JP2010190701A - Mounting structure of pressure sensor - Google Patents

Mounting structure of pressure sensor Download PDF

Info

Publication number
JP2010190701A
JP2010190701A JP2009034890A JP2009034890A JP2010190701A JP 2010190701 A JP2010190701 A JP 2010190701A JP 2009034890 A JP2009034890 A JP 2009034890A JP 2009034890 A JP2009034890 A JP 2009034890A JP 2010190701 A JP2010190701 A JP 2010190701A
Authority
JP
Japan
Prior art keywords
pressure
pressure sensor
mounting structure
hole
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009034890A
Other languages
Japanese (ja)
Inventor
Atsushi Misawa
篤志 三澤
Toshiaki Yoshiyasu
利明 吉安
Shuzo Ikeda
修造 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009034890A priority Critical patent/JP2010190701A/en
Publication of JP2010190701A publication Critical patent/JP2010190701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure of a pressure sensor for avoiding reduction in detection accuracy of pressure to be measured. <P>SOLUTION: In this mounting structure of the pressure sensor, the capacitance type pressure sensor 11 where the pressure to be measured is introduced to a pressure introducing chamber 15 is mounted to a lead frame 14 via a pressure introducing hole 17 disposed so as to penetrate the lead frame 14 constituting a mounting substrate. A through-hole 16 that penetrates the lead frame 14 and communicates the inside to the outside of the pressure introducing chamber 15 is disposed around the pressure introducing hole 17 disposed in the lead frame 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧力センサを実装基板に実装する際の圧力センサの実装構造に関する。   The present invention relates to a pressure sensor mounting structure for mounting a pressure sensor on a mounting board.

従来、静電容量の変化として被測定圧力を検出する圧力センサの技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献1参照)。この文献には、基板の表面に形成された固定電極と、この固定電極と空洞(空隙)を介して対向対置されて圧力の変化に応じて変位する可動電極(ダイヤフラム)とでコンデンサが形成され、外部の圧力によって可動電極が変形することでコンデンサの静電容量が変化し、この静電容量の変化を検出することで、外部から与えられた圧力を検出する圧力センサの技術が記載されている。   Conventionally, as a technique of a pressure sensor that detects a pressure to be measured as a change in capacitance, for example, those described in the following documents are known (see Patent Document 1). In this document, a capacitor is formed by a fixed electrode formed on the surface of a substrate, and a movable electrode (diaphragm) that is opposed to the fixed electrode through a cavity (gap) and is displaced according to a change in pressure. Describes the technology of a pressure sensor that detects the pressure applied from the outside by detecting the change of the capacitance by changing the capacitance of the capacitor due to the deformation of the movable electrode due to the external pressure. Yes.

特開2007−86002号公報JP 2007-86002 A

このような静電容量式の圧力センサにおいて、ダイヤフラムで受圧する被測定圧力が導入される圧力導入室が外部に開放されている場合には、外部から導電性の液体が圧力導入室に侵入すると、ダイヤフラムを一方の電極とし、圧力センサを支持実装する実装基板を他方の電極とし、侵入した液体を両電極間に挟まれた誘電体とする寄生容量が形成されるおそれがあった。   In such a capacitance-type pressure sensor, when the pressure introduction chamber into which the pressure to be measured received by the diaphragm is introduced to the outside, when a conductive liquid enters the pressure introduction chamber from the outside, Further, there is a possibility that a parasitic capacitance is formed in which the diaphragm is used as one electrode, the mounting substrate that supports and mounts the pressure sensor is used as the other electrode, and the invading liquid is a dielectric sandwiched between both electrodes.

このような寄生容量は、被測定圧力に応じて容量が変化する圧力検出用の静電容量に対して電気的に並列接続されるように形成される。このため、容量値が予め固定して作り込まれている圧力検出用の静電容量の容量値が変化してしまい、被測定圧力を検出する精度が低下して、被測定圧力を正確に検出することができなくなるといった不具合を招くおそれがあった。   Such a parasitic capacitance is formed so as to be electrically connected in parallel to a pressure detecting capacitance whose capacitance changes according to the pressure to be measured. For this reason, the capacitance value of the capacitance for pressure detection, which is built with the capacitance value fixed in advance, changes, and the accuracy of detecting the pressure to be measured is reduced, so that the pressure to be measured is accurately detected. There is a risk of inconvenience such as being unable to do so.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、被測定圧力の検出精度の低下を防止した圧力センサの実装構造を提供することにある。   Therefore, the present invention has been made in view of the above, and an object of the present invention is to provide a pressure sensor mounting structure that prevents a decrease in detection accuracy of a pressure to be measured.

上記目的を達成するために、本発明に係る圧力センサの実装構造は、実装基板を貫通して設けられた圧力導入孔を介して被測定圧力が圧力導入室に導入される圧力センサが実装基板に実装される圧力センサの実装構造において、圧力導入孔の周面をテーパ状に形成したことを第1の特徴とする。   In order to achieve the above object, the pressure sensor mounting structure according to the present invention includes a mounting substrate having a pressure sensor into which a pressure to be measured is introduced into a pressure introducing chamber through a pressure introducing hole provided through the mounting substrate. In the mounting structure of the pressure sensor mounted on the first surface, the first feature is that the peripheral surface of the pressure introducing hole is formed in a tapered shape.

本発明に係る圧力センサの実装構造は、実装基板を貫通して設けられた圧力導入孔を介して被測定圧力が圧力導入室に導入される圧力センサが実装基板に実装される圧力センサの実装構造において、圧力導入室と外部とを連通する連通路を実装基板を貫通して形成したことを第2の特徴とする。   The pressure sensor mounting structure according to the present invention includes a pressure sensor mounting in which a pressure sensor into which a pressure to be measured is introduced into a pressure introducing chamber is mounted through a pressure introducing hole provided through the mounting substrate. In the structure, a second feature is that a communication path that connects the pressure introduction chamber and the outside is formed through the mounting substrate.

本発明に係る圧力センサの実装構造は、上記第2の特徴において、前記連通路は、前記圧力導入室の周囲に沿って取り囲むように設けられた複数の貫通孔で構成されていることを第3の特徴とする。   The pressure sensor mounting structure according to the present invention is characterized in that, in the second feature, the communication path is configured by a plurality of through holes provided so as to surround the pressure introduction chamber. Three features.

本発明に係る第1の特徴の圧力センサの実装構造では、圧力導入室に侵入した液体が室外に排出されやすくなり、この液体に起因する寄生容量の形成が抑制され、圧力の検出精度の低下を防止することが可能となる。   In the pressure sensor mounting structure according to the first aspect of the present invention, the liquid that has entered the pressure introduction chamber is easily discharged to the outside, the formation of parasitic capacitance due to the liquid is suppressed, and the pressure detection accuracy decreases. Can be prevented.

本発明に係る第2の特徴の圧力センサの実装構造では、圧力導入室に侵入した液体が室外に排出されやすくなり、この液体に起因する寄生容量の形成が抑制され、圧力の検出精度の低下を防止することが可能となる。   In the pressure sensor mounting structure according to the second aspect of the present invention, the liquid that has entered the pressure introduction chamber is easily discharged to the outside, the formation of parasitic capacitance due to the liquid is suppressed, and the pressure detection accuracy is reduced. Can be prevented.

本発明に係る第3の特徴の圧力センサの実装構造では、圧力導入室に侵入した液体が室外に排出されやすくなり、この液体に起因する寄生容量の形成が抑制され、圧力の検出精度の低下を防止することが可能となる。   In the pressure sensor mounting structure according to the third aspect of the present invention, the liquid that has entered the pressure introduction chamber is easily discharged to the outside, the formation of parasitic capacitance due to the liquid is suppressed, and the pressure detection accuracy decreases. Can be prevented.

本発明の実施例1に係る圧力センサの実装構造を示す図である。It is a figure which shows the mounting structure of the pressure sensor which concerns on Example 1 of this invention. 実施例1で実装される圧力センサの構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of a pressure sensor mounted in Example 1. FIG. 圧力センサを実装した際の液体の滞留の様子を示す断面図である。It is sectional drawing which shows the mode of the retention of the liquid at the time of mounting a pressure sensor. 被測定圧力を測定する回路における容量の接続関係を示す図である。It is a figure which shows the connection relation of the capacity | capacitance in the circuit which measures a to-be-measured pressure. 本発明の実施例2に係る圧力センサの実装構造を示す図である。It is a figure which shows the mounting structure of the pressure sensor which concerns on Example 2 of this invention. 本発明の実施例3に係る圧力センサの実装構造を示す図である。It is a figure which shows the mounting structure of the pressure sensor which concerns on Example 3 of this invention.

以下、図面を用いて本発明を実施するための実施例を説明する。   Embodiments for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係る圧力センサの実装構造を示す図であり、同図(a)は上面図、同図(b)は下面図、同図(c)は同図(a)、(b)のA−A線に沿った断面図である。   1A and 1B are views showing a mounting structure of a pressure sensor according to a first embodiment of the present invention. FIG. 1A is a top view, FIG. 1B is a bottom view, and FIG. It is sectional drawing along the AA line of (b).

この実施例1の実装構造で実装される圧力センサ11は、例えば車両のタイヤの空気圧を検出する静電容量式の圧力センサであり、圧力センサ11で検出された静電容量を圧力に変換し、変換で得られたタイヤの空気圧情報を無線で車両に搭載された受信システムに送信するための所定の処理を行う専用の集積回路(ASIC)として機能する専用回路12と、タイヤの回転を検出する走行センサ13とともに、同一の実装基板(リードフレーム)14に半導体微細加工技術を用いてMEMS構造体として実装形成されている。   The pressure sensor 11 mounted in the mounting structure according to the first embodiment is, for example, a capacitance type pressure sensor that detects the tire air pressure of a vehicle, and converts the capacitance detected by the pressure sensor 11 into a pressure. Dedicated circuit 12 that functions as a dedicated integrated circuit (ASIC) that performs predetermined processing for wirelessly transmitting tire pressure information obtained by conversion to a receiving system mounted on the vehicle, and detecting rotation of the tire Along with the traveling sensor 13, a MEMS structure is mounted and formed on the same mounting substrate (lead frame) 14 using a semiconductor microfabrication technique.

圧力センサ11が実装されるリードフレーム14には、圧力センサ11で測定される被測定圧力が導入される圧力導入室15と外部とを連通する連通路として機能する貫通孔16が、リードフレーム14を貫通して設けられている。この貫通孔16は、図1(b)に示すように、圧力導入室15に被測定圧力を導入し、リードフレーム14を貫通して設けられた圧力導入孔17の周囲に沿って圧力導入孔17を取り囲むように2つ形成されている。   The lead frame 14 in which the pressure sensor 11 is mounted has a through hole 16 that functions as a communication path that connects the pressure introduction chamber 15 into which the pressure to be measured measured by the pressure sensor 11 is introduced and the outside. Is provided. As shown in FIG. 1B, the through hole 16 introduces a pressure to be measured into the pressure introduction chamber 15, and the pressure introduction hole along the periphery of the pressure introduction hole 17 provided through the lead frame 14. Two are formed so as to surround 17.

図2は図1に示す圧力センサ11の構成を示す断面図である。   FIG. 2 is a cross-sectional view showing a configuration of the pressure sensor 11 shown in FIG.

図2において、圧力センサ11は、実装基板となるリードフレーム14上に絶縁膜21介して実装され、シリコン等の半導体の支持基板22に形成されている。支持基板22には、逆角錐台状をして下部が開放された凹部が形成され、この凹部は上方で狭く下方で広く形成されて圧力導入室15を構成している。圧力導入室15の上部の支持基板22は薄肉化されて、被測定圧力を受ける受圧面(感圧部)となるダイヤフラム23が形成され、ダイヤフラム23の周囲の支持基板22は厚肉化されてダイヤフラム23を支持する支持部24が形成されている。   In FIG. 2, the pressure sensor 11 is mounted on a lead frame 14 serving as a mounting substrate via an insulating film 21 and formed on a support substrate 22 made of a semiconductor such as silicon. The support substrate 22 is formed with an inverted truncated pyramid-shaped recess that is open at the bottom, and this recess is formed narrowly at the top and wide at the bottom to constitute the pressure introducing chamber 15. The support substrate 22 in the upper part of the pressure introducing chamber 15 is thinned to form a diaphragm 23 serving as a pressure receiving surface (pressure-sensitive portion) that receives the pressure to be measured, and the support substrate 22 around the diaphragm 23 is thickened. A support portion 24 that supports the diaphragm 23 is formed.

支持基板22は、リードフレーム14に接合された面側と逆側の面がガラス基板25と陽極接合等により接合され、支持基板22のダイヤフラム23とガラス基板25との間に真空室26が形成されている。真空室26のガラス基板25側には、ダイヤフラム23に対向して固定電極27が形成され、この固定電極27と可動電極として機能するダイヤフラム23とで、被測定圧力に応じて容量値が変化する圧力検出用の静電容量C1が構成されている。   The support substrate 22 is bonded to the glass substrate 25 by anodic bonding or the like on the surface opposite to the surface bonded to the lead frame 14, and a vacuum chamber 26 is formed between the diaphragm 23 of the support substrate 22 and the glass substrate 25. Has been. A fixed electrode 27 is formed on the glass substrate 25 side of the vacuum chamber 26 so as to face the diaphragm 23, and the capacitance value changes according to the pressure to be measured between the fixed electrode 27 and the diaphragm 23 functioning as a movable electrode. A capacitance C1 for pressure detection is configured.

ガラス基板25には、支持基板22に至る貫通孔28が設けられ、この貫通孔28の周面には金属メタライズ面29が形成され、この金属メタライズ面29を介して固定電極27ならびに可動電極となるダイヤフラム23の支持基板22が専用回路12と電気的に接続され、圧力検出用の静電容量が専用回路12と電気的に接続される。   The glass substrate 25 is provided with a through hole 28 extending to the support substrate 22, and a metal metallized surface 29 is formed on the peripheral surface of the through hole 28, and the fixed electrode 27 and the movable electrode are connected to the metal substrate 29 via the metal metallized surface 29. The support substrate 22 of the diaphragm 23 is electrically connected to the dedicated circuit 12, and the capacitance for pressure detection is electrically connected to the dedicated circuit 12.

このような実装構造において、この実施例1で採用した貫通孔16がリードフレーム14に設けられていない場合に、図3の断面図に示すように圧力導入孔17を介して外部から圧力導入室15に導電性の液体31が侵入すると、図3に示すように侵入した液体31が圧力導入室15内の支持部24の周面付近やリードフレーム14の表面付近に滞留するおそれがある。圧力導入室15内に導電性の液体31が滞留すると、この液体31により支持基板22とリードフレーム14との間に寄生容量C2が寄生形成されることになる。   In such a mounting structure, when the through hole 16 employed in the first embodiment is not provided in the lead frame 14, the pressure introducing chamber is externally provided via the pressure introducing hole 17 as shown in the sectional view of FIG. If the conductive liquid 31 penetrates 15, the liquid 31 that has entered may stay near the peripheral surface of the support 24 in the pressure introducing chamber 15 or the surface of the lead frame 14 as shown in FIG. 3. When the conductive liquid 31 stays in the pressure introducing chamber 15, a parasitic capacitance C <b> 2 is parasitically formed between the support substrate 22 and the lead frame 14 by the liquid 31.

このようにして形成された寄生容量C2は、電気回路としては、図4に示すように圧力検出用の静電容量C1に対して並列に接続されることになる。すなわち、図4において、圧力検出用の静電容量C1は、接地(グランド)電位に設定されたリードフレーム14と高位電源(VDD)との間で専用回路12側の入力容量C3と直列に接続され、直列接続点から検出信号が専用回路12に入力される測定回路の構成において、寄生容量C2はリードフレーム14と高位電源(VDD)との間に液体の抵抗成分(寄生抵抗R2)とともに直列に接続される。   The parasitic capacitance C2 formed in this manner is connected in parallel to the pressure detection capacitance C1 as shown in FIG. 4 as an electric circuit. That is, in FIG. 4, the capacitance C1 for pressure detection is connected in series with the input capacitance C3 on the side of the dedicated circuit 12 between the lead frame 14 set to the ground (ground) potential and the high-level power supply (VDD). In the configuration of the measurement circuit in which the detection signal is input to the dedicated circuit 12 from the series connection point, the parasitic capacitance C2 is connected in series with the liquid resistance component (parasitic resistance R2) between the lead frame 14 and the high-level power supply (VDD). Connected to.

このように寄生容量C2が形成されると、専用回路12側からみた静電容量は、圧力検出用の静電容量C1に寄生容量C2が加わることになり、全体の静電容量は増加することになる。このため、初期設定された圧力検出用の静電容量は圧力導入室15に液体が侵入する前と異なり、測定される圧力に誤差が生じて被測定圧力を精度良く測定することができなくなり、検出精度が低下するおそれがあった。   When the parasitic capacitance C2 is formed in this way, the capacitance seen from the dedicated circuit 12 side is that the parasitic capacitance C2 is added to the pressure detection capacitance C1, and the overall capacitance increases. become. For this reason, the initially set capacitance for pressure detection is different from that before the liquid enters the pressure introduction chamber 15, and an error occurs in the measured pressure, making it impossible to accurately measure the pressure to be measured. There was a risk that the detection accuracy would decrease.

これに対して、この実施例1では、上述したように圧力導入室15の内外を連通する貫通孔16をリードフレーム14に設ける実装構造を採用することで、圧力導入室15に侵入した液体はこの貫通孔16を介して圧力導入室15の外に排出されやすくなる。すなわち、圧力導入室15と外部とを連通する連通路として構成された貫通孔16は、圧力導入室15に侵入した液体に対して圧力導入室15外への排出を促進させる排出機能を有する。これにより、圧力導入室15に侵入した液体は、圧力導入室15内に滞留し難くなり、上述したような液体の滞留による寄生容量C2が形成されることは抑制回避される。   On the other hand, in the first embodiment, as described above, by adopting a mounting structure in which the lead frame 14 is provided with the through hole 16 that communicates the inside and outside of the pressure introduction chamber 15, the liquid that has entered the pressure introduction chamber 15 is It becomes easy to be discharged out of the pressure introduction chamber 15 through the through hole 16. That is, the through-hole 16 configured as a communication path that connects the pressure introduction chamber 15 and the outside has a discharge function that promotes the discharge of the liquid that has entered the pressure introduction chamber 15 to the outside of the pressure introduction chamber 15. As a result, the liquid that has entered the pressure introduction chamber 15 does not easily stay in the pressure introduction chamber 15, and the formation of the parasitic capacitance C2 due to the retention of the liquid as described above is suppressed and avoided.

したがって、簡便な実装構造で被測定圧力を正確に測定することが可能となり、検出精度の低下を防止することができる。   Therefore, it is possible to accurately measure the pressure to be measured with a simple mounting structure, and it is possible to prevent a decrease in detection accuracy.

図5は本発明の実施例2に係る圧力センサの実装構造を示す図であり、同図(a)は上面図、同図(b)は下面図、同図(c)は同図(a)、(b)のA−A線に沿った断面図である。   5A and 5B are views showing a mounting structure of a pressure sensor according to a second embodiment of the present invention. FIG. 5A is a top view, FIG. 5B is a bottom view, and FIG. It is sectional drawing along the AA line of (b).

この実施例2の特徴とするところは、先の実施例1で採用した貫通孔16と同様に機能し、孔の断面積が貫通孔16よりも小さい円形の貫通孔51を圧力導入孔17の周囲に沿って多数設けたことにあり、他は先の実施例1と同様である。   The feature of the second embodiment is that it functions in the same way as the through-hole 16 employed in the first embodiment, and a circular through-hole 51 having a smaller cross-sectional area than the through-hole 16 is formed in the pressure introducing hole 17. A large number are provided along the periphery, and the others are the same as in the first embodiment.

このような実施例2においても、先の実施例1と同様の効果を得ることが可能となる。   Also in the second embodiment, it is possible to obtain the same effect as the first embodiment.

図6は本発明の実施例2に係る圧力センサの実装構造を示す図であり、同図(a)は上面図、同図(b)は下面図、同図(c)は同図(a)、(b)のA−A線に沿った断面図である。   6A and 6B are diagrams showing a mounting structure of a pressure sensor according to a second embodiment of the present invention. FIG. 6A is a top view, FIG. 6B is a bottom view, and FIG. It is sectional drawing along the AA line of (b).

この実施例3の特徴とするところは、先の実施例1、2で採用した貫通孔16、51に代えて、図6(c)に示すように、周面がテーパ状に形成された圧力導入孔61をリードフレーム14に形成したことにあり、他は先の実施例1、2と同様である。   A feature of the third embodiment is that, instead of the through holes 16 and 51 employed in the first and second embodiments, a pressure whose peripheral surface is tapered as shown in FIG. The introduction hole 61 is formed in the lead frame 14, and the others are the same as in the first and second embodiments.

先の実施例1、2で採用した圧力導入孔17の側面は、圧力センサ11が実装されるリードフレーム14の実装面に対して垂直であったのに対して、この実施例3で採用した圧力導入孔61の断面は、図6(c)に示すように、圧力導入孔61の周面の圧力導入室15側端部と圧力導入室15の周面のリードフレーム14側端部とが概ね一致するように、外部から圧力導入室15の内部に向かって狭まるように傾斜して円錐状に形成されている。   The side surface of the pressure introducing hole 17 employed in the previous Examples 1 and 2 was perpendicular to the mounting surface of the lead frame 14 on which the pressure sensor 11 is mounted, whereas it was employed in this Example 3. As shown in FIG. 6C, the cross section of the pressure introduction hole 61 includes an end portion on the pressure introduction chamber 15 side of the circumferential surface of the pressure introduction hole 61 and an end portion on the lead frame 14 side of the circumferential surface of the pressure introduction chamber 15. It is formed in a conical shape that is inclined so as to be narrowed from the outside toward the inside of the pressure introduction chamber 15 so as to substantially coincide.

このような構造の圧力導入孔61を設けることで、圧力センサ11をリードフレーム14に実装した際に、先の実施例1、2のようにリードフレーム14と支持基板22の支持部24との間で隅部が形成されることは回避される。これにより、圧力導入室15に侵入した液体は、周面がテーパ状の圧力導入孔61を介して外部に排出されやすくなる。   By providing the pressure introducing hole 61 having such a structure, when the pressure sensor 11 is mounted on the lead frame 14, the lead frame 14 and the support portion 24 of the support substrate 22 can be connected to each other as in the first and second embodiments. The formation of corners between them is avoided. Thereby, the liquid that has entered the pressure introduction chamber 15 is easily discharged to the outside through the pressure introduction hole 61 whose peripheral surface is tapered.

これにより、圧力導入室15に侵入した液体は、圧力導入室15内に滞留し難くなり、上述したような液体の滞留による寄生容量C2が形成されることは抑制回避される。   As a result, the liquid that has entered the pressure introduction chamber 15 does not easily stay in the pressure introduction chamber 15, and the formation of the parasitic capacitance C2 due to the retention of the liquid as described above is suppressed and avoided.

したがって、簡便な実装構造で被測定圧力を正確に測定することが可能となり、検出精度の低下を防止することができる。   Therefore, it is possible to accurately measure the pressure to be measured with a simple mounting structure, and it is possible to prevent a decrease in detection accuracy.

なお、圧力導入孔に設けられたテーパの形状は、上記とは逆に圧力導入室15から外部に向かって広がるように傾斜した円錐状に形成しても同様の効果を得ることが可能である。   The same effect can be obtained even if the tapered shape provided in the pressure introducing hole is formed in a conical shape that is inclined so as to spread outward from the pressure introducing chamber 15 contrary to the above. .

なお、圧力センサ11が計測する圧力はタイヤの空気圧の他の様々な圧力であっても勿論かまわない。また、圧力センサ11と混載される別体の構成要素の機能や個数は、専用回路12や走行センサ13に限らず様々な機能の電気回路やMEMS構造体であってもよい。   Of course, the pressure measured by the pressure sensor 11 may be other various pressures than the tire pressure. In addition, the functions and the number of separate components mixed with the pressure sensor 11 are not limited to the dedicated circuit 12 and the travel sensor 13, and may be an electric circuit or a MEMS structure having various functions.

11…圧力センサ
12…専用回路
13…走行センサ
14…リードフレーム
15…圧力導入室
16,28,51…貫通孔
17,61…圧力導入孔
21…絶縁膜
22…支持基板
23…ダイヤフラム
24…支持部
25…ガラス基板
26…真空室
27…固定電極
29…金属メタライズ面
61…圧力導入孔
DESCRIPTION OF SYMBOLS 11 ... Pressure sensor 12 ... Dedicated circuit 13 ... Traveling sensor 14 ... Lead frame 15 ... Pressure introduction chamber 16, 28, 51 ... Through-hole 17, 61 ... Pressure introduction hole 21 ... Insulating film 22 ... Support substrate 23 ... Diaphragm 24 ... Support 25: Glass substrate 26 ... Vacuum chamber 27 ... Fixed electrode 29 ... Metal metallized surface 61 ... Pressure introduction hole

Claims (3)

実装基板を貫通して設けられた圧力導入孔を介して被測定圧力が圧力導入室に導入される圧力センサが前記実装基板に実装される圧力センサの実装構造において、
前記圧力導入孔の周面をテーパ状に形成した
ことを特徴とする圧力センサの実装構造。
In the pressure sensor mounting structure in which the pressure sensor in which the pressure to be measured is introduced into the pressure introducing chamber through the pressure introducing hole provided through the mounting substrate is mounted on the mounting substrate.
A pressure sensor mounting structure, wherein a peripheral surface of the pressure introducing hole is tapered.
実装基板を貫通して設けられた圧力導入孔を介して被測定圧力が圧力導入室に導入される圧力センサが前記実装基板に実装される圧力センサの実装構造において、
前記圧力導入室と外部とを連通する連通路を前記実装基板を貫通して形成した
ことを特徴とする圧力センサの実装構造。
In the pressure sensor mounting structure in which the pressure sensor in which the pressure to be measured is introduced into the pressure introducing chamber through the pressure introducing hole provided through the mounting substrate is mounted on the mounting substrate.
A mounting structure of a pressure sensor, wherein a communication path that communicates between the pressure introducing chamber and the outside is formed through the mounting substrate.
前記連通路は、前記圧力導入室の周囲に沿って取り囲むように設けられた複数の貫通孔で構成されている
ことを特徴とする請求項2に記載の圧力センサの実装構造。
The pressure sensor mounting structure according to claim 2, wherein the communication path includes a plurality of through holes provided so as to surround the pressure introduction chamber.
JP2009034890A 2009-02-18 2009-02-18 Mounting structure of pressure sensor Pending JP2010190701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034890A JP2010190701A (en) 2009-02-18 2009-02-18 Mounting structure of pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034890A JP2010190701A (en) 2009-02-18 2009-02-18 Mounting structure of pressure sensor

Publications (1)

Publication Number Publication Date
JP2010190701A true JP2010190701A (en) 2010-09-02

Family

ID=42816898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034890A Pending JP2010190701A (en) 2009-02-18 2009-02-18 Mounting structure of pressure sensor

Country Status (1)

Country Link
JP (1) JP2010190701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512513A (en) * 2011-02-17 2014-05-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Flexible (flexible) complex sensor system module for vehicles
CN106959186A (en) * 2017-02-23 2017-07-18 西北大学 A kind of forced sensor for pore water pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512513A (en) * 2011-02-17 2014-05-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Flexible (flexible) complex sensor system module for vehicles
US9189894B2 (en) 2011-02-17 2015-11-17 Robert Bosch Gmbh Flexible combination sensor module for a vehicle
CN106959186A (en) * 2017-02-23 2017-07-18 西北大学 A kind of forced sensor for pore water pressure

Similar Documents

Publication Publication Date Title
JP6580804B2 (en) Integrated structure of MEMS pressure sensor and MEMS inertial sensor
US9668063B2 (en) Capacitance type sensor, acoustic sensor, and microphone
US9510107B2 (en) Double diaphragm MEMS microphone without a backplate element
US10551263B2 (en) MEMS pressure sensing element
EP3118597B1 (en) Pressure sensor
CN111351608B (en) Micromechanical component for a capacitive pressure sensor device
JP5990933B2 (en) Manufacturing method of pressure sensor package
CN101568840B (en) Multi-axle micromechanic acceleration sensor
JP6236117B2 (en) Micro mechanical measuring element
JP2010190701A (en) Mounting structure of pressure sensor
US9725300B2 (en) Capacitive MEMS-sensor element having bond pads for the electrical contacting of the measuring capacitor electrodes
US8371180B2 (en) Micromechanical sensor element for capacitive differential pressure detection
CN116659711B (en) MEMS pressure sensor and electronic equipment
US6370960B1 (en) Capacitive sensor
JPH06323939A (en) Capacitance-type sensor
JP5061524B2 (en) Acceleration sensor
JP2010190698A (en) Mounting structure of pressure sensor
JP2007085968A (en) Pressure sensor
JP2007071770A (en) Capacitance type pressure sensor
JP2014071079A (en) Pressure sensor for detecting tire pressure
JP6201887B2 (en) Pressure sensor
JPH08233854A (en) Electrostatic capacity type sensor
JP2010008138A (en) Pressure sensor
JP2010014526A (en) Pressure sensor
JP2015021922A (en) Dynamic quantity sensor