JP2010192562A - Surface position detecting apparatus and exposing apparatus - Google Patents

Surface position detecting apparatus and exposing apparatus Download PDF

Info

Publication number
JP2010192562A
JP2010192562A JP2009033619A JP2009033619A JP2010192562A JP 2010192562 A JP2010192562 A JP 2010192562A JP 2009033619 A JP2009033619 A JP 2009033619A JP 2009033619 A JP2009033619 A JP 2009033619A JP 2010192562 A JP2010192562 A JP 2010192562A
Authority
JP
Japan
Prior art keywords
phase
light
reflected light
optical system
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009033619A
Other languages
Japanese (ja)
Other versions
JP5293250B2 (en
Inventor
Yasuhiro Hidaka
康弘 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009033619A priority Critical patent/JP5293250B2/en
Publication of JP2010192562A publication Critical patent/JP2010192562A/en
Application granted granted Critical
Publication of JP5293250B2 publication Critical patent/JP5293250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect positional information of a surface to be detected in normal line direction by reducing an influence of a pattern or a reflectance distribution of the surface to be detected. <P>SOLUTION: An apparatus for irradiating measuring light L1 to a reticle surface Ra to receive the reflected light L2 from the reticle surface Ra by a photoelectric sensor 37, detecting surface position information of the reticle surface Ra includes: a confocal optical system including an objective lens 35 for receiving the reflected light L2 by irradiating the measuring light L1 to the reticle surface Ra and a pinhole plate 36 for passing the reflected light L2 through the objective lens 35 to the photoelectric sensor 37; and a phase plate 33 for imparting a phase distribution so as to widen an irradiation area of the measuring light L1 on the reticle surface Ra and so as to narrow the irradiation area of the reflected light L2 on the pinhole plate 36. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、被検面の面位置情報を検出する面位置検出装置、この面位置検出装置を備えた露光装置、及びこの露光装置を用いて半導体素子又は液晶表示素子等の電子デバイス(マイクロデバイス)を製造するためのデバイス製造方法に関する。   The present invention relates to a surface position detecting device for detecting surface position information of a surface to be examined, an exposure device provided with the surface position detecting device, and an electronic device (microdevice) such as a semiconductor element or a liquid crystal display device using the exposure device. ) For manufacturing a device.

半導体素子等を製造するためのリソグラフィ工程において、レチクル(マスク)のパターンをフォトレジストが塗布されたウエハ(又はガラスプレート等)上に転写するために使用されるステッパー等の一括露光型の投影露光装置、又はスキャニングステッパー等の走査型の投影露光装置等の露光装置においては、ウエハの表面(ウエハ面)を投影光学系の像面に対して焦点深度(DOF)の範囲内に合わせ込むために、ウエハ面に斜めに検出光を照射してその反射光を検出する斜入射方式のオートフォーカスセンサ(以下、AFセンサという。)の計測値に基づいて、ウエハステージの高さ制御を行っている。   Batch exposure projection exposure such as a stepper used to transfer a reticle (mask) pattern onto a photoresist-coated wafer (or glass plate, etc.) in a lithography process for manufacturing a semiconductor element or the like In an exposure apparatus such as an apparatus or a scanning projection exposure apparatus such as a scanning stepper, the surface of the wafer (wafer surface) is adjusted within the range of the depth of focus (DOF) with respect to the image plane of the projection optical system. The height of the wafer stage is controlled based on the measurement value of an oblique incidence type autofocus sensor (hereinafter referred to as an AF sensor) that irradiates the wafer surface with detection light obliquely and detects the reflected light. .

最近では、レチクルの撓み等よるフォーカス誤差を抑制するために、光軸方向に駆動される対物レンズを通してレチクルのパターン面(被検面)に検出光をほぼ垂直に照射し、被検面からの反射光をその対物レンズ及び被検面と共役な位置にあるピンホールを介して検出することによって、その被検面の法線方向の位置(面位置)を検出するレチクル用の共焦点方式のAFセンサも用いられている(例えば、特許文献1参照)。   Recently, in order to suppress a focus error due to the deflection of the reticle, the detection light is irradiated almost perpendicularly to the pattern surface (test surface) of the reticle through an objective lens driven in the optical axis direction. A confocal method for a reticle that detects the position (surface position) in the normal direction of the test surface by detecting the reflected light through a pinhole at a position conjugate with the objective lens and the test surface. An AF sensor is also used (see, for example, Patent Document 1).

特開2007−48823号公報JP 2007-48823 A

従来のレチクル用の共焦点方式のAFセンサによれば、被検面に検出光をほぼ垂直に照射できるため、斜入射方式に比べて光学系の小型化が可能である。しかしながら、被検面であるレチクルのパターン面にはデバイス用の種々のパターンが形成されているため、検出光の被検面上の集光スポット内でのパターンの分布によっては、反射光の光量分布の中心とピンホールの中心とが比較的大きくずれて、面位置の検出誤差が生じる恐れがある。   According to a conventional confocal AF sensor for a reticle, the detection surface can be irradiated with detection light almost perpendicularly, so that the optical system can be downsized compared to the oblique incidence method. However, since various patterns for the device are formed on the pattern surface of the reticle that is the test surface, the amount of reflected light depends on the distribution of the pattern in the focused spot of the detection light on the test surface. There is a risk that the center of the distribution and the center of the pinhole will be relatively deviated and a detection error of the surface position will occur.

本発明は、このような課題に鑑み、被検面のパターン又は反射率分布の影響を低減させて、被検面の面位置情報を高精度に検出できる面位置検出装置、この面位置検出装置を用いる露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。   In view of such a problem, the present invention reduces the influence of the pattern or reflectance distribution of the test surface, and can detect the surface position information of the test surface with high accuracy, and this surface position detection device It is an object of the present invention to provide an exposure apparatus using the above and a device manufacturing method using the exposure apparatus.

本発明による第1の面位置検出装置は、検出光を被検面に照射し、その被検面からの反射光を光電検出器を介して受光して得られる検出情報に基づいてその被検面の面位置情報を検出する面位置検出装置において、その検出光をその被検面に照射してその反射光を受光する対物レンズと、その対物レンズを介したその反射光をその光電検出器に通す開口が形成された開口部材とを含む共焦点光学系と、その被検面に照射されるその検出光に、その被検面上での照射面積を広げるように位相分布を付与する第1位相部材と、その反射光に、その開口部材上での照射面積を狭くするように位相分布を付与する第2位相部材と、を備えたものである。   The first surface position detection apparatus according to the present invention irradiates a test surface with detection light and receives the reflected light from the test surface via a photoelectric detector based on detection information obtained. In a surface position detection device for detecting surface position information of a surface, an objective lens that irradiates the test surface with the detection light and receives the reflected light, and a photoelectric detector that reflects the reflected light through the objective lens And a confocal optical system including an aperture member formed with an aperture that passes through the first surface, and a phase distribution that gives the detection light irradiated on the test surface to expand the irradiation area on the test surface. 1 phase member, and the 2nd phase member which provides phase distribution so that the irradiation area on the opening member may be narrowed to the reflected light.

また、本発明による第2の面位置検出装置は、第1面またはその近傍に配置される被検面に検出光を照射し、該検出光のその被検面による反射光を光電検出した結果に基づいてその被検面の面位置情報を検出する面位置検出装置において、その第1面と第2面とを光学的に共役にする結像光学系と、その第2面に配置され、その反射光が通過可能なその第2面上の領域を所定範囲に制限する開口が形成された開口部材とを含む共焦点光学系と、その結像光学系を介してその第1面に照射されるその検出光に第1の位相分布を付与する第1位相部材と、その結像光学系を介してその第2面に導かれるその反射光に第2の位相分布を付与する第2位相部材と、を備え、その第1の位相分布は、その第1面上でのその検出光の照射領域がその結像光学系によるその開口の共役像より大きくなる位相分布であり、その第2の位相分布は、その被検面からのその反射光のその第2面上での照射領域がその開口より小さくなるかほぼ等しくなる位相分布であるものである。   Further, the second surface position detection apparatus according to the present invention irradiates the test surface disposed on or near the first surface with the detection light, and photoelectrically detects the reflected light of the detection light from the test surface. In the surface position detection device for detecting the surface position information of the surface to be detected based on the imaging optical system that optically conjugates the first surface and the second surface, and disposed on the second surface, A confocal optical system including an aperture member formed with an aperture for limiting the region on the second surface through which the reflected light can pass to a predetermined range, and irradiating the first surface via the imaging optical system A first phase member for imparting a first phase distribution to the detected light and a second phase for imparting a second phase distribution to the reflected light guided to the second surface via the imaging optical system A first phase distribution of which the irradiation region of the detection light on the first surface is the imaging light A phase distribution which is larger than the conjugate image of the aperture by the system, and the second phase distribution is such that the irradiation area on the second surface of the reflected light from the test surface is smaller than the aperture. The phase distribution is equal.

また、本発明による第3の面位置検出装置は、その第2の面位置検出装置の第1及び第2位相部材として、その結像光学系を介してその第1面に照射されるその検出光のうちの第1部分検出光と第2部分検出光との間に所定の位相差を付与する第1位相部材と、その結像光学系を介してその第2面に導かれるその反射光のうちその第1部分検出光に対応する第1部分反射光とその第2部分検出光に対応する第2部分反射光との間に、その所定の位相差を解消する位相差を付与する第2位相部材と、を備えるものである。   Further, the third surface position detection device according to the present invention is, as the first and second phase members of the second surface position detection device, detecting the irradiation of the first surface via the imaging optical system. A first phase member that gives a predetermined phase difference between the first partial detection light and the second partial detection light of the light, and the reflected light guided to the second surface via the imaging optical system The first partial reflected light corresponding to the first partial detection light and the second partial reflected light corresponding to the second partial detection light are provided with a phase difference that eliminates the predetermined phase difference. A two-phase member.

また、本発明による露光装置は、マスクのパターンの像を投影光学系を介して基板に投影して該基板を露光する露光装置であって、本発明の面位置検出装置と、その面位置検出装置で検出されるそのマスクのパターン面のその投影光学系の光軸方向の面位置情報に基づいて、そのマスクのパターンの像とその基板との合焦を行うステージ装置と、を備えるものである。   An exposure apparatus according to the present invention is an exposure apparatus that projects an image of a mask pattern onto a substrate via a projection optical system to expose the substrate, the surface position detection device according to the present invention, and its surface position detection. A stage device for focusing an image of the mask pattern and the substrate on the basis of surface position information in the optical axis direction of the projection optical system of the pattern surface of the mask detected by the apparatus. is there.

また、本発明によるデバイス製造方法は、本発明の露光装置を用いて基板を露光する工程と、その露光された基板を処理する工程と、を含むものである。   The device manufacturing method according to the present invention includes a step of exposing a substrate using the exposure apparatus of the present invention and a step of processing the exposed substrate.

本発明の面位置検出装置によれば、第1位相部材によって被検面上での検出光の照射面積が大きくなるため、被検面のパターン又は反射率分布の影響が軽減される。さらに、第2位相部材によって反射光の開口部材の開口上での照射面積が小さくなるため、被検面の面位置情報を高精度に検出できる。   According to the surface position detection device of the present invention, the irradiation area of the detection light on the test surface is increased by the first phase member, so that the influence of the pattern of the test surface or the reflectance distribution is reduced. Furthermore, since the irradiation area of the reflected light on the aperture of the aperture member is reduced by the second phase member, the surface position information of the test surface can be detected with high accuracy.

第1の実施形態の露光装置の概略構成を示す一部を切り欠いた図である。1 is a partially cutaway view showing a schematic configuration of an exposure apparatus according to a first embodiment. (A)は図1中のRAFセンサ2及びRAF制御系52を示す一部を切り欠いた図、(B)は図2(A)中の位相板33を示す平面図、(C)は光電センサの検出信号を示す図、(D)はその検出信号を処理して得られるフォーカス信号を示す図である。1A is a partially cutaway view showing the RAF sensor 2 and the RAF control system 52 in FIG. 1, FIG. 2B is a plan view showing the phase plate 33 in FIG. 2A, and FIG. The figure which shows the detection signal of a sensor, (D) is a figure which shows the focus signal obtained by processing the detection signal. (A)は計測光に対する位相板33の作用を示す図、(B)は反射光に対する位相板33の作用を示す図、(C)は計測光のレチクル面上の照射領域を示す拡大平面図、(D)は反射光のピンホール上の照射領域を示す拡大平面図である。(A) is a diagram showing the action of the phase plate 33 on the measurement light, (B) is a diagram showing the action of the phase plate 33 on the reflected light, and (C) is an enlarged plan view showing an irradiation area on the reticle surface of the measurement light. (D) is an enlarged plan view showing an irradiation region on a pinhole of reflected light. (A)は位相板がない場合の計測光の照射領域を示す拡大平面図、(B)は図4(A)の計測光による反射光の照射領域を示す拡大平面図である。(A) is an enlarged plan view showing an irradiation region of measurement light when there is no phase plate, and (B) is an enlarged plan view showing an irradiation region of reflected light by the measurement light of FIG. 4 (A). (A)は位相差領域のない平板33Uを示す平面図、(B)は平板33Uを透過した計測光の照射領域を示す拡大図、(C)は位相板33を示す平面図、(D)は位相板33を透過した計測光の照射領域を示す拡大図である。(A) is a plan view showing a flat plate 33U having no phase difference region, (B) is an enlarged view showing an irradiation region of measurement light transmitted through the flat plate 33U, (C) is a plan view showing the phase plate 33, (D). FIG. 4 is an enlarged view showing an irradiation region of measurement light transmitted through the phase plate 33. (A)は位相板33Aを示す平面図、(B)は位相板33Aを透過した計測光の照射領域を示す拡大図、(C)は位相板33Bを示す平面図、(D)は位相板33Bを透過した計測光の照射領域を示す拡大図である。(A) is a plan view showing the phase plate 33A, (B) is an enlarged view showing an irradiation region of the measurement light transmitted through the phase plate 33A, (C) is a plan view showing the phase plate 33B, and (D) is a phase plate. It is an enlarged view which shows the irradiation area | region of the measurement light which permeate | transmitted 33B. 第2の実施形態のRAFセンサ2Aを示す一部を切り欠いた図である。It is the figure which notched a part which shows RAF sensor 2A of 2nd Embodiment. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.

[第1の実施形態]
以下、本発明の第1の実施形態につき図1〜図6を参照して説明する。本実施形態は、レチクル用のオートフォーカスセンサを備えた露光装置に本発明を適用したものである。
図1は、本実施形態のスキャニングステッパーよりなる走査露光型の露光装置(投影露光装置)の概略構成を示す図である。図1において、その露光装置は、露光光源(不図示)と、露光光源からの露光光でレチクルR(マスク)を照明する照明光学系ILと、下面(パターン面)に転写用の回路パターンが形成されたレチクルRを保持して移動するレチクルステージRSTと、レチクルRのパターンの像をフォトレジスト(感光材料)が塗布されたウエハW(基板)上に投影する投影光学系PLと、ウエハWを保持して移動するウエハステージWSTとを備えている。さらに、その露光装置は、レチクルRの下面で法線方向(ここでは投影光学系PLの光軸に平行な方向)の位置を検出するためのレチクル用のオートフォーカスセンサ(以下、RAFセンサという。)2と、ウエハW表面の複数の計測点で投影光学系PLの光軸方向の位置(フォーカス位置)を検出するためのウエハ用のオートフォーカスセンサ(以下、AFセンサという。)60と、RAFセンサ2及びAFセンサ60の計測結果に基づいて投影光学系PLの像面にウエハWの表面を合焦させる合焦機構(像位置の補正機構)、及び装置全体の動作を統括制御するコンピュータよりなる主制御系50等とを備えている。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the present invention is applied to an exposure apparatus provided with an autofocus sensor for a reticle.
FIG. 1 is a view showing a schematic configuration of a scanning exposure type exposure apparatus (projection exposure apparatus) comprising a scanning stepper according to the present embodiment. In FIG. 1, the exposure apparatus includes an exposure light source (not shown), an illumination optical system IL that illuminates a reticle R (mask) with exposure light from the exposure light source, and a circuit pattern for transfer on a lower surface (pattern surface). A reticle stage RST that holds and moves the formed reticle R, a projection optical system PL that projects an image of the pattern of the reticle R onto a wafer W (substrate) coated with a photoresist (photosensitive material), and a wafer W And a wafer stage WST that moves while holding. Further, the exposure apparatus is referred to as a reticle autofocus sensor (hereinafter referred to as RAF sensor) for detecting the position in the normal direction (here, the direction parallel to the optical axis of the projection optical system PL) on the lower surface of the reticle R. ) 2, a wafer autofocus sensor (hereinafter referred to as AF sensor) 60 for detecting the position (focus position) of the projection optical system PL in the optical axis direction at a plurality of measurement points on the surface of the wafer W, and RAF. From a focusing mechanism (image position correcting mechanism) that focuses the surface of the wafer W on the image plane of the projection optical system PL based on the measurement results of the sensor 2 and the AF sensor 60, and a computer that controls the overall operation of the apparatus. Main control system 50 and the like.

以下、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面(ここではほぼ水平面)内において図1の紙面に垂直な方向にX軸を、図1の紙面に平行な方向にY軸を取って説明する。本実施形態では、Y軸に平行な方向(Y方向)が、走査露光時のレチクルR及びウエハWの走査方向SDである。また、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向をθx、θy、θz方向とも呼ぶ。   Hereinafter, the Z-axis is taken in parallel to the optical axis AX of the projection optical system PL, and the X-axis is set in the direction perpendicular to the plane of FIG. 1 in the plane perpendicular to the Z-axis (here, almost horizontal plane). A description will be given by taking the Y axis in a parallel direction. In the present embodiment, the direction parallel to the Y axis (Y direction) is the scanning direction SD of the reticle R and wafer W during scanning exposure. Further, the rotation directions around the axes parallel to the X axis, the Y axis, and the Z axis are also referred to as θx, θy, and θz directions.

図1において、照明光学系ILは、光量調整用光学系、オプティカルインテグレータを含む照度均一化光学系、レチクルブラインド(視野絞り)、及びリレーレンズ系等を含む光学系4と、コンデンサレンズ6と、光路折り曲げ用のミラー8とを有する。露光光源(不図示)としては、KrFエキシマレーザ(波長248nm)若しくはArFエキシマレーザ(波長193nm)等の紫外レーザ光源、固体レーザ(半導体レーザ等)の高調波発生装置、又は水銀ランプ(i線等の輝線の光源)等を用いることができる。   In FIG. 1, an illumination optical system IL includes an optical system 4 including a light amount adjusting optical system, an illuminance uniformizing optical system including an optical integrator, a reticle blind (field stop), a relay lens system, and the like; a condenser lens 6; And a mirror 8 for bending the optical path. As an exposure light source (not shown), an ultraviolet laser light source such as a KrF excimer laser (wavelength 248 nm) or an ArF excimer laser (wavelength 193 nm), a harmonic generator of a solid-state laser (semiconductor laser, etc.), or a mercury lamp (i-line etc.) Or the like.

また、レチクルRを保持するレチクルステージRSTは、レチクルベースRBSのXY平面にほぼ平行な上面にエアベアリングを介して移動可能に載置され、リニアモータ等の駆動機構(不図示)によって、Y方向に定速駆動されるとともに、X方向、及びθz方向にも微少駆動可能である。レチクルステージRST上にレチクルRに対してY方向に近接するように、下面に基準マーク等が形成されてレチクルRよりもY方向の幅が狭いレチクルマーク板RFMが保持され、レチクルR及びレチクルマーク板RFMの底面側のレチクルステージRSTに露光光及びRAFセンサ2からの計測光を通過させるための開口10a及び10bが形成されている。レチクルベースRBSの光軸AXを含む領域に露光光を通過させる開口10cが形成され、光軸AXに対してY方向に離れた領域に開口10dが形成され、開口10dを通してレチクルR及びレチクルマーク板RFMの下面にRAFセンサ2からの計測光(検出光)が照射される(詳細後述)。   A reticle stage RST that holds the reticle R is mounted on an upper surface substantially parallel to the XY plane of the reticle base RBS so as to be movable via an air bearing, and is driven in the Y direction by a drive mechanism (not shown) such as a linear motor. In addition to being driven at a constant speed, it can also be finely driven in the X direction and the θz direction. On the reticle stage RST, a reference mark or the like is formed on the lower surface so as to be close to the reticle R in the Y direction, and the reticle mark plate RFM having a narrower width in the Y direction than the reticle R is held. The reticle R and the reticle mark Openings 10a and 10b for allowing exposure light and measurement light from the RAF sensor 2 to pass are formed in the reticle stage RST on the bottom side of the plate RFM. An opening 10c for allowing exposure light to pass is formed in a region including the optical axis AX of the reticle base RBS, an opening 10d is formed in a region away from the optical axis AX in the Y direction, and the reticle R and the reticle mark plate are formed through the opening 10d. The lower surface of the RFM is irradiated with measurement light (detection light) from the RAF sensor 2 (details will be described later).

また、レチクルステージRST上に固定された移動鏡12に対向するように、移動鏡12に計測用のレーザビームを照射するレーザ干渉計13が配置されている。移動鏡12は実際にはX軸及びY軸の移動鏡を含み、レーザ干渉計13も少なくとも2つのY軸のレーザ干渉計とX軸のレーザ干渉計とを含んでいる。レーザ干渉計13は、例えば投影光学系PLの側面に設けた参照鏡(不図示)を基準として、少なくともレチクルステージRSTのY方向、X方向の位置を0.5〜0.1nm程度の分解能で計測し、θz方向の回転角をも計測する。この計測値は主制御系50内のステージ制御部に供給され、ステージ制御部はその計測値に基づいて駆動機構(不図示)を介してレチクルステージRSTの2次元的な位置及び速度を制御する。   Further, a laser interferometer 13 that irradiates the movable mirror 12 with a measurement laser beam is disposed so as to face the movable mirror 12 fixed on the reticle stage RST. The moving mirror 12 actually includes X-axis and Y-axis moving mirrors, and the laser interferometer 13 also includes at least two Y-axis laser interferometers and an X-axis laser interferometer. The laser interferometer 13 uses, for example, a reference mirror (not shown) provided on the side surface of the projection optical system PL as a reference, and at least the position of the reticle stage RST in the Y direction and X direction with a resolution of about 0.5 to 0.1 nm. Measure the rotation angle in the θz direction. This measurement value is supplied to a stage control unit in the main control system 50, and the stage control unit controls the two-dimensional position and speed of the reticle stage RST via a drive mechanism (not shown) based on the measurement value. .

投影光学系PLは、両側(又はウエハ側に片側)テレセントリックで投影倍率が1/4又は1/5等の縮小倍率の屈折系又は反射屈折系であり、レチクルRの下面のX方向に細長い照明領域内のパターンの像をウエハW上の一つのショット領域上の露光領域に投影する。投影光学系PLの鏡筒の一部である分割鏡筒55A,55B内にZ方向に伸縮可能な3箇所の駆動素子(ピエゾ素子等)57A,57B及びレンズ枠56A,56Bを介してレンズエレメント58A,58Bが支持されている。駆動素子57A,57Bの駆動量は、主制御系50の制御のもとで駆動系54によって制御される。駆動素子57A,57Bを介してレンズエレメント58A,58BのZ方向の位置及びθx方向、θy方向の傾斜角を制御することで、投影光学系PLの像面湾曲、ベストフォーカス位置等の結像特性を制御することができる。駆動素子57A,57B及び駆動系54を含んで、投影光学系PLの結像特性制御機構が構成されている。なお、結像特性制御機構によって駆動される投影光学系PL内のレンズエレメント(又は光学部材)の個数及び位置は、制御対象の結像特性の種類に応じて設定される。   Projection optical system PL is a birefringent or catadioptric system that is telecentric on both sides (or one side on the wafer side) and has a projection magnification of 1/4 or 1/5, etc., and is elongated in the X direction on the lower surface of reticle R. An image of the pattern in the area is projected onto an exposure area on one shot area on the wafer W. Lens elements via three drive elements (piezo elements, etc.) 57A and 57B and lens frames 56A and 56B that can be expanded and contracted in the Z direction within the divided lens barrels 55A and 55B that are part of the lens barrels of the projection optical system PL. 58A and 58B are supported. The drive amounts of the drive elements 57A and 57B are controlled by the drive system 54 under the control of the main control system 50. By controlling the position of the lens elements 58A and 58B in the Z direction and the tilt angles in the θx and θy directions via the drive elements 57A and 57B, the imaging characteristics such as the field curvature and the best focus position of the projection optical system PL are controlled. Can be controlled. An imaging characteristic control mechanism of the projection optical system PL is configured including the drive elements 57A and 57B and the drive system 54. Note that the number and position of lens elements (or optical members) in the projection optical system PL driven by the imaging characteristic control mechanism are set according to the type of imaging characteristics to be controlled.

一方、ウエハWはウエハホルダWHを介してウエハステージWST上に吸着保持されている。ウエハステージWSTは、ウエハホルダWHが固定されたウエハテーブル21と、XYステージ23と、XYステージ23に対してウエハテーブル21のZ方向の位置(フォーカス位置)及びθx方向、θy方向の傾斜角を制御するための3箇所のZ駆動部22A,22B,22Cとを備えている。XYステージ23は、ウエハベースWBS上のXY平面にほぼ平行なガイド面上に空気軸受を介して移動可能に載置され、リニアモータ等の駆動機構(不図示)によって、Y方向に定速駆動されるとともに、X方向、Y方向にステップ移動するように駆動される。   On the other hand, wafer W is sucked and held on wafer stage WST via wafer holder WH. Wafer stage WST controls wafer table 21 to which wafer holder WH is fixed, XY stage 23, and the position (focus position) of wafer table 21 with respect to XY stage 23 and the tilt angles in the θx and θy directions. 3 Z drive parts 22A, 22B, and 22C for carrying out are provided. The XY stage 23 is mounted on a guide surface substantially parallel to the XY plane on the wafer base WBS so as to be movable via an air bearing, and is driven at a constant speed in the Y direction by a drive mechanism (not shown) such as a linear motor. At the same time, it is driven to move stepwise in the X and Y directions.

ウエハテーブル21の直交する反射面(移動鏡でもよい)に対向するように、その反射面に計測用のレーザビームを照射するレーザ干渉計24(実際には例えば少なくともY方向に1軸、X方向に2軸のレーザ干渉計より構成されている)が配置されている。レーザ干渉計24は、例えば投影光学系PLの側面に設けた参照鏡(不図示)を基準として、少なくともウエハテーブル21(ウエハW)のX方向、Y方向の位置を0.5〜0.1nm程度の分解能で計測し、θz方向の回転角も計測する。この計測値は主制御系50内のステージ制御部に供給され、ステージ制御部はその計測値に基づいて駆動機構(不図示)を介してウエハステージWSTの2次元的な位置及び速度を制御する。   Laser interferometer 24 (actually, for example, at least one axis in the Y direction and the X direction) irradiates a measurement laser beam on the reflecting surface so as to face the orthogonal reflecting surface (which may be a moving mirror) of the wafer table 21. Are constructed of two-axis laser interferometers). The laser interferometer 24 uses, for example, a reference mirror (not shown) provided on the side surface of the projection optical system PL as a reference, and at least the position of the wafer table 21 (wafer W) in the X direction and Y direction is 0.5 to 0.1 nm. It measures with a resolution of about, and also measures the rotation angle in the θz direction. This measurement value is supplied to a stage control unit in main control system 50, and the stage control unit controls the two-dimensional position and speed of wafer stage WST via a drive mechanism (not shown) based on the measurement value. .

また、投影光学系PLの側面にはウエハW上のアライメントマークの位置を検出するアライメントセンサALGが設置され、ウエハテーブル21のウエハWの近傍には、スリット及び基準マークが形成された基準マーク板25aと、そのスリットを通過した露光光を集光するレンズ系25bと、集光された光束を受光する光電センサ25cとを含む空間像計測系25が設置されている。空間像計測系25によって、レチクルRのアライメントマークの像の位置の計測も可能である。アライメントセンサALG及び空間像計測系25の検出信号は、主制御系50内のアライメント制御部に供給され、その検出信号に基づいてアライメント制御部はレチクルRとウエハWとのアライメントを行う。   An alignment sensor ALG for detecting the position of the alignment mark on the wafer W is installed on the side surface of the projection optical system PL, and a reference mark plate in which slits and reference marks are formed in the vicinity of the wafer W on the wafer table 21. An aerial image measurement system 25 is installed that includes 25a, a lens system 25b that collects the exposure light that has passed through the slit, and a photoelectric sensor 25c that receives the collected light flux. The aerial image measurement system 25 can also measure the position of the alignment mark image on the reticle R. Detection signals from the alignment sensor ALG and the aerial image measurement system 25 are supplied to an alignment control unit in the main control system 50, and the alignment control unit aligns the reticle R and the wafer W based on the detection signals.

また、AFセンサ60は、ウエハW表面の複数の計測点に斜めにスリット像を投射する投光部60aと、その表面からの反射光を受光してスリット像を再形成し、それらの横ずれ量、ひいては計測点のZ方向の位置(フォーカス位置)に対応する検出信号を出力する受光部60bとから構成された、斜入射方式で多点のオートフォーカスセンサである。受光部60bの検出信号は主制御系50内のウエハ側フォーカス演算部に供給され、ウエハ側フォーカス演算部は、その検出信号を処理してウエハW表面のフォーカス位置及び傾斜角を求める。   Further, the AF sensor 60 projects a slit image obliquely to a plurality of measurement points on the surface of the wafer W, receives light reflected from the surface, re-forms the slit image, and the amount of lateral displacement thereof. In addition, this is an oblique incidence type multi-point autofocus sensor, which is composed of a light receiving unit 60b that outputs a detection signal corresponding to the position (focus position) in the Z direction of the measurement point. The detection signal of the light receiving unit 60b is supplied to the wafer side focus calculation unit in the main control system 50, and the wafer side focus calculation unit processes the detection signal to obtain the focus position and tilt angle of the wafer W surface.

また、主制御系50内のレチクル側フォーカス演算部には、後述のように、RAFセンサ2及びRAF制御系52を介して計測されるレチクルRの下面(パターン面)のZ方向の位置情報も供給される。この位置情報に基づいて、レチクル側フォーカス演算部は、投影光学系PLによるレチクルRのパターンの縮小像の像面のZ方向の位置、及びθx方向、θy方向の傾斜角(又は像面湾曲の状態)を求める。そして、走査露光時に、主制御系50内のフォーカス駆動部は、レチクル側フォーカス演算部によって算出される投影光学系PLの像面に、ウエハ側フォーカス演算部によって求められるウエハW表面が合焦されるように、オートフォーカス方式でZ駆動部22A〜22Cを駆動するとともに、必要に応じて結像特性制御機構(駆動系54)を介して投影光学系PLの像面湾曲又はフォーカス位置を制御する。即ち、Z駆動部22A〜22C及び結像特性制御機構(駆動系54)が合焦機構(像位置の補正機構)を構成している。これによって、レチクルRの下面(パターン形成面)に微小な撓みが生じているような場合でも、投影光学系PLの像面にウエハW表面を合焦させて、レチクルRのパターンを高解像度でウエハWの各ショット領域に転写することができる。   The reticle-side focus calculation unit in the main control system 50 also includes position information in the Z direction of the lower surface (pattern surface) of the reticle R measured via the RAF sensor 2 and the RAF control system 52, as will be described later. Supplied. Based on this position information, the reticle-side focus calculation unit calculates the position in the Z direction of the reduced image of the pattern of the reticle R by the projection optical system PL, and the inclination angle (or the curvature of field in the θx direction and θy direction). Status). At the time of scanning exposure, the focus drive unit in the main control system 50 focuses the surface of the wafer W obtained by the wafer side focus calculation unit on the image plane of the projection optical system PL calculated by the reticle side focus calculation unit. As described above, the Z drive units 22A to 22C are driven by the autofocus method, and the curvature of field or the focus position of the projection optical system PL is controlled via the imaging characteristic control mechanism (drive system 54) as necessary. . That is, the Z driving units 22A to 22C and the imaging characteristic control mechanism (driving system 54) constitute a focusing mechanism (image position correcting mechanism). As a result, even when a slight deflection occurs on the lower surface (pattern forming surface) of the reticle R, the surface of the wafer W is focused on the image surface of the projection optical system PL, and the pattern of the reticle R can be obtained with high resolution. It can be transferred to each shot area of the wafer W.

そして、走査露光時には、照明光学系ILからの露光光の照明領域に対して、レチクルステージRSTを介してレチクルRをY方向に移動するのに同期して、ウエハステージWSTを介してウエハW上の一つのショット領域を投影倍率を速度比としてY方向に移動する動作と、露光光の照射を停止して、ウエハステージWSTを介してウエハWをX方向、Y方向にステップ移動する動作とが繰り返される。このようなステップ・アンド・スキャン動作によって、ウエハW上の各ショット領域にレチクルRのパターンの像が露光される。   At the time of scanning exposure, on the wafer W via the wafer stage WST in synchronization with the movement of the reticle R in the Y direction via the reticle stage RST with respect to the illumination area of the exposure light from the illumination optical system IL. The movement of one shot area in the Y direction with the projection magnification as the speed ratio and the operation of stopping the exposure light irradiation and moving the wafer W stepwise in the X and Y directions via the wafer stage WST Repeated. By such a step-and-scan operation, an image of the pattern of the reticle R is exposed to each shot area on the wafer W.

次に、本実施形態において、投影光学系PLのフォーカス誤差の要因となるレチクルRの下面(パターン面)の撓み等に起因するZ方向の位置(Z位置)の分布を計測するためのRAFセンサ2、及びこの検出信号を処理するRAF制御系52について詳細に説明する。なお、RAFセンサ2及びRAF制御系52によるレチクルRのZ位置の計測は、例えば図1のレチクルステージRST上でレチクルの交換を行った後に実行される。この後の同一のレチクルを用いる露光工程では、最初に計測されて記憶されているレチクルRの走査方向の位置に応じたZ位置に基づいてオートフォーカス制御が行われる。   Next, in the present embodiment, the RAF sensor for measuring the distribution of the position in the Z direction (Z position) caused by the deflection of the lower surface (pattern surface) of the reticle R that causes the focus error of the projection optical system PL. 2 and the RAF control system 52 that processes this detection signal will be described in detail. Note that the measurement of the Z position of the reticle R by the RAF sensor 2 and the RAF control system 52 is performed, for example, after exchanging the reticle on the reticle stage RST of FIG. In the subsequent exposure process using the same reticle, autofocus control is performed based on the Z position corresponding to the position in the scanning direction of the reticle R that is measured and stored first.

図2(A)は図1の投影光学系PLの上端部の側面とレチクルベースRBSとの間に配置されたRAFセンサ2及びRAF制御系52を示す。図2(A)において、RAFセンサ2は、レチクルベースRBSの開口10dの下方に配置され、開口10dの上方をレチクルステージRSTに保持されたレチクルR及びレチクルマーク板RFMがY方向(走査方向SD)に移動する。図2(A)においては、レチクルRの下面のパターン面Raが被検面としてRAFセンサ2の上方に位置している。RAFセンサ2は、半導体レーザ又は発光ダイオード等の点光源として計測光L1を+Y方向に放射状に発生する光源31を備えている。計測光L1は例えば可視域から近赤外域の単色光であり、その波長は一例として670nmである。RAF制御系52が光源31の発光タイミング及び出力を制御する。   2A shows the RAF sensor 2 and the RAF control system 52 disposed between the side surface of the upper end portion of the projection optical system PL of FIG. 1 and the reticle base RBS. In FIG. 2A, the RAF sensor 2 is arranged below the opening 10d of the reticle base RBS, and the reticle R and the reticle mark plate RFM held by the reticle stage RST above the opening 10d are in the Y direction (scanning direction SD). ) In FIG. 2A, the pattern surface Ra on the lower surface of the reticle R is positioned above the RAF sensor 2 as a test surface. The RAF sensor 2 includes a light source 31 that generates measurement light L1 radially in the + Y direction as a point light source such as a semiconductor laser or a light emitting diode. The measurement light L1 is, for example, monochromatic light from the visible range to the near infrared range, and the wavelength thereof is 670 nm as an example. The RAF control system 52 controls the light emission timing and output of the light source 31.

また、RAFセンサ2は、レチクルRのパターン面Raの下方に光軸axrに沿って順次配列された対物レンズ35と、開口絞り34と、計測光L1を透過する後述の位相板33と、プリズム型のビームスプリッタ32と、ピンホール36aが形成されたピンホール板36と、フォトダイオード等の光電センサ37とを備えている。対物レンズ35は、光源31の発光部とパターン面Raの計測光L1の照射領域とを実質的に光学的に共役にするとともに、パターン面Raの計測光L1の照射領域とピンホール36aとを実質的に光学的に共役にする。言い換えると、対物レンズ35及びピンホール板36によって、パターン面Raに対して共焦点光学系が構成されている。ただし、レチクルRの自重によってパターン面Raは僅かに例えば円弧状に撓む傾向があるため、例えば経験的に求められているパターン面RaのY方向の全面の平均的な平面を基準面11とする。基準面11は、一例として、投影光学系PLの光軸AX上では投影光学系PLの設計上の物体面と同じZ位置にあり、パターン面Raの計測光L1の照射領域が基準面11に合致するときに、その照射領域と光源31の発光部及びピンホール36aとは正確に光学的に共役になる。なお、基準面11としては、例えばレチクルマーク板RFMの下面(パターン面)を使用してもよい。   The RAF sensor 2 includes an objective lens 35 that is sequentially arranged along the optical axis axr below the pattern surface Ra of the reticle R, an aperture stop 34, a later-described phase plate 33 that transmits the measurement light L1, and a prism. A type beam splitter 32, a pinhole plate 36 in which a pinhole 36a is formed, and a photoelectric sensor 37 such as a photodiode. The objective lens 35 substantially optically conjugates the light emitting portion of the light source 31 and the irradiation region of the measurement light L1 on the pattern surface Ra, and also connects the irradiation region of the measurement light L1 on the pattern surface Ra and the pinhole 36a. Substantially optically conjugate. In other words, the objective lens 35 and the pinhole plate 36 constitute a confocal optical system for the pattern surface Ra. However, since the pattern surface Ra tends to be slightly bent, for example, in an arc shape due to the weight of the reticle R, for example, an average plane in the Y direction of the pattern surface Ra that is empirically obtained is defined as the reference surface 11. To do. As an example, the reference surface 11 is at the same Z position as the design object surface of the projection optical system PL on the optical axis AX of the projection optical system PL, and the irradiation area of the measurement light L1 on the pattern surface Ra is on the reference surface 11. When they match, the irradiation area and the light emitting portion of the light source 31 and the pinhole 36a are accurately optically conjugate. For example, the lower surface (pattern surface) of reticle mark plate RFM may be used as reference surface 11.

また、開口絞り34の配置面は、共焦点光学系の射出瞳(ここでは対物レンズ35の射出瞳と同じ)と光学的に共役であり、位相板33は開口絞り34の近傍の面上に配置されている。対物レンズ35からパターン面Raに照射される計測光L1の開口数NAは例えば0.5である。この場合、光源31から射出された計測光L1のうちビームスプリッタ32でレチクルRの方向(+Z方向)に反射された計測光(これもL1と呼ぶ)は、位相板33、開口絞り34を通過し、対物レンズ35によってパターン面Raに集光される。そして、計測光L1のうちパターン面Raで反射された反射光L2は、対物レンズ35、開口絞り34及び位相板33を介してビームスプリッタ32に戻り、ビームスプリッタ32を透過した反射光(これもL2と呼ぶ)が、ピンホール36aを通過して光電センサ37で受光される。光電センサ37の検出信号FS1がRAF制御系52に出力される。   The arrangement surface of the aperture stop 34 is optically conjugate with the exit pupil of the confocal optical system (here, the same as the exit pupil of the objective lens 35), and the phase plate 33 is on a surface in the vicinity of the aperture stop 34. Has been placed. The numerical aperture NA of the measurement light L1 irradiated from the objective lens 35 to the pattern surface Ra is, for example, 0.5. In this case, of the measurement light L1 emitted from the light source 31, the measurement light reflected in the direction of the reticle R (+ Z direction) by the beam splitter 32 (also referred to as L1) passes through the phase plate 33 and the aperture stop 34. Then, the light is condensed on the pattern surface Ra by the objective lens 35. Then, the reflected light L2 reflected by the pattern surface Ra in the measurement light L1 returns to the beam splitter 32 through the objective lens 35, the aperture stop 34, and the phase plate 33, and the reflected light transmitted through the beam splitter 32 (also this L2) passes through the pinhole 36a and is received by the photoelectric sensor 37. A detection signal FS1 of the photoelectric sensor 37 is output to the RAF control system 52.

ピンホール36aの大きさは、パターン面Raが基準面11に合致している状態で、パターン面Raからの反射光L2の照射領域(スポット光)よりも大きくなるように設定されている。そして、パターン面RaのZ位置が基準面11から離れると、反射光L2の照射領域が大きくなって、反射光L2のうちでピンホール36aを通過する光量が減少するため、検出信号FS1が小さくなる。従って、対物レンズ35が静止しているときには、検出信号FS1は、図2(C)に示すように、パターン面Ra上の計測光L1の照射領域のZ位置zfが、基準面11のZ位置であるz0に合致しているときに最大になり、Z位置zfがz0から離れると小さくなる。   The size of the pinhole 36a is set to be larger than the irradiation area (spot light) of the reflected light L2 from the pattern surface Ra in a state where the pattern surface Ra matches the reference surface 11. When the Z position of the pattern surface Ra moves away from the reference surface 11, the irradiation area of the reflected light L2 increases, and the amount of light that passes through the pinhole 36a in the reflected light L2 decreases, so the detection signal FS1 is small. Become. Therefore, when the objective lens 35 is at rest, the detection signal FS1 is generated when the Z position zf of the irradiation region of the measurement light L1 on the pattern surface Ra is the Z position of the reference surface 11 as shown in FIG. It becomes maximum when it coincides with z0, and becomes smaller when the Z position zf moves away from z0.

また、図2(A)において、対物レンズ35を保持するレンズホルダ38は、不図示のフレームに対して例えば板ばね(不図示)を介してZ方向に変位可能に支持され、レンズホルダ38に巻回されたコイル39と、そのフレームに固定されてコイル39を横切る磁場を生成する磁性部材40とから、対物レンズ35をZ方向に振動させるボイスコイルモータが構成されている。RAF制御系52がコイル39に流す電流を制御して、対物レンズ35をZ方向に所定周期で振動させる。また、RAF制御系52は、一例として光電センサ37からの検出信号FS1をそのコイル39の駆動電流に同期した信号で同期整流して、図2(D)に示すように、パターン面RaのZ位置zfと基準面11(ここでは設計上の物体面)のZ位置z0との差分(デフォーカス量)に比例して変化するフォーカス信号FS2を生成する。   In FIG. 2A, the lens holder 38 that holds the objective lens 35 is supported so as to be displaceable in the Z direction with respect to a frame (not shown) through, for example, a leaf spring (not shown). A voice coil motor that vibrates the objective lens 35 in the Z direction is constituted by the wound coil 39 and a magnetic member 40 that is fixed to the frame and generates a magnetic field across the coil 39. The RAF control system 52 controls the current flowing through the coil 39 to vibrate the objective lens 35 in the Z direction at a predetermined cycle. Further, as an example, the RAF control system 52 synchronously rectifies the detection signal FS1 from the photoelectric sensor 37 with a signal synchronized with the drive current of the coil 39, and as shown in FIG. A focus signal FS2 that changes in proportion to the difference (defocus amount) between the position zf and the Z position z0 of the reference plane 11 (here, the designed object plane) is generated.

フォーカス信号FS2は図1の主制御系50内のレチクル側フォーカス演算部に供給され、そのレチクル側フォーカス演算部は、そのフォーカス信号FS2に予め求められている換算係数を乗じて、このときのレチクルステージRST(レチクルR)のY座標に対応させて、パターン面RaのZ位置zfを求める。この際に、RAFセンサ2の光軸axrと投影光学系PLの光軸AX(本実施形態では露光光による照明領域の中心と合致する)とのY方向の間隔(RAFセンサ2のベースライン)は、予め求められて主制御系50内の記憶装置に記憶されている。そのレチクル側フォーカス演算部は、レチクルステージRSTをY方向に所定間隔で移動させたときに得られる一連のパターン面RaのZ位置zfを求めることで、パターン面RaのZ位置の分布(撓み量)を求める。このパターン面RaのZ位置の分布に基づいて、レチクル側フォーカス演算部は、走査露光時のレチクルステージRST(レチクルR)のY座標に対応させて、投影光学系PLによるレチクルRのパターンの像面のZ方向の位置等の情報を求め、この情報を主制御系50内のフォーカス駆動部に供給する。   The focus signal FS2 is supplied to a reticle-side focus calculation unit in the main control system 50 of FIG. 1, and the reticle-side focus calculation unit multiplies the focus signal FS2 by a conversion factor obtained in advance, and the reticle at this time The Z position zf of the pattern surface Ra is obtained in correspondence with the Y coordinate of the stage RST (reticle R). At this time, the distance in the Y direction between the optical axis axr of the RAF sensor 2 and the optical axis AX of the projection optical system PL (in this embodiment, matches the center of the illumination area by the exposure light) (base line of the RAF sensor 2). Is obtained in advance and stored in a storage device in the main control system 50. The reticle-side focus calculation unit obtains the Z position zf of the pattern surface Ra obtained when the reticle stage RST is moved in the Y direction at a predetermined interval, whereby the Z position distribution (deflection amount) of the pattern surface Ra is obtained. ) Based on the distribution of the Z position of the pattern surface Ra, the reticle-side focus calculation unit corresponds to the Y coordinate of the reticle stage RST (reticle R) during scanning exposure, and the pattern image of the reticle R by the projection optical system PL. Information such as the position of the surface in the Z direction is obtained, and this information is supplied to the focus drive unit in the main control system 50.

次に、図2(A)のRAFセンサ2における位相板33の構成及び作用につき説明する。図2(B)に示すように、位相板33は、光軸axrを中心とした円周状の段差部33bを挟んで内側の中心領域33aと外側の周辺領域33cとに分かれている。位相板33の外形は円板状であるが、この外形は正方形状等でもよい。この場合、計測光L1は中心領域33aの全面及び周辺領域33cの一部を通過しており、中心領域33aを透過した計測光L1はパターン面Raで反射され、反射光L2として再び位相板33の中心領域33aを透過する。同様に、周辺領域33cを透過した計測光L1はパターン面Raで反射され、反射光L2として再び位相板33の周辺領域33cを透過する。   Next, the configuration and operation of the phase plate 33 in the RAF sensor 2 of FIG. As shown in FIG. 2B, the phase plate 33 is divided into an inner central region 33a and an outer peripheral region 33c with a circumferential step portion 33b centered on the optical axis axr. The outer shape of the phase plate 33 is a disc shape, but the outer shape may be a square shape or the like. In this case, the measurement light L1 passes through the entire surface of the central region 33a and part of the peripheral region 33c, and the measurement light L1 that has passed through the central region 33a is reflected by the pattern surface Ra, and again as the reflected light L2, the phase plate 33. Is transmitted through the central region 33a. Similarly, the measurement light L1 that has passed through the peripheral region 33c is reflected by the pattern surface Ra, and again passes through the peripheral region 33c of the phase plate 33 as reflected light L2.

また、図3(A)及び図3(B)はそれぞれ図2(A)中の位相板33を示す拡大断面図である。図3(A)に示すように、位相板33の内側の中心領域33aとこれを囲む周辺領域33cとの段差dは、中心領域33aを透過する計測光L1と周辺領域33cを透過する計測光L1との間に、計測光L1の波長をλとして、次の光路長差ΔOP1が生じるように設定されている。なお、kは任意の整数であるが、実用上はkは0が好ましい。   3A and 3B are enlarged sectional views showing the phase plate 33 in FIG. 2A, respectively. As shown in FIG. 3A, the level difference d between the central region 33a inside the phase plate 33 and the peripheral region 33c surrounding the central region 33a is measured light L1 that passes through the central region 33a and measurement light that passes through the peripheral region 33c. The optical path length difference ΔOP1 is set so as to occur between L1 and the wavelength of the measurement light L1 as λ. Although k is an arbitrary integer, k is preferably 0 for practical use.

ΔOP1=λ/2+k・λ …(1)
なお、式(1)の光路長差ΔOP1はλ/2と等価である。また、式(1)の光路長差ΔOP1は位相差では(180°+k・360°)、即ち180°の奇数倍に相当するが、この位相差は180°と等価である。
この位相板33の中心領域33aを通過した計測光L1の波面L1awと、周辺領域33cを通過した計測光L1の波面L1cwとの光路長差はλ/2(位相差で180°)であるため、パターン面Raの光軸axr上に集光される計測光L1の強度分布は、位相差が180°の2つの光束の干渉によって小さくなる。従って、図3(C)に示すように、パターン面Ra上での計測光L1の照射領域41は、位相板33がない場合の点線で示す照射領域41Aに比べて広くなる。一例として、位相板33がない場合の照射領域41Aが直径1〜2μm程度の円形領域であるとすると、位相板33を使用したときの照射領域41は直径が数μm(例えば5μm)程度の面積で4倍以上の円形領域になる。
ΔOP1 = λ / 2 + k · λ (1)
Note that the optical path length difference ΔOP1 in the equation (1) is equivalent to λ / 2. Further, the optical path length difference ΔOP1 in the equation (1) is equivalent to (180 ° + k · 360 °) in phase difference, that is, an odd multiple of 180 °, but this phase difference is equivalent to 180 °.
The optical path length difference between the wavefront L1aw of the measurement light L1 that has passed through the central region 33a of the phase plate 33 and the wavefront L1cw of the measurement light L1 that has passed through the peripheral region 33c is λ / 2 (180 ° in phase difference). The intensity distribution of the measurement light L1 collected on the optical axis axr of the pattern surface Ra is reduced by the interference of two light beams having a phase difference of 180 °. Therefore, as shown in FIG. 3C, the irradiation region 41 of the measurement light L1 on the pattern surface Ra is wider than the irradiation region 41A indicated by the dotted line when there is no phase plate 33. As an example, assuming that the irradiation region 41A without the phase plate 33 is a circular region having a diameter of about 1 to 2 μm, the irradiation region 41 when the phase plate 33 is used has an area with a diameter of about several μm (for example, 5 μm). Becomes a circular region of 4 times or more.

この結果、パターン面Raに転写用の回路パターン42(反射率の高い部分として作用する)が形成されていても、照射領域41の面積に対する回路パターン42の面積の割合が小さいため、パターン面Raからの反射光L2の光量分布はあまり影響を受けないため、パターン面RaのZ位置を高精度に検出可能である。
また、位相板33の中心領域33a及び周辺領域33cを透過した計測光L1によるパターン面Raからの反射光L2は、図3(B)に示すように、それぞれ再び位相板33の中心領域33a及び周辺領域33cを透過する。従って、中心領域33aを透過した反射光L2の波面L2awと、周辺領域33cを透過した反射光L2の波面L2cwとの間には、式(1)の2倍の次の光路長差ΔOP2が生じる。
As a result, even if the circuit pattern 42 for transfer (acting as a part having a high reflectance) is formed on the pattern surface Ra, the ratio of the area of the circuit pattern 42 to the area of the irradiation region 41 is small, so the pattern surface Ra Since the light amount distribution of the reflected light L2 from the light source is not significantly affected, the Z position of the pattern surface Ra can be detected with high accuracy.
In addition, the reflected light L2 from the pattern surface Ra by the measurement light L1 transmitted through the central region 33a and the peripheral region 33c of the phase plate 33 again becomes the central region 33a and the central region 33a of the phase plate 33, respectively, as shown in FIG. It passes through the peripheral region 33c. Therefore, the next optical path length difference ΔOP2 that is twice the expression (1) occurs between the wavefront L2aw of the reflected light L2 transmitted through the central region 33a and the wavefront L2cw of the reflected light L2 transmitted through the peripheral region 33c. .

ΔOP2=λ+2・k・λ …(2)
この光路長差ΔOP2はλの整数倍であるため、実質的に光路長差が0の場合と等価である。また、式(2)の光路長差ΔOP2は位相差では(360°+2・k・360°)、即ち360°の整数倍に相当するが、この位相差は0°と等価である。
従って、位相板33の中心領域33aを透過する反射光L2の等価的な波面L2aw’と周辺領域33cを透過する反射光L2の波面L2cwとの位相が等しくなるため、反射光L2の波面は位相板33が存在しない場合の波面と実質的に等しくなる。この結果、図3(D)に示すように、ピンホール板36のピンホール36a内に集光される反射光L2の照射領域43は、位相板33を使用しない場合と同じ大きさの円形領域であり、パターン面RaのZ位置を高感度に計測できる。
ΔOP2 = λ + 2 · k · λ (2)
Since this optical path length difference ΔOP2 is an integral multiple of λ, it is substantially equivalent to the case where the optical path length difference is zero. Further, the optical path length difference ΔOP2 in the expression (2) is (360 ° + 2 · k · 360 °) in terms of phase difference, that is, an integer multiple of 360 °, but this phase difference is equivalent to 0 °.
Accordingly, the phase of the equivalent wavefront L2aw ′ of the reflected light L2 that passes through the central region 33a of the phase plate 33 and the wavefront L2cw of the reflected light L2 that passes through the peripheral region 33c become equal, so that the wavefront of the reflected light L2 is in phase. It becomes substantially equal to the wavefront when the plate 33 is not present. As a result, as shown in FIG. 3D, the irradiation region 43 of the reflected light L2 collected in the pinhole 36a of the pinhole plate 36 is a circular region having the same size as when the phase plate 33 is not used. Thus, the Z position of the pattern surface Ra can be measured with high sensitivity.

また、図3(A)に示すように、パターン面Ra上に回路パターン42が存在しても、ピンホール36a内の反射光L2の照射領域43に対する回路パターン42からの光束の割合は、パターン面Ra上での広い照射領域41に対する回路パターン42の割合と同じで小さい。従って、ピンホール36a内の照射領域43の光量重心はほぼ光軸axrの近傍にあるため、図2(A)の対物レンズ35をZ方向に振動させたときにも、ピンホール36aと照射領域43との相対位置が殆ど変化しないため、パターン面RaのZ位置を高精度に計測できる。   Further, as shown in FIG. 3A, even if the circuit pattern 42 exists on the pattern surface Ra, the ratio of the light flux from the circuit pattern 42 to the irradiation region 43 of the reflected light L2 in the pinhole 36a is the pattern. The ratio is the same as the ratio of the circuit pattern 42 to the wide irradiation region 41 on the surface Ra, which is small. Accordingly, since the center of light quantity of the irradiation region 43 in the pinhole 36a is substantially in the vicinity of the optical axis axr, the pinhole 36a and the irradiation region can be obtained even when the objective lens 35 in FIG. Since the relative position to 43 hardly changes, the Z position of the pattern surface Ra can be measured with high accuracy.

これに対して、RAFセンサ2において位相板33を設けない場合には、図4(A)に示すように、パターン面Ra上での計測光L1の照射領域41Aは、パターン面Ra上の回路パターン42の幅の2倍程度の大きさとなり、照射領域41Aの強度分布はY方向に大きく非対称になる。従って、パターン面Raからの反射光L2のピンホール36a内での照射領域43Aは、図4(B)に示すように、光軸axrに関してY方向に大きく非対称となるため、RAFセンサ2(A)の対物レンズ35をZ方向に駆動したときに光電センサ37の検出信号FS1が歪む恐れがあるとともに、特にパターン面Raの基準面11からのデフォーカス量が大きくなると、フォーカス信号FS2の誤差が大きくなる恐れがある。   On the other hand, when the phase plate 33 is not provided in the RAF sensor 2, as shown in FIG. 4A, the irradiation region 41A of the measurement light L1 on the pattern surface Ra is a circuit on the pattern surface Ra. The size is about twice the width of the pattern 42, and the intensity distribution of the irradiation region 41A is largely asymmetric in the Y direction. Accordingly, the irradiation region 43A of the reflected light L2 from the pattern surface Ra within the pinhole 36a is largely asymmetric in the Y direction with respect to the optical axis axr, as shown in FIG. 4B, so that the RAF sensor 2 (A ) When the objective lens 35 is driven in the Z direction, the detection signal FS1 of the photoelectric sensor 37 may be distorted. In particular, when the defocus amount of the pattern surface Ra from the reference surface 11 is increased, the error of the focus signal FS2 is increased. There is a risk of growing.

なお、パターン面Ra上の回路パターンの形状及び線幅は種々であるが、本実施形態のようにパターン面Ra上での計測光L1の照射領域41が広い場合には、その照射領域41の面積にほぼ比例してパターン面Ra上の回路パターン又は反射率分布の影響を軽減できる。
次に、図2(A)中の位相板33の種々の実施例について、コンピュータ上のシミュレーションによってパターン面Ra上での計測光L1の照射領域の形状を求めた結果を図5(A)〜図5(D)及び図6(A)〜図6(D)を参照して説明する。この際の条件は、計測光L1の波長λを670nm、対物レンズ35の開口数NAを0.5とした。また、以下では位相板の外形は正方形であるが、その外形は円形等でもよい。
The shape and line width of the circuit pattern on the pattern surface Ra are various, but when the irradiation region 41 of the measurement light L1 on the pattern surface Ra is wide as in the present embodiment, the irradiation region 41 The influence of the circuit pattern or the reflectance distribution on the pattern surface Ra can be reduced in proportion to the area.
Next, for various examples of the phase plate 33 in FIG. 2A, the results of obtaining the shape of the irradiation region of the measurement light L1 on the pattern surface Ra by computer simulation are shown in FIGS. This will be described with reference to FIGS. 5D and 6A to 6D. The conditions at this time were such that the wavelength λ of the measurement light L1 was 670 nm and the numerical aperture NA of the objective lens 35 was 0.5. In the following, the outer shape of the phase plate is a square, but the outer shape may be a circle or the like.

先ず、比較例として、図5(A)は位相板33の代わりに計測光L1を透過する位相差のない平板33Uを配置した場合を示す。この場合のパターン面Ra上での計測光L1の照射領域は、図5(B)に示すように直径が0.8μm程度の円形領域である。
これに対して、図5(C)の位相板33は、中心領域33aを囲む段差部33bの半径を開口数NAに換算して0.8×NAとしたものである。この際に周辺領域33c中の計測光L1の半径が開口数NAに対応しており、中心領域33a及び周辺領域33cを透過する計測光L1の間にλ/2の光路長差(180°の位相差)が付与される。この場合のパターン面Ra上での計測光L1の照射領域は、図5(D)に示すように、直径が2μm程度の円形領域に拡張されるる。
First, as a comparative example, FIG. 5A shows a case where a flat plate 33 </ b> U that transmits the measurement light L <b> 1 and has no phase difference is arranged instead of the phase plate 33. In this case, the irradiation area of the measurement light L1 on the pattern surface Ra is a circular area having a diameter of about 0.8 μm as shown in FIG.
On the other hand, the phase plate 33 in FIG. 5C is obtained by converting the radius of the step portion 33b surrounding the central region 33a to 0.8 × NA in terms of the numerical aperture NA. At this time, the radius of the measurement light L1 in the peripheral region 33c corresponds to the numerical aperture NA, and the optical path length difference of λ / 2 (180 ° difference between the measurement light L1 transmitted through the central region 33a and the peripheral region 33c). Phase difference). In this case, the irradiation area of the measurement light L1 on the pattern surface Ra is expanded to a circular area having a diameter of about 2 μm, as shown in FIG.

また、図6(A)の位相板33Aは、中心領域33aを囲む段差部33bの半径を0.7×NAとしたものである。この場合のパターン面Ra上での計測光L1の照射領域は、図6(B)に示すように、内径が0.8μm程度で外径が3.5μm程度の輪帯領域である。このような輪帯状の照射領域であってもパターン面Ra上の回路パターンの影響が軽減されるため、位相板33Aは図2(A)の位相板33の代わりに使用可能である。   Further, in the phase plate 33A of FIG. 6A, the radius of the stepped portion 33b surrounding the central region 33a is 0.7 × NA. In this case, the irradiation area of the measurement light L1 on the pattern surface Ra is an annular area having an inner diameter of about 0.8 μm and an outer diameter of about 3.5 μm, as shown in FIG. Since the influence of the circuit pattern on the pattern surface Ra is reduced even in such an annular irradiation region, the phase plate 33A can be used instead of the phase plate 33 in FIG.

また、図6(C)の位相板33Bは、半径0.5×NAの段差部33b3、半径0.7×NAの段差部33b2、及び半径0.87×NAの段差部33b1によって、計測光L1の入射面を、光軸を含む中心領域、これを囲む第1輪帯領域、これを囲む第2輪帯領域、及びこれを囲む周辺領域に分けて、中心領域と第2輪帯領域とからなる第1領域33aを透過する計測光と、第1輪帯領域と周辺領域とからなる第2領域33cを透過する計測光との間にλ/2の光路長差(180°の位相差)を付与したものである。   Further, the phase plate 33B of FIG. 6C has a measuring light beam by a step portion 33b3 having a radius of 0.5 × NA, a step portion 33b2 having a radius of 0.7 × NA, and a step portion 33b1 having a radius of 0.87 × NA. The L1 incident surface is divided into a central region including the optical axis, a first annular region surrounding it, a second annular region surrounding it, and a peripheral region surrounding it, and a central region and a second annular region An optical path length difference of λ / 2 (a phase difference of 180 °) between the measurement light transmitted through the first region 33a and the measurement light transmitted through the second region 33c composed of the first annular region and the peripheral region. ).

この場合のパターン面Ra上での計測光L1の照射領域は、図6(D)に示すように、内径が0.8μm程度で外径が1.5μm程度の第1輪帯領域と、内径が5μm程度で外径が7μm程度の第2輪帯領域とに分かれる。このような2重の輪帯状の照射領域であってもパターン面Ra上の回路パターンの影響が軽減されるため、位相板33Bは図2(A)の位相板33の代わりに使用可能である。   In this case, as shown in FIG. 6D, the irradiation area of the measurement light L1 on the pattern surface Ra includes a first annular zone area having an inner diameter of about 0.8 μm and an outer diameter of about 1.5 μm, and an inner diameter. Is divided into a second annular zone region having an outer diameter of about 5 μm and an outer diameter of about 7 μm. The phase plate 33B can be used in place of the phase plate 33 in FIG. 2A because the influence of the circuit pattern on the pattern surface Ra is reduced even in such a double ring-shaped irradiation region. .

本実施形態の作用効果は以下の通りである。
(1)本実施形態の図2(A)のRAFセンサ2及びRAF制御系52を含む検出装置は、計測光L1をレチクルRのパターン面Raに照射し、パターン面Raからの反射光L2を光電センサ37を介して受光して得られる検出信号FS1に基づいてパターン面Raの法線方向の位置(面位置)を検出する検出装置において、計測光L1をパターン面Raに照射して反射光L2を受光する対物レンズ35と、対物レンズ35を介した反射光L2を光電センサ37に通すピンホール36aが形成されたピンホール板36とを含む共焦点光学系と、パターン面Raに照射される計測光L1に、パターン面Ra上での照射面積を広げるように、かつ反射光L2に、ピンホール板36上での照射面積を狭くするように位相分布を付与する位相板33とを備えたものである。
The effect of this embodiment is as follows.
(1) The detection apparatus including the RAF sensor 2 and the RAF control system 52 in FIG. 2A of the present embodiment irradiates the measurement light L1 onto the pattern surface Ra of the reticle R, and applies the reflected light L2 from the pattern surface Ra. In a detection device that detects a position (surface position) in the normal direction of the pattern surface Ra based on a detection signal FS1 obtained by receiving light through the photoelectric sensor 37, the measurement light L1 is applied to the pattern surface Ra to be reflected light. A confocal optical system including an objective lens 35 that receives L2 and a pinhole plate 36 formed with a pinhole 36a through which reflected light L2 passing through the objective lens 35 passes through the photoelectric sensor 37, and the pattern surface Ra are irradiated. A phase plate 33 that imparts a phase distribution to the measurement light L1 so as to widen the irradiation area on the pattern surface Ra and to narrow the irradiation area on the pinhole plate 36 to the reflected light L2. It includes those were.

また、その検出装置は、基準面11(第1面)又はその近傍に配置されるレチクルRのパターン面Raに計測光L1を照射し、計測光L1のレチクルRによる反射光L2を光電検出した結果に基づいてパターン面Raの面位置情報を検出する検出装置において、基準面11とピンホール板36の配置面(第2面)とを光学的に共役にする対物レンズ35と、その配置面に配置され、反射光L2が通過可能なその配置面上の領域を所定範囲に制限するピンホール36aが形成されたピンホール板36とを含む共焦点光学系と、対物レンズ35を介して基準面11(パターン面Ra)に照射される計測光L1に第1の位相分布を付与するとともに、対物レンズ35を介してその配置面に導かれる反射光L2に第2の位相分布を付与する位相板33とを備えている。そして、その第1の位相分布は、基準面111(パターン面Ra)上での計測光L1の照射領域41が対物レンズ35によるピンホール36aの共役像より大きくなるように設定され、その第2の位相分布は、パターン面Raからの反射光L2のピンホール板36の配置面上での照射領域がピンホール36aより小さくなる(又はほぼ等しくてもよい)ように設定される。   Further, the detection device irradiates the measurement light L1 to the pattern surface Ra of the reticle R arranged at or near the reference surface 11 (first surface), and photoelectrically detects the reflected light L2 of the measurement light L1 by the reticle R. In the detection device that detects surface position information of the pattern surface Ra based on the result, the objective lens 35 that optically conjugates the reference surface 11 and the arrangement surface (second surface) of the pinhole plate 36, and the arrangement surface thereof A confocal optical system including a pinhole plate 36 in which a pinhole 36a is formed that restricts a region on the arrangement surface through which the reflected light L2 can pass to a predetermined range, and a reference through the objective lens 35. A phase that imparts a first phase distribution to the measurement light L1 irradiated to the surface 11 (pattern surface Ra) and a second phase distribution to the reflected light L2 that is guided to the arrangement surface via the objective lens 35. Board 33 It is equipped with a. The first phase distribution is set so that the irradiation region 41 of the measurement light L1 on the reference surface 111 (pattern surface Ra) is larger than the conjugate image of the pinhole 36a by the objective lens 35. Is set such that the irradiation area of the reflected light L2 from the pattern surface Ra on the arrangement surface of the pinhole plate 36 is smaller (or may be substantially equal) than the pinhole 36a.

この実施形態によれば、位相板33によってパターン面Ra上での計測光L1の照射面積が大きくなるため、パターン面Raのパターン又は反射率分布の影響が軽減される。さらに、位相板33によって反射光L2のピンホール36a上での照射面積が小さくなるため、パターン面Raの面位置情報を高精度又は高感度に検出できる。
(2)また、位相板33は透過する計測光L1に180°の位相差を付与する2つの領域(中心領域33a及び周辺領域33c)を有し、位相板33は、透過する反射光L2に180°の位相差を付与する2つの領域(中心領域33a及び周辺領域33c)を有する。従って、位相板33を容易に高精度に製造できる。
According to this embodiment, since the irradiation area of the measurement light L1 on the pattern surface Ra is increased by the phase plate 33, the influence of the pattern on the pattern surface Ra or the reflectance distribution is reduced. Furthermore, since the irradiation area of the reflected light L2 on the pinhole 36a is reduced by the phase plate 33, the surface position information of the pattern surface Ra can be detected with high accuracy or high sensitivity.
(2) In addition, the phase plate 33 has two regions (a central region 33a and a peripheral region 33c) that give a 180 ° phase difference to the transmitted measurement light L1, and the phase plate 33 reflects the transmitted reflected light L2. It has two regions (a central region 33a and a peripheral region 33c) that give a phase difference of 180 °. Therefore, the phase plate 33 can be easily manufactured with high accuracy.

なお、式(1)を用いて説明したように、その180°の位相差は、180°の奇数倍の位相差と等価である。また、実際には位相板33の製造誤差等を考慮して、その位相差は180°に対して例えば±10%程度までの誤差は許容できる。
また、位相板33上の異なる位相差を付与する領域は、図6(C)の位相板33Bのように3つ以上に分かれていてもよい。
Note that, as described using Expression (1), the 180 ° phase difference is equivalent to an odd multiple of 180 °. Actually, in consideration of manufacturing errors of the phase plate 33, the phase difference can be allowed to be up to about ± 10% with respect to 180 °.
Moreover, the area | region which provides the different phase difference on the phase plate 33 may be divided into 3 or more like the phase plate 33B of FIG.6 (C).

さらに、要はパターン面Ra上での計測光L1の照射面積が広くなればよいため、位相板33には180°以外の位相差(例えば45°)を付与する少なくとも2つの領域を設けることも可能である。この場合には、例えば図2(A)のビームスプリッタ32と光電センサ37との間に、ピンホール36a上での反射光L2の照射面積を小さくするための別の位相板を追加してもよい。   Furthermore, the point is that the irradiation area of the measurement light L1 on the pattern surface Ra only needs to be widened. Therefore, the phase plate 33 may be provided with at least two regions that give a phase difference other than 180 ° (for example, 45 °). Is possible. In this case, for example, another phase plate for reducing the irradiation area of the reflected light L2 on the pinhole 36a may be added between the beam splitter 32 and the photoelectric sensor 37 in FIG. Good.

(3)また、図2(A)のRAFセンサ2を含む検出装置において、位相板33は、対物レンズ35を介して基準面11(パターン面Ra)に照射される計測光L1のうちの中心領域33aを透過する第1部分計測光と周辺領域33cを透過する第2部分計測光との間に所定の位相差(パターン面Raでの照射面積を広くする位相差)を付与している。また、位相板33は、対物レンズ35を介してピンホール板36の配置面に導かれる反射光L2のうち、その第1部分計測光に対応する第1部分反射光(中心領域33aを透過する反射光L2)とその第2部分計測光に対応する第2部分反射光(周辺領域33cを透過する反射光L2)との間に、その所定の位相差を解消する位相差を付与している。   (3) In the detection apparatus including the RAF sensor 2 of FIG. 2A, the phase plate 33 is the center of the measurement light L1 that is irradiated onto the reference surface 11 (pattern surface Ra) via the objective lens 35. A predetermined phase difference (a phase difference that widens the irradiation area on the pattern surface Ra) is given between the first partial measurement light transmitted through the region 33a and the second partial measurement light transmitted through the peripheral region 33c. The phase plate 33 transmits the first partially reflected light (the central region 33a) corresponding to the first partially measured light out of the reflected light L2 guided to the arrangement surface of the pinhole plate 36 through the objective lens 35. A phase difference for eliminating the predetermined phase difference is given between the reflected light L2) and the second partial reflected light corresponding to the second partial measurement light (reflected light L2 transmitted through the peripheral region 33c). .

従って、位相板33によってパターン面Ra上での計測光L1の照射面積が大きくなるため、パターン面Raのパターン又は反射率分布の影響が軽減される。さらに、位相板33によって反射光L2のピンホール36a上での照射面積が小さくなるため、パターン面Raの面位置情報を高精度に検出できる。
(4)この場合、その所定の位相差を解消する位相差は、ピンホール板36上におけるその第1部分反射光とその第2部分反射光との位相差が360°の整数倍となる位相差である。360°の整数倍の位相差は0°と等価であるため、その反射光L2の照射領域は実質的に位相板33がないときと同じ大きさに縮小される。
Accordingly, since the irradiation area of the measurement light L1 on the pattern surface Ra is increased by the phase plate 33, the influence of the pattern on the pattern surface Ra or the reflectance distribution is reduced. Furthermore, since the irradiation area of the reflected light L2 on the pinhole 36a is reduced by the phase plate 33, the surface position information of the pattern surface Ra can be detected with high accuracy.
(4) In this case, the phase difference that eliminates the predetermined phase difference is such that the phase difference between the first partially reflected light and the second partially reflected light on the pinhole plate 36 is an integral multiple of 360 °. It is a phase difference. Since the phase difference of an integral multiple of 360 ° is equivalent to 0 °, the irradiation area of the reflected light L2 is reduced to substantially the same size as when the phase plate 33 is not present.

(5)また、位相板33は、その共焦点光学系の射出瞳と光学的に共役な位置の近傍に配置されている。従って、位相板33上で計測光L1に位相差を付与することによって、物体面又は像面上の強度分布(照射領域)を制御できる。なお、位相板33は、その共焦点光学系の射出瞳上、又はこの射出瞳と光学的に共役な位置上に配置してもよい。
(6)また、図2(A)の例では、位相板33が計測光L1用の位相部材と反射光L2用の位相部材とを兼用しているため、RAFセンサ2の構成が簡素化できる。
(5) Further, the phase plate 33 is disposed in the vicinity of a position optically conjugate with the exit pupil of the confocal optical system. Therefore, the intensity distribution (irradiation region) on the object plane or the image plane can be controlled by giving a phase difference to the measurement light L1 on the phase plate 33. The phase plate 33 may be disposed on the exit pupil of the confocal optical system or on a position optically conjugate with the exit pupil.
(6) Further, in the example of FIG. 2A, the phase plate 33 serves as both the phase member for the measurement light L1 and the phase member for the reflected light L2, so that the configuration of the RAF sensor 2 can be simplified. .

(7)また、位相板33は、パターン面Ra上での計測光L1の照射面積を、位相板33を用いない場合に比べて少なくとも2倍に広げることが好ましい。これによって、パターン面Ra上のパターン又は反射率分布の影響を1/2以下にできる。
(8)また、本実施形態の露光装置は、レチクルRのパターンの像を投影光学系PLを介してウエハW上に投影して、ウエハWを露光する露光装置において、RAFセンサ2及びRAF制御系52を含む検出装置を備え、その検出装置はレチクルRのパターン面Raの投影光学系PLの光軸方向の面位置情報を検出している。さらに、その露光装置は、その検出装置の検出情報に基づいて、レチクルRのパターンの像とウエハWとの投影光学系PLの光軸方向の位置関係を補正するZ駆動部22A〜22C(ステージ装置)を備えている。従って、レチクルRに撓み等が生じていても、レチクルRのパターンの像に対してウエハWの露光面を高精度に合焦できるため、レチクルRのパターンを高解像度でウエハW上に転写できる。
(7) Moreover, it is preferable that the phase plate 33 expands the irradiation area of the measurement light L1 on the pattern surface Ra at least twice as compared with the case where the phase plate 33 is not used. Thereby, the influence of the pattern on the pattern surface Ra or the reflectance distribution can be reduced to ½ or less.
(8) Further, the exposure apparatus of the present embodiment projects an image of the pattern of the reticle R onto the wafer W via the projection optical system PL, and exposes the wafer W. In the exposure apparatus, the RAF sensor 2 and the RAF control are performed. A detection device including a system 52 is provided, and the detection device detects surface position information of the pattern surface Ra of the reticle R in the optical axis direction of the projection optical system PL. Further, the exposure apparatus corrects the positional relationship in the optical axis direction of the projection optical system PL between the pattern image of the reticle R and the wafer W based on detection information of the detection apparatus (stages 22A to 22C (stage). Device). Accordingly, even if the reticle R is bent or the like, the exposure surface of the wafer W can be focused with high precision on the image of the pattern on the reticle R, so that the pattern on the reticle R can be transferred onto the wafer W with high resolution. .

なお、本実施形態では、一つのRAFセンサ2が設けられているが、図2(A)において、RAFセンサ2と同じ構成の複数(例えば3つ)のRAFセンサをX方向に配置して、レチクルRのパターン面RaのZ位置をX方向(非走査方向)の複数箇所で並列に計測してもよい。これによって、パターン面RaのX軸に平行な方向の撓みも計測できる。
[第2の実施形態]
次に本発明の第2の実施形態につき図7を参照して説明する。図7において図2(A)に対応する部分には同一又は類似の符号を付してその詳細な説明を省略又は簡略化する。
In this embodiment, one RAF sensor 2 is provided. In FIG. 2A, a plurality of (for example, three) RAF sensors having the same configuration as the RAF sensor 2 are arranged in the X direction. The Z position of the pattern surface Ra of the reticle R may be measured in parallel at a plurality of locations in the X direction (non-scanning direction). Accordingly, it is possible to measure the deflection of the pattern surface Ra in the direction parallel to the X axis.
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 7, parts corresponding to those in FIG. 2A are denoted by the same or similar reference numerals, and detailed description thereof is omitted or simplified.

図7は、本実施形態のRAFセンサ(レチクルオートフォーカスセンサ)2A及びRAF制御系52を示す。図7において、RAFセンサ2Aは、計測光L1をレチクルRのパターン面Raに照射する照射系2AAと、パターン面Raからの反射光L2を受光する受光系2ABとを備えている。照射系2AAは、計測光L1を+Y方向に発生する光源31と、計測光L1を平行光束に変換するコリメータレンズ35Aと、平行光束の計測光L1をレチクルR側(+Z方向)に反射するビームスプリッタ32と、開口絞り34と、計測光L1をレチクルRのパターン面Ra上に集光する対物レンズ35Bとを備えている。また、照射系2AAは、コリメータレンズ35Aとビームスプリッタ32との間に配置されて、パターン面Ra上での計測光L1の照射領域を大きくするように計測光L1に位相分布を付与する第1の位相板33Aを有する。第1の実施形態と同様に、対物レンズ35Bはコイル39を含むボイスコイルモータによってZ方向に振動する。   FIG. 7 shows the RAF sensor (reticle autofocus sensor) 2A and the RAF control system 52 of this embodiment. In FIG. 7, the RAF sensor 2A includes an irradiation system 2AA that irradiates the measurement light L1 onto the pattern surface Ra of the reticle R, and a light reception system 2AB that receives the reflected light L2 from the pattern surface Ra. The irradiation system 2AA includes a light source 31 that generates the measurement light L1 in the + Y direction, a collimator lens 35A that converts the measurement light L1 into a parallel light beam, and a beam that reflects the measurement light L1 of the parallel light beam on the reticle R side (+ Z direction). A splitter 32, an aperture stop 34, and an objective lens 35B that condenses the measurement light L1 on the pattern surface Ra of the reticle R are provided. Further, the irradiation system 2AA is disposed between the collimator lens 35A and the beam splitter 32, and provides a first phase distribution to the measurement light L1 so as to enlarge the irradiation region of the measurement light L1 on the pattern surface Ra. Phase plate 33A. Similar to the first embodiment, the objective lens 35 </ b> B vibrates in the Z direction by a voice coil motor including a coil 39.

また、受光系2ABは、パターン面Raからの反射光L2を平行光束にする対物レンズ35Bと、その反射光L2が照射されるビームスプリッタ32と、ビームスプリッタ32を透過した反射光L2を集光する結像レンズ35Cと、その集光された反射光L2を通すピンホール36aが形成されたピンホール板36と、ピンホール36aを通過した反射光L2を受光する光電センサ37とを備えている。また、受光系2ABは、ビームスプリッタ32と結像レンズ35Cとの間に配置されて、ピンホール36a上での照射領域が小さくなるように反射光L2に位相分布を付与する第2の位相板33Bを有する。この場合、対物レンズ35B及び結像レンズ35Cによって、パターン面Ra(より正確には基準面11)上の計測光L1の照射領域(スポット光)とピンホール36aとは光学的に共役であり、対物レンズ35B、結像レンズ35C、及びピンホール板36は共焦点光学系を構成している。   The light receiving system 2AB collects the objective lens 35B that converts the reflected light L2 from the pattern surface Ra into a parallel light beam, the beam splitter 32 irradiated with the reflected light L2, and the reflected light L2 that has passed through the beam splitter 32. A focusing lens 35C, a pinhole plate 36 formed with a pinhole 36a through which the condensed reflected light L2 passes, and a photoelectric sensor 37 that receives the reflected light L2 that has passed through the pinhole 36a. . The light receiving system 2AB is disposed between the beam splitter 32 and the imaging lens 35C, and a second phase plate that imparts a phase distribution to the reflected light L2 so that an irradiation area on the pinhole 36a is reduced. 33B. In this case, the irradiation region (spot light) of the measurement light L1 on the pattern surface Ra (more precisely, the reference surface 11) and the pinhole 36a are optically conjugate by the objective lens 35B and the imaging lens 35C. The objective lens 35B, the imaging lens 35C, and the pinhole plate 36 constitute a confocal optical system.

本実施形態において、第1の位相板33Aは、計測光L1のうちで中心領域を透過する第1計測光L1aと、輪帯状の周辺領域を透過する第2計測光L1cとの間に例えば180°の位相差を付与する。その中心領域の大きさは、パターン面Ra上での計測光L1の照射領域が、位相板33Aがない場合の少なくとも2倍になるように設定される。また、第1計測光L1aは、パターン面Raで反射された後、第1反射光L2aとして第2の位相板33Bの中心領域を通過し、第2計測光L1cは、パターン面Raで反射された後、第2反射光L2cとして第2の位相板33Bの周辺領域を通過するものとする。この場合、第2の位相板33Bは、反射光L2のうちで中心領域を透過する第1反射光L2aと、周辺領域を透過する第2反射光L2cとの間に180°の位相差を付与する。これによって、第1反射光L2aと第2反射光L2cとの間には実質的に位相差がなくなる(位相差が解消されるため)ため、ピンホール36a上に集光される反射光L2の照射領域の大きさは、位相板33A及び33Bがない場合の大きさにまで縮小される。この他の構成は第1の実施形態と同様である。   In the present embodiment, the first phase plate 33A is, for example, 180 between the first measurement light L1a that passes through the central region in the measurement light L1 and the second measurement light L1c that passes through the annular peripheral region. Add a phase difference of °. The size of the central region is set so that the irradiation region of the measurement light L1 on the pattern surface Ra is at least twice that when the phase plate 33A is not provided. The first measurement light L1a is reflected by the pattern surface Ra, and then passes through the central region of the second phase plate 33B as the first reflected light L2a. The second measurement light L1c is reflected by the pattern surface Ra. After that, the second reflected light L2c passes through the peripheral region of the second phase plate 33B. In this case, the second phase plate 33B gives a 180 ° phase difference between the first reflected light L2a that passes through the central region of the reflected light L2 and the second reflected light L2c that passes through the peripheral region. To do. Accordingly, there is substantially no phase difference between the first reflected light L2a and the second reflected light L2c (because the phase difference is eliminated), so that the reflected light L2 collected on the pinhole 36a The size of the irradiation area is reduced to the size when the phase plates 33A and 33B are not provided. Other configurations are the same as those of the first embodiment.

このように本実施形態においても、第1の位相板33Aによってパターン面Ra上での計測光L1の照射面積が大きくなるため、パターン面Raのパターン又は反射率分布の影響が軽減される。さらに、第2の位相板33Bによって反射光L2のピンホール36a上での照射面積が小さくなるため、パターン面Raの面位置情報を高精度に検出できる。
また、本実施形態では、第1の位相板33Aと第2の位相板33Bとは、ビームスプリッタ32、対物レンズ35B、及びパターン面Raを介して実質的に互いに光学的に共役な位置に配置されている。これによって、第2の位相板33Bとして、第1の位相板33Aと同じ位相板を用いることも可能になる。
As described above, also in the present embodiment, the irradiation area of the measurement light L1 on the pattern surface Ra is increased by the first phase plate 33A, so that the influence of the pattern on the pattern surface Ra or the reflectance distribution is reduced. Furthermore, since the irradiation area of the reflected light L2 on the pinhole 36a is reduced by the second phase plate 33B, the surface position information of the pattern surface Ra can be detected with high accuracy.
In the present embodiment, the first phase plate 33A and the second phase plate 33B are disposed at positions substantially optically conjugate with each other via the beam splitter 32, the objective lens 35B, and the pattern surface Ra. Has been. As a result, the same phase plate as the first phase plate 33A can be used as the second phase plate 33B.

なお、本実施形態においては、第2の位相板33Bが第1の位相板33Aとは別に配置されているため、第2の位相板33Bが反射光L2に付与する位相差の分布は、ピンホール36a内の反射光L2の照射領域がより小さくなるように最適化することが可能である。
なお、上記の実施形態では、レチクルRの法線方向の位置を検出する場合に本発明を適用したが、本発明は、ウエハWの表面の法線方向の位置を検出する場合にも適用可能である。即ち、図1の露光装置において、ウエハW用のAFセンサ60として、RAF系2と同様の構成のオートフォーカスセンサを使用してもよい。
In the present embodiment, since the second phase plate 33B is disposed separately from the first phase plate 33A, the distribution of the phase difference imparted to the reflected light L2 by the second phase plate 33B is the pin It is possible to optimize the irradiation area of the reflected light L2 in the hole 36a to be smaller.
In the above embodiment, the present invention is applied when detecting the position in the normal direction of the reticle R. However, the present invention can also be applied when detecting the position in the normal direction of the surface of the wafer W. It is. That is, in the exposure apparatus of FIG. 1, an autofocus sensor having the same configuration as that of the RAF system 2 may be used as the AF sensor 60 for the wafer W.

また、上記の実施形態の露光装置を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図8に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置によりレチクルのパターンを基板(感応基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。   When an electronic device (or microdevice) such as a semiconductor device is manufactured using the exposure apparatus of the above embodiment, the electronic device performs function / performance design of the electronic device as shown in FIG. Step 222 for manufacturing a mask (reticle) based on this design step, Step 223 for manufacturing a substrate (wafer) that is a base material of the device and applying a resist, and a reticle pattern by the exposure apparatus of the above-described embodiment. Exposure process to substrate (sensitive substrate), development process of exposed substrate, substrate processing step 224 including heating (curing) and etching process of developed substrate, device assembly step (dicing process, bonding process, packaging process, etc.) 225) and the inspection step 226, etc. It is produced through.

従って、このデバイス製造方法は、上記の実施形態の露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成された基板を処理すること(ステップ224)とを含んでいる。その露光装置によれば、高精度に合焦を行うことができるため、電子デバイスを高精度に製造できる。
また、上記の実施形態においては、走査露光方式の露光装置を例に挙げて説明しているが、ステッパー等の一括露光方式(ステップアンドリピート方式)の露光装置にも本発明を適用することができる。さらに、本発明は、例えば国際公開第2004/053955号パンフレット、欧州特許出願公開第1420298号明細書、又は国際公開第2005/122218号パンフレット等に開示されている液浸型露光装置にも適用可能である。
Therefore, this device manufacturing method includes forming the pattern of the photosensitive layer on the substrate using the exposure apparatus of the above embodiment, and processing the substrate on which the pattern is formed (step 224). Yes. According to the exposure apparatus, since focusing can be performed with high accuracy, an electronic device can be manufactured with high accuracy.
In the above embodiment, the scanning exposure type exposure apparatus has been described as an example. However, the present invention can also be applied to a batch exposure type (step-and-repeat type) exposure apparatus such as a stepper. it can. Further, the present invention can be applied to an immersion type exposure apparatus disclosed in, for example, International Publication No. 2004/053955 pamphlet, European Patent Application Publication No. 1420298, International Publication No. 2005/122218 pamphlet or the like. It is.

また、本発明は投影光学系を用いないプロキシミティ方式等の露光装置でレチクル及び/又はウエハの面位置を検出する場合にも適用可能である。
また、本発明は、半導体デバイス、液晶表示素子の製造プロセスへの適用に限定されることなく、例えば、プラズマディスプレイ等の製造プロセスや、撮像素子(CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスの製造プロセスにも広く適用できる。
The present invention can also be applied to the case where the surface position of a reticle and / or wafer is detected by a proximity type exposure apparatus that does not use a projection optical system.
In addition, the present invention is not limited to the application to the manufacturing process of a semiconductor device and a liquid crystal display element. For example, the manufacturing process of a plasma display or the like, an imaging element (CCD or the like), a micromachine, MEMS (Microelectromechanical Systems: It can be widely applied to manufacturing processes of various devices such as micro electromechanical systems), thin film magnetic heads, and DNA chips.

このように本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。   As described above, the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention.

R…レチクル、Ra…パターン面、PL…投影光学系、W…ウエハ、RST…レチクルステージ、2…RAFセンサ、31…光源、33,33A,33B…位相板、34…開口絞り、35,35B…対物レンズ、36a…ピンホール、37…光電センサ、52…RAF制御系   R ... reticle, Ra ... pattern surface, PL ... projection optical system, W ... wafer, RST ... reticle stage, 2 ... RAF sensor, 31 ... light source, 33, 33A, 33B ... phase plate, 34 ... aperture stop, 35, 35B ... objective lens, 36a ... pinhole, 37 ... photoelectric sensor, 52 ... RAF control system

Claims (13)

検出光を被検面に照射し、前記被検面からの反射光を光電検出器を介して受光して得られる検出情報に基づいて前記被検面の面位置情報を検出する面位置検出装置において、
前記検出光を前記被検面に照射して前記反射光を受光する対物レンズと、前記対物レンズを介した前記反射光を前記光電検出器に通す開口が形成された開口部材とを含む共焦点光学系と;
前記被検面に照射される前記検出光に、前記被検面上での照射面積を広げるように位相分布を付与する第1位相部材と;
前記反射光に、前記開口部材上での照射面積を狭くするように位相分布を付与する第2位相部材と;
を備えたことを特徴とする面位置検出装置。
A surface position detecting device for detecting surface position information of the test surface based on detection information obtained by irradiating the test surface with detection light and receiving reflected light from the test surface via a photoelectric detector In
A confocal system including an objective lens that irradiates the test surface with the detection light and receives the reflected light, and an aperture member in which an opening through which the reflected light through the objective lens passes through the photoelectric detector is formed. With optical systems;
A first phase member that imparts a phase distribution to the detection light applied to the test surface so as to widen an irradiation area on the test surface;
A second phase member that imparts a phase distribution to the reflected light so as to narrow an irradiation area on the aperture member;
A surface position detecting device comprising:
第1面またはその近傍に配置される被検面に検出光を照射し、該検出光の前記被検面による反射光を光電検出した結果に基づいて前記被検面の面位置情報を検出する面位置検出装置において、
前記第1面と第2面とを光学的に共役にする結像光学系と、前記第2面に配置され、前記反射光が通過可能な前記第2面上の領域を所定範囲に制限する開口が形成された開口部材とを含む共焦点光学系と、
前記結像光学系を介して前記第1面に照射される前記検出光に第1の位相分布を付与する第1位相部材と、
前記結像光学系を介して前記第2面に導かれる前記反射光に第2の位相分布を付与する第2位相部材と、を備え、
前記第1の位相分布は、前記第1面上での前記検出光の照射領域が前記結像光学系による前記開口の共役像より大きくなる位相分布であり、
前記第2の位相分布は、前記被検面からの前記反射光の前記第2面上での照射領域が前記開口より小さくなるかほぼ等しくなる位相分布であることを特徴とする面位置検出装置。
Detecting the surface position information of the test surface based on the result of photoelectrically detecting the reflected light from the test surface by irradiating the test surface arranged at or near the first surface. In the surface position detection device,
An imaging optical system that optically conjugates the first surface and the second surface, and a region on the second surface that is disposed on the second surface and through which the reflected light can pass is limited to a predetermined range. A confocal optical system including an aperture member in which an aperture is formed;
A first phase member that imparts a first phase distribution to the detection light applied to the first surface via the imaging optical system;
A second phase member that imparts a second phase distribution to the reflected light guided to the second surface via the imaging optical system,
The first phase distribution is a phase distribution in which an irradiation region of the detection light on the first surface is larger than a conjugate image of the opening by the imaging optical system,
The surface position detecting device characterized in that the second phase distribution is a phase distribution in which an irradiation area on the second surface of the reflected light from the test surface is smaller than or substantially equal to the opening. .
前記第1位相部材は、通過する前記検出光に180°の位相差を付与する少なくとも2つの領域を有し、
前記第2位相部材は、通過する前記反射光に180°の位相差を付与する少なくとも2つの領域を有することを特徴とする請求項1または2に記載の面位置検出装置。
The first phase member has at least two regions that give a phase difference of 180 ° to the detection light passing therethrough,
The surface position detecting device according to claim 1, wherein the second phase member has at least two regions that give a 180 ° phase difference to the reflected light passing therethrough.
第1面またはその近傍に配置される被検面に検出光を照射し、該検出光の前記被検面による反射光を光電検出した結果に基づいて前記被検面の面位置情報を検出する面位置検出装置において、
前記第1面と第2面とを光学的に共役にする結像光学系と、前記第2面に配置され、前記反射光が通過可能な前記第2面上の領域を所定範囲に制限する開口が形成された開口部材とを含む共焦点光学系と、
前記結像光学系を介して前記第1面に照射される前記検出光のうちの第1部分検出光と第2部分検出光との間に所定の位相差を付与する第1位相部材と、
前記結像光学系を介して前記第2面に導かれる前記反射光のうち前記第1部分検出光に対応する第1部分反射光と前記第2部分検出光に対応する第2部分反射光との間に、前記所定の位相差を解消する位相差を付与する第2位相部材と、
を備えることを特徴とする面位置検出装置。
Detecting the surface position information of the test surface based on the result of photoelectrically detecting the reflected light from the test surface by irradiating the test surface arranged at or near the first surface. In the surface position detection device,
An imaging optical system that optically conjugates the first surface and the second surface, and a region on the second surface that is disposed on the second surface and through which the reflected light can pass is limited to a predetermined range. A confocal optical system including an aperture member in which an aperture is formed;
A first phase member that imparts a predetermined phase difference between the first partial detection light and the second partial detection light of the detection light irradiated onto the first surface via the imaging optical system;
Of the reflected light guided to the second surface via the imaging optical system, a first partially reflected light corresponding to the first partially detected light and a second partially reflected light corresponding to the second partially detected light; A second phase member that imparts a phase difference that eliminates the predetermined phase difference,
A surface position detecting device comprising:
前記所定の位相差を解消する位相差は、前記第2面における前記第1部分反射光と前記第2部分反射光との位相差が360°の整数倍となる位相差であることを特徴とする請求項4に記載の面位置検出装置。   The phase difference for eliminating the predetermined phase difference is a phase difference in which a phase difference between the first partial reflected light and the second partial reflected light on the second surface is an integral multiple of 360 °. The surface position detection device according to claim 4. 前記第1位相部材は、前記第1部分検出光に対して第1位相を付与する第1位相領域と、前記第2部分検出光に対し、前記第1位相に比して180°の奇数倍だけ異なる第2位相を付与する第2位相領域と、を有することを特徴とする請求項4または5に記載の面位置検出装置。   The first phase member includes a first phase region that imparts a first phase to the first partial detection light, and an odd multiple of 180 ° relative to the first phase with respect to the second partial detection light. 6. The surface position detection device according to claim 4, further comprising a second phase region that provides a second phase that differs only by the second phase region. 前記第1位相部材と前記第2位相部材とは、前記結像光学系の少なくとも一部および前記第1面を介して互いに光学的に共役な位置に配置されることを特徴とする請求項2および請求項4から6のいずれか一項に記載の面位置検出装置。   The first phase member and the second phase member are arranged at positions optically conjugate with each other via at least a part of the imaging optical system and the first surface. And the surface position detection apparatus as described in any one of Claims 4-6. 前記第1位相部材は、前記共焦点光学系の射出瞳と光学的に共役な位置またはこの近傍の位置に配置されることを特徴とする請求項7に記載の面位置検出装置。   The surface position detection apparatus according to claim 7, wherein the first phase member is disposed at a position optically conjugate with an exit pupil of the confocal optical system or a position in the vicinity thereof. 前記第1位相部材は、前記第2位相部材を兼用することを特徴とする請求項7または8に記載の面位置検出装置。   The surface position detecting device according to claim 7, wherein the first phase member also serves as the second phase member. 前記第1位相部材は、前記共焦点光学系の光軸を中心とする円形の第1領域と、該第1領域を囲む輪帯状の第2領域とを有し、前記第1領域及び前記第2領域を通過した前記検出光に180°の位相差を付与することを特徴とする請求項1から9のいずれか一項に記載の面位置検出装置。   The first phase member has a circular first region centered on the optical axis of the confocal optical system, and a ring-shaped second region surrounding the first region, and the first region and the first region The surface position detection apparatus according to claim 1, wherein a phase difference of 180 ° is given to the detection light that has passed through the two regions. 前記第1位相部材は、前記被検面上での前記検出光の照射面積を少なくとも2倍に広げることを特徴とする請求項1から10のいずれか一項に記載の面位置検出装置。   11. The surface position detection apparatus according to claim 1, wherein the first phase member expands an irradiation area of the detection light on the surface to be measured at least twice. マスクのパターンの像を投影光学系を介して基板に投影して該基板を露光する露光装置であって、
請求項1から11のいずれか一項に記載の面位置検出装置と、
前記面位置検出装置で検出される前記マスクのパターン面の前記投影光学系の光軸方向の面位置情報に基づいて、前記マスクのパターンの像と前記基板との合焦を行うステージ装置と、を備えることを特徴とする露光装置。
An exposure apparatus that projects an image of a mask pattern onto a substrate via a projection optical system to expose the substrate,
The surface position detection device according to any one of claims 1 to 11,
A stage device for focusing the image of the mask pattern and the substrate based on surface position information in the optical axis direction of the projection optical system of the pattern surface of the mask detected by the surface position detection device; An exposure apparatus comprising:
請求項12に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を処理する工程と、を含むデバイス製造方法。
Exposing the substrate using the exposure apparatus according to claim 12;
And a step of processing the exposed substrate.
JP2009033619A 2009-02-17 2009-02-17 Surface position detection apparatus and exposure apparatus Active JP5293250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033619A JP5293250B2 (en) 2009-02-17 2009-02-17 Surface position detection apparatus and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033619A JP5293250B2 (en) 2009-02-17 2009-02-17 Surface position detection apparatus and exposure apparatus

Publications (2)

Publication Number Publication Date
JP2010192562A true JP2010192562A (en) 2010-09-02
JP5293250B2 JP5293250B2 (en) 2013-09-18

Family

ID=42818304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033619A Active JP5293250B2 (en) 2009-02-17 2009-02-17 Surface position detection apparatus and exposure apparatus

Country Status (1)

Country Link
JP (1) JP5293250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120864A (en) * 2017-04-27 2018-11-07 한양대학교 산학협력단 Defect inspection method for phase shift mask and defect inspection apparatus for same
US20220341811A1 (en) * 2019-12-31 2022-10-27 Moonl Ight (Nanjing) Instrument Co., Ltd. Comprehensive test platform for fluorescence microscope objective lenses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224127A (en) * 1991-03-27 1993-09-03 Fuji Photo Film Co Ltd Confocal scanning type differential interfere microscope
JPH08288204A (en) * 1995-04-13 1996-11-01 Nikon Corp Surface-position detection device and projection aligner provided with the device
JPH1164797A (en) * 1997-08-12 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Phase difference pinhole type optical element and confocal microscope using it
JP2009251535A (en) * 2008-04-10 2009-10-29 Nikon Corp Confocal microscope
JP2011508200A (en) * 2007-12-19 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Detection system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224127A (en) * 1991-03-27 1993-09-03 Fuji Photo Film Co Ltd Confocal scanning type differential interfere microscope
JPH08288204A (en) * 1995-04-13 1996-11-01 Nikon Corp Surface-position detection device and projection aligner provided with the device
JPH1164797A (en) * 1997-08-12 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Phase difference pinhole type optical element and confocal microscope using it
JP2011508200A (en) * 2007-12-19 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Detection system and method
JP2009251535A (en) * 2008-04-10 2009-10-29 Nikon Corp Confocal microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120864A (en) * 2017-04-27 2018-11-07 한양대학교 산학협력단 Defect inspection method for phase shift mask and defect inspection apparatus for same
KR102320292B1 (en) 2017-04-27 2021-11-03 한양대학교 산학협력단 Defect inspection method for phase shift mask and defect inspection apparatus for same
US20220341811A1 (en) * 2019-12-31 2022-10-27 Moonl Ight (Nanjing) Instrument Co., Ltd. Comprehensive test platform for fluorescence microscope objective lenses
US11959821B2 (en) * 2019-12-31 2024-04-16 Mloptic Corp. Comprehensive test platform for fluorescence microscope objective lenses

Also Published As

Publication number Publication date
JP5293250B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
KR100650946B1 (en) Radiation system, lithographic apparatus, device manufacturing method and device manufactured thereby
WO2000030163A1 (en) Exposure method and device
KR101963012B1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2008171960A (en) Position detection device and exposure device
US20100290020A1 (en) Optical apparatus, exposure apparatus, exposure method, and method for producing device
US7369214B2 (en) Lithographic apparatus and device manufacturing method utilizing a metrology system with sensors
US20100302523A1 (en) Method and apparatus for measuring wavefront, and exposure method and apparatus
JP7147738B2 (en) Measuring device, measuring method, and exposure device
JP4470433B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2005311020A (en) Exposure method and method of manufacturing device
JP2002170754A (en) Exposure system, method of detecting optical characteristic, and exposure method
JP2003218024A (en) Method of measurement, method of imaging characteristics adjustment, method of exposure, and method of manufacturing exposure apparatus
JP5293250B2 (en) Surface position detection apparatus and exposure apparatus
JP2001160535A (en) Aligner and device manufacturing using the same
JP2011049285A (en) Method and device for measuring mask shape, and exposure method and apparatus
JP2009031169A (en) Position detection apparatus, exposure apparatus, and manufacturing method for device
JP2007294550A (en) Exposure method and apparatus, and device manufacturing method
WO2012073483A1 (en) Mark detection method, light exposure method and light exposure device, and method for manufacturing device
JP2011222921A (en) Method for measuring optical characteristics and apparatus, as well as exposure method and apparatus
JP2012004561A (en) Illumination method, illumination optical apparatus, and exposure equipment
JP2006066836A (en) Supporting structure of optical component and exposing device
JP2004128149A (en) Aberration measuring method, exposure method and aligner
JP6226525B2 (en) Exposure apparatus, exposure method, and device manufacturing method using them
US8436981B2 (en) Exposing method, exposure apparatus, and device fabricating method
JP2006073798A (en) Positioning device and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250