JP2010193361A - Led light source and image reader - Google Patents

Led light source and image reader Download PDF

Info

Publication number
JP2010193361A
JP2010193361A JP2009037891A JP2009037891A JP2010193361A JP 2010193361 A JP2010193361 A JP 2010193361A JP 2009037891 A JP2009037891 A JP 2009037891A JP 2009037891 A JP2009037891 A JP 2009037891A JP 2010193361 A JP2010193361 A JP 2010193361A
Authority
JP
Japan
Prior art keywords
light
led
light source
main scanning
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037891A
Other languages
Japanese (ja)
Inventor
Fumihide Sakamoto
文秀 坂本
Satoshi Tanaka
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Finetech Nisca Inc
Original Assignee
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisca Corp filed Critical Nisca Corp
Priority to JP2009037891A priority Critical patent/JP2010193361A/en
Priority to US12/656,208 priority patent/US8488216B2/en
Priority to CN201010113629A priority patent/CN101813269A/en
Publication of JP2010193361A publication Critical patent/JP2010193361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED light source which is suitable as a light source of an image reader. <P>SOLUTION: The light source is used for the image reader comprising: a platen on which a read document is placed; an LED light source for lighting up the read document placed on the platen; a condenser lens for converging reflected light from a main scanning line on the read document lit up by the LED light source; and a light-receiving means for receiving the reflected light from the main scanning line on the read document which has been converged by the condenser lens. The light source comprises an LED as a light-emitting source and a light guide for diffusing a lighting region of the LED lighting up the read document placed on the platen to at least a main scanning line width of the read document, and includes a plurality of reflecting surface bodies which are arrayed at predetermined intervals in the main scanning line direction while surface-confronted with the LED side in an internal surface reflection optical path of the light guide, and reflect the light of the LED to outside the light guide along the main scanning lines. A length of each reflecting surface body in a direction orthogonal to the main scanning line direction is suitably adjusted according to the quantity of light to be reflected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、画像読取装置の光源として用いられるLEDを発光源とするLED光源、及びこのLED光源を光源として利用した光学縮小型の画像読取装置に関する。 The present invention relates to an LED light source using an LED used as a light source of an image reading apparatus as a light source, and an optical reduction type image reading apparatus using the LED light source as a light source.

従来、この種の光学縮小型の画像読み取り装置としては、例えば特許文献1で知られている。その光学縮小型の画像読み取り装置は、図1において、(a)図で示す様に、読取原稿Sを載置するプラテンPと、このプラテンPの載置面上に置かれた読取原稿Sの原稿面を照明する光源LAと、読取原稿Sの原稿面からの反射光を反射する反射板M1とから成る第1のキャリッジ体と、反射板M1の反射光を受光手段CCDへ導くための反射板M2と反射板M3から成る第2のキャリッジ体と、(b)図で示す様に、第2のキャリッジ体の反射板M3からの反射光を集光し受光手段CCDの受光面に結像させる光学レンズLEと、光学レンズLEにより集光された読取原稿Sの画像光を受光する受光手段CCDとから成る受光部とで構成されている。 Conventionally, this type of optical reduction type image reading apparatus is known, for example, from Patent Document 1. As shown in FIG. 1A, the optical reduction type image reading apparatus includes a platen P on which a reading document S is placed, and a reading document S placed on a surface on which the reading document S is placed. A first carriage body including a light source LA that illuminates the original surface and a reflection plate M1 that reflects light reflected from the original surface of the read original S, and a reflection for guiding the reflected light from the reflection plate M1 to the light receiving means CCD. A second carriage body composed of a plate M2 and a reflection plate M3; and as shown in FIG. 5B, the reflected light from the reflection plate M3 of the second carriage body is condensed and imaged on the light receiving surface of the light receiving means CCD. And a light receiving unit including a light receiving unit CCD that receives the image light of the read document S collected by the optical lens LE.

そして、この画像読み取り装置は、同(a)図で示す様に、第1のキャリッジ体を紙面左隅から右隅に読取原稿Sの原稿面に沿って速度Vで移動させ、この第1のキャリッジ体の移動に追従し第2のキャリッジ体を第1のキャリッジ体の移動速度の半分の速度で同一方向に移動させ、読取原稿Sの原稿面を受光手段CCDで読み取る様に成っている。 Then, the image reading apparatus moves the first carriage body from the left corner to the right corner at the speed V along the original surface of the read original S as shown in FIG. Following the movement of the body, the second carriage body is moved in the same direction at half the moving speed of the first carriage body, and the document surface of the read document S is read by the light receiving means CCD.

一方、これら画像読み取り装置の発光源として用いられる光源LAとして、例えば特許文献2で示すLEDを光源とするLED光源LAが知られている。そのLED光源LAを図5で示すと、まず(b)図で示す様に、発光源となるLEDと、このLEDの光を導光ガイドするライトガイドRGとから構成されている。また、そのライトガイドRGはLEDから照射された光を読取原稿の原稿面を照射するために導光ガイド内から外方に取り出すための導光ガイド内に突出する反射面体RG1を形成している。この反射面体RG1は(c)図で示す様に、一定の間隔pでライトガイドRGの表面にV字状(若しくは円弧状)に窪み形成されている。 On the other hand, as a light source LA used as a light emission source of these image reading apparatuses, for example, an LED light source LA using an LED shown in Patent Document 2 as a light source is known. When the LED light source LA is shown in FIG. 5, first, as shown in FIG. 5 (b), the LED light source LA is composed of an LED serving as a light emitting source and a light guide RG for guiding the light of the LED. The light guide RG forms a reflecting surface RG1 protruding into the light guide for taking out the light emitted from the LED from the light guide in order to irradiate the original surface of the read document. . As shown in FIG. 7C, the reflecting surface body RG1 is formed in a V-shaped (or arc-shaped) depression on the surface of the light guide RG at a constant interval p.

特開2002−101263号公報JP 2002-101263 A 特開2000−048616号公報JP 2000-048616 A

まず、上記光学縮小型の画像読み取り装置では、次のような不具合が有る。 First, the optical reduction type image reading apparatus has the following problems.

すなわち、光学縮小型の画像読み取り装置では、図2で示す様に仮に光源LAの照明光LA―Lvの均一な光量範囲LV1で読取原稿Sの原稿面を照明した場合であっても、光学レンズLEを通って受光手段CCDで受光される光の光量は、コサイン4乗則の影響を受け、その両側端部の光量LV2、LV3が図示のごとく降下され、結果、中心部が明るく、両脇が暗くなり、全体として画像の光量斑が生じる。尚、コサイン4乗則とは、光軸に平行な入射光による像面照度に対し、光軸と任意の角をなして入射する光による像面照度は、入射角(α)のコサインの4乗に比例して低下するという法則。 That is, in the optical reduction type image reading apparatus, even when the original surface of the read original S is illuminated with a uniform light amount range LV1 of the illumination light LA-Lv of the light source LA as shown in FIG. The amount of light received by the light receiving means CCD through the LE is influenced by the cosine fourth law, and the light amounts LV2 and LV3 at both ends are lowered as shown in the figure. Becomes darker, resulting in unevenness in the amount of light in the image as a whole. The cosine fourth power law means that the image plane illuminance by light incident at an arbitrary angle with respect to the optical axis is 4% of the cosine of the incident angle (α) with respect to the image plane illuminance by incident light parallel to the optical axis. The law of decreasing in proportion to the power.

そこで、上記特許文献1の場合には、その不具合を図3で示す様に、光学レンズLEと受光手段CCDとの間にスリット開口SH1を形成したスリット板SHを介在させることで対処している。そのスリット板SHのスリット開口SH1は中央の隙間が狭く、両脇に行くほど広く成る様に開口されている。そして、図4で示す様に受光手段CCDの中央部に行くほど受光量を下げることで均一化させ、画像の光量斑を解消する様にしている。 Therefore, in the case of the above-mentioned Patent Document 1, the problem is dealt with by interposing a slit plate SH in which a slit opening SH1 is formed between the optical lens LE and the light receiving means CCD as shown in FIG. . The slit opening SH1 of the slit plate SH is opened so that the gap at the center is narrow and becomes wider toward the sides. Then, as shown in FIG. 4, the amount of received light is reduced as it goes to the center of the light receiving means CCD to make it uniform, thereby eliminating unevenness in the amount of light in the image.

しかし、このスリット板SHを介在させる方法では、受光手段CCDの受光量をカットすることで全体の光量レベルを下げるもので、読取画像全体が暗くなり、場合によっては光量不足で読取不能となる。 However, in the method of interposing the slit plate SH, the total light amount level is lowered by cutting the amount of light received by the light receiving means CCD, and the entire read image becomes dark, and in some cases, the reading becomes impossible due to insufficient light amount.

一方、上記LED光源LAでは、次のような不具合が有る。 On the other hand, the LED light source LA has the following problems.

すなわち、LED光源LAは図5の(a)図で示す様に、LED近傍が光の集中でピーク現象を起こした光源特性LA−Lvとなることが知られている。 That is, as shown in FIG. 5A, the LED light source LA is known to have a light source characteristic LA-Lv in which the vicinity of the LED causes a peak phenomenon due to light concentration.

そこで、上記特許文献2の場合には、その不具合を図6の(b)図で示す様に、光源LEDをライトガイドRGから切り離し、その間に絞り板Epを介在させ、光源LEDからの光を絞り込むと共に、導光ガイド径をLED遠方側程狭くなるように反射面体RG1を形成する面を傾斜α傾け、同(a)図の実線で示す様に、ピーク現象を抑え光源特性LA−Lvをほぼ均一にするようにしている。 Therefore, in the case of the above-mentioned Patent Document 2, as shown in FIG. 6 (b), the light source LED is separated from the light guide RG, and a diaphragm plate Ep is interposed between them, so that the light from the light source LED is transmitted. While narrowing down, the surface on which the reflecting surface RG1 is formed is inclined α so that the light guide diameter decreases toward the far side of the LED, and the peak phenomenon is suppressed and the light source characteristic LA-Lv is reduced as shown by the solid line in FIG. It is made almost uniform.

しかし、反射面体RG1を形成する面を傾斜αとするために導光ガイド径を徐々に小さくする方法では、導光ガイドの長さに限界が有り、均一光源領域の広いライトガイドRGを作り難い。また、ライトガイドRGを樹脂成形で作る場合、導光ガイド径を異ならせることで、湯流れや環境温度によるひずみ等で導光ガイドが歪み、光量斑の要因となり易い。 However, in the method of gradually reducing the diameter of the light guide in order to make the surface on which the reflecting surface RG1 is formed to have the inclination α, the length of the light guide is limited, and it is difficult to make a light guide RG having a wide uniform light source region. . Further, when the light guide RG is made by resin molding, the light guide guide is distorted due to the flow of hot water or distortion due to the environmental temperature, etc., and the light guide is liable to cause unevenness of light quantity.

本願発明は、このような事情のもとで考え出されたものであって、画像読み取り装置の光源として最適で、特に光学縮小型の画像読み取り装置に用いた場合に、当該装置が抱えるコサイン4乗則の影響による光量斑を光源側で解消出来、かつ生産性に優れたLED光源を提供することを課題としている。 The present invention has been conceived under such circumstances, and is optimal as a light source for an image reading apparatus. In particular, when used in an optical reduction type image reading apparatus, the cosine 4 of the apparatus has. An object of the present invention is to provide an LED light source that can eliminate light intensity unevenness due to the influence of the power law on the light source side and is excellent in productivity.

本願発明は上記の課題を達成するために、読取原稿を載置するプラテンと、このプラテン上に載置される読取原稿を照明するLED光源と、このLED光源により照明された読取原稿の主走査ラインからの反射光を集光する集光レンズと、この集光レンズによって集光された読取原稿の主走査ラインからの反射光を受光する受光手段と、から成る画像読み取り装置であって、前記LED光源は、発光源となるLEDと、前記プラテン上に載置される読取原稿を照明するLEDの照明領域を少なくとも読取原稿の主走査ライン幅に拡散させるライトガイドと、で構成され、そのライトガイドの内面反射光路内で前記LED側に面対峙した状態で主走査ライン方向に所定の間隔を隔て配列され、前記LEDの光を主走査ラインに沿ってライトガイド外側に向け反射させる複数の反射面体を備え、その各反射面体の主走査ライン方向と直交する方向の長さを反射させる光量に応じて適宜調整して成ることを特徴としている。 In order to achieve the above object, the present invention achieves the above-described problem: a platen on which a read document is placed, an LED light source that illuminates the read document placed on the platen, and main scanning of the read document illuminated by the LED light source An image reading apparatus comprising: a condensing lens that condenses the reflected light from the line; and a light receiving unit that receives the reflected light from the main scanning line of the read original collected by the condensing lens, The LED light source includes an LED serving as a light emission source and a light guide that diffuses an illumination area of the LED that illuminates the read original placed on the platen to at least the main scanning line width of the read original. The light guides are arranged along the main scanning line with a predetermined interval in the main scanning line direction while facing the LED in the inner surface reflection light path of the guide. Comprising a plurality of reflective face piece that reflects outward, it is characterized by comprising appropriately adjusted depending on the amount of light reflecting length in the direction perpendicular to the main scanning line direction of the respective reflection face piece.

また具体的に、前記反射面体はライトガイド外側から断面逆V字状、又は断面逆蒲鉾状に肉抜きされた表面により形成されるとともに、前記反射面体の各長さは、少なくとも前記集光レンズを通過しコサイン4乗則に従って減光される光量を反射光量で補間可能に、白基準面から反射され前記受光手段で受光される主走査ライン方向の光量分布をほぼ均一する長さに調整している。 More specifically, the reflecting surface body is formed by a surface that is thinned in an inverted V-shaped cross section or an inverted saddle shape from the outside of the light guide, and each length of the reflecting surface body is at least the condensing lens. The light amount distribution in the main scanning line direction reflected from the white reference surface and received by the light receiving means is adjusted to a substantially uniform length so that the amount of light that passes through the cosine and can be interpolated with the reflected light amount can be interpolated with the reflected light amount. ing.

更に、前記LEDは青色LEDチップとYAG(イットリウム・アルミニウム・ガーネット)系黄色蛍光体から成るシングルチップ方式の白色LEDを用い、主走査ライン方向に沿って三個以上配置し、主走査ライン方向に異なる間隔で配列している。 Further, the LED uses a single-chip type white LED composed of a blue LED chip and a YAG (yttrium, aluminum, garnet) yellow phosphor, and three or more LEDs are arranged along the main scanning line direction. They are arranged at different intervals.

本願発明は、前記ライトガイドに形成する各反射面の副走査ライン方向の幅の長さを、前記集光レンズによって減光される光量に応じ設定することで、各反射面がその幅に応じ反射光を増減させ、集光レンズのコサイン4乗則による減衰する光量を補強し、光量斑の無い画像読取が出来る。 In the present invention, the width of each reflecting surface formed in the light guide in the sub-scanning line direction is set according to the amount of light dimmed by the condenser lens, so that each reflecting surface corresponds to the width. The amount of reflected light is increased or decreased, the amount of light attenuated by the cosine fourth law of the condensing lens is reinforced, and the image can be read without unevenness in the amount of light.

また、各反射面を読取原稿の主走査ライン方向に一定の間隔で配列することが出来、反射面同士の間隔を十分に取ることで反射面同士が光路を蹴ることも無く、確実に各反射面がLEDからの光を反射可能であることから、より光量斑の無い画像読取が出来る。 In addition, the reflective surfaces can be arranged at regular intervals in the main scanning line direction of the read original, and the reflective surfaces do not kick the optical path by ensuring sufficient spacing between the reflective surfaces. Since the surface can reflect the light from the LED, it is possible to read an image without unevenness in the amount of light.

更に、ライトガイドを樹脂成形で作る場合、導光ガイド径を異ならせる必要が無く、湯流れや環境温度によるひずみ等で導光ガイドが歪みことも無く、LED光源の生産性にも優れている。 Furthermore, when the light guide is made by resin molding, it is not necessary to change the diameter of the light guide, and the light guide is not distorted due to distortion caused by hot water flow or ambient temperature. .

従来の光学縮小型の画像読取装置の概要を示す構成図で、(a)図はその装置構成図、(b)図は光学縮小系光路図である。FIG. 2 is a configuration diagram illustrating an outline of a conventional optical reduction type image reading apparatus, in which FIG. 1A is a configuration diagram of the apparatus and FIG. 2B is an optical path diagram of an optical reduction system. 図1の光源側の光量特性と受光側の光量特性を示す図である。It is a figure which shows the light quantity characteristic of the light source side of FIG. 1, and the light quantity characteristic of the light-receiving side. 図2の受光側の光量特性をスリット板を用いて補正する補正方法を説明する説明図で、(a)図はそのスリット板の配置関係を説明する斜視図、(b)図はスリット板を説明する図である。2A and 2B are explanatory diagrams for explaining a correction method for correcting the light quantity characteristic on the light receiving side of FIG. 2 using a slit plate, wherein FIG. 2A is a perspective view for explaining the arrangement relationship of the slit plate, and FIG. It is a figure explaining. 図2のスリット板を用いた場合の光源側の光量特性と受光側の光量特性を示す図である。It is a figure which shows the light quantity characteristic by the side of a light source at the time of using the slit board of FIG. 2, and the light quantity characteristic by the side of light reception. 従来のLED光源を説明するもので、(a)図はその光源による光量特性を示す特性図、(b)図はLED光源の構成を示す側面図、(c)図はLED光源の構成を示す平面図である。The conventional LED light source will be described. (A) is a characteristic diagram showing the light quantity characteristics of the light source, (b) is a side view showing the configuration of the LED light source, and (c) is a configuration of the LED light source. It is a top view. 従来のLED光源の光量特性を改善する方法を説明するための図で、(a)図はその光源による光量特性を示す特性図、(b)図はLED光源の構成を示す側面図ある。It is a figure for demonstrating the method of improving the light quantity characteristic of the conventional LED light source, (a) A figure is a characteristic view which shows the light quantity characteristic by the light source, (b) A figure is a side view which shows the structure of an LED light source. 本願発明に係るLED光源を搭載した第1実施例であるツーキャリッジ式の光学縮小型の画像読取装置の概要を示す構成図で、(a)図はその装置構成図、(b)図は光学縮小系光路図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the outline | summary of the two carriage type optical reduction type image reading apparatus which is 1st Example carrying the LED light source which concerns on this invention, (a) A figure is the apparatus block diagram, (b) The figure is optical. It is a reduction system optical path diagram. 本願発明に係るLED光源を搭載した第2実施例であるキャリッジ一体型の光学縮小型の画像読取装置の概要を示す構成図で、(a)図はその装置構成図、(b)図は光学縮小系光路図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the outline | summary of the carriage integrated optical reduction type image reading apparatus which is 2nd Example which mounts the LED light source which concerns on this invention, (a) A figure is the apparatus block diagram, (b) A figure is optical. It is a reduction system optical path diagram. 本願発明に係るLED光源の構成を示す解斜視図である。It is a disassembled perspective view which shows the structure of the LED light source which concerns on this invention. 本願発明に係るLED光源の構成を示す部分分解斜視図である。It is a partial exploded perspective view which shows the structure of the LED light source which concerns on this invention. 本願発明に係るLED光源の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the LED light source which concerns on this invention. 本願発明に係るLED光源のライトガイドの構成を示す説明図で、(a)図はその平面図、(b)図は側面図である。It is explanatory drawing which shows the structure of the light guide of the LED light source which concerns on this invention, (a) A figure is the top view, (b) A figure is a side view. 本願発明に係るLED光源の光源側の光量特性と受光側の光量特性を示す図である。It is a figure which shows the light quantity characteristic by the side of the light source of the LED light source which concerns on this invention, and the light quantity characteristic by the side of light reception. 本願発明の第3実施例に係わる密着センサ型の画像読取装置の概要を示す構成図で、同(a)図はその装置構成図、同(b)図はその密着センサを読取原稿側から見た概要図である。FIG. 9 is a configuration diagram showing an outline of a contact sensor type image reading apparatus according to a third embodiment of the present invention, in which FIG. (A) is a configuration diagram of the apparatus, and FIG. FIG. 同第3実施例に係るLED光源の光源側の光量特性と受光側の光量特性を示す図である。It is a figure which shows the light quantity characteristic by the side of the light source of the LED light source which concerns on the 3rd Example, and the light quantity characteristic by the side of light reception. 本願発明に係る他のLEDの配置構成を示す説明図である。It is explanatory drawing which shows the arrangement configuration of the other LED which concerns on this invention.

以下、本願発明のLED光源を光学縮小型の画像読取装置の光源として用いた実施例について詳述する。 Hereinafter, an embodiment in which the LED light source of the present invention is used as a light source of an optical reduction type image reading apparatus will be described in detail.

[画像読取装置の構成及び動作概要]
図7は本願発明に係るLED光源を搭載した第1実施例であるツーキャリッジ式の光学縮小型の画像読取装置の概要を示す構成図で、図8は本願発明に係るLED光源を搭載した第2実施例であるキャリッジ一体型の光学縮小型の画像読取装置の概要を示す構成図で、共に(a)図はその装置構成図、(b)図は光学縮小系光路図である。
[Configuration and Operation Overview of Image Reading Apparatus]
FIG. 7 is a block diagram showing an outline of a two-carriage optical reduction type image reading apparatus as a first embodiment in which the LED light source according to the present invention is mounted. FIG. 8 shows a first embodiment in which the LED light source according to the present invention is mounted. 2A and 2B are configuration diagrams illustrating an outline of a carriage-integrated optical reduction type image reading apparatus according to a second embodiment, in which FIG. 1A is a configuration diagram of the apparatus, and FIG. 2B is an optical path diagram of an optical reduction system.

まず、図7の1実施例であるツーキャリッジ式の光学縮小型の画像読取装置について説明する。同(a)図において読取原稿Sを載置するプラテンPと、このプラテンPの載置面上に置かれた読取原稿Sの原稿面を照明するLED光源LAと、読取原稿Sの原稿面からの反射光を反射する反射板M1とから成る第1のキャリッジ体CAR1と、反射板M1の反射光を受光手段CCDへ導くための反射板M2と反射板M3から成る第2のキャリッジ体CAR2と、同(b)図で示す様に、第2のキャリッジ体の反射板M3からの反射光を集光し受光手段CCDの受光面に結像させる光学レンズLEと、光学レンズLEにより集光された読取原稿Sの画像光を受光する受光手段CCDとから成る受光部とで構成されている。 First, a two-carriage optical reduction type image reading apparatus according to an embodiment of FIG. 7 will be described. In FIG. 4A, a platen P on which the read original S is placed, an LED light source LA that illuminates the original face of the read original S placed on the placement surface of the platen P, and the original face of the read original S. A first carriage body CAR1 composed of a reflection plate M1 that reflects the reflected light of the first, and a second carriage body CAR2 composed of a reflection plate M2 and a reflection plate M3 for guiding the reflected light of the reflection plate M1 to the light receiving means CCD. As shown in FIG. 5B, the reflected light from the reflecting plate M3 of the second carriage body is collected and focused by the optical lens LE for focusing the reflected light on the light receiving surface of the light receiving means CCD. And a light receiving unit comprising a light receiving means CCD for receiving the image light of the read original S.

そして、この画像読取装置は、同(a)図で示す様に、第1のキャリッジ体CAR1を紙面左隅から右隅に読取原稿Sの原稿面に沿って速度Vで移動させ、この第1のキャリッジ体CAR1の移動に追従し第2のキャリッジ体CAR2を第1のキャリッジ体CAR1の移動速度の半分の速度で同一方向に移動させ、読取原稿Sの原稿面を受光手段CCDで読み取る様に成っている。 Then, the image reading apparatus moves the first carriage body CAR1 from the left corner to the right corner of the paper at a speed V along the original surface of the read original S, as shown in FIG. Following the movement of the carriage body CAR1, the second carriage body CAR2 is moved in the same direction at half the movement speed of the first carriage body CAR1, and the document surface of the read document S is read by the light receiving means CCD. ing.

次に、図8の2実施例であるキャリッジ一体型の光学縮小型の画像読取装置について説明する。同(a)図において読取原稿Sを載置するプラテンPと、このプラテンPの載置面上に置かれた読取原稿Sの原稿面を照明するLED光源LAと、読取原稿Sの原稿面からの反射光を反射する反射板M1と、反射板M1の反射光を受光手段CCDへ導くための反射板M2と反射板M3と、同(b)図で示す様に、反射板M3からの反射光を集光し受光手段CCDの受光面に結像させる光学レンズLEと、光学レンズLEにより集光された読取原稿Sの画像光を受光する受光手段CCDとから成る受光部とを一つの移動フレーム体に組み込んだキャリッジ体CAR3で構成されている。 Next, a carriage-integrated optical reduction type image reading apparatus according to the second embodiment shown in FIG. 8 will be described. In FIG. 6A, a platen P on which the read original S is placed, an LED light source LA that illuminates the original face of the read original S placed on the placement surface of the platen P, and the original face of the read original S A reflection plate M1 that reflects the reflected light of the reflection plate, a reflection plate M2 and a reflection plate M3 for guiding the reflection light of the reflection plate M1 to the light receiving means CCD, and reflection from the reflection plate M3 as shown in FIG. An optical lens LE for condensing the light and forming an image on the light receiving surface of the light receiving means CCD and a light receiving section comprising the light receiving means CCD for receiving the image light of the read original S collected by the optical lens LE are moved in one movement. The carriage body CAR3 is incorporated in the frame body.

そして、この画像読取装置は、同(a)図で示す様に、キャリッジ体CAR3を紙面左隅から右隅に読取原稿Sの原稿面に沿って一定速度で移動させ、読取原稿Sの原稿面を受光手段CCDで読み取る様に成っている。 Then, the image reading apparatus moves the carriage body CAR3 from the left corner to the right corner of the paper at a constant speed along the original surface of the read original S as shown in FIG. Reading is performed by the light receiving means CCD.

[LED光源LAの構成]
次に、図9及び図10に基づき本願発明に係わるLED光源の構成につい詳述する。図9はLED光源の概観を示す斜視図、図10はそのLED光源を分解した斜視図を示している。
[Configuration of LED light source LA]
Next, the configuration of the LED light source according to the present invention will be described in detail with reference to FIGS. FIG. 9 is a perspective view showing an overview of the LED light source, and FIG. 10 is an exploded perspective view of the LED light source.

まず、そのLED光源LAは、ライトガイドRGと、このライトガイドRGを支持する支持フレームREと、この支持フレームREに取り付けられライトガイドRGを介し読取原稿Sを照明する発光源となるLEDと、から構成されている。 First, the LED light source LA includes a light guide RG, a support frame RE that supports the light guide RG, and an LED that is attached to the support frame RE and serves as a light source that illuminates the read document S via the light guide RG. It is composed of

[光源LEDの説明]
光源として用いるLEDは、白色LEDで有る。この白色LEDは、シングルチップ方式のものでInGaN系青色LEDとYAG(イットリウム・アルミニウム・ガーネット)系黄色蛍光体で、電気エネルギーを白色光を発光するように構成された光源である。この白色LEDを読取原稿Sの主走査方向に沿って適宜な間隔を隔て三個配列している。尚、白色LEDの数はライトガイドRGの長さ、照明光の光量特性に応じ適宜増減する。
[Description of light source LED]
The LED used as the light source is a white LED. This white LED is of a single chip type and is an InGaN blue LED and a YAG (yttrium, aluminum, garnet) yellow phosphor, and is a light source configured to emit white light with electric energy. Three white LEDs are arranged at appropriate intervals along the main scanning direction of the read document S. The number of white LEDs is appropriately increased or decreased according to the length of the light guide RG and the amount of illumination light.

[支持フレームREの説明]
支持フレームREは、ABS樹脂[アクリロニトリル・ブタジエン・スチレン]に白色顔料を混ぜライトガイドRGを支持可能に成形され、少なくともライトガイドRGを支持する内面が不透明な白色を成すフレームである。内面が不透明な白色を成す理由としては、前記臨界角を外れライトガイドRGから外側に漏れる光を反射させ、漏れた光をライトガイドRG内へ戻すことで、ライトガイドRGの反射効率を上げるようにしている。特に、後述するライトガイドRGの湾曲反射面RG0を覆う支持フレームREの主走査ライン方向端Q1は、少なくともLEDから発せられる光をライトガイドRGの主走査ライン方向に全反射可能な臨界角の位置まで形成されている。
[Description of Support Frame RE]
The support frame RE is a frame in which a white pigment is mixed with ABS resin [acrylonitrile, butadiene, styrene] so that the light guide RG can be supported, and at least the inner surface that supports the light guide RG has an opaque white color. The reason why the inner surface is opaque white is that the reflection angle of the light guide RG is increased by reflecting light leaking out of the light guide RG outside the critical angle and returning the leaked light into the light guide RG. I have to. In particular, the main scanning line direction end Q1 of the support frame RE that covers the curved reflecting surface RG0 of the light guide RG, which will be described later, is a critical angle position at which at least light emitted from the LED can be totally reflected in the main scanning line direction of the light guide RG. Is formed.

[ライトガイドRGの説明]
ライトガイドRGは、一般に透明度の高い材料、例えばポリメタクリル酸メチル樹脂PMMAによる透明固体材でアクリルガラスとして知られるアクリル樹脂、或るいは熱可塑性プラスチックの一種であるポリカーボネット樹脂を成形したものである。尚、アクリル樹脂の屈折率は1.49、臨界角(全反射が起こり始める角度)は約42度で、ポリカーボネット樹脂の屈折率は1.585、臨界角は約39度である。
[Description of Light Guide RG]
The light guide RG is generally formed of a highly transparent material, for example, a transparent solid material made of polymethyl methacrylate resin PMMA, an acrylic resin known as acrylic glass, or a polycarbonate resin which is a kind of thermoplastic plastic. . The refractive index of the acrylic resin is 1.49, the critical angle (the angle at which total reflection begins to occur) is about 42 degrees, the refractive index of the polycarbonate resin is 1.585, and the critical angle is about 39 degrees.

ここではアクリル樹脂を用いて成形したもので、図10の拡大図として示す様に、その下面に外側から樹脂内に向けV字状に切り込んだ凹溝から成り、樹脂内を通過する光が読取原稿Sを照明する方向に反射さる反射面を形成する反射面体RG1を一定の間隔Pを隔て複数個形成し、読取原稿Sの主走査方向に沿って、読取原稿Sの原稿幅全域を照明する。 Here, it is molded using acrylic resin. As shown in the enlarged view of FIG. 10, the lower surface is formed of a concave groove cut into a V shape from the outside into the resin, and the light passing through the resin is read. A plurality of reflecting surface bodies RG1 forming a reflecting surface that reflects in the direction of illuminating the document S are formed at a constant interval P, and the entire document width of the read document S is illuminated along the main scanning direction of the read document S. .

更に、図11を用いてライトガイドRGを詳述する。図は読取主走査方向に沿ってほぼ中央の断面を示すもので、特にLEDの上方部の反射面は下記の式で描かれる軌跡に沿った湾曲反射面RG0を形成している。
2/a2 + Y2/b2 = 1 ・・・楕円
但し、a>b>0
実際に、長軸aの設計値が10mm、短軸bの設計値が7mmに設定してなる楕円の湾曲反射面RG0を形成し、この湾曲反射面RG0で反射させることによって、図示の様にLED1から出た光が反射面体RG1で最初に反射する点が手前側に、LED2から出た光が反射面体RG1で最初に反射する点がほぼ中央に、LED3から出た光が反射面体RG1で最初に反射する点が遠方側に成るようにしている。尚、この実施例では必要としなかったが、湾曲反射面RG0の先端部を反射効率、成形条件等で垂直にカットし、支持フレームと共に垂直な反射面を形成させることで、LEDの光をより読取主走査方向に反射させることが可能で、その分LED光源LAの照度が上がる。またLED光源LAの寸法を小さくし装置全体をコンパクトにすることも出来る。
Further, the light guide RG will be described in detail with reference to FIG. The figure shows a substantially central cross-section along the reading main scanning direction. In particular, the reflective surface in the upper part of the LED forms a curved reflective surface RG0 along the locus drawn by the following equation.
X 2 / a 2 + Y 2 / b 2 = 1 ... ellipse
However, a>b> 0
Actually, an elliptical curved reflecting surface RG0 having a design value of the major axis a of 10 mm and a design value of the minor axis b of 7 mm is formed and reflected by the curved reflecting surface RG0, as shown in the figure. The point at which the light emitted from the LED 1 is first reflected by the reflective surface RG1 is on the near side, the point at which the light emitted from the LED 2 is first reflected by the reflective surface RG1 is substantially at the center, and the light emitted from the LED 3 is at the reflective surface RG1. The first reflecting point is on the far side. Although not necessary in this embodiment, the tip of the curved reflecting surface RG0 is cut vertically according to the reflection efficiency, molding conditions, etc., and the vertical reflecting surface is formed together with the support frame, so that the light of the LED is more It can be reflected in the reading main scanning direction, and the illuminance of the LED light source LA is increased accordingly. In addition, the size of the LED light source LA can be reduced to make the entire apparatus compact.

[反射面体RG1の形状配置]
また、LEDの光を反射して読取原稿の読取主走査方向をライン状に照射する反射面体RG1は、
図12の側面図(b)で示す様にほぼ等間隔で配列され、ライトガイド外側から断面逆V字状、又は断面逆蒲鉾状に肉抜きされた表面により形成される。また、その幅は平面図(a)で示す様に中央部位が幅d2と狭く、最も遠方側が幅d1と広く成る様に形成されている。その反射面体RG1の各幅dは、図13で後述する受光手段CCDが白基準を読取った際にその読取主走査領域内で受光光量がほぼ均一に上述のコサイン4乗則によるなる様に光の減衰を補強すべく反射光量を増減可能に決められている。尚、具体的に幅d1はほぼ2mm、幅d2はほぼ5mmとなっている。
[Shape Arrangement of Reflecting Surface RG1]
Further, the reflecting surface RG1 that reflects the light of the LED and irradiates the reading main scanning direction of the read document in a line shape,
As shown in the side view (b) of FIG. 12, the light guide is formed by a surface that is arranged at substantially equal intervals and is thinned from the outside of the light guide into an inverted V-shaped section or an inverted saddle-shaped section. Further, as shown in the plan view (a), the width is formed such that the central portion is as narrow as the width d2, and the farthest side is wide as the width d1. Each width d of the reflecting surface RG1 is such that when the light receiving means CCD, which will be described later with reference to FIG. 13, reads the white reference, the amount of received light is substantially uniform in the reading main scanning area according to the above cosine fourth law. The amount of reflected light can be increased or decreased to reinforce the attenuation. Specifically, the width d1 is approximately 2 mm, and the width d2 is approximately 5 mm.

[LEDの配置]
LEDの配置は、湾曲反射面RG0の条件[この場合、楕円曲面で長軸a値と短軸b値]と、ライトガイドRG固有の臨界角が設定されることで、その位置を決定することが出来る。このLEDの位置が決まればLEDの発光面と対峙する湾曲反射面RG0の主走査ライン方向端Q1が決まり、この湾曲反射面RG0を包み込む支持フレームの反射面形状が設定される。従って、少なくともLEDの配置は、この支持フレームの反射面に包み込まれた湾曲反射面RG0の主走査ライン方向端Q1の臨界角領域外で適宜調整配置することと成る。実際にLEDを3チップ構成とした場合、各LEDは湾曲反射面RG0の主走査ライン方向端Q1の臨界角領域外で適宜調整配置される。
[LED arrangement]
The position of the LED is determined by setting the condition of the curved reflecting surface RG0 [in this case, the elliptical curved surface has a major axis a value and a minor axis b value] and a critical angle specific to the light guide RG. I can do it. If the position of this LED is determined, the main scanning line direction end Q1 of the curved reflective surface RG0 facing the light emitting surface of the LED is determined, and the reflective surface shape of the support frame that wraps around the curved reflective surface RG0 is set. Therefore, at least the arrangement of the LEDs is appropriately adjusted and arranged outside the critical angle region at the main scanning line direction end Q1 of the curved reflecting surface RG0 wrapped in the reflecting surface of the support frame. When the LED actually has a three-chip configuration, each LED is appropriately adjusted and arranged outside the critical angle region at the main scanning line direction end Q1 of the curved reflecting surface RG0.

具体的に各LEDの配置は、最も近傍を照明し光の反射光量レベルが高くなるLED1の光量分布を基準に、LED1、LED2の配置位置(間隔P1、P2)を適宜読取主走査方向で調整し、LED光源として図13で示す様な上述の集光レンズLEのコサイン4乗則による光の減衰を補強する光量分布を形成する様にしている。尚、具体的に図11で示す様に、LED1の上部湾曲反射面RG0の主走査ライン方向端Q1からの図示寸法L0は臨界角(A)が約42度で設定されるラインQ1−Q2で決まる後退距離Lbの距離6.3mmを基準に前記光量分布に応じ位置調整される。また、LED1とLED2の間隔、LED2とLED3の間隔は、読取原稿Sの最低幅がほぼ297mmと設定し、ライトガイドRGの楕円中心からライトガイドRGの主走査ライン方向の全長をほぼ350mmとした場合、共にほぼ2mmと基準値が決まり、この基準値を基準に前記光量分布に応じ各間隔が調整設定している。 Specifically, the arrangement of each LED is appropriately adjusted in the reading main scanning direction with respect to the arrangement position (intervals P1, P2) of LED1 and LED2 with reference to the light quantity distribution of LED1 that illuminates the vicinity and increases the reflected light quantity level. As the LED light source, a light amount distribution that reinforces the attenuation of light by the cosine fourth law of the condenser lens LE as shown in FIG. 13 is formed. Specifically, as shown in FIG. 11, the indicated dimension L0 from the main scanning line direction end Q1 of the upper curved reflecting surface RG0 of the LED 1 is a line Q1-Q2 where the critical angle (A) is set at about 42 degrees. The position is adjusted in accordance with the light quantity distribution with reference to the determined retreat distance Lb of distance 6.3 mm. The distance between LED1 and LED2, and the distance between LED2 and LED3 are set such that the minimum width of the read document S is approximately 297 mm, and the total length in the main scanning line direction of the light guide RG from the elliptical center of the light guide RG is approximately 350 mm. In this case, the reference value is determined to be approximately 2 mm in both cases, and each interval is adjusted and set according to the light amount distribution based on this reference value.

[LED光源の光量分布]
次に、LED光源の光量分布について説明する。図13で示す様に、受光手段CCDが白基準を読取った際に集光レンズLEのコサイン4乗則による光が減衰し点線となるところを、図中実線で示す様に光量CCD−Lvが、読取主走査領域LV1内で、そので受光光量がほぼ均一になる様、LED3の三点鎖線で示す光量分布を基準に、LED1の一点鎖線で示す光量分布と、LED2の二点鎖線で示す光量分布とすべく各LED1、LED2、LED3の配置を調整する。その結果、図示、LED光源の光量分布LA−Lvが前記コサイン4乗則により光が減衰した部分の光量を補強する照明特性を備える。
[Light intensity distribution of LED light source]
Next, the light quantity distribution of the LED light source will be described. As shown in FIG. 13, when the light receiving means CCD reads the white reference, the light according to the cosine fourth law of the condenser lens LE attenuates and becomes a dotted line. In the main scanning region LV1, the light amount distribution indicated by the one-dot chain line of the LED 1 and the two-dot chain line of the LED 2 are indicated with reference to the light amount distribution indicated by the three-dot chain line of the LED 3 so that the received light amount becomes substantially uniform. The arrangement of each LED1, LED2, and LED3 is adjusted to obtain a light quantity distribution. As a result, the light amount distribution LA-Lv of the LED light source shown in the figure has illumination characteristics that reinforce the light amount of the portion where the light is attenuated by the cosine fourth law.

[第2の実施例]
以下、図14及び図15に基づき第2の実施例について説明する。この第2の実施例は、先に説明した本願のLED光源を密着センサ型の画像読取装置の光源として用いたものである。
[Second Embodiment]
The second embodiment will be described below with reference to FIGS. In the second embodiment, the above-described LED light source of the present application is used as a light source of a contact sensor type image reading apparatus.

[画像読取装置の構成及び動作概要]
図14は本願発明に係わる密着センサ型の画像読取装置の概要を示す構成図で、同(a)図はその装置構成図、同(b)図はその密着センサを読取原稿側から見た概要図である。
[Configuration and Operation Overview of Image Reading Apparatus]
14A and 14B are configuration diagrams showing an outline of a contact sensor type image reading apparatus according to the present invention. FIG. 14A is a configuration diagram of the apparatus, and FIG. 14B is an overview of the contact sensor as viewed from the side of a read document. FIG.

まず同(a)図に基づき装置全体構成について説明する。読取原稿Sを載置するプラテンPと、このプラテンPの載置面上に置かれた読取原稿Sの原稿面を照明するLED光源LAと、読取原稿Sの原稿面からの反射光を集光するセルホックレンズSHLと、セルホックレンズSHLから集光された読取原稿Sの画像光を受光する受光手段CCDとから成るキャリッジ体で構成されている。 First, the overall configuration of the apparatus will be described with reference to FIG. A platen P on which the read original S is placed, an LED light source LA that illuminates the original face of the read original S placed on the surface on which the platen P is placed, and reflected light from the original face of the read original S is collected. And a light receiving means CCD for receiving the image light of the read original S collected from the cell hook lens SHL.

そして、この画像読取装置は、同(a)図で示す様に、キャリッジ体を紙面左隅から右隅に読取原稿Sの原稿面に沿って速度Vで移動させ、読取原稿Sの原稿面を受光手段CCDで読み取る様に成っている。 Then, as shown in FIG. 6A, the image reading apparatus moves the carriage body from the left corner to the right corner of the paper at a speed V along the original surface of the read original S, and receives the original face of the read original S. Means to read with CCD.

[LED光源の光量分布]
次に、図15に基づき第2の実施例に適用させたLED光源の光量分布について説明する。同(a)図は本願発明に基づき製作されたLED光源の光量分布を示す。また同(b)図はそのLED光源を示し、3個のLEDの上方反射面が先に説明した湾曲反射面RG0形状(楕円形状)に形成されている。
[Light intensity distribution of LED light source]
Next, the light quantity distribution of the LED light source applied to the second embodiment will be described with reference to FIG. The same figure (a) shows the light quantity distribution of the LED light source manufactured based on this invention. FIG. 5B shows the LED light source, and the upper reflection surfaces of the three LEDs are formed in the curved reflection surface RG0 shape (elliptical shape) described above.

このため、図中Aで示す様に先に説明した従前のLED光源の光量分布(点線)に比べ、ライトガイドRGのLED端部の光量が減衰され、主走査ライン方向の光量斑が解消されている。 For this reason, as shown by A in the figure, the light amount at the LED end of the light guide RG is attenuated compared to the light amount distribution (dotted line) of the conventional LED light source described above, and the light amount unevenness in the main scanning line direction is eliminated. ing.

次に、同(c)図は上述のLED光源に対しLEDの配置関係を更に調整したもので、そのLED光源の光量分布を示す。また同(d)図はそのLED光源の構成を示している。 Next, the figure (c) shows the light quantity distribution of the LED light source after further adjusting the arrangement relationship of the LEDs with respect to the above-mentioned LED light source. FIG. 4D shows the configuration of the LED light source.

この(d)図と(b)図との違いは、(b)図においては先に説明した図11で示す様に、ライトガイドRGの湾曲反射面RG0を形成する曲率が長軸a=10mm、短軸b=7mmの楕円[X/a+Y/b=1]形状と決定することで、主走査ライン方向手前側のLED1の位置L1が先に説明した臨界角領域の距離L0=6.3mmに設定され、また読取原稿Sの最低幅がほぼ297mmと設定し、ライトガイドRGの楕円中心からライトガイドRGの主走査ライン方向の全長をほぼ350mmとした場合、LED1とLED2、LED2とLED3のそれぞれ間隔p1=2mm、から成るのに対し、(d)図においてはそのLED1とLED2の間隔p2、LED2とLED3の間隔p3をそれぞれ基準値2mmを基準に前記光量分布に応じ調整されている。 The difference between FIG. (D) and FIG. (B) is that, in FIG. 11 (b), the curvature forming the curved reflecting surface RG0 of the light guide RG is long axis a = 10 mm as shown in FIG. By determining the ellipse [X 2 / a 2 + Y 2 / b 2 = 1] shape with a short axis b = 7 mm, the position L1 of the LED 1 on the front side in the main scanning line direction is the distance in the critical angle region described above. When L0 = 6.3 mm, the minimum width of the read document S is set to approximately 297 mm, and the total length in the main scanning line direction of the light guide RG from the center of the light guide RG is approximately 350 mm, LED1 and LED2 , LED2 and LED3 each have a distance p1 = 2 mm, whereas in FIG. (D), the LED1 and LED2 distance p2 and the LED2 and LED3 distance p3 are based on a reference value of 2 mm, respectively. It is adjusted according to the light intensity distribution.

この結果、(c)図に示す様に更にライトガイドRGのLED端部の光量が減衰され、主走査ライン方向の光量斑を解消することが出来る。 As a result, the amount of light at the LED end of the light guide RG is further attenuated as shown in FIG. 7C, and unevenness in the amount of light in the main scanning line direction can be eliminated.

以上説明する様に、このLED光源の光量分布の調整を使用形態に合せ行うことで、光学縮小型の画像読取装置の光源として、また密着センサ型の画像読取装置の光源として利用することが出来る。 As described above, by adjusting the light quantity distribution of the LED light source according to the usage pattern, it can be used as a light source of an optical reduction type image reading apparatus and as a light source of a contact sensor type image reading apparatus. .

[その他実施例]
上記の実施例では、集光レンズLEのコサイン4乗則による光の減衰を補強するためにLED光源の光量分布LA−Lvを形成するために、第1に各反射面体RG1の幅を個々に変化させ、第2にLED1の臨界角(A)から決まる後退位置Lbと、LED1、LED2、LED3の各間隔P1、P2の適宜調整しているが、各反射面体RG1の幅だけで調整が可能であれば反射面体RG1の幅のみの調整で、またLED1、LED2、LED3の配置関係のびで調整が可能であれば各LEDの配置のみの調整で有っても良い。
[Other Examples]
In the above embodiment, in order to form the light quantity distribution LA-Lv of the LED light source in order to reinforce the attenuation of light by the cosine fourth law of the condenser lens LE, first, the width of each reflecting surface body RG1 is individually set. Second, the receding position Lb determined from the critical angle (A) of the LED 1 and the intervals P1, P2 of the LED 1, LED 2, LED 3 are appropriately adjusted, but adjustment is possible only by the width of each reflecting surface RG1. If so, the adjustment may be made only by adjusting the width of the reflecting surface RG1, or by adjusting only the arrangement of each LED as long as the adjustment is possible due to the arrangement relationship of the LED1, LED2, and LED3.

また、反射面体RG1の反射面は上述の様なV字に抉った形以外で、例えば半円形に抉った形でも良い。 Further, the reflecting surface of the reflecting surface body RG1 may have a shape that is in a semicircular shape other than the shape that is in a V shape as described above.

また、ライトガイドRGの端部曲面は最良が楕円であるが、楕円以外に球面であっても良い。尚、楕円にすると球面の場合に比べライトガイドの高さを小さく抑えることが出来、装置全体としてコンパクト性に優れる。 The end curved surface of the light guide RG is best an ellipse, but may be a spherical surface other than the ellipse. If the ellipse is used, the height of the light guide can be reduced compared to the case of a spherical surface, and the overall apparatus is excellent in compactness.

また、LED光源を取り付ける基板の表面を白のシルク印刷とすることで、LED光源の反射効率を上げることが出来、その分明るいLED光源を提供することが出来る。 Moreover, by making the surface of the board | substrate which attaches an LED light source into white silk printing, the reflective efficiency of an LED light source can be raised and the LED light source which is bright by that much can be provided.

また、以上説明した実施例では共にLEDをライトガイドRGの片側に配置したLED光源を開示したものであるが、当然にライトガイドRGの両端に配置し、湾曲反射面RG0形状(楕円定数a、b)、臨界角領域からのLEDの後退位置、反射面体の幅等を必要な照明光量に応じて調整することで画像読取装置に最適な明るいLED光源を提供することが出来る。 In the embodiments described above, the LED light source in which the LEDs are arranged on one side of the light guide RG is disclosed. Naturally, the LED light source RG is arranged at both ends of the light guide RG, and the curved reflection surface RG0 shape (elliptic constant a, b) By adjusting the receding position of the LED from the critical angle region, the width of the reflecting surface body, and the like according to the required amount of illumination light, it is possible to provide a bright LED light source optimal for the image reading apparatus.

更に、湾曲反射面RG0形状、LEDの配置等を必要な照明光量に応じて調整することが装置仕様によって不十分な場合で、特にLEDを二個以上用いた場合には、各LEDを点灯する点灯制御手段にPWM回路を形成し、各LEDの点灯時間をコントロールすることで調整することが出来る。 Furthermore, when it is not sufficient to adjust the curved reflection surface RG0 shape, LED arrangement, etc. according to the required illumination light amount according to the device specifications, particularly when two or more LEDs are used, each LED is turned on. It can be adjusted by forming a PWM circuit in the lighting control means and controlling the lighting time of each LED.

また、先に説明したLEDの配置を必要な照明光量に応じて調整する際に、図16で示す様に、主走査ライン方向に直交する方向に各LEDの位置を移動させることで調整が可能である。 In addition, when adjusting the arrangement of the LEDs described above according to the required amount of illumination light, adjustment is possible by moving the position of each LED in a direction perpendicular to the main scanning line direction as shown in FIG. It is.

CCD 受光手段
LE 集光レンズ(レンズ手段)
LA LED光源
LED 発光源
P プラテン
Q1 主走査ライン方向端
RE 支持フレーム
RG ライトガイド
RG0 湾曲曲面
RG1 反射面体
S 読取原稿
SHL セルホックレンズ(レンズ手段)
CCD light receiving means LE condenser lens (lens means)
LA LED light source LED light emission source P platen Q1 main scanning line direction end RE support frame RG light guide RG0 curved surface RG1 reflecting surface S reading document SHL self-hoc lens (lens means)

Claims (10)

発光源となるLEDと
LEDの光を内面反射させ主走査ライン状に拡散させるライトガイドとで構成され、
そのライトガイドの内面反射光路内で前記LED側に面対峙した状態で主走査ライン方向に所定の間隔を隔て配列され、前記LEDの光を主走査ラインに沿ってライトガイド外側に向け反射させる複数の反射面体を備え、
その各反射面体の主走査ライン方向と直交する方向の長さを反射させる光量に応じて適宜調整して成ることを特徴として成るLED光源。
It consists of an LED that serves as a light emitting source and a light guide that internally reflects the light of the LED and diffuses it into a main scanning line,
A plurality of light guides arranged in the main scanning line direction with a predetermined interval in a state where they face each other in the inner surface reflection light path of the light guide, and reflect the light of the LED toward the outside of the light guide along the main scanning line. With a reflective surface
An LED light source characterized in that the length of each reflecting surface in the direction orthogonal to the main scanning line direction is appropriately adjusted according to the amount of light reflected.
前記反射面体はライトガイド外側から断面逆V字状、又は断面逆蒲鉾状に肉抜きされた表面により形成されて成る請求項1に記載のLED光源。 2. The LED light source according to claim 1, wherein the reflecting surface body is formed by a surface that is thinned into an inverted V-shaped cross-section or an inverted cross-sectional shape from the outside of the light guide. 前記LEDは白色LEDから成る請求項1に記載のLED光源。 The LED light source according to claim 1, wherein the LED is a white LED. 前記白色LEDは青色LEDチップと黄色蛍光体から成るシングルチップ方式のLEDから成る請求項3に記載のLED光源。 4. The LED light source according to claim 3, wherein the white LED is a single-chip LED including a blue LED chip and a yellow phosphor. 前記黄色蛍光体はYAG(イットリウム・アルミニウム・ガーネット)系黄色蛍光体から成る請求項4に記載のLED光源。 5. The LED light source according to claim 4, wherein the yellow phosphor comprises a YAG (yttrium, aluminum, garnet) yellow phosphor. 前記LEDは主走査ライン方向に沿って複数個配列して成る請求項1及び3に記載のLED光源。 4. The LED light source according to claim 1, wherein a plurality of the LEDs are arranged along the main scanning line direction. 前記LEDは2個以上で主走査ライン方向に異なる間隔で配列して成る請求項6に記載のLED光源。 7. The LED light source according to claim 6, wherein two or more LEDs are arranged at different intervals in the main scanning line direction. 読取原稿を載置するプラテンと、
このプラテン上に載置される読取原稿を照明するLED光源と、
このLED光源により照明された読取原稿の主走査ラインからの反射光を集光するレンズ手段と、
このレンズ手段によって集光された読取原稿の主走査ラインからの反射光を受光する受光手段と、
から成る画像読み取り装置であって、
前記LED光源は、
発光源となるLEDと、
前記プラテン上に載置される読取原稿を照明するLEDの照明領域を少なくとも読取原稿の主走査ライン幅に拡散させるライトガイドと、
で構成され、
そのライトガイドの内面反射光路内で前記LED側に面対峙した状態で主走査ライン方向に所定の間隔を隔て配列され、前記LEDの光を主走査ラインに沿ってライトガイド外側に向け反射させる複数の反射面体を備え、
その各反射面体の主走査ライン方向と直交する方向の長さを反射させる光量に応じて適宜調整して成ることを特徴として成る画像読み取り装置。
A platen on which the document to be read is placed;
An LED light source for illuminating a read document placed on the platen;
Lens means for condensing the reflected light from the main scanning line of the read original illuminated by the LED light source;
A light receiving means for receiving reflected light from the main scanning line of the read original collected by the lens means;
An image reading device comprising:
The LED light source is
An LED as a light source;
A light guide for diffusing an illumination area of an LED that illuminates a read original placed on the platen to at least a main scanning line width of the read original;
Consists of
A plurality of light guides arranged in the main scanning line direction with a predetermined interval in a state where they face each other in the inner surface reflection light path of the light guide, and reflect the light of the LED toward the outside of the light guide along the main scanning line. With a reflective surface
An image reading apparatus characterized by appropriately adjusting the length of each reflecting surface in the direction perpendicular to the main scanning line direction according to the amount of light to be reflected.
前記反射面体の各長さは、白基準面から反射され前記受光手段で受光される主走査ライン方向の光量分布をほぼ均一する長さに調整して成る請求項8に記載の画像読取装置。 9. The image reading apparatus according to claim 8, wherein each length of the reflecting surface body is adjusted so that a light amount distribution in a main scanning line direction reflected from a white reference surface and received by the light receiving unit is substantially uniform. 前記レンズ手段は、通過する光をコサイン4乗則に従って減光する集光レンズで、
前記反射面体の各長さは、少なくとも前記集光レンズを通過しコサイン4乗則に従って減光される光量を反射光量で補間して成る請求項9に記載の画像読取装置。
The lens means is a condenser lens for dimming light passing therethrough according to the cosine fourth law,
10. The image reading apparatus according to claim 9, wherein each length of the reflecting surface body is obtained by interpolating the amount of light that passes through at least the condenser lens and is attenuated according to the cosine fourth law with the amount of reflected light.
JP2009037891A 2009-02-20 2009-02-20 Led light source and image reader Pending JP2010193361A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009037891A JP2010193361A (en) 2009-02-20 2009-02-20 Led light source and image reader
US12/656,208 US8488216B2 (en) 2009-02-20 2010-01-21 LED light source and image reading apparatus
CN201010113629A CN101813269A (en) 2009-02-20 2010-02-05 Led light source and image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037891A JP2010193361A (en) 2009-02-20 2009-02-20 Led light source and image reader

Publications (1)

Publication Number Publication Date
JP2010193361A true JP2010193361A (en) 2010-09-02

Family

ID=42818889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037891A Pending JP2010193361A (en) 2009-02-20 2009-02-20 Led light source and image reader

Country Status (1)

Country Link
JP (1) JP2010193361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180054A (en) * 2014-02-25 2015-10-08 京セラ株式会社 Light guide body, illumination unit, and image scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180054A (en) * 2014-02-25 2015-10-08 京セラ株式会社 Light guide body, illumination unit, and image scanner

Similar Documents

Publication Publication Date Title
US8488216B2 (en) LED light source and image reading apparatus
US8167475B2 (en) Linear lighting apparatus and image reader using the same
JPH11284803A (en) Linear light source unit
KR101019821B1 (en) Light guiding member and linear light source apparatus using same
US6375335B1 (en) Illumination device and information processing apparatus
JP2010193360A (en) Led light source and image reader
JPWO2008013234A1 (en) Line illumination device, image sensor, and image reading device using the same
JP2004056425A (en) Line lighting device and picture reader
EP1739946A1 (en) Light transmissive element
KR20130018620A (en) Image sensor unit and image reading apparatus using the same
JP2014123941A (en) Illuminating device and image reader
JP5836723B2 (en) Light guide, illumination device, and image reading device
JP2010238492A (en) Lighting device
JP2001238048A (en) Image reader and light guiding member used for the same
JP5915639B2 (en) Light guide, light guide device and image reading device
US6744033B2 (en) Bar-shaped light guide, line-illuminating device incorporated with the bar-shaped light guide and contact-type image sensor incorporated with the line-illuminating device
JP3987838B2 (en) Linear lighting device
JP4962469B2 (en) Illumination apparatus and image reading apparatus equipped with the same
JP2006148956A (en) Line illuminator and image reader
KR20060016121A (en) Light guide and line illuminator
JP2010193361A (en) Led light source and image reader
JP2010045755A (en) Illuminator and image reading apparatus using the same
US7746520B2 (en) Document illuminator
JP2002232648A (en) Linear lighting system and image reader using the same
JP2011087290A (en) Linearly-aligned illuminating device and image reader using the same