JP2010192823A - Oil-filled electrical equipment and method for preventing sulfidizing corrosion of oil-filled electrical equipment - Google Patents

Oil-filled electrical equipment and method for preventing sulfidizing corrosion of oil-filled electrical equipment Download PDF

Info

Publication number
JP2010192823A
JP2010192823A JP2009038033A JP2009038033A JP2010192823A JP 2010192823 A JP2010192823 A JP 2010192823A JP 2009038033 A JP2009038033 A JP 2009038033A JP 2009038033 A JP2009038033 A JP 2009038033A JP 2010192823 A JP2010192823 A JP 2010192823A
Authority
JP
Japan
Prior art keywords
oil
copper
filled electrical
electrical equipment
chelating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009038033A
Other languages
Japanese (ja)
Other versions
JP4894027B2 (en
Inventor
Kota Mizuno
康太 水野
Junji Tanimura
純二 谷村
Satoru Toyama
悟 外山
Yoji Fujita
洋司 藤田
Hisakatsu Kawarai
久勝 瓦井
Takeshi Amimoto
剛 網本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009038033A priority Critical patent/JP4894027B2/en
Publication of JP2010192823A publication Critical patent/JP2010192823A/en
Application granted granted Critical
Publication of JP4894027B2 publication Critical patent/JP4894027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil-filled electrical equipment having a long-term reliability by reducing an amount of deposition of a sulfide of copper into an insulator in an oil-filled electrical equipment and by controlling the abnormality due to the sulfidizing corrosion of copper of insulator, and also to provide a method for preventing sulfidizing corrosion of the oil-filled electrical equipment. <P>SOLUTION: The oil-filled electrical equipment has an insulating oil containing a chelating agent reactive to copper. In the method for preventing the sulfidizing corrosion of copper of an oil-filled electrical equipment, a chelating agent is added in an insulating oil. A copper-sulfer complex of an intermediate of a sulfide of copper, contained in the insulating oil is inactivated by adding the chelating agent into the insulating oil. The deposition of the sulfide of copper into the insulating matter in the oil-filled electrical equipment is thereby reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、油入電気機器における絶縁物への硫化銅の析出を低減することを目的とした油入電気機器に関するものである。   The present invention relates to an oil-filled electrical device intended to reduce deposition of copper sulfide on an insulator in the oil-filled electrical device.

油入変圧器などの油入電気機器は、その絶縁油として硫黄成分を含むものがある。その場合、油入電気機器の銅部品と絶縁油中の硫黄成分の反応により導電性の硫化銅が生成(硫化腐食)し、絶縁破壊を引き起こすために油入電気機器に致命的な損傷を及ぼす場合があることが知られている。   Some oil-filled electrical devices such as oil-filled transformers contain a sulfur component as their insulating oil. In this case, conductive copper sulfide is generated (sulfurization corrosion) due to the reaction between the copper components of the oil-filled electrical equipment and the sulfur component in the insulation oil, causing fatal damage to the oil-filled electrical equipment to cause dielectric breakdown. It is known that there are cases.

これまではジベンジルジスルフィドを用いることにより容易に硫化銅を生成することは知られていたが、その生成メカニズムの詳細は分かっていなかった。しかしながら、昨今、硫化銅生成メカニズムは解明されつつある。現在までの研究で分かっている硫化銅生成メカニズムを図1に示す。硫化銅生成は、第一段階としてジベンジルジスルフィドが銅に配位する反応が起こり、第二段階としてベンジルラジカル及びベンジルスルフェニルラジカルが生成し硫化銅へと分解する反応が起こることが分かり、硫化銅が発生しにくい絶縁油の選定や硫化銅の抑制技術の開発が注目されている。   So far, it has been known that copper sulfide can be easily produced by using dibenzyl disulfide, but details of the production mechanism have not been known. However, recently, the mechanism of copper sulfide formation is being elucidated. Fig. 1 shows the mechanism of copper sulfide formation, which has been known in the studies so far. It can be seen that copper sulfide formation involves a reaction in which dibenzyl disulfide coordinates to copper as the first step, and a reaction in which benzyl radicals and benzylsulfenyl radicals are generated and decomposed to copper sulfide as the second step. Attention has been focused on the selection of insulating oil that does not easily generate copper and the development of copper sulfide control technology.

例えば、非特許文献1に油入電気機器の硫化腐食抑制技術が開示されている。図2に公知先行例1の硫化銅生成抑制メカニズムに関する図を示す。ベンゾトリアゾール(BTA:1,2,3−Benzotriazole)もしくはIrgamet39(N,N−ビス(2−エチルヘキシル)−(4または5)−メチル−1H−ベンゾトリアゾール−1−メチルアミン)は、絶縁油中に添加されることで銅表面に吸着し錯体被膜を形成する。この膜が絶縁油中の硫黄成分と銅との化学反応を阻害することにより、油入電気機器の硫化腐食(絶縁紙上に硫化銅が付着すること)を防ぐことができる。   For example, Non-Patent Document 1 discloses a technique for suppressing sulfidation corrosion of oil-filled electrical equipment. The figure regarding the copper sulfide production | generation suppression mechanism of the well-known prior art example 1 is shown in FIG. Benzotriazole (BTA: 1,2,3-Benzotriazole) or Irgamet 39 (N, N-bis (2-ethylhexyl)-(4 or 5) -methyl-1H-benzotriazole-1-methylamine) in insulating oil Is added to the copper surface to form a complex film. This film inhibits the chemical reaction between the sulfur component in the insulating oil and copper, thereby preventing sulfidation corrosion of the oil-filled electrical equipment (adhesion of copper sulfide on the insulating paper).

また、特許文献1には、鉄心、巻線より構成される機器本体及び銅または銀より構成される裸導体を絶縁油と共にタンク内に収納して成る油入電気機器において、前記裸導体と同じ材料を主成分とする裸金属を補助タンク内に収納し、この補助タンク内に前記タンク内の絶縁油を循環させて裸金属を接触させるようにした油入電気機器が開示されている。   Further, in Patent Document 1, in an oil-filled electrical device in which a main body composed of an iron core and windings and a bare conductor composed of copper or silver are housed in a tank together with insulating oil, the same as the bare conductor. There is disclosed an oil-filled electrical device in which a bare metal containing a material as a main component is accommodated in an auxiliary tank, and the insulating oil in the tank is circulated in the auxiliary tank so that the bare metal is brought into contact therewith.

Paul J. Griffin and Lance R. Lewand,Doble Engineering Company,"An Update on Understanding Corrosive Sulfur Problems in Electric Apparatus",The 2008 International Conference of Doble Clients IM-4,米国,2008年,8頁Paul J. Griffin and Lance R. Lewand, Doble Engineering Company, "An Update on Understanding Corrosive Sulfur Problems in Electric Apparatus", The 2008 International Conference of Doble Clients IM-4, USA, 2008, page 8.

特開平2−50405号公報Japanese Patent Laid-Open No. 2-50405

しかしながら、非特許文献1における油入電気機器の硫化腐食抑制技術では、硫化腐食の抑制効果は必ずしも十分ということはできず、特に、絶縁油中にBTAが添加されずに使用され、既に銅と絶縁油中の硫黄化合物による銅−硫黄錯体が形成されている既設の油入電気機器では、後からBTAを添加して銅表面を被覆しても、絶縁紙上に硫化銅が生成される可能性がある。   However, in the technology for suppressing sulfidation corrosion of oil-filled electrical equipment in Non-Patent Document 1, the effect of suppressing sulfidation corrosion cannot always be sufficient, and in particular, BTA is used in insulating oil without being added, and already with copper In existing oil-filled electrical equipment in which a copper-sulfur complex is formed by sulfur compounds in insulating oil, copper sulfide may be generated on the insulating paper even if BTA is added later to cover the copper surface. There is.

また、特許文献1における油入電機機器では、この油入電気機器では、補助タンク内の裸金属の表面において硫化腐食減少が積極的に促進されて絶縁油中から硫化腐食の原因となる成分が除去されることで、タンク内の機器本体における硫化腐食現象が低減されるが、別途、補助タンクを設ける必要がある。   Moreover, in the oil-filled electrical equipment in Patent Document 1, in this oil-filled electrical equipment, a component that causes sulfide corrosion from the insulating oil is actively promoted by reducing the sulfide corrosion reduction on the surface of the bare metal in the auxiliary tank. The removal reduces the sulfide corrosion phenomenon in the equipment body in the tank, but it is necessary to provide an auxiliary tank separately.

本発明は、このような従来の問題を解決しようとするものであり、油入電気機器内の絶縁物への硫化銅の析出量を低減し、絶縁物の硫化腐食による不具合を抑制することで、長期の信頼性を有する油入電気機器および油入電気機器の硫化腐食防止方法を提供することを課題とする。   The present invention is intended to solve such a conventional problem, by reducing the amount of copper sulfide deposited on the insulator in the oil-filled electrical equipment, and by suppressing problems caused by sulfide corrosion of the insulator. It is an object of the present invention to provide an oil-filled electrical device having long-term reliability and a method for preventing sulfide corrosion of the oil-filled electrical device.

本発明は、銅と反応するキレート剤を含む絶縁油を有することを特徴とする油入電気機器である。   The present invention is an oil-filled electrical apparatus having an insulating oil containing a chelating agent that reacts with copper.

キレート剤は、エチレンジアミン、エチレンジアミン四酢酸およびアセチルアセトンからなる群から選らばれる少なくとも1種であることが好ましい。   The chelating agent is preferably at least one selected from the group consisting of ethylenediamine, ethylenediaminetetraacetic acid and acetylacetone.

絶縁油中のキレート剤の濃度は、10〜100ppmであることが好ましい。
さらに、絶縁油に、1,2,3−ベンゾトリアゾールおよび/またはN,N−ビス(2−エチルヘキシル)−(4または5)−メチル−1H−ベンゾトリアゾール−1−メチルアミンを添加することが好ましい。
The concentration of the chelating agent in the insulating oil is preferably 10 to 100 ppm.
Furthermore, 1,2,3-benzotriazole and / or N, N-bis (2-ethylhexyl)-(4 or 5) -methyl-1H-benzotriazole-1-methylamine may be added to the insulating oil. preferable.

本発明は、前記絶縁油中に銅と反応するキレート剤を添加することを特徴とする油入電気機器の硫化腐食防止方法にも関する。   The present invention also relates to a method for preventing sulfidation corrosion of oil-filled electrical equipment, wherein a chelating agent that reacts with copper is added to the insulating oil.

キレート剤は、エチレンジアミン、エチレンジアミン四酢酸およびアセチルアセトンからなる群から選らばれる少なくとも1種であることが好ましい。   The chelating agent is preferably at least one selected from the group consisting of ethylenediamine, ethylenediaminetetraacetic acid and acetylacetone.

さらに、絶縁油に、1,2,3−ベンゾトリアゾールおよび/またはN,N−ビス(2−エチルヘキシル)−(4または5)−メチル−1H−ベンゾトリアゾール−1−メチルアミンを添加することが好ましい。   Furthermore, 1,2,3-benzotriazole and / or N, N-bis (2-ethylhexyl)-(4 or 5) -methyl-1H-benzotriazole-1-methylamine may be added to the insulating oil. preferable.

本発明によれば、絶縁油中に添加したキレート剤が油中銅(銅(Cu)−硫黄(S)錯体)を不活性化することにより、油入電気機器内の絶縁物への硫化銅析出(硫化腐食)を低減する効果を奏する。   According to the present invention, the chelating agent added to the insulating oil inactivates the copper in the oil (copper (Cu) -sulfur (S) complex), so that the copper sulfide to the insulator in the oil-filled electrical device It has the effect of reducing precipitation (sulfidation corrosion).

従来の油入電気機器の硫化銅生成メカニズム説明するための模式図である。It is a schematic diagram for demonstrating the copper sulfide production | generation mechanism of the conventional oil-filled electrical equipment. 従来の油入電気機器の硫化銅生成抑制メカニズム説明するための模式図である。It is a schematic diagram for demonstrating the copper sulfide production | generation suppression mechanism of the conventional oil-filled electrical equipment. 本発明の実施の形態に関するキレート剤による硫化銅抑制メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the copper sulfide suppression mechanism by the chelating agent regarding embodiment of this invention.

図3は、本発明における油入電気機器の硫化銅抑制メカニズムを示すものである。図3のように、絶縁油とコイル導体を有する油入電気機器は絶縁油(容器油)中に含有するジベンジルジスルフィド等の硫黄化合物が油入電気機器材料のコイル導体(銅)に配位し、ベンジルラジカル及びベンジルスルフェニルラジカル(銅−硫黄錯体)を形成する。従来は、この銅−硫黄錯体が絶縁油中に溶解し移動することで、絶縁紙等の絶縁物に吸着し、分解することで硫化銅が析出していた。   FIG. 3 shows the copper sulfide suppression mechanism of the oil-filled electrical device according to the present invention. As shown in Fig. 3, in oil-filled electrical equipment with insulating oil and coil conductor, sulfur compounds such as dibenzyl disulfide contained in insulating oil (container oil) are coordinated to the coil conductor (copper) of oil-filled electrical equipment material. To form a benzyl radical and a benzylsulfenyl radical (copper-sulfur complex). Conventionally, when this copper-sulfur complex is dissolved and moved in the insulating oil, it is adsorbed on an insulating material such as insulating paper and decomposed, so that copper sulfide is deposited.

本発明が適用される油入電気機器に含まれる絶縁油としては、例えば、鉱油、合成油などが挙げられ、硫黄成分を含む絶縁油である。   Examples of the insulating oil contained in the oil-filled electrical device to which the present invention is applied include mineral oil and synthetic oil, and the insulating oil contains a sulfur component.

本発明においては、絶縁油中にキレート剤を1種または2種以上添加している。本発明で用いられるキレート剤は、銅に対してキレートを形成し得るキレート剤であることが好ましく、例えば、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸、フェナントロリン、ポルフィリン、クラウンエーテル、アセチルアセトン、アミノトリアゾール、アリザリン−3,1スタビノールC3−42、オキシン、モリン、キナルジン酸、アルミノン、トリエタノールアミン等が挙げられる。この中でも、特にエチレンジアミン、エチレンジアミン四酢酸、アセチルアセトンなどを用いることが好ましい。ただし、油入電気機器のコイル導体が銅以外の金属である場合、そのコイル導体の金属に対してキレートを形成できるキレート剤を選定することが好ましい。   In the present invention, one or more chelating agents are added to the insulating oil. The chelating agent used in the present invention is preferably a chelating agent capable of forming a chelate with respect to copper. For example, ethylenediamine, bipyridine, ethylenediaminetetraacetic acid, phenanthroline, porphyrin, crown ether, acetylacetone, aminotriazole, alizarin- Examples include 3,1 stabinol C3-42, oxine, morin, quinaldic acid, aluminone, triethanolamine and the like. Among these, it is particularly preferable to use ethylenediamine, ethylenediaminetetraacetic acid, acetylacetone or the like. However, when the coil conductor of the oil-filled electrical device is a metal other than copper, it is preferable to select a chelating agent capable of forming a chelate with respect to the metal of the coil conductor.

図3に示すように、上記絶縁油中に添加した銅と反応するキレート剤は、銅−硫黄錯体から銅を奪いキレートを形成するため、その後の絶縁紙上への硫化銅生成反応が停止する。キレートとは、複数の配位座を持つ配位子による金属イオンへの結合をいう。このようにしてできる錯体をキレート錯体といい、キレート錯体でない錯体に対し10の10乗倍といったオーダーで配位の平衡定数が向上する。このため絶縁油中にキレート剤を添加すれば、キレート剤は銅−硫黄錯体から銅を奪い、絶縁紙上への硫化銅生成の反応が停止する方向に反応が進行する。   As shown in FIG. 3, the chelating agent that reacts with copper added to the insulating oil deprives copper from the copper-sulfur complex to form a chelate, so that the subsequent copper sulfide formation reaction on the insulating paper stops. A chelate is a bond to a metal ion by a ligand having a plurality of coordination sites. The complex formed in this way is called a chelate complex, and the coordination equilibrium constant is improved on the order of 10 to the 10th power of a complex that is not a chelate complex. For this reason, if a chelating agent is added to the insulating oil, the chelating agent takes copper from the copper-sulfur complex, and the reaction proceeds in a direction in which the reaction of forming copper sulfide on the insulating paper stops.

このように、本発明は添加剤が銅と硫黄化合物の反応により形成された銅−硫黄錯体を不活性化することで硫化腐食を防ぐ技術である。したがって、先行技術は添加剤が銅に被膜を形成し、銅と硫黄化合物の反応を防ぐことで硫化腐食を抑制する技術であり、既設器では、すでに銅と硫黄化合物が反応しており、銅−硫黄錯体が形成されているため、先行技術のように銅と硫黄化合物との反応を防いでも硫化銅が生成する可能性がある。本発明では銅−硫黄錯体を不活性化するため、既設器において効果的に硫化腐食を防ぐことができる。   Thus, the present invention is a technique for preventing sulfidation corrosion by inactivating the copper-sulfur complex formed by the reaction of copper and a sulfur compound. Therefore, the prior art is a technology that suppresses sulfidation corrosion by forming a film on copper and preventing the reaction between copper and sulfur compounds. In existing equipment, copper and sulfur compounds have already reacted. -Since the sulfur complex is formed, even if it prevents reaction with copper and a sulfur compound like a prior art, copper sulfide may produce | generate. In the present invention, since the copper-sulfur complex is inactivated, sulfidation corrosion can be effectively prevented in the existing equipment.

上記キレート剤の添加量は絶縁油に対する重量濃度で10〜100ppmであることが好ましい。キレート剤は、熱による分解もしくは硫化腐食を抑制することによって消費されるため10ppm以下では長期的な硫化腐食の抑制効果は見込めない、また、100ppm以上では絶縁油への溶解が困難である。   The addition amount of the chelating agent is preferably 10 to 100 ppm by weight concentration with respect to the insulating oil. Since the chelating agent is consumed by suppressing thermal decomposition or sulfidation corrosion, if it is 10 ppm or less, a long-term effect of suppressing sulfidation corrosion cannot be expected, and if it is 100 ppm or more, dissolution in insulating oil is difficult.

本発明においては、前記絶縁油中に、さらに、1,2,3−ベンゾトリアゾールおよび/またはN,N−ビス(2−エチルヘキシル)−(4または5)−メチル−1H−ベンゾトリアゾール−1−メチルアミンを添加することが好ましい。これらの添加剤は、新規の銅−硫黄錯体の形成を抑制する抑制剤として働くため、キレート剤の消費を防ぎ、硫化銅の生成抑制効果をさらに持続させる。   In the present invention, 1,2,3-benzotriazole and / or N, N-bis (2-ethylhexyl)-(4 or 5) -methyl-1H-benzotriazole-1- It is preferable to add methylamine. Since these additives work as an inhibitor that suppresses the formation of a novel copper-sulfur complex, consumption of the chelating agent is prevented and the effect of suppressing the formation of copper sulfide is further maintained.

(有効性検証実験)
本実施例の硫化銅抑制効果の有効性を検証するために行った実験を以下に説明する。
(Effectiveness verification experiment)
Experiments conducted to verify the effectiveness of the copper sulfide suppression effect of this example will be described below.

硫化銅生成の原因物質であるジベンジルジスルフィドを鉱油(絶縁油)に重量濃度で300ppmになるように溶解した基油を用意した。通常、油入電気機器の容器油においては、絶縁油に含まれるジベンジルジスルフィドは、多いものでも50ppmであるが、ここでは、硫化腐食を促進させるため300ppmの濃度で実施した。この油(50mL)の中に5枚の銅板(1,500mg、5.0cm×3.0cm)を封入して120℃、240時間加熱し、油中に銅−硫黄錯体を生成させたものを基油とした。この基油にキレート剤を添加した油、銅−硫黄錯体の形成を抑制する抑制剤を添加した油および何も添加していない油を作製し、以下の試料1、2および比較試料とした。   A base oil was prepared by dissolving dibenzyl disulfide, which is a causative substance of copper sulfide formation, in mineral oil (insulating oil) to a weight concentration of 300 ppm. Usually, in the container oil of oil-filled electrical equipment, the amount of dibenzyl disulfide contained in the insulating oil is 50 ppm at most, but here, it was carried out at a concentration of 300 ppm in order to promote sulfide corrosion. In this oil (50 mL), five copper plates (1,500 mg, 5.0 cm × 3.0 cm) were sealed and heated at 120 ° C. for 240 hours to produce a copper-sulfur complex in the oil. Base oil was used. An oil in which a chelating agent was added to this base oil, an oil to which an inhibitor that suppresses the formation of a copper-sulfur complex, and an oil to which nothing was added were prepared, and the following samples 1 and 2 and a comparative sample were prepared.

(試料1)
キレート剤としてはエチレンジアミン四酢酸(EDTA)を使用し、これを重量濃度で30ppmになるように上記基油に溶解したものを試料1とした。
(Sample 1)
As a chelating agent, ethylenediaminetetraacetic acid (EDTA) was used, and this was dissolved in the above base oil so as to have a weight concentration of 30 ppm.

(試料2)
抑制剤として1,2,3−ベンゾトリアゾールを重量濃度で30ppmになるように溶解したものを試料2とした。
(Sample 2)
Sample 2 was prepared by dissolving 1,2,3-benzotriazole as an inhibitor to a weight concentration of 30 ppm.

(比較試料)
何も添加していない上記基油を比較試料とした。
(Comparative sample)
The above base oil to which nothing was added was used as a comparative sample.

(実験例1)
上記試料1、2および比較試料(50mL中)に銅板(1,500mg、5.0cm×3.5cm)と絶縁紙(1.0cm×1.9cm)を封入し、120℃の温度で144時間加熱する試験を行った。加熱144時間後のそれぞれの油中に封入した絶縁紙上に析出した硫化銅量を表1に示す。なお、試験後の絶縁紙を2mol/LのHNO3溶液に1時間浸し、この溶液をICP−AES(誘導結合プラズマ原子発光分光:Inductively Coupled Plasma - Atomic Emission Spectrometry)により測定することで、絶縁紙上に析出した硫化銅量を定量した。
(Experimental example 1)
A copper plate (1,500 mg, 5.0 cm × 3.5 cm) and insulating paper (1.0 cm × 1.9 cm) are sealed in Samples 1 and 2 and a comparative sample (in 50 mL) for 144 hours at a temperature of 120 ° C. A heating test was performed. Table 1 shows the amount of copper sulfide deposited on the insulating paper sealed in each oil after 144 hours of heating. After the test, the insulating paper was immersed in a 2 mol / L HNO 3 solution for 1 hour, and this solution was measured on the insulating paper by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). The amount of copper sulfide deposited on the substrate was quantified.

Figure 2010192823
Figure 2010192823

加熱144時間後の絶縁紙上に析出した硫化銅を測定した結果を表1に示す。基油に何も添加していない油(比較試料)は、絶縁紙上に33μgの硫化銅が析出した。基油にキレート剤であるエチレンジアミン四酢酸を添加した油(試料1)では絶縁紙上に6μgの硫化銅が析出し、1,2,3−ベンゾトリアゾールを添加した油(試料2)では、絶縁紙上に23gの硫化銅が析出した。これらの結果から、キレート剤によって、絶縁紙への硫化銅析出を抑制できることが分かった。   Table 1 shows the results of measurement of copper sulfide deposited on the insulating paper after 144 hours of heating. In the oil (comparative sample) in which nothing was added to the base oil, 33 μg of copper sulfide was deposited on the insulating paper. 6 μg of copper sulfide is deposited on the insulating paper in the oil (sample 1) to which ethylenediaminetetraacetic acid as a chelating agent is added to the base oil, and on the insulating paper in the oil (sample 2) to which 1,2,3-benzotriazole is added. 23 g of copper sulfide was precipitated. From these results, it was found that copper sulfide deposition on the insulating paper can be suppressed by the chelating agent.

このように、キレート剤を添加した油(試料1)の硫化銅析出量は、容器油を模擬している比較試料および試料2の硫化銅析出量と比較して、1/4〜1/5に低減された。通常、ジベンジルジスルフィド等の硫黄化合物の絶縁油中での濃度は、上述したように、50ppm程度であり、キレート剤の添加によって硫化銅の析出抑制効果を期待できる。さらに、銅−硫黄錯体の形成を抑制する抑制剤を併用することにより高濃度の硫黄化合物に対しても、安定して硫化銅析出を抑制する効果が期待できる。   Thus, the amount of copper sulfide deposited on the oil added with the chelating agent (sample 1) is 1/4 to 1/5 compared to the amount of copper sulfide deposited on the comparative sample simulating the container oil and sample 2. Reduced to Normally, the concentration of sulfur compounds such as dibenzyl disulfide in the insulating oil is about 50 ppm as described above, and the effect of suppressing the precipitation of copper sulfide can be expected by adding a chelating agent. Furthermore, by using together the inhibitor which suppresses formation of a copper-sulfur complex, the effect which suppresses copper sulfide precipitation stably also with respect to a high concentration sulfur compound can be anticipated.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (7)

銅と反応するキレート剤を含む絶縁油を有することを特徴とする油入電気機器。   An oil-filled electrical device comprising an insulating oil containing a chelating agent that reacts with copper. 前記キレート剤が、エチレンジアミン、エチレンジアミン四酢酸およびアセチルアセトンからなる群から選らばれる少なくとも1種であることを特徴とする請求項1に記載の油入電気機器。   The oil-filled electrical device according to claim 1, wherein the chelating agent is at least one selected from the group consisting of ethylenediamine, ethylenediaminetetraacetic acid and acetylacetone. 前記絶縁油中のキレート剤の濃度が、10〜100ppmであることを特徴とする請求項1または2に記載の油入電気機器。   The oil-filled electrical device according to claim 1 or 2, wherein the concentration of the chelating agent in the insulating oil is 10 to 100 ppm. 前記絶縁油に、銅−硫黄錯体の形成を抑制する1,2,3−ベンゾトリアゾールおよび/またはN,N−ビス(2−エチルヘキシル)−(4または5)−メチル−1H−ベンゾトリアゾール−1−メチルアミンを添加したことを特徴とする請求項1〜3のいずれかに記載の油入電気機器。   1,2,3-benzotriazole and / or N, N-bis (2-ethylhexyl)-(4 or 5) -methyl-1H-benzotriazole-1 which suppresses the formation of copper-sulfur complex in the insulating oil The oil-filled electrical device according to any one of claims 1 to 3, wherein methylamine is added. 前記絶縁油中に銅と反応するキレート剤を添加することを特徴とする油入電気機器の硫化腐食防止方法。   A method for preventing sulfidation corrosion of oil-filled electrical equipment, wherein a chelating agent that reacts with copper is added to the insulating oil. 前記キレート剤が、エチレンジアミン、エチレンジアミン四酢酸およびアセチルアセトンからなる群から選らばれる少なくとも1種であることを特徴とする請求項5に記載の油入電気機器の硫化腐食防止方法。   6. The method for preventing sulfidation corrosion of oil-filled electrical equipment according to claim 5, wherein the chelating agent is at least one selected from the group consisting of ethylenediamine, ethylenediaminetetraacetic acid and acetylacetone. 前記絶縁油に、銅−硫黄錯体の形成を抑制する1,2,3−ベンゾトリアゾールおよび/またはN,N−ビス(2−エチルヘキシル)−(4または5)−メチル−1H−ベンゾトリアゾール−1−メチルアミンを添加したことを特徴とする請求項5または6に記載の油入電気機器の硫化腐食防止方法。   1,2,3-benzotriazole and / or N, N-bis (2-ethylhexyl)-(4 or 5) -methyl-1H-benzotriazole-1 which suppresses the formation of copper-sulfur complex in the insulating oil The method for preventing sulfidation corrosion of oil-filled electrical equipment according to claim 5 or 6, wherein methylamine is added.
JP2009038033A 2009-02-20 2009-02-20 Oil-filled electrical equipment and method for preventing sulfur corrosion of oil-filled electrical equipment Expired - Fee Related JP4894027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038033A JP4894027B2 (en) 2009-02-20 2009-02-20 Oil-filled electrical equipment and method for preventing sulfur corrosion of oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038033A JP4894027B2 (en) 2009-02-20 2009-02-20 Oil-filled electrical equipment and method for preventing sulfur corrosion of oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JP2010192823A true JP2010192823A (en) 2010-09-02
JP4894027B2 JP4894027B2 (en) 2012-03-07

Family

ID=42818503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038033A Expired - Fee Related JP4894027B2 (en) 2009-02-20 2009-02-20 Oil-filled electrical equipment and method for preventing sulfur corrosion of oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP4894027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079936B1 (en) * 2011-11-28 2012-11-21 三菱電機株式会社 Diagnostic method for oil-filled electrical equipment
JP5186061B1 (en) * 2011-11-30 2013-04-17 三菱電機株式会社 Method for suppressing copper sulfide formation in oil-filled electrical equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151314A (en) * 2000-11-08 2002-05-24 Seiko Epson Corp Method of manufacturing bonded magnet and the bonded magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151314A (en) * 2000-11-08 2002-05-24 Seiko Epson Corp Method of manufacturing bonded magnet and the bonded magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079936B1 (en) * 2011-11-28 2012-11-21 三菱電機株式会社 Diagnostic method for oil-filled electrical equipment
WO2013080267A1 (en) * 2011-11-28 2013-06-06 三菱電機株式会社 Method of diagnosing oil-filled electrical apparatus
CN103959409A (en) * 2011-11-28 2014-07-30 三菱电机株式会社 Method of diagnosing oil-filled electrical apparatus
JP5186061B1 (en) * 2011-11-30 2013-04-17 三菱電機株式会社 Method for suppressing copper sulfide formation in oil-filled electrical equipment
WO2013080315A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Method for suppressing copper sulfide generation in oil-filled electrical equipment
CN103890879A (en) * 2011-11-30 2014-06-25 三菱电机株式会社 Method for suppressing copper sulfide generation in oil-filled electrical equipment
US9396835B2 (en) 2011-11-30 2016-07-19 Mitsubishi Electric Corporation Method for suppressing copper sulfide generation in oil-filled electrical equipment

Also Published As

Publication number Publication date
JP4894027B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Monticelli et al. Evaluation of 2-(salicylideneimino) thiophenol and other Schiff bases as bronze corrosion inhibitors by electrochemical techniques and surface analysis
KR102546220B1 (en) Chemistry additives and process for cobalt film electrodeposition
CN101356629B (en) Composition and method for recycling semiconductor wafers having low-K dielectric materials thereon
TWI241359B (en) Method of non-electrolytic gold plating, and liquids used in non-electrolytic gold plating
KR102105381B1 (en) Post-cmp removal using compositions and method of use
CN101971296B (en) Post-deposition cleaning methods and formulations for substrates with cap layers
Popuri et al. Potassium oleate as a dissolution and corrosion inhibitor during chemical mechanical planarization of chemical vapor deposited Co films for interconnect applications
JP2022037901A (en) Organic additive for electrolytic copper plating for forming high-flatness copper-plated film and electrolytic copper plating solution containing the same
KR101731523B1 (en) Treatment composition for chemical mechanical polishing, chemical mechanical polishing method, and cleaning method
RU2013133648A (en) COMPOSITION FOR ELECTROLYTIC DEPOSITION OF METALS CONTAINING A LEVELING AGENT
Wan et al. Suppressive mechanism of the passivator irgamet 39 on the corrosion of copper conductors in transformers
Yang et al. A study of cobalt galvanic and pitting corrosion with combination of BTA and PMP
JP4894027B2 (en) Oil-filled electrical equipment and method for preventing sulfur corrosion of oil-filled electrical equipment
CN106283097B (en) Cleaning liquid composition
KR20210150604A (en) Protection of seed layers during electrodeposition of metals in semiconductor device fabrication
JP6078394B2 (en) Etching solution composition and etching method
CN110158066B (en) Environment-friendly solution capable of inhibiting tetravalent tin generation rate
KR20190073471A (en) Cleaning composition for removing residues after etching
JP2009295747A (en) Polishing solution for metal
Varvara et al. Thiadiazole derivatives as inhibitors for acidic media corrosion of artificially patinated bronze
ES2395377T3 (en) Solution and procedure to increase the weldability and corrosion resistance of a metal surface or metal alloy
JP2004143588A (en) Plating method
KR20140013023A (en) Etching liquid
Zhao et al. Inhibition effectiveness and depletion characteristic of Irgamet 39 in transformer oil
JP2004143589A (en) Plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

R150 Certificate of patent or registration of utility model

Ref document number: 4894027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees