JP2010190752A - Gas sensor and gas detector - Google Patents

Gas sensor and gas detector Download PDF

Info

Publication number
JP2010190752A
JP2010190752A JP2009035941A JP2009035941A JP2010190752A JP 2010190752 A JP2010190752 A JP 2010190752A JP 2009035941 A JP2009035941 A JP 2009035941A JP 2009035941 A JP2009035941 A JP 2009035941A JP 2010190752 A JP2010190752 A JP 2010190752A
Authority
JP
Japan
Prior art keywords
gas
electrodes
gas sensor
organic polymer
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009035941A
Other languages
Japanese (ja)
Other versions
JP5288120B2 (en
Inventor
Kenji Hayashi
健司 林
Kiyoshi Toko
潔 都甲
Chuanjun Liu
傳軍 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2009035941A priority Critical patent/JP5288120B2/en
Publication of JP2010190752A publication Critical patent/JP2010190752A/en
Application granted granted Critical
Publication of JP5288120B2 publication Critical patent/JP5288120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor and a gas detector for detecting a gas more speedily with higher detection sensitivity and allowing repeated uses. <P>SOLUTION: A material solution dissolving a raw material of organic polymer in an appropriate solvent and a polymerizer solution dissolving a polymerizer are adjusted to an appropriate temperature of about 0°C to about 20°C, both the solutions are stirred and mixed to prepare a mixture solution, the mixture solution is fed to between electrodes 32, 32 of a substrate 31, then the substrate 31 is immovably disposed under an appropriate temperature, thereby allowing to generate organic polymers and to form fibers 35 by agglomerating two or more organic polymers. When the fibers 35 are bound by functional groups 34, the fibers chemically bonds to metal particles 33 through the functional groups 34 to form a network 36. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、所定組成のガスを検出するためのガスセンサ、及び該ガスセンサを備えるガス検出装置に関する。   The present invention relates to a gas sensor for detecting a gas having a predetermined composition, and a gas detection apparatus including the gas sensor.

生体の呼気には複数の組成のガスが含まれているが、かかる呼気中に含まれるアンモニアガスを検出するガスセンサとして後記するが特許文献1には次のようなものが開示されている。   The exhaled breath of a living body contains a plurality of gas compositions. As described later as a gas sensor for detecting ammonia gas contained in the exhaled breath, Patent Document 1 discloses the following.

すなわち、セラミックス基板上に一対の櫛歯状の電極を互いに適宜距離隔てて形成し、両電極間に、ポリアニリンスルホン酸樹脂とバインダとしてスルホン酸塩とを質量比で9:1になるように混合させた混合物を充填することによってガスセンサを得る。   That is, a pair of comb-like electrodes are formed on a ceramic substrate at an appropriate distance from each other, and a polyaniline sulfonic acid resin and a sulfonate as a binder are mixed at a mass ratio of 9: 1 between both electrodes. A gas sensor is obtained by filling the mixed mixture.

かかるガスセンサにあっては、ポリアニリンスルホン酸樹脂がアンモニアガスと相互反応して両電極間の電気抵抗が変化するので、当該電気抵抗の変化量を測定することによってアンモニアガスの濃度を検出することができる。   In such a gas sensor, since the polyaniline sulfonic acid resin interacts with ammonia gas and the electrical resistance between both electrodes changes, it is possible to detect the concentration of ammonia gas by measuring the amount of change in the electrical resistance. it can.

しかし、特許文献1に開示されたガスセンサにあっては、両電極間に充填したポリアニリンスルホン酸樹脂層が密であるため、ガス検出の感度が低いという問題があった。   However, the gas sensor disclosed in Patent Document 1 has a problem that the sensitivity of gas detection is low because the polyaniline sulfonic acid resin layer filled between both electrodes is dense.

そのため、例えばアニリン溶液と重合剤たるASP(Ammonium peroxydisulfate)溶液とを高速に撹拌しつつ混合させて、アニリンポリマーを重合させると共に、複数のアニリンポリマーが集合したファイバを生成させ、複数のファイバが重積された層を両電極間に堆積させてなるガスセンサが開発されている。   Therefore, for example, an aniline solution and an ASP (Ammonium peroxydisulfate) solution, which is a polymerization agent, are mixed while stirring at a high speed to polymerize the aniline polymer and to produce a fiber in which a plurality of aniline polymers are aggregated. A gas sensor has been developed in which a stacked layer is deposited between both electrodes.

かかるガスセンサでは、各ファイバ間に間隙が形成されているため、アンモニアガスが内部へ侵入する量が増大し、検出感度が向上する。   In such a gas sensor, since a gap is formed between the fibers, the amount of ammonia gas entering the interior increases, and the detection sensitivity is improved.

特開2003−161714号公報JP 2003-161714 A

しかしながら、このような従来のいずれのガスセンサにあっても、対をなす電極間に充填したポリアニリン層をより薄くすることによって検出感度を向上させることができるが、所定厚さ以下すると、電気抵抗の変化を検出することができないため、検出感度を向上させるには限度があった。このようにいずれのガスセンサにあっても、ポリアニリン層は適宜の厚さが必要であるため、ガス検出の応答速度が遅いという問題もあった。更に、いずれのガスセンサにあっても、ポリアニリン層の内部に侵入したアンモニアガスが層外に排出され難く、当該ガスセンサを繰り返し使用することが困難であった。   However, in any of such conventional gas sensors, the detection sensitivity can be improved by making the polyaniline layer filled between the pair of electrodes thinner. Since changes cannot be detected, there was a limit to improving detection sensitivity. As described above, in any gas sensor, since the polyaniline layer needs to have an appropriate thickness, there is a problem that the response speed of gas detection is slow. Further, in any gas sensor, ammonia gas that has entered the inside of the polyaniline layer is difficult to be discharged out of the layer, and it is difficult to repeatedly use the gas sensor.

本発明は、斯かる事情に鑑みてなされたものであって、より高い検出感度でより迅速に検出ことができ、また繰り返し使用も可能なガスセンサ、及び該ガスセンサを備えるガス検出装置を提供する。   The present invention has been made in view of such circumstances, and provides a gas sensor that can be detected more quickly with higher detection sensitivity and can be repeatedly used, and a gas detection device including the gas sensor.

(1)本発明に係るガスセンサは、基板の表面に適宜距離を隔てて配置した対をなす電極間を、検出対象ガスと相互反応して電気伝導度が変化する有機ポリマで架橋してなるガスセンサにおいて、前記基板の両電極間の領域に導電性を有する所要の金属粒子複数が互に適宜のギャップを隔てて形成してあり、前記有機ポリマにて構成された複数のファイバによって任意の複数の金属粒子間及び前記両電極と任意の金属粒子との間をそれぞれ架橋することによって、両電極間を架橋する前記各ファイバのネットワークが形成してあることを特徴とする。   (1) A gas sensor according to the present invention is a gas sensor formed by bridging a pair of electrodes arranged on a surface of a substrate at an appropriate distance with an organic polymer whose electrical conductivity changes by interacting with a detection target gas. In the present invention, a plurality of required metal particles having conductivity are formed in a region between both electrodes of the substrate with an appropriate gap from each other, and a plurality of arbitrary fibers can be formed by a plurality of fibers made of the organic polymer. A network of the fibers that bridge between the electrodes is formed by crosslinking between the metal particles and between the electrodes and any metal particles.

(2)本発明に係るガスセンサは必要に応じて、主にアンモニアガスを検出対象ガスとすべく、前記有機ポリマをポリアニリンで構成してあり、前記両電極の所要領域の表面及び各金属粒子の表面にそれぞれ4−アミノチオフェンを化学結合させてあり、これら4−アミノチオフェンに任意のファイバが化学結合していることを特徴とする。   (2) In the gas sensor according to the present invention, the organic polymer is composed of polyaniline so that ammonia gas is mainly used as a detection target gas as necessary. 4-aminothiophene is chemically bonded to each surface, and an arbitrary fiber is chemically bonded to these 4-aminothiophenes.

(3)本発明に係るガスセンサは必要に応じて、前記ネットワークは、対をなす電極間に有機ポリマの原料溶液と重合剤溶液とを混合した混合液を供給し、略0℃以上略20℃以下の適宜の温度でファイバを生成させることによって形成してあることを特徴とする。   (3) In the gas sensor according to the present invention, the network supplies a mixed liquid obtained by mixing the organic polymer raw material solution and the polymerizing agent solution between the paired electrodes as necessary, and is approximately 0 ° C. or higher and approximately 20 ° C. It is formed by generating a fiber at the following appropriate temperature.

(4)本発明に係るガスセンサは必要に応じて、前記ギャップは対をなす電極間の電気抵抗が数ギガΩになるように調整してあることを特徴とする。   (4) The gas sensor according to the present invention is characterized in that the gap is adjusted so that the electrical resistance between the paired electrodes is several gigaΩ as required.

(5)本発明に係るガス検出装置は、基板の表面に適宜距離を隔てて配置した対をなす電極間を、検出対象ガスと相互反応して電気伝導度が変化する有機ポリマで架橋してなるガスセンサを備え、前記両電極間の電気伝導度の変化によって検出対象ガスを検出するガス検出装置において、前述したいずれかに記載のガスセンサを備えることを特徴とする。   (5) In the gas detection device according to the present invention, a pair of electrodes arranged at an appropriate distance on the surface of the substrate is cross-linked with an organic polymer that interacts with the detection target gas and changes electrical conductivity. A gas detection apparatus that detects a detection target gas by a change in electrical conductivity between the electrodes, and includes any of the gas sensors described above.

本発明に係るガス検出装置の構成を模式的要部拡大図と共に示すブロック図である。It is a block diagram which shows the structure of the gas detection apparatus which concerns on this invention with a typical principal part enlarged view. 図1に示したガスセンサの製造手順を説明する説明図である。It is explanatory drawing explaining the manufacturing procedure of the gas sensor shown in FIG. 互いにギャップを隔てて形成した金属粒子の原子間力顕微鏡写真図である。FIG. 3 is an atomic force micrograph of metal particles formed with a gap between each other. ガスセンサを構成するネットワークのレーザ顕微鏡写真図である。It is a laser microscope photograph figure of the network which comprises a gas sensor. ATPを結合させた金属粒子にポリアニリンのファイバによってネットワークを形成してなるガスセンサのガス検出感度と、ATPを結合させていない金属粒子にポリアニリンのファイバによってネットワークを形成してなるガスセンサのガス検出感度を比較した結果を示すグラフである。The gas detection sensitivity of a gas sensor formed by forming a network with polyaniline fibers on metal particles bonded with ATP, and the gas detection sensitivity of a gas sensor formed with a network formed of polyaniline fibers on metal particles not bonded with ATP. It is a graph which shows the result of comparison. 実施例1で説明した本発明に係るガスセンサによって5ppmのアンモニアガスを経時的に検出した結果を示すグラフである。It is a graph which shows the result of having detected 5 ppm ammonia gas with time by the gas sensor which concerns on this invention demonstrated in Example 1. FIG. 実施例1で説明した本発明に係るガスセンサによってアンモニアガスを繰り返し検出した結果を示すグラフである。It is a graph which shows the result of having repeatedly detected ammonia gas with the gas sensor which concerns on this invention demonstrated in Example 1. FIG. 従来のガスセンサによって100ppmのアンモニアガスを経時的に検出した結果を示すグラフである。It is a graph which shows the result of having detected 100 ppm ammonia gas with time by the conventional gas sensor. 従来のガスセンサによって100ppmのアンモニアガスを経時的に検出した結果を示すグラフである。It is a graph which shows the result of having detected 100 ppm ammonia gas with time by the conventional gas sensor.

(本発明の実施形態)
図1は本発明に係るガス検出装置の構成を模式的要部拡大図と共に示すブロック図であり、図中、2は検出対象ガスが導入される中空のチャンバである。
チャンバ2内にはガス導入管及びガス排出管の一端部がそれぞれ挿入してあり、ガス導入管及びガス排出管の他端部はチャンバ2の外方へ延出してある。かかるガス導入管の他端は、ポンプ及び流量調整器等を内蔵するガス導入器1のガス送出口に連結してあり、ガス導入器1から送出されたガスはガス導入管を経てチャンバ2内へ導入され、該チャンバ2内に一時的に貯留された後、ガス排出管によってチャンバ2外へ排出される。
(Embodiment of the present invention)
FIG. 1 is a block diagram showing a configuration of a gas detection device according to the present invention together with a schematic enlarged view of a main part. In the figure, 2 is a hollow chamber into which a detection target gas is introduced.
One end portions of a gas introduction tube and a gas discharge tube are respectively inserted into the chamber 2, and the other end portions of the gas introduction tube and the gas discharge tube extend to the outside of the chamber 2. The other end of the gas introduction pipe is connected to a gas delivery port of the gas introduction apparatus 1 incorporating a pump and a flow rate regulator, and the gas delivered from the gas introduction apparatus 1 passes through the gas introduction pipe and enters the chamber 2. After being temporarily stored in the chamber 2, it is discharged out of the chamber 2 by a gas discharge pipe.

このチャンバ2内には所定組成のガスを検出するガスセンサ3が配設してある。ガスセンサ3は硝子といった適宜の基板31の表面に適宜のギャップを隔てて一対の電極32,32が設けてあり、両電極32,32にはそれぞれリード32a,32aが連結してある。   A gas sensor 3 for detecting a gas having a predetermined composition is disposed in the chamber 2. In the gas sensor 3, a pair of electrodes 32 and 32 are provided on the surface of an appropriate substrate 31 such as glass with an appropriate gap therebetween, and leads 32a and 32a are connected to the electrodes 32 and 32, respectively.

この電極32,32間に、如く有機ポリマを用いて形成してあるナノサイズの直径のファイバにて後述する形成したネットワーク36(図2参照)が架設してあり、両電極32,32間の電気抵抗は検出器4によって検出されるようになっている。検出器4には両電極32,32間の電気抵抗とガス濃度との関係を示す係数が予め設定してあり、検出器4は当該係数及び検出した両電極32,32間の電気抵抗に基づいて検出対象ガスの濃度を検出する。
なお、電極32,32は平板状、櫛歯状等、種々の形状になすことができる。
Between the electrodes 32 and 32, a network 36 (see FIG. 2), which will be described later, is constructed by a nano-sized fiber formed using an organic polymer as described above. The electrical resistance is detected by the detector 4. A coefficient indicating the relationship between the electric resistance between the electrodes 32 and 32 and the gas concentration is preset in the detector 4, and the detector 4 is based on the coefficient and the detected electric resistance between the electrodes 32 and 32. To detect the concentration of the detection target gas.
In addition, the electrodes 32 and 32 can be made into various shapes such as a flat plate shape and a comb shape.

図2は、図1に示したガスセンサ3の製造手順を説明する説明図である。
図2(a)に示した如く、基板31の表面に、対をなす電極32,32及びリード32a,32a(図1参照)を適宜のギャップを隔ててパターニングする。かかるパターニングは、例えばフォトリソグラフィ法及び蒸着法を用いて行うことができる。また、電極32,32及びリード32a,32aの材料としては、検出対象ガス及び有機ポリマの種類等に応じて金、銀、白金等、導電性を有する適当な金属を用いる。
FIG. 2 is an explanatory view for explaining a manufacturing procedure of the gas sensor 3 shown in FIG.
As shown in FIG. 2A, a pair of electrodes 32 and 32 and leads 32a and 32a (see FIG. 1) are patterned on the surface of the substrate 31 with an appropriate gap therebetween. Such patterning can be performed using, for example, a photolithography method and a vapor deposition method. In addition, as the materials of the electrodes 32 and 32 and the leads 32a and 32a, an appropriate conductive metal such as gold, silver, or platinum is used according to the detection target gas and the type of the organic polymer.

一方、電極32,32のギャップは5μm程度〜200μm程度に設定する。
次に、図2(b)に示した如く、電極32,32と同じ材料を用いて、直径がナノサイズの複数の金属粒子33,33,…を、両電極32,32間の電気抵抗が数〜数百ギガΩ程度になるように互いに適宜のギャップを隔てて生成させる。
On the other hand, the gap between the electrodes 32 and 32 is set to about 5 μm to 200 μm.
Next, as shown in FIG. 2 (b), using the same material as the electrodes 32, 32, a plurality of metal particles 33, 33,. They are generated with an appropriate gap from each other so as to be about several to several hundred gigaΩ.

金属粒子33,33,…の生成はスパッタリングによって行うことができる。また、各金属粒子33,33,…間のギャップは、スパッタリング装置における作動電流値及びスパッタリングを行う時間によって調整することができ、両電極32,32間の電気抵抗がギガΩ程度になるように各金属粒子33,33,…間のギャップを調整する。
例えば、アルバック社のUPS050型のスパッタリング装置を用いた場合、アルゴンガス中、5mAで90秒程度のスパッタリングを行うことが好適である。
Generation of the metal particles 33, 33,... Can be performed by sputtering. Further, the gap between the metal particles 33, 33,... Can be adjusted by the operating current value in the sputtering apparatus and the sputtering time, so that the electrical resistance between the electrodes 32, 32 is about giga Ω. The gap between each metal particle 33,33, ... is adjusted.
For example, when using a UPS 050 type sputtering apparatus manufactured by ULVAC, it is preferable to perform sputtering in argon gas at 5 mA for about 90 seconds.

図3は、互いにギャップを隔てて形成した金属粒子33,33,…の原子間力顕微鏡写真図である。図3から明らかなように、金属粒子33,33,…は略球状をなしており、従って各金属粒子33,33,…の間にはギャップが存在することが分かる。   FIG. 3 is an atomic force micrograph of metal particles 33, 33,... Formed with a gap therebetween. As is apparent from FIG. 3, the metal particles 33, 33,... Have a substantially spherical shape, and thus it can be seen that a gap exists between the metal particles 33, 33,.

次に、ガスセンサ3の表面の両電極32,32及びその間隙領域を除く領域を被覆した後、必要に応じて図2(c)に示した如く、金属粒子33,33,…及び電極32,32に結合する部位と前述したファイバに結合する部位とを備える官能基34,34,…を金属粒子33,33,…及び電極32,32の表面に化学的に結合させる。   Next, after covering both the electrodes 32, 32 on the surface of the gas sensor 3 and the region excluding the gap region, as shown in FIG. 2 (c), the metal particles 33, 33,. Are bonded to the surfaces of the metal particles 33, 33,... And the electrodes 32, 32. The functional groups 34, 34,.

金属粒子33,33,…及び電極32,32への官能基34,34,…の接合は、適宜の溶媒に官能基34,34,…を溶解させた溶液に基板31を浸漬させ、該溶液から引き出した基板31を乾燥させることによって実施することができる。   The bonding of the functional groups 34, 34,... To the metal particles 33, 33,... And the electrodes 32, 32 is performed by immersing the substrate 31 in a solution in which the functional groups 34, 34,. It can be carried out by drying the substrate 31 drawn from the substrate.

ここで、検出対象ガスがアンモニアガスである場合、官能基34,34,…には4−アミノチオフェン(ATP)を用いることができる。かかるATPは、金属結合部位としてチオール基を、またファイバ結合部位としてアミノ基を有している。   Here, when the detection target gas is ammonia gas, 4-aminothiophene (ATP) can be used for the functional groups 34, 34,. Such ATP has a thiol group as a metal binding site and an amino group as a fiber binding site.

また、ATP以外にもファイバを構成するポリマの種類に応じて、カルボキシル基、水酸基、アンモニウム基、ピリジン、又はチオフェンをファイバ結合部位又は金属結合部位として有する官能基を用いることができる。   In addition to ATP, a functional group having a carboxyl group, a hydroxyl group, an ammonium group, pyridine, or thiophene as a fiber binding site or a metal binding site can be used depending on the type of polymer constituting the fiber.

次に、図2(d)に示した如く、前述した任意の金属粒子33,33,…間、及び両電極32,32と任意の金属粒子33,33,…との間を複数のファイバ35,35,…で架橋することによってネットワーク36を形成し、該ネットワーク36によって両電極32,32間を架橋する。   Next, as shown in FIG. 2 (d), a plurality of fibers 35 are formed between the arbitrary metal particles 33, 33,... And between the electrodes 32, 32 and the arbitrary metal particles 33, 33,. , 35,... To form a network 36, and the network 36 bridges the electrodes 32, 32.

ネットワーク36の形成は次のようにして行う。すなわち、有機ポリマの原料を適宜の溶媒に溶解させた原料溶液と、所要の重合剤を溶解させた重合剤溶液とを0℃程度から20℃程度のまでの適宜の温度になし、両溶液を撹拌させながら混合させて混合液を得、この混合液を基板31の両電極32,32間に供給した後、基板31を0℃程度から20℃程度のまでの適宜の温度下で静置して、原料の重合による有機ポリマの生成及び複数の有機ポリマの集合によるファイバ35,35,…の形成を実行させる。形成された各ファイバ35,35,…は、官能基34,34,…が結合されていない場合は金属粒子33,33,…に直接化学的に結合し、一方、官能基34,34,…が結合されている場合は当該官能基34,34,…を介して金属粒子33,33,…と化学的に結合して、ネットワーク36が形成される。   The network 36 is formed as follows. That is, a raw material solution in which an organic polymer raw material is dissolved in an appropriate solvent and a polymer agent solution in which a required polymerization agent is dissolved are set to appropriate temperatures from about 0 ° C. to about 20 ° C., and both solutions are used. The mixture is mixed with stirring to obtain a mixed solution. After the mixed solution is supplied between the electrodes 32 and 32 of the substrate 31, the substrate 31 is allowed to stand at an appropriate temperature from about 0 ° C to about 20 ° C. Then, the production of the organic polymer by polymerization of the raw materials and the formation of the fibers 35, 35,... By the assembly of the plurality of organic polymers are executed. The formed fibers 35, 35,... Are directly chemically bonded to the metal particles 33, 33,... When the functional groups 34, 34,. Are chemically bonded to the metal particles 33, 33,... Via the functional groups 34, 34,.

ここで、有機ポリマとしては、検出対象ガスがアンモニアガスである場合はポリアニリンが好適である。例えば、3.2mmol/l(1M HCl)のアニリン溶液10mlと、0.8mmol/l(1M HCl)のAPS溶液10mlとを撹拌・混合させてポリアニリンのファイバを形成させる。なお、かかる操作中、溶液の温度を0℃から4℃に保持すると、ファイバの直径を300nmから500nmに制御できるため好適である。   Here, as the organic polymer, polyaniline is suitable when the detection target gas is ammonia gas. For example, 10 ml of an aniline solution of 3.2 mmol / l (1M HCl) and 10 ml of an APS solution of 0.8 mmol / l (1M HCl) are stirred and mixed to form a polyaniline fiber. Note that it is preferable to keep the temperature of the solution from 0 ° C. to 4 ° C. during the operation because the fiber diameter can be controlled from 300 nm to 500 nm.

一方、検出対象ガスの種類に応じて、チオフェン、ペプチド、アレーン、ピリジン、アセチレン、アルキル、アルケン系の基材からなる有機ポリマを用いることができる。
そして、混合液を基板31の両電極32,32間に供給してから適宜時間経過した後、基板31の表面を洗浄し、金属粒子33,33,…又は電極32,32に結合していないファイバを除去、基板31の表面を乾燥させることによってガスセンサ3を得る。
On the other hand, an organic polymer composed of a thiophene, peptide, arene, pyridine, acetylene, alkyl, or alkene base material can be used depending on the type of detection target gas.
Then, after an appropriate time has elapsed since the mixed solution was supplied between the electrodes 32 and 32 of the substrate 31, the surface of the substrate 31 was washed and not bonded to the metal particles 33, 33,. The gas sensor 3 is obtained by removing the fiber and drying the surface of the substrate 31.

図4は、ガスセンサ3を構成するネットワーク36のレーザ顕微鏡写真図である。
図4から明らかな如く、ネットワークは適宜の間隙を有しており、ネットワークを構成する各ファイバは略一次元状に展開されていると言える。
FIG. 4 is a laser micrograph of the network 36 constituting the gas sensor 3.
As is clear from FIG. 4, the network has an appropriate gap, and it can be said that the fibers constituting the network are developed in a substantially one-dimensional manner.

このようなガスセンサ3を備えるガス検出装置にあっては、ネットワーク36を構成するファイバ35,35,…が両電極32,32及び金属粒子33,33,…と、官能基34,34,…を介して又は直接的、化学的に結合しているため、結合部の電気抵抗が低く、それに伴ってガスの検出感度が向上する。また、前述した如くネットワーク36を構成する各ファイバ35,35,…は略一次元状に展開されているため、ネットワーク36の厚さ寸法は可及的に薄く、これによってもガスの検出感度が向上する。   In the gas detection device including such a gas sensor 3, the fibers 35, 35,... Constituting the network 36 include both electrodes 32, 32 and metal particles 33, 33,. Therefore, the bonding portion has a low electrical resistance, and the gas detection sensitivity is improved accordingly. Further, as described above, since the fibers 35, 35,... Constituting the network 36 are developed in a substantially one-dimensional shape, the thickness dimension of the network 36 is as thin as possible, which also increases the gas detection sensitivity. improves.

一方、ネットワーク36は適宜の間隙を有しているため、該ネットワーク36が検出対象ガスの出入りに障壁とならず、検出対象ガスがネットワーク36から外へ容易に排出される。したがって、ガスセンサ3を繰り返し使用することができる。   On the other hand, since the network 36 has an appropriate gap, the network 36 does not become a barrier to the entry and exit of the detection target gas, and the detection target gas is easily discharged out of the network 36. Therefore, the gas sensor 3 can be used repeatedly.

(実施例1)
次に、アンモニアガスを検出すべく、ポリアニリンのファイバによってネットワークを形成してなるガスセンサのガス検出感度を比較した結果について説明する。
Example 1
Next, the results of comparing the gas detection sensitivities of gas sensors formed by forming a network with polyaniline fibers to detect ammonia gas will be described.

図5は、ATPを結合させた金属粒子にポリアニリンのファイバによってネットワークを形成してなるガスセンサ(上位のグラフ)のガス検出感度と、ATPを結合させていない金属粒子にポリアニリンのファイバによってネットワークを形成してなるガスセンサ(下位のグラフ)のガス検出感度を比較した結果を示すグラフである。   Fig. 5 shows the gas detection sensitivity of a gas sensor (upper graph) formed by forming a network with polyaniline fibers on metal particles bonded with ATP, and the network formed with polyaniline fibers on metal particles not bonded with ATP. It is a graph which shows the result of having compared the gas detection sensitivity of the gas sensor (lower graph) formed.

図5から明らかな如く、前者のガス検出感度は後者のガス検出感度より略2倍〜略3倍高い結果であった。
この結果より、ネットワークを構成するファイバが両電極及び金属粒子と、官能基を介して化学的に結合しているため、結合部の電気抵抗が低く、それに伴ってガスの検出感度が向上することが分かる。
As is clear from FIG. 5, the former gas detection sensitivity was about 2 to 3 times higher than the latter gas detection sensitivity.
From this result, since the fibers constituting the network are chemically bonded to both electrodes and metal particles via functional groups, the electrical resistance of the bonded portion is low, and the gas detection sensitivity is improved accordingly. I understand.

(実施例2)
図6は実施例1で説明した本発明に係るガスセンサによって5ppmのアンモニアガスを経時的に検出した結果を示すグラフであり、図8及び図9は、従来のガスセンサによって100ppmのアンモニアガスを経時的に検出した結果を示すグラフである。なお、図8で用いたガスセンサは対をなす電極間をポリアニリン膜で架橋してあり、図9で用いたガスセンサは対をなす電極をポリアニリンにて生成したファイバを重積させることによって架橋してある。また、両図8及び図9中、高段のグラフから下段のグラフにかけてポリアニリンの厚さを0.2μm〜2.0μm内で段階的に厚くしてある。
(Example 2)
FIG. 6 is a graph showing the results of detecting 5 ppm of ammonia gas over time by the gas sensor according to the present invention described in Example 1, and FIGS. 8 and 9 are graphs showing 100 ppm of ammonia gas over time by the conventional gas sensor. It is a graph which shows the result detected. The gas sensor used in FIG. 8 has a pair of electrodes cross-linked with a polyaniline film, and the gas sensor used in FIG. 9 cross-links the pair of electrodes by stacking fibers made of polyaniline. is there. In both FIGS. 8 and 9, the thickness of the polyaniline is increased stepwise from 0.2 μm to 2.0 μm from the upper graph to the lower graph.

これら図6と図8及び図9との比較から明らかなように、従来のガスセンサにあっては100ppmと比較的高濃度のアンモニアガスであっても電気抵抗のシャープな変化を得ることが難しく、その変化にも数百秒と長時間を要していた。   As is clear from the comparison between FIG. 6 and FIGS. 8 and 9, it is difficult to obtain a sharp change in electrical resistance even with a relatively high concentration of ammonia gas of 100 ppm in the conventional gas sensor, The change required several hundred seconds and a long time.

これに対して、本発明に係るガスセンサにあっては、5ppmと1/20の低濃度のアンモニアガスであっても、電気抵抗のシャープな変化を得ることができ、またその変化も略20秒程度と短時間であった。   On the other hand, in the gas sensor according to the present invention, a sharp change in electrical resistance can be obtained even with ammonia gas having a low concentration of 5 ppm and 1/20, and the change is approximately 20 seconds. It was about a short time.

(実施例3)
図7は実施例1で説明した本発明に係るガスセンサによってアンモニアガスを繰り返し検出した結果を示すグラフである。
ガスセンサにアンモニアガスを1L/分の流量で3分間導入した後、ガスセンサに空気を2L/分の流量で5分間導入して洗浄する操作を繰り返し、ガスセンサの両電極間の電気抵抗を経時的に測定した。
(Example 3)
FIG. 7 is a graph showing the results of repeatedly detecting ammonia gas by the gas sensor according to the present invention described in Example 1.
After introducing ammonia gas into the gas sensor at a flow rate of 1 L / min for 3 minutes, air was introduced into the gas sensor at a flow rate of 2 L / min for 5 minutes and washing was repeated, and the electrical resistance between both electrodes of the gas sensor was changed over time. It was measured.

図7から明らかなように、本発明に係るガスセンサにあっては繰り返し使用した場合であってもガスセンサの両電極間の電気抵抗には僅かな上昇しか認められなかった。かかる電気抵抗の上昇は容易に校正することができるので、本発明に係るガスセンサは繰り返し使用することができる。   As is clear from FIG. 7, in the gas sensor according to the present invention, only a slight increase was observed in the electrical resistance between both electrodes of the gas sensor even when it was repeatedly used. Since such an increase in electrical resistance can be easily calibrated, the gas sensor according to the present invention can be used repeatedly.

1 ガス導入器
2 チャンバ
3 ガスセンサ
4 検出器
31 基板
32 電極
32a リード
33 金属粒子
34 官能基
35 ファイバ
36 ネットワーク
DESCRIPTION OF SYMBOLS 1 Gas introducing device 2 Chamber 3 Gas sensor 4 Detector 31 Substrate 32 Electrode 32a Lead 33 Metal particle 34 Functional group 35 Fiber 36 Network

Claims (5)

基板の表面に適宜距離を隔てて配置した対をなす電極間を、検出対象ガスと相互反応して電気伝導度が変化する有機ポリマで架橋してなるガスセンサにおいて、
前記基板の両電極間の領域に導電性を有する所要の金属粒子複数が互に適宜のギャップを隔てて形成してあり、前記有機ポリマにて構成された複数のファイバによって任意の複数の金属粒子間及び前記両電極と任意の金属粒子との間をそれぞれ架橋することによって、両電極間を架橋する前記各ファイバのネットワークが形成してあることを特徴とするガスセンサ。
In a gas sensor formed by bridging a pair of electrodes arranged on the surface of the substrate at an appropriate distance with an organic polymer that interacts with a detection target gas and changes electrical conductivity,
A plurality of required metal particles having conductivity are formed in a region between both electrodes of the substrate with an appropriate gap therebetween, and a plurality of arbitrary metal particles are formed by a plurality of fibers composed of the organic polymer. The gas sensor is characterized in that a network of the fibers for bridging the electrodes is formed by bridging the electrodes and the electrodes and any metal particles.
主にアンモニアガスを検出対象ガスとすべく、前記有機ポリマをポリアニリンで構成してあり、前記両電極の所要領域の表面及び各金属粒子の表面にそれぞれ4−アミノチオフェンを化学結合させてあり、これら4−アミノチオフェンに任意のファイバが化学結合している請求項1記載のガスセンサ。   The organic polymer is composed of polyaniline in order to mainly use ammonia gas as the detection target gas, and 4-aminothiophene is chemically bonded to the surface of the required region of both electrodes and the surface of each metal particle, The gas sensor according to claim 1, wherein an arbitrary fiber is chemically bonded to the 4-aminothiophene. 前記ネットワークは、対をなす電極間に有機ポリマの原料溶液と重合剤溶液とを混合した混合液を供給し、略0℃以上略20℃以下の適宜の温度でファイバを生成させることによって形成してある請求項1又は2記載のガスセンサ。   The network is formed by supplying a mixed liquid obtained by mixing an organic polymer raw material solution and a polymerizing agent solution between paired electrodes, and generating a fiber at an appropriate temperature of about 0 ° C. to about 20 ° C. The gas sensor according to claim 1 or 2. 前記ギャップは対をなす電極間の電気抵抗が数ギガΩになるように調整してある請求項1、2又は3記載のガスセンサ。   4. The gas sensor according to claim 1, wherein the gap is adjusted so that an electrical resistance between the paired electrodes is several giga ohms. 基板の表面に適宜距離を隔てて配置した対をなす電極間を、検出対象ガスと相互反応して電気伝導度が変化する有機ポリマで架橋してなるガスセンサを備え、前記両電極間の電気伝導度の変化によって検出対象ガスを検出するガス検出装置において、
請求項1から4のいずれかに記載のガスセンサを備えることを特徴とするガス検出装置。
A gas sensor is formed by bridging a pair of electrodes arranged on the surface of the substrate at an appropriate distance with an organic polymer whose electrical conductivity changes by interacting with the detection target gas, and the electric conduction between the electrodes. In the gas detection device that detects the detection target gas by the change in the degree,
A gas detection apparatus comprising the gas sensor according to claim 1.
JP2009035941A 2009-02-18 2009-02-18 Gas sensor and gas detection device Expired - Fee Related JP5288120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035941A JP5288120B2 (en) 2009-02-18 2009-02-18 Gas sensor and gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035941A JP5288120B2 (en) 2009-02-18 2009-02-18 Gas sensor and gas detection device

Publications (2)

Publication Number Publication Date
JP2010190752A true JP2010190752A (en) 2010-09-02
JP5288120B2 JP5288120B2 (en) 2013-09-11

Family

ID=42816944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035941A Expired - Fee Related JP5288120B2 (en) 2009-02-18 2009-02-18 Gas sensor and gas detection device

Country Status (1)

Country Link
JP (1) JP5288120B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307883A (en) * 2020-03-19 2020-06-19 中国石油大学(华东) Preparation method of ammonia gas sensor based on polyaniline-vanadium carbide, detection system and application thereof
CN116334948A (en) * 2023-03-03 2023-06-27 金陵科技学院 Polypyrrole/silver/cellulose composite paper-based material, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304340A (en) * 1989-05-18 1990-12-18 Ryutoku Yosomiya Ammonia sensor
JP2002228616A (en) * 2000-12-12 2002-08-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing the same, and specimen detection method
JP2003139775A (en) * 2001-07-19 2003-05-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing chemical sensor, and method of detecting specimen
JP2003161714A (en) * 2001-11-27 2003-06-06 Ngk Spark Plug Co Ltd Ammonia gas sensor and its manufacturing method
JP2008256690A (en) * 2007-03-30 2008-10-23 Sony Deutsche Gmbh Method of altering sensitivity and/or selectivity of chemiregistor sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304340A (en) * 1989-05-18 1990-12-18 Ryutoku Yosomiya Ammonia sensor
JP2002228616A (en) * 2000-12-12 2002-08-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing the same, and specimen detection method
JP2003139775A (en) * 2001-07-19 2003-05-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing chemical sensor, and method of detecting specimen
JP2003161714A (en) * 2001-11-27 2003-06-06 Ngk Spark Plug Co Ltd Ammonia gas sensor and its manufacturing method
JP2008256690A (en) * 2007-03-30 2008-10-23 Sony Deutsche Gmbh Method of altering sensitivity and/or selectivity of chemiregistor sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307883A (en) * 2020-03-19 2020-06-19 中国石油大学(华东) Preparation method of ammonia gas sensor based on polyaniline-vanadium carbide, detection system and application thereof
CN111307883B (en) * 2020-03-19 2021-12-28 中国石油大学(华东) Preparation method of ammonia gas sensor based on polyaniline-vanadium carbide, detection system and application thereof
CN116334948A (en) * 2023-03-03 2023-06-27 金陵科技学院 Polypyrrole/silver/cellulose composite paper-based material, and preparation method and application thereof
CN116334948B (en) * 2023-03-03 2024-04-19 金陵科技学院 Polypyrrole/silver/cellulose composite paper-based material, and preparation method and application thereof

Also Published As

Publication number Publication date
JP5288120B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Zhang et al. Rational design of a flexible CNTs@ PDMS film patterned by bio‐inspired templates as a strain sensor and supercapacitor
Kwon et al. Novel flexible chemical gas sensor based on poly (3, 4-ethylenedioxythiophene) nanotube membrane
Li et al. Controlled electrophoretic patterning of polyaniline from a colloidal suspension
Rietveld et al. Electrospray deposition, model, and experiment: toward general control of film morphology
Dunst et al. Nitrogen dioxide sensing properties of PEDOT polymer films
Jiang et al. Facile preparation of Cu/Ag core/shell electrospun nanofibers as highly stable and flexible transparent conductive electrodes for optoelectronic devices
Al-Mashat et al. Conductometric hydrogen gas sensor based on polypyrrole nanofibers
Lee et al. Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application
Woodson et al. Guided growth of nanoscale conducting polymer structures on surface-functionalized nanopatterns
Jang et al. A high aspect ratio serpentine structure for use as a strain‐insensitive, stretchable transparent conductor
Xue et al. Ultralow-limit gas detection in nano-dumbbell polymer sensor via electrospinning
CN101482528A (en) Production method for integrated concentrated nano-particle monolayer film hydrogen sensor
CN101387614A (en) Air-sensitive micro sensor based on conducting polymer-carbon black granules
Zhang et al. Macroscopic Ultrathin Film as Bio‐Inspired Interfacial Reactor for Fabricating 2D Freestanding Janus CNTs/AuNPs Hybrid Nanosheets with Enhanced Electrical Performance
Jung et al. High-performance H 2 S detection by redox reactions in semiconducting carbon nanotube-based devices
JP5288120B2 (en) Gas sensor and gas detection device
Jun et al. A novel methanol sensor based on gas-penetration through a porous polypyrrole-coated polyacrylonitrile nanofiber mat
Jeon et al. Wearable nitrogen oxide gas sensors based on hydrophobic polymerized ionogels for the detection of biomarkers in exhaled breath
Montes‐García et al. Humidity sensing with supramolecular nanostructures
Jang et al. Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor
Rojas et al. Using electrospinning for the fabrication of rapid response gas sensors based on conducting polymer nanowires
Kim et al. Enhanced sensitivity of quartz tuning fork sensors using electrospun polymer wires
JP3726447B2 (en) Gas sensor
Li et al. Chemiresistive Polymer Percolation Network Gas Sensor Created with a Nanosphere Template
EP2780702B1 (en) Molecular junction platform and method of fabricating such a platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

LAPS Cancellation because of no payment of annual fees