ係数を求める過程に於いて、前記平坦度合い又は急峻度合いを示す値が、平坦部分を示す時に平滑化フィルタの処理を行う係数として求め、急峻部分を示す時にエッジ強調フィルタの処理を行う係数として求め、前記平坦部分と前記急峻部分との中間部分を示す時に前記平滑化フィルタの係数から前記エッジ強調フィルタの係数に連続的に変化する係数として求める過程を有し、且つ復号化されたマクロブロック毎に量子化ステップの値を抽出し、抽出した該量子化ステップの値が大きくなるに従ってエッジ強調の強度を小さくなるように制限する処理過程を有する
ことを特徴とする画像処理方法。
A process of calculating a flatness or steepness value for each pixel or pixels of the input image;
Obtaining a filter coefficient based on the value indicating the flatness or steepness;
Filtering the pixel with the filter coefficient obtained by the process,
In the process of obtaining the filter coefficient, the value indicating the flatness or the steepness is obtained as a coefficient for performing the smoothing filter process when indicating a flat part, and the coefficient for performing the edge enhancement filter when indicating the steep part A decoded macro having a process of obtaining a coefficient that continuously changes from a coefficient of the smoothing filter to a coefficient of the edge enhancement filter when an intermediate portion between the flat portion and the steep portion is indicated. An image processing method comprising: extracting a quantization step value for each block, and limiting the intensity of edge enhancement so as to decrease as the extracted quantization step value increases.
JP2010106173A 2010-05-06 2010-05-06 Image processing method Pending JP2010193515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106173A JP2010193515A (en) 2010-05-06 2010-05-06 Image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106173A JP2010193515A (en) 2010-05-06 2010-05-06 Image processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003378111A Division JP2005142891A (en) 2003-11-07 2003-11-07 Method and device for processing image

Publications (1)

Publication Number Publication Date
JP2010193515A true JP2010193515A (en) 2010-09-02

Family

ID=42818975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106173A Pending JP2010193515A (en) 2010-05-06 2010-05-06 Image processing method

Country Status (1)

Country Link
JP (1) JP2010193515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507241A (en) * 2011-12-04 2015-03-05 デジタル メイクアップ リミテッドDigital Makeup Ltd Digital makeup
JP2016165087A (en) * 2015-03-06 2016-09-08 株式会社ニコン Image encoder, image encoding method, image decoder and image decoding method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188283A (en) * 1990-11-22 1992-07-06 Canon Inc Method and device for processing picture
JPH057310A (en) * 1990-09-20 1993-01-14 Fujitsu Ltd System environment adaptive type contour compensating system
JPH05276386A (en) * 1992-03-27 1993-10-22 Olympus Optical Co Ltd Contour emphasizing circuit
JPH07212611A (en) * 1994-01-14 1995-08-11 Fuji Xerox Co Ltd Method and unit for color picture processing
JPH08149471A (en) * 1994-11-24 1996-06-07 Victor Co Of Japan Ltd Reducing method for mosquito noise generated at time of decoding image data and image data decoder
JPH10229546A (en) * 1997-02-13 1998-08-25 Sony Corp Device and method for processing video signal
JP2001283215A (en) * 2000-01-24 2001-10-12 Hitachi Medical Corp Image processor
JP2002083294A (en) * 2000-09-07 2002-03-22 Fuji Xerox Co Ltd Image processor, image processing method and recording medium stored with image processing program
JP2002281315A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Image processor
JP2003018600A (en) * 2001-07-04 2003-01-17 Hitachi Ltd Image decoding apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057310A (en) * 1990-09-20 1993-01-14 Fujitsu Ltd System environment adaptive type contour compensating system
JPH04188283A (en) * 1990-11-22 1992-07-06 Canon Inc Method and device for processing picture
JPH05276386A (en) * 1992-03-27 1993-10-22 Olympus Optical Co Ltd Contour emphasizing circuit
JPH07212611A (en) * 1994-01-14 1995-08-11 Fuji Xerox Co Ltd Method and unit for color picture processing
JPH08149471A (en) * 1994-11-24 1996-06-07 Victor Co Of Japan Ltd Reducing method for mosquito noise generated at time of decoding image data and image data decoder
JPH10229546A (en) * 1997-02-13 1998-08-25 Sony Corp Device and method for processing video signal
JP2001283215A (en) * 2000-01-24 2001-10-12 Hitachi Medical Corp Image processor
JP2002083294A (en) * 2000-09-07 2002-03-22 Fuji Xerox Co Ltd Image processor, image processing method and recording medium stored with image processing program
JP2002281315A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Image processor
JP2003018600A (en) * 2001-07-04 2003-01-17 Hitachi Ltd Image decoding apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507241A (en) * 2011-12-04 2015-03-05 デジタル メイクアップ リミテッドDigital Makeup Ltd Digital makeup
JP2016165087A (en) * 2015-03-06 2016-09-08 株式会社ニコン Image encoder, image encoding method, image decoder and image decoding method

Similar Documents

Publication Publication Date Title
JP4880895B2 (en) Method and apparatus for MPEG artifact reduction
JP2005142891A (en) Method and device for processing image
US8406547B2 (en) Visual processing device, visual processing method, program, display device, and integrated circuit
JP4455487B2 (en) Decoding device, decoding method, and program
CN103024248B (en) The video image noise reducing method of Motion Adaptive and device thereof
KR100242636B1 (en) Signal adaptive post processing system for reducing blocking effect and ringing noise
CN106846270B (en) Image edge enhancement method and device
JP3392307B2 (en) Image signal smoothing apparatus and image signal smoothing method
WO2002102086A2 (en) Apparatus and method for adaptive spatial segmentation-based noise reducing for encoded image signal
JPH08186714A (en) Noise removal of picture data and its device
JP2002238049A (en) Method for coding artifact reduction
KR100739751B1 (en) Method and System of Dual-Channel 2D Noise Reduction for Video Signals
JP4768510B2 (en) Image quality improving apparatus and image quality improving method
JP2008301336A (en) Image processing device, image encoding device and image decoding device
JP4380498B2 (en) Block distortion reduction device
JPH0767176B2 (en) Coding noise elimination filter
JP2010193515A (en) Image processing method
JP2001245179A (en) Method for reducing image data distortion and equipment of the same
JP2011114704A (en) Image processing apparatus and image processing method for the same
JP4650372B2 (en) Video processing circuit
JP2011029989A (en) Noise reduction apparatus, and noise reduction method
JPH07307942A (en) Image noise removing device
JP2006060841A (en) Image data noise elimination method and apparatus thereof
JPH11298898A (en) Block distortion reduction circuit
JP2005295371A (en) Block noise eliminating device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924