JP2010190713A - Fluorescence measuring apparatus - Google Patents

Fluorescence measuring apparatus Download PDF

Info

Publication number
JP2010190713A
JP2010190713A JP2009035045A JP2009035045A JP2010190713A JP 2010190713 A JP2010190713 A JP 2010190713A JP 2009035045 A JP2009035045 A JP 2009035045A JP 2009035045 A JP2009035045 A JP 2009035045A JP 2010190713 A JP2010190713 A JP 2010190713A
Authority
JP
Japan
Prior art keywords
sample
excitation light
holding plate
fluorescence
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009035045A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hayashi
義明 林
Akihiro Yamanaka
章大 山中
Tsuneji Fujito
恒地 藤戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leimac Ltd
Original Assignee
Leimac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leimac Ltd filed Critical Leimac Ltd
Priority to JP2009035045A priority Critical patent/JP2010190713A/en
Publication of JP2010190713A publication Critical patent/JP2010190713A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescence measuring apparatus for performing fluorescence measurement of a minute amount of a liquid sample wherein the reproducibility is high, the sample is easily held, and the measurement accuracy is high. <P>SOLUTION: The fluorescence measuring apparatus is achieved by the following configurations: in a first configuration, a liquid sample disposed at an excitation light converging position of an epi-illumination optical system object lens using a fluorescent cube is held in a hole of a sample holding plate wherein the hole passes through the plate perpendicular to the optical axis; in a second configuration, an aqueous solution sample is held with an affinity in a hydrophilic circular area on the sample holding plate and the circumference of the circular area is rendered water repellent, and thus the aqueous solution sample is bound within the hydrophilic circular area; and in a third configuration, droplets of the liquid sample is made to fly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微量の液状サンプルの蛍光を測定する蛍光測定装置に関するものであって、特に測定時のサンプル保持方法に関するものである   The present invention relates to a fluorescence measuring apparatus for measuring the fluorescence of a small amount of liquid sample, and particularly to a sample holding method during measurement.

マイクロリットルオーダーの液状サンプルの蛍光を測定することは、蛍光標識された核酸など物質の量が僅少に制約される場合に有用性が高い。   Measuring the fluorescence of a liquid sample in the microliter order is highly useful when the amount of a substance such as a fluorescently labeled nucleic acid is slightly restricted.

従来技術に、サンプルは相対的に動作可能で実質的に平行な2つの表面のアンビルの間に表面張力によって保持し、光路は2つの表面のそれぞれの濡れたエリアの間に確立された蛍光測定装置が、特表2008−530554号公報に開示されている。   In the prior art, the sample is held by surface tension between two surface anvils that are relatively operable and substantially parallel, and the optical path is established between the respective wet areas of the two surfaces. An apparatus is disclosed in Japanese translations of PCT publication No. 2008-530554.

しかしながらこの方法では、以下のような問題点がある。第1に、サンプルを保持する2つのアンビルは、開閉動作が必要なため複雑かつ精密な構造を必要とする。第2に、測定に際してはアンビルの開閉動作のほかに、2つのアンビルのクリーニングが必要であるが、微細で複雑な構造のクリーニングは容易でなく、手数を要するうえ残渣が残りやすい。   However, this method has the following problems. First, the two anvils that hold the sample require a complicated and precise structure because they require opening and closing operations. Secondly, in addition to the anvil opening / closing operation, two anvils need to be cleaned for measurement, but it is not easy to clean a fine and complicated structure, and it is troublesome and residue is likely to remain.

特表2008−530554号公報Special table 2008-530554

解決しようとする課題は、微量の液状サンプルを再現性よく、かつ簡便に保持し、もって精度の良い蛍光測定が可能な蛍光測定装置を実現することである。   The problem to be solved is to realize a fluorescence measuring apparatus that can easily hold a small amount of liquid sample with good reproducibility and can perform fluorescence measurement with high accuracy.

上記課題を解決する本発明の手段は、蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置に配置する液状サンプルを、第1の構成では光軸に垂直に貫通する穴を有するサンプル保持プレートの当該穴に保持することによって、第2の構成では水溶液サンプルをサンプル保持プレート上の親水性の円形領域に親和力により保持し前記円形領域の周囲を撥水性とすることにより水溶液サンプルを親水性の円形領域内に束縛することによって、第3の構成では液状サンプル滴を飛行させることによって達成される。   The means of the present invention for solving the above-described problem is that a liquid sample disposed at an excitation light condensing position of an objective lens of an epi-illumination optical system using a fluorescent cube is provided with a hole penetrating perpendicularly to the optical axis in the first configuration. In the second configuration, the aqueous solution sample is held in the hydrophilic circular region on the sample holding plate by affinity, and the periphery of the circular region is made water-repellent by holding the sample in the hole of the sample holding plate. In a third configuration by flying liquid sample drops.

本発明の蛍光測定装置は、第1の構成ではサンプル保持プレートの貫通穴にピペットで液状サンプルを注入して測定を行なった後該穴周辺にクリーニング液を流して拭き取ることによって、第2の構成ではサンプル保持プレート上の親水性の円形領域にピペットで水溶液サンプルを滴下して測定を行った後該円形領域を水拭きすることによって、第3の構成ではピペットで液状サンプルを滴下して測定を行った後落下したサンプルをまとめて回収することによって測定作業が完了するため、いずれの場合も簡易な構造でかつ操作が簡略な蛍光測定装置が実現できる。   In the first configuration, the fluorescence measuring apparatus according to the present invention has a second configuration in which a liquid sample is injected into a through hole of a sample holding plate with a pipette and measurement is performed, and then a cleaning liquid is poured around the hole and wiped off. In the third configuration, the aqueous sample is dropped onto the hydrophilic circular area on the sample holding plate and measured, and then the circular area is wiped with water. In the third configuration, the liquid sample is dropped with the pipette to measure. Since the measurement work is completed by collecting the samples that have been dropped after being performed, a fluorescence measuring apparatus having a simple structure and simple operation can be realized in any case.

蛍光測定装置の全体を示した説明図である。(実施例1)It is explanatory drawing which showed the whole fluorescence measuring device. (Example 1) 蛍光測定装置のサンプル保持プレートを示した説明図である。(実施例1)It is explanatory drawing which showed the sample holding plate of the fluorescence measuring device. (Example 1) 蛍光測定装置のサンプル保持プレートを示した説明図である。(実施例2)It is explanatory drawing which showed the sample holding plate of the fluorescence measuring device. (Example 2) 蛍光測定装置のサンプル保持プレートを示した説明図である。(実施例3)It is explanatory drawing which showed the sample holding plate of the fluorescence measuring device. (Example 3) 蛍光測定装置の全体を示した説明図である。(実施例4)It is explanatory drawing which showed the whole fluorescence measuring device. Example 4

第1の形態は、蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置に、光軸に垂直に貫通する穴を有するサンプル保持プレートの当該穴が一致するようにサンプル保持プレートを配置してなる。   In the first embodiment, the sample holding plate is arranged so that the hole of the sample holding plate having a hole penetrating perpendicularly to the optical axis coincides with the excitation light condensing position of the objective lens of the epi-illumination optical system using the fluorescent cube. It is arranged.

第2の形態は、蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置に、サンプル保持プレート上の親水性の円形領域が一致するようにサンプル保持プレートを配置してなる。   In the second embodiment, the sample holding plate is arranged so that the hydrophilic circular area on the sample holding plate coincides with the excitation light condensing position of the objective lens of the epi-illumination optical system using the fluorescent cube.

第3の形態は、蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置を、ピペットから鉛直に滴下した液状サンプルが通過するように、前記落射照明光学系を水平に傾けて配置し、励起光集光位置の真上にピペットを固定する手段を設けてなる。   In the third embodiment, the epi-illumination optical system is tilted horizontally so that the liquid sample dropped vertically from the pipette passes through the excitation light condensing position of the objective lens of the epi-illumination optical system using the fluorescent cube. A means for arranging and fixing the pipette is provided immediately above the excitation light condensing position.

図1は、本発明装置の第1の形態の実施例を示す。1は励起光源、2は蛍光検出用基本光学系で蛍光キューブと呼ばれる。蛍光キューブ2は、励起波長を選択的に透過する狭帯域干渉フィルタである励起フィルタ3と、励起波長を反射し蛍光波長を透過するダイクロイックビームスプリッタ4と、蛍光波長を透過して励起波長を反射する干渉フィルタである吸収フィルタ5を組み合わせ一体化したものである。ただし本発明においては一体化されていることは必要要件ではないので、個別に設置する場合も含めてこれらの組合せを蛍光キューブと称する。励起光源から出射した励起光6は、励起フィルタ3で波長純化し、ダイクロイックビームスプリッタ4で反射し、対物レンズ7により励起光集光位置に集光する。励起光集光位置にはサンプル保持プレート8に保持されたサンプルを配置する。励起光を吸収したサンプルが発光する蛍光9は、対物レンズ7でコリメートし、ダイクロイックビームスプリッタ4を透過して集光レンズ10により光検出器11で受光する。光検出器11はモノクロメータを含む分光検出器とすれば分光蛍光測定装置とすることができる。以上のような光学系は、落射照明光学系として周知のものである。なお12は、サンプルを透過した励起光を示す。   FIG. 1 shows an embodiment of the first mode of the apparatus of the present invention. Reference numeral 1 is an excitation light source, and 2 is a basic optical system for fluorescence detection, which is called a fluorescence cube. The fluorescent cube 2 includes an excitation filter 3 that is a narrow band interference filter that selectively transmits an excitation wavelength, a dichroic beam splitter 4 that reflects the excitation wavelength and transmits the fluorescence wavelength, and transmits the fluorescence wavelength and reflects the excitation wavelength. The absorption filter 5 that is an interference filter is combined and integrated. However, in the present invention, being integrated is not a necessary requirement, and these combinations including the case where they are individually installed are called fluorescent cubes. The excitation light 6 emitted from the excitation light source is wavelength-purified by the excitation filter 3, reflected by the dichroic beam splitter 4, and condensed at the excitation light condensing position by the objective lens 7. The sample held on the sample holding plate 8 is arranged at the excitation light condensing position. The fluorescence 9 emitted from the sample that has absorbed the excitation light is collimated by the objective lens 7, passes through the dichroic beam splitter 4, and is received by the photodetector 11 by the condenser lens 10. If the photodetector 11 is a spectroscopic detector including a monochromator, it can be a spectrofluorometric apparatus. The above optical system is known as an epi-illumination optical system. Reference numeral 12 denotes excitation light transmitted through the sample.

本発明は基本的に落射照明光学系を用いるが、その特徴は前記サンプル保持プレート部分にあるので、要部を拡大した図2を用いて詳述する。図2において、(a)はサンプル保持プレート8の斜視図で照射する励起光の光軸に平行に貫通する穴13を有する。(b)はその断面を示し、14は液状サンプルである。液状サンプル14は、定量をピペットで穴13に滴下すると穴内面に濡れて、表面張力により一定の形状で保持される。この穴13が前記対物レンズ7の励起光集光位置に一致するようにサンプル保持プレートを配置するので、励起光が液状サンプル14を集中的に照射し蛍光が発生する。一般に、発生する蛍光の性状はサンプルの形状が変われば変動するが、上記の通り一定形状が得られるため測定のバラツキは小さく再現性のよい測定が可能である。穴13の形状は平行である必要はなく、例えば(c)に示すように励起光のプロファイルに沿ったテーパー穴にすると液状サンプル14を効率的に励起することができる等の付加効果が得られる。保持し得るサンプルの量はプレートの厚さと穴径でコントロールすることができ、およそ穴の容積と同量のサンプルが保持できる。1マイクロリットルの液状サンプルは厚さ1.5mm、穴直径1mm程度が適当である。なお1枚のサンプル保持プレート8に2個以上の穴を設けることも可能で、その場合は全ての穴が励起光集光位置に位置決めできる手段を要するが、その機構は多種かつ容易であるため省略する。   The present invention basically uses an epi-illumination optical system, and since the feature is in the sample holding plate portion, it will be described in detail with reference to FIG. In FIG. 2, (a) has a hole 13 penetrating parallel to the optical axis of the excitation light irradiated in the perspective view of the sample holding plate 8. (B) shows the cross section, and 14 is a liquid sample. When the fixed amount is dropped onto the hole 13 with a pipette, the liquid sample 14 gets wet on the inner surface of the hole and is held in a certain shape by the surface tension. Since the sample holding plate is arranged so that the hole 13 coincides with the excitation light condensing position of the objective lens 7, the excitation light irradiates the liquid sample 14 in a concentrated manner, and fluorescence is generated. In general, the property of the generated fluorescence varies as the shape of the sample changes. However, since a certain shape can be obtained as described above, measurement variation is small and measurement with good reproducibility is possible. The shapes of the holes 13 do not need to be parallel, and for example, when the tapered holes are formed along the excitation light profile as shown in (c), an additional effect is obtained such that the liquid sample 14 can be excited efficiently. . The amount of sample that can be held can be controlled by the plate thickness and hole diameter, so that approximately the same amount of sample as the hole volume can be held. A suitable liquid sample of 1 microliter has a thickness of about 1.5 mm and a hole diameter of about 1 mm. In addition, it is possible to provide two or more holes in one sample holding plate 8, and in this case, a means for positioning all the holes at the excitation light condensing position is required, but the mechanism is various and easy. Omitted.

本実施例において、液状サンプルを供給する方法については上記に述べたが、測定後のクリーニングはサンプルを拭き取った後サンプルに応じたクリーニング液で穴13およびその周囲を清拭する。構造がシンプルなためサンプルの供給もクリーニングも簡単かつ確実に行うことができる。
In the present embodiment, the method for supplying the liquid sample has been described above. In the cleaning after the measurement, after wiping the sample, the hole 13 and the periphery thereof are wiped with a cleaning liquid corresponding to the sample. Since the structure is simple, sample supply and cleaning can be performed easily and reliably.

図3は、本発明装置の第2の形態の実施例を示す。サンプル保持プレート部分以外は第1の形態の実施例と同じであるので全体図は省略し、要部を拡大したものを示している。図3において、(a)はサンプル保持プレート15の斜視図で円形領域16を親水性に、その周囲を撥水性にする。(b)はその断面を示し、17は水溶液サンプルである。円形領域16は親水性のため水溶液に対して濡れ性がよく、周囲が撥水性のためサンプルの底面積は円形領域に拘束され、定量のサンプルをピペットで滴下すると表面張力により一定の形状で保持される。この円形領域16が前記対物レンズ7の励起光集光位置に一致するようにサンプル保持プレートを配置するので、励起光が水溶液サンプル17を集中的に照射し蛍光が発生する。保持し得るサンプルの量は円形領域の面積でコントロールすることができる。なお1枚のサンプル保持プレート15に2個以上の円形領域を設けることも可能でることは実施例1の場合と同様である。サンプル形状が一定のため測定のバラツキが小さいのも同様である。   FIG. 3 shows an embodiment of the second aspect of the apparatus of the present invention. Except for the sample holding plate portion, it is the same as the embodiment of the first embodiment, and therefore, the overall view is omitted, and an enlarged main portion is shown. In FIG. 3, (a) is a perspective view of the sample holding plate 15 in which the circular region 16 is made hydrophilic and its periphery is made water repellent. (B) shows the cross section, and 17 is an aqueous solution sample. Since the circular region 16 is hydrophilic, it has good wettability with respect to an aqueous solution, and since the periphery is water-repellent, the bottom area of the sample is constrained by the circular region. Is done. Since the sample holding plate is disposed so that the circular area 16 coincides with the excitation light condensing position of the objective lens 7, the excitation light irradiates the aqueous solution sample 17 in a concentrated manner, and fluorescence is generated. The amount of sample that can be held can be controlled by the area of the circular region. As in the case of the first embodiment, it is possible to provide two or more circular regions on one sample holding plate 15. It is the same that the variation in measurement is small because the sample shape is constant.

本実施例において、液状サンプルを供給する方法については上記に述べたが、測定後のクリーニングはサンプルを拭き取った後サンプルに応じたクリーニング液で円形領域16の周囲を清拭する。構造がシンプルなためサンプルの供給もクリーニングも簡単かつ確実に行うことができる。   In the present embodiment, the method for supplying the liquid sample has been described above. In the cleaning after the measurement, the periphery of the circular region 16 is wiped with a cleaning liquid corresponding to the sample after wiping the sample. Since the structure is simple, sample supply and cleaning can be performed easily and reliably.

図4は、本発明装置の第2の形態の別の実施例を示す。本例の場合もサンプル保持プレート18部分以外は第1の形態の実施例と基本的に同じであるが、天地を反転しサンプル保持プレート18の下方から励起光を照射、蛍光検出を行う。図において19は水溶液サンプルである。本例においてはサンプル保持プレート18は励起光および蛍光に対して透明性が必要で、ガラス、石英ガラス、透明アクリル樹脂等を用いることができる。本例の長所はサンプル保持プレート18が最上部に位置するため、装置の上面からのサンプル供給、クリーニングが行い易い。   FIG. 4 shows another embodiment of the second aspect of the apparatus of the present invention. This example is basically the same as the first embodiment except for the portion of the sample holding plate 18, but the top and bottom are inverted and excitation light is irradiated from below the sample holding plate 18 to detect fluorescence. In the figure, 19 is an aqueous solution sample. In this example, the sample holding plate 18 needs to be transparent to excitation light and fluorescence, and glass, quartz glass, transparent acrylic resin, or the like can be used. The advantage of this example is that the sample holding plate 18 is located at the uppermost position, so that it is easy to supply and clean the sample from the upper surface of the apparatus.

図5は、本発明装置の第3の形態の実施例を示す。本例の場合もサンプルが介在する部分以外は第1の形態の実施例と基本的に同じであるが、光学系を横転して配置する。すなわち水平に励起光を照射、蛍光検出を行う。本例の場合ピペットから滴下した液状サンプルは前記対物レンズ7の励起光集光位置を通って落下させる。すなわち落下運動をするサンプル液滴が励起光集光位置を通過する際に発する蛍光を検出する。本例の場合、測定中にサンプルを保持手段そのものを要せず、落下したサンプルを溜めて回収する容器19のみを要する。ただしサンプル液滴を正確に励起光集光位置を通過させるために、ピペットを位置決めするためのガイド20を備える。   FIG. 5 shows an embodiment of the third mode of the apparatus of the present invention. This example is basically the same as the example of the first embodiment except for the portion where the sample is interposed, but the optical system is turned over and arranged. That is, excitation light is irradiated horizontally to detect fluorescence. In this example, the liquid sample dropped from the pipette is dropped through the excitation light condensing position of the objective lens 7. That is, the fluorescence emitted when the sample droplet that makes a drop motion passes through the excitation light condensing position is detected. In the case of this example, the sample holding means itself is not required during the measurement, and only the container 19 for collecting and collecting the dropped sample is required. However, a guide 20 for positioning the pipette is provided to allow the sample droplet to pass through the excitation light condensing position accurately.

本実施例においてはサンプル保持部分がないのでクリーニングの必要性がない。
In this embodiment, since there is no sample holding portion, there is no need for cleaning.

本発明は、微量の液状サンプルの蛍光測定が必要な遺伝子解析等のバイオ分野やウイルス検出等の医療分野に利用可能である。
INDUSTRIAL APPLICABILITY The present invention can be used in the bio field such as gene analysis that requires fluorescence measurement of a small amount of liquid sample and the medical field such as virus detection.

1 励起光源
2 蛍光キューブ
3 励起フィルタ
4 ダイクロイックビームスプリッタ
5 吸収フィルタ
6 励起光
7 対物レンズ
8 サンプル保持プレート
9 蛍光
10 集光レンズ
11 光検出器
12 サンプルを透過した励起光
13 穴
14 液状サンプル
15 サンプル保持プレート
16 親水性円形領域
17 水溶液サンプル
18 サンプル保持プレート
19 水溶液サンプル
20 サンプル回収容器
21 ピペット位置決めガイド
DESCRIPTION OF SYMBOLS 1 Excitation light source 2 Fluorescence cube 3 Excitation filter 4 Dichroic beam splitter 5 Absorption filter 6 Excitation light 7 Objective lens 8 Sample holding plate 9 Fluorescence 10 Condensing lens 11 Photo detector 12 Excitation light which permeate | transmitted sample 13 Hole 14 Liquid sample 15 Sample Holding plate 16 Hydrophilic circular region 17 Aqueous sample 18 Sample holding plate 19 Aqueous sample 20 Sample collection container 21 Pipette positioning guide

Claims (3)

蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置に配置される液状サンプルを、光軸に平行に貫通する穴を有するサンプル保持プレートの当該穴に保持することを特徴とする蛍光測定装置。   A liquid sample arranged at an excitation light condensing position of an objective lens of an epi-illumination optical system using a fluorescent cube is held in the hole of a sample holding plate having a hole penetrating in parallel to the optical axis. Fluorescence measuring device. 蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置に配置される水溶液サンプルを、サンプル保持プレート上の親水性の円形領域に親和力により保持し、前記円形領域の周囲を撥水性とすることにより水溶液サンプルを親水性の円形領域内に拘束することを特徴とする蛍光測定装置。   An aqueous solution sample placed at the excitation light condensing position of the objective lens of the epi-illumination optical system using a fluorescent cube is held by affinity in the hydrophilic circular area on the sample holding plate, and the periphery of the circular area is made water-repellent By so doing, an aqueous solution sample is constrained within a hydrophilic circular region. 蛍光キューブを用いた落射照明光学系の対物レンズの励起光集光位置に、液状サンプル滴を飛行させることを特徴とする蛍光測定装置。
A fluorescence measuring apparatus, wherein a liquid sample droplet is caused to fly to an excitation light condensing position of an objective lens of an epi-illumination optical system using a fluorescent cube.
JP2009035045A 2009-02-18 2009-02-18 Fluorescence measuring apparatus Withdrawn JP2010190713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035045A JP2010190713A (en) 2009-02-18 2009-02-18 Fluorescence measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035045A JP2010190713A (en) 2009-02-18 2009-02-18 Fluorescence measuring apparatus

Publications (1)

Publication Number Publication Date
JP2010190713A true JP2010190713A (en) 2010-09-02

Family

ID=42816909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035045A Withdrawn JP2010190713A (en) 2009-02-18 2009-02-18 Fluorescence measuring apparatus

Country Status (1)

Country Link
JP (1) JP2010190713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011103252T5 (en) 2010-09-28 2013-06-27 Peptide Support Ltd. Fluorescence measuring method and fluorescence measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011103252T5 (en) 2010-09-28 2013-06-27 Peptide Support Ltd. Fluorescence measuring method and fluorescence measuring device
US8848188B2 (en) 2010-09-28 2014-09-30 Peptide Support Ltd. Fluorescence measurement method and fluorescence measurement device

Similar Documents

Publication Publication Date Title
JP6258353B2 (en) Optical measurement apparatus and method for analyzing samples contained in droplets
US8686376B2 (en) Microarray characterization system and method
US9557259B2 (en) Optical particle detector and detection method
JP6369533B2 (en) Measuring method and measuring device
JP2011511942A5 (en)
JP2006322841A (en) Spectrometry and spectrophotometer
CN108139309B (en) System and method for optically measuring particle stability and aggregation
JP6424890B2 (en) Surface plasmon enhanced fluorescence measurement method, surface plasmon enhanced fluorescence measurement device and analysis chip
JP2007248063A (en) Photodetector
JP2019534458A (en) System for optical monitoring of operating conditions in a sample analyzer
US20210010920A1 (en) Spectroscopic analysis device, spectroscopic analysis method, program, recording medium, and microscope
JPWO2016170967A1 (en) Detection chip manufacturing method and detection chip
JP2007033181A (en) Fluorescence detection device
JP2010190713A (en) Fluorescence measuring apparatus
US11224879B2 (en) Inspection chip and inspection system
JP2007170984A (en) Sample cell and spectrophotometer using the same
JP2010054392A (en) Light guiding apparatus for spectrally measuring small quantity of liquid
JP2009002774A (en) Device for detecting biological substance
WO2002103339A1 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis system for executing that method
JP2007113996A (en) Measuring device
JP6943262B2 (en) Liquid feeding system, inspection system and liquid feeding method
JP4861042B2 (en) Spectrophotometer
RU2004104626A (en) MICROCHEMICAL SYSTEM AND METHOD OF SPECTROSCOPIC ANALYSIS USING PHOTO THERMAL CONVERSION APPLIED IN THIS SYSTEM
EP2163885A1 (en) Microarray characterization system and method
WO2016093037A1 (en) Detection device and detection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501