JP2010190622A - Dimension measuring device of pipe body - Google Patents

Dimension measuring device of pipe body Download PDF

Info

Publication number
JP2010190622A
JP2010190622A JP2009033165A JP2009033165A JP2010190622A JP 2010190622 A JP2010190622 A JP 2010190622A JP 2009033165 A JP2009033165 A JP 2009033165A JP 2009033165 A JP2009033165 A JP 2009033165A JP 2010190622 A JP2010190622 A JP 2010190622A
Authority
JP
Japan
Prior art keywords
contact
pedestal
base
tubular body
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009033165A
Other languages
Japanese (ja)
Other versions
JP5334172B2 (en
Inventor
Hiroyoshi Ueda
浩義 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009033165A priority Critical patent/JP5334172B2/en
Publication of JP2010190622A publication Critical patent/JP2010190622A/en
Application granted granted Critical
Publication of JP5334172B2 publication Critical patent/JP5334172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimension measuring device of a pipe body that is applicable for a pipe body with a small inner diameter and accurately measures the dimension. <P>SOLUTION: This dimension measuring device 1 of the pipe body calculates the dimension of the pipe body 10 arranged so that the axis P1 is substantially parallel with the horizontal direction. The dimension measuring device includes contact bodies 6a and 6b having pedestals 61a and 61b movable with respect to the axis of the pipe body, arms 62a and 62b extending in the axial direction from the pedestals, and contacts 63a and 63b that are attached to the tips of the arms and slidable on the peripheral surface of the pipe body. The dimension measuring device 1 includes load adjusting means 8a and 8b for applying a load where the direction is the opposite to the direction of a movable component of the pedestals and the magnitude is substantially the same as that of the component, of the gravity acting on the contact bodies. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、管体の寸法を測定する管体の寸法測定装置に関し、特に、軸心が水平方向と略平行となるように配置された管体の寸法を測定する管体の寸法測定装置に関する。   The present invention relates to a tubular body dimension measuring apparatus that measures the dimensions of a tubular body, and more particularly, to a tubular body dimension measuring apparatus that measures the dimensions of a tubular body that is arranged so that its axis is substantially parallel to the horizontal direction. .

このような管体の寸法測定装置として、図6に示すような管体の寸法測定装置(以下、「第1の管体の寸法測定装置」という。)が知られている(特許文献1参照)。図6は、第1の管体の寸法測定装置が備える回転ヘッド201、及び、第1の管体の寸法測定装置によって寸法が測定される管体100の断面図である。図6(a)は、回転ヘッド201と管体100とが離間している状態を示し、図6(b)は、回転ヘッド201の接触子203bが管体100の内側空間に挿入されている状態を示す。図6(a)に示すように、回転ヘッド201は、基台202と、2つの接触子203a、203bと、2つの押圧手段204a、204bとを備える。基台202は、水平方向と略平行な回転中心P12周りに回転可能とされている。基台202の管体100側の側面には、押圧手段204a、204bが、基台202の回転中心P12と直交する方向に沿って取り付けられている。接触子203aは、押圧手段204aの回転中心P12に向かう側に取り付けられ、基台202の回転中心P12に対して進退動可能であり、接触子203bは、押圧手段204bの回転中心P12から遠ざかる側に取り付けられ、基台202の回転中心P12に対して進退動可能になっている。尚、基台202の回転中心P12に対して進退動可能とは、該回転中心P12に向けて進行すること、及び、該回転中心P12から遠ざかる向きに進行する(退行する)ことが可能であることを意味する。   As such a tubular body dimension measuring apparatus, a tubular body dimension measuring apparatus as shown in FIG. 6 (hereinafter referred to as “first tubular body dimension measuring apparatus”) is known (see Patent Document 1). ). FIG. 6 is a cross-sectional view of the rotary head 201 provided in the first tubular body dimension measuring apparatus and the tubular body 100 whose dimensions are measured by the first tubular body dimension measuring apparatus. 6A shows a state where the rotary head 201 and the tube 100 are separated from each other, and FIG. 6B shows a contact 203b of the rotary head 201 inserted into the inner space of the tube 100. Indicates the state. As shown in FIG. 6A, the rotary head 201 includes a base 202, two contacts 203a and 203b, and two pressing means 204a and 204b. The base 202 is rotatable around a rotation center P12 that is substantially parallel to the horizontal direction. On the side surface of the base 202 on the tube body 100 side, pressing means 204 a and 204 b are attached along a direction orthogonal to the rotation center P <b> 12 of the base 202. The contact 203a is attached to the side of the pressing means 204a toward the rotation center P12, can move forward and backward with respect to the rotation center P12 of the base 202, and the contact 203b is away from the rotation center P12 of the pressing means 204b. It can be moved forward and backward with respect to the rotation center P12 of the base 202. It should be noted that being able to move forward and backward with respect to the rotation center P12 of the base 202 is capable of moving toward the rotation center P12 and moving (retreating) away from the rotation center P12. Means that.

第1の管体の寸法測定装置を用いて、管体100の寸法を測定する場合、まず、図6(a)に示すように、管体100の軸心P11と基台202の回転中心P12とを一致させる。次に、接触子203aと接触子203bとの間隔を管体100の肉厚より大きくする。そして、軸心P11に沿って回転ヘッド201を移動させ、図6(b)に示すように、接触子203bを管体100の内側空間に挿入し、接触子203aと接触子203bとの間に管体100を位置させる。次に、押圧手段204aによって、接触子203aを基台202の回転中心P12(管体100の軸心P11)に向けて進行させ、該接触子203aを管体100の外周面101に所定の荷重で押圧する。これと同時に、押圧手段204bによって、接触子203bを基台202の回転中心P12(管体100の軸心P11)から退行させ、該接触子203bを管体100の内周面102に所定の荷重で押圧する。   When measuring the dimensions of the tubular body 100 using the first tubular body dimension measuring device, first, as shown in FIG. 6A, the axial center P11 of the tubular body 100 and the rotation center P12 of the base 202 are used. To match. Next, the interval between the contact 203 a and the contact 203 b is made larger than the wall thickness of the tubular body 100. Then, the rotary head 201 is moved along the axis P11, and as shown in FIG. 6B, the contact 203b is inserted into the inner space of the tube 100, and between the contact 203a and the contact 203b. The tube body 100 is positioned. Next, the contact means 203a is advanced toward the rotation center P12 of the base 202 (the axis P11 of the tubular body 100) by the pressing means 204a, and the contactor 203a is applied to the outer peripheral surface 101 of the tubular body 100 with a predetermined load. Press. At the same time, the pressing means 204b causes the contact 203b to retreat from the rotation center P12 of the base 202 (the axis P11 of the tube 100), and the contact 203b is applied to the inner peripheral surface 102 of the tube 100 with a predetermined load. Press.

次に、基台202を回転中心P12周りに回転させる。基台202が回転すると、接触子203aが外周面101を周方向に摺動し、接触子203bが内周面102を周方向に摺動する。接触子203aが外周面101を摺動すると、接触子203aの進退動可能な方向における該接触子203aの位置が外周面101の形状に応じて変動する。同様に、接触子203bが内周面102を摺動すると、接触子203bの進退動可能な方向における該接触子203bの位置が内周面102の形状に応じて変動する。   Next, the base 202 is rotated around the rotation center P12. When the base 202 rotates, the contact 203a slides on the outer peripheral surface 101 in the circumferential direction, and the contact 203b slides on the inner peripheral surface 102 in the circumferential direction. When the contact 203 a slides on the outer peripheral surface 101, the position of the contact 203 a in the direction in which the contact 203 a can move forward and backward varies depending on the shape of the outer peripheral surface 101. Similarly, when the contact 203 b slides on the inner peripheral surface 102, the position of the contact 203 b in the direction in which the contact 203 b can move forward and backward varies depending on the shape of the inner peripheral surface 102.

第1の管体の寸法測定装置は、各接触子203a、203bの進退動可能な方向における各接触子203a、203bの位置に基づいて、管体100の外径や内径などの管体100の寸法を算出する。   The first tubular body dimension measuring device is based on the positions of the contactors 203a and 203b in the direction in which the contactors 203a and 203b can move back and forth, such as the outer diameter and inner diameter of the tubular body 100. Calculate the dimensions.

第1の管体の寸法測定装置を用いて、管体100の寸法を測定するには、図6(b)に示すように、軸心P11に沿って回転ヘッド201を移動させ、接触子203bを管体100の内側空間に挿入する必要がある。上述のように、接触子203bが、押圧手段204bの回転中心P12から遠ざかる側に取り付けられている。このため、内側空間が、軸心P11に沿って回転ヘッド201を移動させたときに、接触子203bと押圧手段204bとの両方を挿入できる大きさを有さなければ、接触子203bを内側空間に挿入することができない。従って、第1の管体の寸法測定装置は、接触子203bと押圧手段204bとの両方を内側空間に挿入できない内径の小さな管体100については、接触子203bを内側空間に挿入できないため、寸法を測定することができない。   In order to measure the dimensions of the tubular body 100 using the first tubular body dimension measuring apparatus, the rotary head 201 is moved along the axis P11 as shown in FIG. Needs to be inserted into the inner space of the tube 100. As described above, the contact 203b is attached to the side away from the rotation center P12 of the pressing means 204b. For this reason, if the inner space does not have a size capable of inserting both the contactor 203b and the pressing means 204b when the rotary head 201 is moved along the axis P11, the contactor 203b is moved to the inner space. Can not be inserted into. Accordingly, the first tubular body dimension measuring apparatus cannot insert the contactor 203b into the inner space of the tubular body 100 having a small inner diameter, in which both the contactor 203b and the pressing means 204b cannot be inserted into the inner space. Can not be measured.

このような問題を解決するための管体の寸法測定装置として、以下に説明する管体の寸法測定装置(以下、「第2の管体の寸法測定装置」という。)が考えられる。図7は、第2の管体の寸法測定装置が備える回転ヘッド201、及び、第2の管体の寸法測定装置によって寸法が測定される管体100の断面図である。図7に示すように、第2の管体の寸法測定装置の回転ヘッド201は、2つの接触体205a、205bを備えている。各接触体205a、205bは、接触子203a、203bと、台座206a、206bと、アーム207a、207bとを備える。台座206a、206bは、基台202の回転中心P12に対して進退動可能に基台202に取り付けられ、該進退動は、押圧手段204a、204bによって行われる。アーム207a、207bは、台座206a、206bから管体100側に延び、先端部に接触子203a、203bが取り付けられている。各接触体205a、205bにおいて、接触子203a、203b、台座206a、206b、及び、アーム207a、207bはそれぞれ一体的に進退動するように構成されている。   As a tubular body dimension measuring apparatus for solving such a problem, a tubular body dimension measuring apparatus described below (hereinafter referred to as “second tubular body dimension measuring apparatus”) can be considered. FIG. 7 is a cross-sectional view of the rotary head 201 included in the second tubular body dimension measuring device and the tubular body 100 whose dimensions are measured by the second tubular body dimension measuring device. As shown in FIG. 7, the rotary head 201 of the second tubular body dimension measuring apparatus includes two contact bodies 205a and 205b. Each contact body 205a, 205b includes contacts 203a, 203b, pedestals 206a, 206b, and arms 207a, 207b. The pedestals 206a and 206b are attached to the base 202 so as to be movable back and forth with respect to the rotation center P12 of the base 202, and the forward and backward movement is performed by the pressing means 204a and 204b. The arms 207a and 207b extend from the pedestals 206a and 206b toward the tubular body 100, and contacts 203a and 203b are attached to the tip portions. In each of the contact bodies 205a and 205b, the contacts 203a and 203b, the bases 206a and 206b, and the arms 207a and 207b are configured to advance and retract integrally.

第2の管体の寸法測定装置を用いて、管体100の寸法を測定する場合、第1の管体の寸法測定装置で管体100の寸法を測定する場合と同様にして、管体100の軸心P11と基台202の回転中心P12とを一致させ、接触子203aと接触子203bとの間に管体100を位置させる。次に、押圧手段204aによって、台座206aを基台202の回転中心P12(管体100の軸心P11)に向けて進行させ、接触子203aが外周面101に接触した状態で、台座206aを基台202の回転中心P12に向けて所定の荷重で押圧する。これと同時に、押圧手段204bによって、台座206bを基台202の回転中心P12(管体100の軸心P11)から退行させ、接触子203bが内周面102に接触した状態で、台座206bを基台202の回転中心P12から退行する向きに所定の荷重で押圧する。これにより、接触子203aが管体100の外周面101に所定の荷重で押圧され、接触子203bが管体100の内周面102に所定の荷重で押圧される。   When measuring the dimensions of the tubular body 100 using the second tubular body dimension measuring apparatus, the tubular body 100 is measured in the same manner as when measuring the dimensions of the tubular body 100 with the first tubular body dimension measuring apparatus. The tube center 100 is positioned between the contactor 203a and the contactor 203b by aligning the axis P11 of the shaft and the rotation center P12 of the base 202. Next, the pedestal 206a is advanced by the pressing means 204a toward the rotation center P12 of the base 202 (axial center P11 of the tubular body 100), and the pedestal 206a is brought into contact with the outer peripheral surface 101 while the contact 203a is in contact with the outer peripheral surface 101. It presses with the predetermined load toward the rotation center P12 of the base 202. At the same time, the pedestal 206b is retracted from the rotation center P12 (the axis P11 of the tubular body 100) of the base 202 by the pressing means 204b, and the pedestal 206b is brought into contact with the inner peripheral surface 102 in a state where the contact 203b is in contact with the inner peripheral surface 102. Press with a predetermined load in a direction retreating from the rotation center P12 of the table 202. Accordingly, the contact 203a is pressed against the outer peripheral surface 101 of the tube 100 with a predetermined load, and the contact 203b is pressed against the inner peripheral surface 102 of the tube 100 with a predetermined load.

次に、基台202を回転中心P12周りに回転させる。これにより、接触子203aが外周面101を周方向に摺動し、接触子203bが内周面102を周方向に摺動する。接触子203aが外周面101を摺動すると、台座206aの進退動可能な方向における接触子203aの位置が外周面101の形状に応じて変動する。同様に、接触子203bが内周面102を摺動すると、台座206bの進退動可能な方向における接触子203bの位置が内周面102の形状に応じて変動する。接触子203aと台座206aとは、一体的に進退動するため、台座206aの進退動可能な方向における該台座206aの位置(以下、適宜「台座206aの位置」という。)は、外周面101の形状に応じて変動する。また、接触子203bと台座206bとは、一体的に進退動するため、台座206bの進退動可能な方向における該台座206bの位置(以下、適宜「台座206bの位置」という。)は、内周面102の形状に応じて変動する。第2の管体の寸法測定装置は、接触子203a、203bが外周面101及び内周面102を摺動しているときの各台座206a、206bの位置に基づいて、管体100の寸法を算出する。   Next, the base 202 is rotated around the rotation center P12. Thereby, the contactor 203a slides on the outer peripheral surface 101 in the circumferential direction, and the contactor 203b slides on the inner peripheral surface 102 in the circumferential direction. When the contact 203 a slides on the outer peripheral surface 101, the position of the contact 203 a in the direction in which the pedestal 206 a can move forward and backward varies depending on the shape of the outer peripheral surface 101. Similarly, when the contact 203b slides on the inner peripheral surface 102, the position of the contact 203b in the direction in which the pedestal 206b can move forward and backward changes according to the shape of the inner peripheral surface 102. Since the contact 203a and the pedestal 206a are integrally moved forward and backward, the position of the pedestal 206a in the direction in which the pedestal 206a can move forward and backward (hereinafter referred to as “the position of the pedestal 206a” as appropriate) is on the outer peripheral surface 101. It varies depending on the shape. Further, since the contact 203b and the pedestal 206b move forward and backward integrally, the position of the pedestal 206b in the direction in which the pedestal 206b can move forward and backward (hereinafter referred to as “the position of the pedestal 206b” as appropriate) is the inner circumference. It varies depending on the shape of the surface 102. The second tubular body dimension measuring apparatus determines the dimensions of the tubular body 100 based on the positions of the pedestals 206a and 206b when the contacts 203a and 203b slide on the outer peripheral surface 101 and the inner peripheral surface 102. calculate.

前述の構成を有する第2の管体の寸法測定装置においては、図7に示すように、接触子203a、203bが、管体100側に延びるアーム207a、207bの先端部に取り付けられている。このため、軸心P11に沿って回転ヘッド201を移動させると、管体100の内側空間に押圧手段204bを挿入することなく、接触子203bを挿入することができる。このため、第2の管体の寸法測定装置は、第1の管体の寸法測定装置と異なり、内径が小さな管体100であっても、寸法を測定することができるという利点がある。しかし、近年、管体の寸法測定装置に要求される測定精度は高まっており、このことに鑑みれば、第2の管体の寸法測定装置の測定精度は、必ずしも充分でない場合があると考えられる。   In the second tubular body dimension measuring apparatus having the above-described configuration, as shown in FIG. 7, the contacts 203a and 203b are attached to the distal ends of the arms 207a and 207b extending to the tubular body 100 side. For this reason, when the rotary head 201 is moved along the axis P11, the contact 203b can be inserted into the inner space of the tubular body 100 without inserting the pressing means 204b. Therefore, unlike the first tubular body dimension measuring apparatus, the second tubular body dimension measuring apparatus has an advantage that the dimensions can be measured even with the tubular body 100 having a small inner diameter. However, in recent years, the measurement accuracy required for the tube dimension measuring device has increased, and in view of this, the measurement accuracy of the second tube dimension measuring device may not necessarily be sufficient. .

特開平06−185937号JP 06-185937 A

本発明は、内径が小さな管体にも適用でき、且つ、より一層精度良く寸法を測定することができる管体の寸法測定装置を提供することを目的とする。   It is an object of the present invention to provide a tubular body dimension measuring apparatus that can be applied to a tubular body having a small inner diameter and that can measure dimensions with higher accuracy.

上記課題を解決するべく、本発明の発明者は鋭意検討した結果、第2の管体の寸法測定装置の接触子203a、203bが外周面101及び内周面102を摺動しているとき(以下、適宜「摺動時」という。)には、各アーム部207a、207bが各台座206a、206bの進退動可能な方向に撓み、各台座206a、206bの位置が、該撓みの影響を受けることを見出した。   In order to solve the above-mentioned problems, the inventors of the present invention have intensively studied. As a result, when the contacts 203a and 203b of the second tubular body dimension measuring apparatus slide on the outer peripheral surface 101 and the inner peripheral surface 102 ( Hereinafter, it is referred to as “during sliding” as appropriate. Each arm portion 207a, 207b bends in a direction in which each base 206a, 206b can move forward and backward, and the position of each base 206a, 206b is affected by the bending. I found out.

図8に示すように、摺動時においては、各アーム207a、207bの先端部は、各接触子203a、203bを介して管体100と接触している。一方、各アーム207a、207bの基端部(台座206a、206b側の端部)は、進退動可能な各台座206a、206bに取り付けられている。このため、図8に示すように、摺動時においては、各アーム207a、207bは、各台座206a、206bの進退動可能な方向に撓む。   As shown in FIG. 8, at the time of sliding, the tips of the arms 207a and 207b are in contact with the tubular body 100 via the contacts 203a and 203b. On the other hand, the base ends of the arms 207a and 207b (ends on the side of the bases 206a and 206b) are attached to the bases 206a and 206b that can move forward and backward. For this reason, as shown in FIG. 8, at the time of sliding, each arm 207a, 207b bends in the direction in which each base 206a, 206b can move forward and backward.

このようなアーム207aの撓み量は、押圧手段204aが台座206aを押圧する荷重Fと、接触体205aに作用する重力のうち台座206aの進退動可能な方向の成分W’(以下、適宜「重力成分W’」という。)とを合成した合成力(以下、適宜「荷重Fと重力成分W’との合成力」という。)に応じて変動する。   The amount of bending of the arm 207a depends on the load F by which the pressing means 204a presses the pedestal 206a and the component W ′ in the direction in which the pedestal 206a can move forward / backward among the gravity acting on the contact body 205a (hereinafter referred to as “gravity” And the combined force (hereinafter referred to as “the combined force of the load F and the gravity component W ′” as appropriate).

図9は、荷重Fと重力成分W’との合成力を示す図である。上述のように、押圧手段204aが台座206aを押圧する荷重Fの向きは、基台202の回転中心P12に向けて進行する向きであり、該荷重Fの大きさは、略一定である(図9(a)及び図9(b)参照)。   FIG. 9 is a diagram illustrating a combined force of the load F and the gravity component W ′. As described above, the direction of the load F that the pressing means 204a presses the pedestal 206a is a direction that proceeds toward the rotation center P12 of the base 202, and the magnitude of the load F is substantially constant (see FIG. 9 (a) and FIG. 9 (b)).

一方、重力成分W’の向きは、図9(a)に示すように、台座206aが管体100の軸心P11より鉛直方向下方に位置しているときは、管体100の軸心P11から退行する向きとなる。また、図9(b)に示すように、台座206aが管体100の軸心P11より鉛直方向上方に位置しているときは、管体100の軸心P11に向けて進行する向きとなる。更に、重力成分W’の大きさは、接触体205aに作用する重力をWとし、管体100の軸心P11と台座206aとを結ぶ直線L11が水平方向と成す鋭角の角度をθ2とすると、Wsinθ2となる。   On the other hand, the direction of the gravity component W ′ is determined from the axis P11 of the tube 100 when the pedestal 206a is positioned vertically below the axis P11 of the tube 100 as shown in FIG. It becomes the direction to retreat. Further, as shown in FIG. 9B, when the pedestal 206 a is positioned vertically above the axis P <b> 11 of the tube body 100, the direction is to proceed toward the axis P <b> 11 of the tube body 100. Furthermore, the magnitude of the gravity component W ′ is defined as follows: W is gravity acting on the contact body 205a, and θ2 is an acute angle formed by the straight line L11 connecting the axis P11 of the tube 100 and the pedestal 206a with the horizontal direction. Wsin θ2.

以上のことから、台座206aが管体100の軸心P11より鉛直方向下方に位置しているときは、荷重Fと重力成分W’との合成力の大きさは、(F−Wsinθ2)となる。また、台座206aが管体100の軸心P11より鉛直方向上方に位置しているときは、荷重Fと重力成分W’との合成力の大きさは、(F+Wsinθ2)となる。   From the above, when the pedestal 206a is positioned vertically below the axis P11 of the tube body 100, the magnitude of the combined force of the load F and the gravity component W ′ is (F−W sin θ2). . When the pedestal 206a is positioned vertically above the axis P11 of the tubular body 100, the magnitude of the combined force of the load F and the gravity component W ′ is (F + Wsin θ2).

このため、荷重Fと重力成分W’との合成力は、台座206aが外周面101の最も鉛直方向上方の部位に近づけば近づくほど、基台202の回転中心P2に向けて進行する向きに大きくなる。このように管体100の周方向における台座206aの位置に応じて、荷重Fと重力成分W’との合成力が変動するために、摺動時には、アーム207aの撓み量が変動する。   For this reason, the combined force of the load F and the gravity component W ′ increases in the direction of traveling toward the rotation center P2 of the base 202 as the pedestal 206a comes closer to the uppermost part of the outer peripheral surface 101 in the vertical direction. Become. As described above, the combined force of the load F and the gravity component W ′ varies depending on the position of the pedestal 206a in the circumferential direction of the tubular body 100. Therefore, the amount of deflection of the arm 207a varies during sliding.

以上のように、台座206aの位置はアーム207aの撓みの影響を受け、該アーム207aの撓み量は摺動時に変動するため、例えば、断面が完全に真円の管体の外周面に接触子203aを摺動させた場合であっても、台座206aの位置の軌跡は真円にはならない。このため、台座206aの位置に基づいて管体100の寸法を算出すると、誤差が生じる。   As described above, the position of the pedestal 206a is affected by the bending of the arm 207a, and the amount of bending of the arm 207a fluctuates when sliding. For example, a contact is formed on the outer peripheral surface of a completely circular tube. Even when 203a is slid, the locus of the position of the pedestal 206a is not a perfect circle. For this reason, an error occurs when the dimensions of the tubular body 100 are calculated based on the position of the base 206a.

同様の理由により、台座206bの位置に基づいて管体100の寸法を算出すると、誤差が生じる。   For the same reason, if the dimensions of the tubular body 100 are calculated based on the position of the base 206b, an error occurs.

そこで、本発明の発明者は、荷重Fと重力成分W’との合成力を変動させる重力成分W’と相殺させる荷重を各台座206a、206bに付加することで、摺動時において、各アーム207a、207bの撓みが一定になり、各台座206a、206bの位置に基づいて管体100の寸法を精度良く算出できるとの知見を得た。本発明の発明者は、これらの新しい知見に基づき、本発明を完成させた。   Therefore, the inventor of the present invention adds each load to the pedestals 206a and 206b with a load that cancels the gravity component W ′ that fluctuates the combined force of the load F and the gravity component W ′. It was found that the bending of 207a and 207b became constant, and the dimensions of the tubular body 100 could be accurately calculated based on the positions of the pedestals 206a and 206b. The inventor of the present invention has completed the present invention based on these new findings.

本発明は、軸心が水平方向と略平行となるように配置された管体に対し、前記軸心方向に対向して配置される回転ヘッドと、前記管体の寸法を算出する寸法算出手段とを備える管体の寸法測定装置であって、前記回転ヘッドは、水平方向と略平行な回転中心周りに回転する基台と、前記基台の回転中心に対して進退動可能に前記基台に取り付けられる接触体と、前記接触体を進退動させて、前記管体の周面に前記接触体を押圧するための押圧手段と、前記接触体の進退動可能な方向の荷重を前記接触体に加える荷重調整手段とを有し、前記接触体は、前記基台の回転中心に対して進退動可能に前記基台に取り付けられる台座と、前記台座から前記管体側に延び、前記台座と一体的に進退動するアームと、前記管体の周面に接触可能なように前記アームの先端部に取り付けられ、前記アームと一体的に進退動する接触子とを具備し、前記押圧手段は、前記接触子が前記管体の周面に接触するまで前記台座を進退動させ、前記接触子が前記管体の周面に接触した状態で、前記基台の回転角度に関わらず、前記台座の進退動可能な方向に略一定の荷重を前記台座に付加し、前記荷重調整手段は、前記接触体に作用する重力のうち前記台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ荷重を前記台座に付加し、前記寸法算出手段は、前記基台の回転によって前記管体の周面を前記接触子が摺動しているときの、前記台座の進退動可能な方向における前記台座の位置に基づいて前記管体の寸法を算出することを特徴とする管体の寸法測定装置を提供する。   The present invention relates to a rotary head arranged opposite to the axial direction with respect to a tubular body arranged so that its axial center is substantially parallel to the horizontal direction, and a dimension calculating means for calculating a dimension of the tubular body. The tubular head dimension measuring apparatus comprises: a rotary base that rotates about a rotation center substantially parallel to a horizontal direction; and the base that is movable back and forth with respect to the rotation center of the base. A contact body attached to the contact body, a pressing means for moving the contact body forward and backward to press the contact body against a peripheral surface of the tubular body, and a load in a direction in which the contact body can advance and retract. The contact body includes a pedestal attached to the base so as to be movable back and forth with respect to the center of rotation of the base, and extends from the base toward the tubular body, and is integrated with the base. Forward and backward movement and the front so that it can contact the peripheral surface of the tube A contact attached to the tip of the arm and moving forward and backward integrally with the arm; and the pressing means advances and retracts the pedestal until the contact contacts the peripheral surface of the tubular body, In a state where the contactor is in contact with the peripheral surface of the tubular body, a substantially constant load is applied to the pedestal in a direction in which the pedestal can advance and retreat regardless of the rotation angle of the base, and the load adjusting means Is applied to the pedestal with a load that is opposite in direction to the component in the direction in which the pedestal can move back and forth in the gravity acting on the contact body, and the size of the component is substantially the same. The dimensions of the tubular body are calculated based on the position of the pedestal in the direction in which the pedestal can advance and retract when the contactor slides on the peripheral surface of the tubular body by the rotation of the base. An apparatus for measuring a dimension of a tubular body is provided.

本発明に係る管体の寸法測定装置は、接触体に作用する重力のうち台座の進退動可能な方向の成分(以下、適宜「重力成分」という。)と向きが反対で、且つ、該重力成分と大きさが略同じ荷重(以下、適宜「調整荷重」という。)を台座に付加する荷重調整手段を備える。このような調整荷重を台座に付加することによって、重力成分と、調整荷重とが略相殺される。これにより、接触子が管体の周面を摺動しているときのアームの撓み量が略一定になり、台座の進退動可能な方向における該台座の位置に基づいて管体の寸法を精度良く算出することができる。よって、本発明に係る管体の寸法測定装置は、より一層精度良く寸法を測定することができる。   The tubular body dimension measuring apparatus according to the present invention is opposite in direction to the component in the direction in which the pedestal can move forward and backward (hereinafter referred to as “gravity component” as appropriate) among the gravity acting on the contact body, and the gravity. Load adjusting means is provided for applying a load (hereinafter referred to as “adjustment load” as appropriate) having substantially the same size as the component to the pedestal. By adding such an adjustment load to the pedestal, the gravity component and the adjustment load are substantially canceled. As a result, the amount of bending of the arm when the contact is sliding on the peripheral surface of the tubular body becomes substantially constant, and the dimensions of the tubular body are accurately determined based on the position of the pedestal in the direction in which the pedestal can advance and retract. It can be calculated well. Therefore, the tubular body dimension measuring apparatus according to the present invention can measure the dimensions with higher accuracy.

また、本発明に係る管体の寸法測定装置においては、第2の管体の寸法測定装置と同様に、接触子が管体側に延びるアームの先端部に取り付けられている。このため、管体の内側空間に押圧手段を挿入することなく、管体の内側空間に接触子を挿入することができるので、本発明に係る管体の寸法測定装置は、内径が小さな管体であっても、寸法を測定することができる。   In the tubular body dimension measuring apparatus according to the present invention, as in the second tubular body dimension measuring apparatus, the contact is attached to the tip of the arm extending to the tubular body side. For this reason, since the contact can be inserted into the inner space of the tubular body without inserting a pressing means into the inner space of the tubular body, the tubular body dimension measuring apparatus according to the present invention has a small inner diameter. Even so, the dimensions can be measured.

荷重調整手段の具体的な構成として、前記荷重調整手段は、前記台座の進退動可能な方向に沿って前記基台に取り付けられる複数のローラからなるローラ群と、前記ローラ群の一方の端部に位置するローラに巻き掛けられ、一端が前記台座に結合される第1巻き掛け部と、前記ローラ群の他方の端部に位置するローラに巻き掛けられ、一端が前記台座に結合される第2巻き掛け部と、前記第1巻き掛け部及び前記第2巻き掛け部の他端に結合され、前記接触体の重量と略同じ重量のカウンターウエイトとを備え、前記第1巻き掛け部と、前記カウンターウエイトと、前記第2巻き掛け部と、前記台座と、前記ローラ群とでループを構成するようにした構成を挙げることができる。   As a specific configuration of the load adjusting means, the load adjusting means includes a roller group composed of a plurality of rollers attached to the base along a direction in which the base can advance and retreat, and one end of the roller group. A first winding part that is wound around a roller located at one end and coupled to the pedestal, and a roller located at the other end of the roller group, and one end coupled to the pedestal. Two winding portions, and a counterweight coupled to the other ends of the first winding portion and the second winding portion, and having a weight substantially equal to the weight of the contact body, the first winding portion, A configuration in which a loop is formed by the counterweight, the second winding portion, the pedestal, and the roller group can be exemplified.

好ましくは、本発明に係る管体の寸法測定装置は、前記接触体を2つ備え、前記押圧手段は、一方の前記接触体の前記接触子が前記管体の外周面に接触するまで一方の前記接触体の前記台座を前記基台の回転中心に向けて進行させ、一方の前記接触体の前記接触子が前記管体の外周面に接触した状態で、前記基台の回転角度に関わらず、前記基台の回転中心に向けて略一定の荷重を一方の前記接触体の前記台座に付加し、他方の前記接触体の前記接触子が前記管体の内周面に接触するまで他方の前記接触体の前記台座を前記基台の回転中心から退行させ、他方の前記接触体の前記接触子が前記管体の内周面に接触した状態で、前記基台の回転角度に関わらず、前記基台の回転中心から退行する向きに略一定の荷重を他方の前記接触体の前記台座に付加し、前記荷重調整手段は、一方の前記接触体に作用する重力のうち一方の前記接触体の前記台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ荷重を一方の前記接触体の前記台座に付加し、他方の前記接触体に作用する重力のうち他方の前記接触体の前記台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ荷重を他方の前記接触体の前記台座に付加し、前記寸法算出手段は、前記基台の回転によって、前記管体の外周面を一方の前記接触体の前記接触子が摺動し、前記管体の内周面を他方の前記接触体の前記接触子が摺動しているときの、一方の前記接触体の前記台座の進退動可能な方向における該台座の位置に基づいて前記管体の外径を算出すると共に、他方の前記接触体の前記台座の進退動可能な方向における該台座の位置に基づいて前記管体の内径を算出し、算出した前記管体の外径及び内径を出力する、又は、算出した前記管体の外径及び内径に基づいて算出した前記管体の肉厚を出力する構成とされる。   Preferably, the tubular body dimension measuring apparatus according to the present invention includes the two contact bodies, and the pressing unit is configured to keep one of the contact bodies until the contact of the one of the contact bodies contacts the outer peripheral surface of the tubular body. The pedestal of the contact body is advanced toward the center of rotation of the base, and the contact of one of the contact bodies is in contact with the outer peripheral surface of the tubular body regardless of the rotation angle of the base. Applying a substantially constant load to the base of one of the contact bodies toward the center of rotation of the base, and until the contact of the other contact body contacts the inner peripheral surface of the tubular body With the base of the contact body retracted from the center of rotation of the base, the contact of the other contact body is in contact with the inner peripheral surface of the tubular body, regardless of the rotation angle of the base, The platform of the other contact body is subjected to a substantially constant load in a direction retreating from the center of rotation of the platform. In addition, the load adjusting means is opposite in direction to the component of the gravitational force acting on one of the contact bodies in the direction in which the pedestal of the one of the contact bodies can move back and forth, and the magnitude of the component Applies substantially the same load to the pedestal of one of the contact bodies, the direction of the gravity component acting on the other contact body is opposite to the direction component of the other contact body in which the pedestal can move forward and backward, In addition, a load having substantially the same size as the component is applied to the pedestal of the other contact body, and the dimension calculating means causes the outer peripheral surface of the tubular body to be moved to the one of the contact bodies by the rotation of the base. When the contactor slides and the contactor of the other contact body slides on the inner peripheral surface of the tubular body, the contact of the pedestal of the one contact body in the direction in which the base can move back and forth. While calculating the outer diameter of the tubular body based on the position of the pedestal, the other contact body Calculate the inner diameter of the tube based on the position of the pedestal in the direction in which the pedestal can advance and retract, and output the calculated outer diameter and inner diameter of the tube, or calculate the outer diameter of the tube and The thickness of the tubular body calculated based on the inner diameter is output.

かかる好ましい構成においては、2つの接触体が備えられている。一方の接触体及び他方の接触体の各台座は、基台の回転中心に向けて進行または該回転中心から退行する向きに押圧され、これにより、一方の接触体の接触子が外周面に押圧され、他方の接触体の接触子が内周面に押圧される。従って、基台を回転中心周りに回転させると、一方の接触体の接触子が外周面を摺動し、他方の接触体の接触子が内周面を摺動する。また、各接触体の台座には、各接触体に作用する重力のうち各台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ調整荷重が荷重調整手段によって付加される。よって、かかる好ましい構成によれば、一方の接触体の台座の進退動可能な方向における該台座の位置に基づいて管体の外径を精度良く算出でき、他方の接触体の台座の進退動可能な方向における該台座の位置に基づいて管体の内径を精度良く算出できる。   In such a preferred configuration, two contact bodies are provided. Each pedestal of one contact body and the other contact body is pressed in a direction to advance toward or away from the rotation center of the base, whereby the contact of one contact body is pressed against the outer peripheral surface. Then, the contact of the other contact body is pressed against the inner peripheral surface. Therefore, when the base is rotated around the center of rotation, the contact of one contact body slides on the outer peripheral surface, and the contact of the other contact body slides on the inner peripheral surface. In addition, an adjustment load that is opposite in direction and in the same direction as the component in the direction in which each pedestal can move forward and backward is applied to the pedestal of each contact body. Added by means. Therefore, according to such a preferable configuration, the outer diameter of the tube body can be accurately calculated based on the position of the pedestal in the direction in which the pedestal of one contact body can advance and retreat, and the pedestal of the other contact body can advance and retract. The inner diameter of the tube can be accurately calculated based on the position of the pedestal in any direction.

また、好ましくは、前記2つの接触子は、進退動可能な方向が一致するように取り付けられ、前記押圧手段は、一方の前記接触体の前記台座と他方の前記接触体の前記台座とを連結する構成とされる。   Preferably, the two contactors are attached so that the directions in which they can advance and retreat are coincident, and the pressing means connects the base of one of the contact bodies and the base of the other contact body. It is supposed to be configured.

一方及び他方の各接触体の台座の進退動可能な方向が一致すると、一方の接触体の接触子が管体の外周面に接触するまで一方の接触体の台座を基台の回転中心に向けて進行させる向きと、他方の接触体の接触子が管体の内周面に接触するまで他方の接触体の台座を基台の回転中心から退行させる向きとが反対となる。また、一方の接触体の接触子が管体の外周面に接触した状態で、基台の回転中心に向けて一方の接触体の台座を押圧する向きと、他方の接触体の接触子が管体の内周面に接触した状態で、基台の回転中心から退行する向きに他方の接触体の台座を押圧する向きとが反対となる。このような一方及び他方の各接触体の台座間で、台座を進退動、及び、押圧する向きが反対となることで、これらの進退動、及び、押圧を、例えば、一軸方向に伸縮可能な1つの部材で行うことができる。このため、かかる好ましい構成によれば、押圧手段を1つの部材で構成することができ、本発明に係る管体の寸法測定装置の部品数を抑えることができる。   When the direction in which the pedestal of one and the other contact body can move forward and backward matches, the pedestal of one contact body is directed toward the center of rotation of the base until the contact of the one contact body contacts the outer peripheral surface of the tube. And the direction in which the pedestal of the other contact body retreats from the center of rotation of the base until the contact of the other contact body contacts the inner peripheral surface of the tube body. Also, in a state where the contact of one contact body is in contact with the outer peripheral surface of the tube body, the direction in which the base of one contact body is pressed toward the center of rotation of the base, and the contact member of the other contact body is the tube The direction in which the pedestal of the other contact body is pressed in the direction of retreating from the center of rotation of the base while being in contact with the inner peripheral surface of the body is opposite. By moving the pedestal forward and backward and pressing in the opposite direction between the pedestals of the one and the other contact bodies, the forward and backward movement and pressing can be expanded and contracted in, for example, a uniaxial direction. This can be done with one member. For this reason, according to this preferable structure, a press means can be comprised by one member and the number of parts of the dimension measuring apparatus of the tubular body which concerns on this invention can be suppressed.

本発明は、内径が小さな管体にも適用でき、且つ、より一層精度良く寸法を測定することができる管体の寸法測定装置を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a tubular body having a small inner diameter and can provide a tubular body dimension measuring apparatus capable of measuring dimensions with higher accuracy.

図1は、本実施形態の管体の寸法測定装置と、本実施形態の管体の寸法測定装置によって寸法が測定される管体の側面図である。図1(a)は、管体の寸法測定装置と管体とが離間している状態を示す。図1(b)は、管体の寸法測定装置の接触子が管体の内側空間に挿入された状態における、管体の寸法測定装置の一部分と、管体との側面を示す。FIG. 1 is a side view of a tubular body whose dimensions are measured by the tubular body dimension measuring apparatus of the present embodiment and the tubular body dimension measuring apparatus of the present embodiment. FIG. 1A shows a state in which the tubular body dimension measuring device and the tubular body are separated from each other. FIG. 1B shows a part of the tubular body dimension measuring apparatus and the side surface of the tubular body in a state where the contact of the tubular body dimension measuring apparatus is inserted into the inner space of the tubular body. 図2は、管体の寸法測定装置の基台の先端部近傍の構成を示す図である。図2(a)は、図1の矢視Gにおける基台の先端部近傍の拡大側面図である。図2(b)は、基台の先端部近傍の拡大平面図である。図2(c)は図2(a)のX―X端面図である。図2(d)は図2(a)のY―Y端面図である。FIG. 2 is a diagram showing a configuration in the vicinity of the tip of the base of the tubular body dimension measuring apparatus. Fig.2 (a) is an enlarged side view of the front-end | tip part vicinity in the arrow G of FIG. FIG. 2B is an enlarged plan view of the vicinity of the tip of the base. FIG. 2C is an XX end view of FIG. FIG. 2D is a YY end view of FIG. 図3は、調整荷重が重力成分と向きが反対で大きさが略同じになることを説明するための模式図である。FIG. 3 is a schematic view for explaining that the adjustment load is opposite in direction to the gravity component and substantially the same size. 図4は、実施例及び比較例で用いられた管体の断面図である。FIG. 4 is a cross-sectional view of a tubular body used in Examples and Comparative Examples. 図5は、実施例及び比較例の測定値と、実際の寸法との偏差を示すグラフである。FIG. 5 is a graph showing a deviation between the measured values of Examples and Comparative Examples and actual dimensions. 図6は、第1の管体の寸法測定装置が備える回転ヘッド、及び、第1の管体の寸法測定装置によって寸法が測定される管体の断面図である。図6(a)は、回転ヘッドと管体とが離間している状態を示す。図6(b)は、回転ヘッドの接触子が管体の内側空間に挿入されている状態を示す。FIG. 6 is a cross-sectional view of a rotating head included in the first tubular body dimension measuring device and a tubular body whose dimensions are measured by the first tubular body dimension measuring device. FIG. 6A shows a state where the rotary head and the tube are separated from each other. FIG. 6B shows a state in which the contact of the rotary head is inserted into the inner space of the tubular body. 図7は、第2の管体の寸法測定装置が備える回転ヘッド、及び、第2の管体の寸法測定装置によって寸法が測定される管体の断面図である。FIG. 7 is a cross-sectional view of a rotary head provided in the second tubular body dimension measuring device and a tubular body whose dimensions are measured by the second tubular body dimension measuring device. 図8は、台座の進退動可能な方向に撓んだ状態の第2の管体の寸法測定装置が備えるアームを示す。FIG. 8 shows an arm included in the second tubular body dimension measuring device in a state where the pedestal is bent in a direction in which the base can be advanced and retracted. 図9は、荷重と重力成分との合成力を示す図である。図9(a)は、台座が管体の軸心より鉛直方向下方に位置しているときの荷重と重力成分との合成力を示す。図9(b)は、台座が管体の軸心より鉛直方向上方に位置しているときの荷重と重力成分との合成力を示す。FIG. 9 is a diagram illustrating a combined force of a load and a gravity component. FIG. 9A shows the combined force of the load and the gravity component when the pedestal is positioned vertically below the axis of the tube. FIG. 9B shows the combined force of the load and the gravity component when the pedestal is positioned vertically above the axis of the tube body.

以下、添付図面を適宜参照しつつ、本発明に係る管体の寸法測定装置の一実施形態について説明する。図1は、本実施形態の管体の寸法測定装置1と、本実施形態の管体の寸法測定装置1によって寸法が測定される管体10の側面図である。図1(a)は、管体の寸法測定装置1と管体10とが離間している状態を示す。図1(b)は、管体の寸法測定装置1の接触子63aが管体10の内側空間に挿入された状態における、管体の寸法測定装置1の一部分と、管体10との側面を示す。尚、管体10は、軸心P1が水平方向と略平行となるように配置されている。   Hereinafter, an embodiment of a tubular body dimension measuring apparatus according to the present invention will be described with reference to the accompanying drawings as appropriate. FIG. 1 is a side view of a tubular body dimension measuring device 1 of the present embodiment and a tubular body 10 whose dimensions are measured by the tubular body dimension measuring device 1 of the present embodiment. FIG. 1A shows a state in which the tubular body dimension measuring apparatus 1 and the tubular body 10 are separated from each other. FIG. 1B shows a part of the tubular body dimension measuring device 1 and the side surface of the tubular body 10 in a state where the contact 63 a of the tubular body dimension measuring device 1 is inserted into the inner space of the tubular body 10. Show. The tube body 10 is disposed such that the axis P1 is substantially parallel to the horizontal direction.

管体の寸法測定装置1は、本体部2と、回転ヘッド3と、寸法算出手段(図示しない)とを備える。   The tubular body dimension measuring device 1 includes a main body 2, a rotary head 3, and a dimension calculating means (not shown).

本体部2は、管体10の軸心P1と平行な走行軸20に沿って移動可能に配置されている。本体部2は、回転ヘッド3が管体10に対して軸心P1方向に対向して配置されるように該回転ヘッド3を支持している。更に、本体部2は、鉛直方向に延びる昇降軸21を備える。昇降軸21は、スクリューネジで構成することができる。   The main body 2 is arranged so as to be movable along a travel axis 20 parallel to the axis P1 of the tubular body 10. The main body 2 supports the rotary head 3 so that the rotary head 3 is disposed to face the tube body 10 in the direction of the axis P1. Furthermore, the main body 2 includes a lifting shaft 21 extending in the vertical direction. The elevating shaft 21 can be constituted by a screw screw.

図2は、管体の寸法測定装置1の基台5の先端部52(後述する)近傍の構成を示す図である。図2(a)は図1の矢視Gにおける基台5の先端部52近傍の拡大側面図であり、図2(b)は基台5の先端部52近傍の拡大平面図であり、図2(c)は図2(a)のX―X端面図であり、図2(d)は図2(a)のY―Y端面図である。図1及び図2に示すように、回転ヘッド3は、駆動モータ4と、基台5と、2つの接触体6a、6bと、押圧手段7と、2つの荷重調整手段8a、8bとを備える。   FIG. 2 is a diagram showing a configuration in the vicinity of a distal end portion 52 (described later) of the base 5 of the tubular body dimension measuring apparatus 1. 2A is an enlarged side view of the vicinity of the tip portion 52 of the base 5 in the direction of arrow G in FIG. 1, and FIG. 2B is an enlarged plan view of the vicinity of the tip portion 52 of the base 5. 2 (c) is an XX end view of FIG. 2 (a), and FIG. 2 (d) is a YY end view of FIG. 2 (a). As shown in FIGS. 1 and 2, the rotary head 3 includes a drive motor 4, a base 5, two contact bodies 6a and 6b, a pressing means 7, and two load adjusting means 8a and 8b. .

図1(a)に示すように、基台5は、水平方向と略平行な回転中心P2周りに回転可能である。基台5は、基端部51と先端部52とを備える。基端部51は、駆動モータ4によって回転駆動され、基端部51が回転すると、基台5は回転中心P2周りに回転する。基端部51は、昇降軸21に取り付けられている。基端部51は、昇降軸21を回転させることで昇降(鉛直方向に移動)し、基端部51を昇降させることで、基台5の回転中心P2の鉛直方向の位置を調整することができる。基端部51は、回転中心P2に対して進退動可能な方向に延びる半径調整軸53を備える。半径調整軸53は、スクリューネジで構成することができる。   As shown in FIG. 1A, the base 5 is rotatable around a rotation center P2 that is substantially parallel to the horizontal direction. The base 5 includes a proximal end portion 51 and a distal end portion 52. The base end portion 51 is rotationally driven by the drive motor 4, and when the base end portion 51 rotates, the base 5 rotates around the rotation center P2. The base end portion 51 is attached to the lifting shaft 21. The base end portion 51 can be moved up and down (moved in the vertical direction) by rotating the lifting shaft 21, and the base end portion 51 can be moved up and down to adjust the vertical position of the rotation center P <b> 2 of the base 5. it can. The base end portion 51 includes a radius adjustment shaft 53 that extends in a direction in which the base end portion 51 can advance and retract. The radius adjusting shaft 53 can be configured by a screw screw.

先端部52は、基端部51の管体10側に位置し、半径調整軸53に取り付けられている。先端部52は、半径調整軸53を回転させることで基台5の回転中心P2に対して進退動する。基台5の回転中心P2に対して進退動可能とは、基台5の回転中心P2に向けて進行すること、及び、基台5の回転中心P2から退行することが可能であることを意味する。図2(b)に示すように、先端部52は、平面視コの字状に形成されている。   The distal end portion 52 is located on the tube body 10 side of the proximal end portion 51 and is attached to the radius adjusting shaft 53. The distal end 52 moves forward and backward with respect to the rotation center P <b> 2 of the base 5 by rotating the radius adjustment shaft 53. The ability to move forward and backward with respect to the rotation center P2 of the base 5 means that the head 5 can move toward the rotation center P2 of the base 5 and can retreat from the rotation center P2 of the base 5. To do. As shown in FIG. 2 (b), the tip 52 is formed in a U-shape in plan view.

図1(a)に示すように、2つの接触体6a、6bは、基台5の先端部52に取り付けられている。接触体6a、6bは、台座61a、61bと、アーム62a、62bと、接触子63a、63bとを備える。   As shown in FIG. 1A, the two contact bodies 6 a and 6 b are attached to the distal end portion 52 of the base 5. The contact bodies 6a and 6b include pedestals 61a and 61b, arms 62a and 62b, and contacts 63a and 63b.

図2(a)及び図2(b)に示すように、各台座61a、61bは、基台5の回転中心P2に対して略垂直に進退動可能となるように、基台5の先端部52の側壁521に取り付けられている。ここでは、2つの台座61a、61bの進退動可能な方向(図2(a)の矢印J方向)が一致している。即ち、基台5の回転中心P2から接触体6aに向かう向きと、基台5の回転中心P2から接触体6bに向かう向きとが一致している。各台座61a、61bが基台5の回転中心P2に対して進退動することで、各接触体6a、6b全体が基台の回転中心P2に対して進退動する。図1(a)に示すように、各アーム62a、62bは、各台座61a、61bから管体10側に延びている。接触子63aは、管体10の外周面11に接触可能なようにアーム62aの先端部に取り付けられており、接触子63bは、管体10の内周面12に接触可能なようにアーム62bの先端部に取り付けられている。各接触体6a、6bにおいて、台座61a、61bと、アーム62a、62bと、接触子63a、63bとはそれぞれ一体的に進退動する。   As shown in FIGS. 2A and 2B, the pedestals 61 a and 61 b can be advanced and retracted substantially vertically with respect to the rotation center P <b> 2 of the base 5. It is attached to the side wall 521 of 52. Here, the directions in which the two pedestals 61a and 61b can move forward and backward (the direction of arrow J in FIG. 2A) are the same. That is, the direction from the rotation center P2 of the base 5 toward the contact body 6a coincides with the direction from the rotation center P2 of the base 5 toward the contact body 6b. As the pedestals 61a and 61b move forward and backward with respect to the rotation center P2 of the base 5, the entire contacts 6a and 6b move forward and backward with respect to the rotation center P2 of the base. As shown in FIG. 1A, the arms 62a and 62b extend from the pedestals 61a and 61b to the tubular body 10 side. The contact 63a is attached to the tip of the arm 62a so as to be in contact with the outer peripheral surface 11 of the tube body 10, and the contact 63b is provided in the arm 62b so as to be able to contact the inner peripheral surface 12 of the tube 10. It is attached to the tip. In each contact body 6a, 6b, the pedestals 61a, 61b, the arms 62a, 62b, and the contacts 63a, 63b move forward and backward integrally.

図1(b)、図2(a)及び図2(b)に示すように、押圧手段7は、一端が接触体6a台座61aと接続され、他端が接触体6bの台座61bと接続されている。押圧手段7は、基台5の回転中心P2に対して進退動する方向に沿って伸縮可能であり、伸縮することで、各台座61a、61bを基台5の回転中心P2に対して進退動させる。押圧手段7は図示しない支持部材によって先端部52に取り付けられている。押圧手段7は、エアシリンダ等の一軸方向に伸縮可能な部材で構成することができる。   As shown in FIGS. 1B, 2A and 2B, the pressing means 7 has one end connected to the contact body 6a pedestal 61a and the other end connected to the pedestal 61b of the contact body 6b. ing. The pressing means 7 can be expanded and contracted along the direction of moving back and forth with respect to the rotation center P <b> 2 of the base 5, so that the bases 61 a and 61 b can be moved back and forth with respect to the rotation center P <b> 2 of the base 5. Let The pressing means 7 is attached to the tip 52 by a support member (not shown). The pressing means 7 can be composed of a member that can expand and contract in one axial direction such as an air cylinder.

荷重調整手段8a(図2(c)参照)、荷重調整手段8b(図2(d)参照)は、複数のローラから構成されるローラ群と、第1巻き掛け部83a、83bと、第2巻き掛け部84a、84bと、カウンターウエイト85a、85bとを備える。   The load adjusting means 8a (see FIG. 2 (c)) and the load adjusting means 8b (see FIG. 2 (d)) include a roller group composed of a plurality of rollers, first winding portions 83a and 83b, Winding portions 84a and 84b and counterweights 85a and 85b are provided.

各荷重調整手段8a、8bは構成が同一であるので、ここでは、荷重調整手段8aの構成のみ詳述する。図2(c)に示すように、ローラ群は、台座61aの進退動可能な方向に沿って基台5の先端部52に取り付けられる2つのローラ81a、82aから構成されている。第1巻き掛け部83aは、ローラ群の一方の端部に位置する一方のローラ81aに巻き掛けられ、一端が台座61aに結合され、他端がカウンターウエイト85aに結合されている。第2巻き掛け部84aは、ローラ群の他方の端部に位置する他方のローラ82aに巻き掛けられ、一端が台座61aに結合され、他端がカウンターウエイト85aに結合されている。第1巻き掛け部83aと第2巻き掛け部84aとには、例えば、ベルト状のものや、線状のワイヤ等を用いることができる。カウンターウエイト85aは、基台5の回転中心P2に対して進退動可能な方向に延びる基台5の先端部52に形成されたガイド(図示しない)に沿って、移動することが可能とされている。カウンターウエイト85aの重量は、接触体61aの重量と略同じである。前述の第1巻き掛け部83aと、カウンターウエイト85aと、第2巻き掛け部84aと、台座61aと、ローラ群とで、第1巻き掛け部83aと、カウンターウエイト85aと、第2巻き掛け部84aと、台座61aとからなるループが構成されている。   Since the load adjusting means 8a and 8b have the same configuration, only the configuration of the load adjusting means 8a will be described in detail here. As shown in FIG. 2C, the roller group is composed of two rollers 81a and 82a attached to the tip 52 of the base 5 along the direction in which the base 61a can move forward and backward. The first winding portion 83a is wound around one roller 81a located at one end of the roller group, one end is coupled to the pedestal 61a, and the other end is coupled to the counterweight 85a. The second winding portion 84a is wound around the other roller 82a located at the other end of the roller group, and one end is coupled to the pedestal 61a and the other end is coupled to the counterweight 85a. As the first winding part 83a and the second winding part 84a, for example, a belt-like one, a linear wire, or the like can be used. The counterweight 85a can be moved along a guide (not shown) formed at the distal end portion 52 of the base 5 that extends in a direction in which the counterweight 85a can move forward and backward with respect to the rotation center P2 of the base 5. Yes. The weight of the counterweight 85a is substantially the same as the weight of the contact body 61a. The first winding portion 83a, the counter weight 85a, the second winding portion 84a, the base 61a, and the roller group, the first winding portion 83a, the counterweight 85a, and the second winding portion. A loop composed of 84a and a pedestal 61a is formed.

このような構成の荷重調整手段8aは、各接触体6aに作用する重力のうち台座61aの進退動可能な方向の成分(以下、適宜「接触体6aの重力成分T’」という。)と大きさが略同じで、向きが反対の接触体6aに対する調整荷重V’を接触体6aの台座61aに付加する。同様に、荷重調整手段8bは、各接触体6bに作用する重力のうち台座61bの進退動可能な方向の成分(以下、適宜「接触体6bの重力成分T’」という。)と大きさが略同じで、向きが反対の接触体6bに対する調整荷重V’を接触体6bの台座61bに付加する。   The load adjusting means 8a having such a configuration has a large component in the direction in which the pedestal 61a can move forward and backward among the gravity acting on each contact member 6a (hereinafter, referred to as “gravity component T ′ of the contact member 6a” as appropriate). The adjustment load V ′ applied to the contact body 6a having substantially the same direction and opposite direction is applied to the base 61a of the contact body 6a. Similarly, the load adjusting means 8b has a component and a magnitude in the direction in which the base 61b can move forward and backward among the gravity acting on each contact body 6b (hereinafter, referred to as “gravity component T ′ of the contact body 6b”). The adjustment load V ′ for the contact body 6b which is substantially the same and opposite in direction is applied to the base 61b of the contact body 6b.

次に、以上において構成を説明した管体の寸法測定装置1による管体10の寸法測定について説明する。   Next, the dimension measurement of the tubular body 10 by the tubular body dimension measuring apparatus 1 whose configuration has been described above will be described.

まず、図1に示すように、昇降軸21を回転させて、管体10の軸心P1と基台5の回転中心P2とを一致させる。次に、押圧手段7を延伸させ、台座61aを基台5の回転中心P2(管体10の軸心P1)から退行させ、台座61bを基台5の回転中心P2(管体10の軸心P1)に向けて進行させて、接触子63aと接触子63bとの間隔を管体10の肉厚より大きくする。   First, as shown in FIG. 1, the elevating shaft 21 is rotated so that the axis P <b> 1 of the tubular body 10 and the rotation center P <b> 2 of the base 5 are aligned. Next, the pressing means 7 is extended, the pedestal 61a is retracted from the rotation center P2 of the base 5 (axial center P1 of the tubular body 10), and the pedestal 61b is moved to the rotational center P2 of the base 5 (axial center of the tubular body 10). The distance between the contact 63a and the contact 63b is made larger than the thickness of the tubular body 10 by proceeding toward P1).

次に、半径調整軸53を回転させて、接触子63aを管体10の外周面11の外側に移動させ、接触子63bを管体10の内周面12の内側に移動させる。   Next, the radius adjusting shaft 53 is rotated to move the contact 63 a to the outside of the outer peripheral surface 11 of the tube body 10 and to move the contact 63 b to the inside of the inner peripheral surface 12 of the tube body 10.

次に、図1(b)に示すように、軸心P1に沿って回転ヘッド2を移動させ、接触子63bを管体10の内側空間に挿入して、接触子63aと接触子63bとの間に管体10を位置させる。   Next, as shown in FIG. 1B, the rotary head 2 is moved along the axis P1, and the contact 63b is inserted into the inner space of the tubular body 10, so that the contact 63a and the contact 63b The tube body 10 is positioned therebetween.

次に、押圧手段7を収縮させ、接触子63aが外周面11に接触するまで、台座61aを基台5の回転中心P2に向けて進行させると共に、接触子63bが内周面11に接触するまで、台座61bを基台5の回転中心P2から退行させる。接触子63aが外周面11に接触し、接触子63aが内周面12に接触すると、更に押圧手段7を収縮させ、基台5の回転中心P2に向けて、所定の荷重を台座61aに付加し、基台5の回転中心P2から退行する向きに、所定の荷重を台座61bに付加する。これにより、接触子63aが管体10の外周面11に押圧され、接触子63bが管体10の内周面12に押圧される。尚、押圧手段7が各台座61a、61bに付加する荷重は、基台5の回転角度に関わらず、大きさが略一定である。   Next, the pressing means 7 is contracted to advance the pedestal 61a toward the rotation center P2 of the base 5 until the contact 63a contacts the outer peripheral surface 11, and the contact 63b contacts the inner peripheral surface 11. The pedestal 61b is retracted from the rotation center P2 of the base 5 until the above. When the contact 63a contacts the outer peripheral surface 11 and the contact 63a contacts the inner peripheral surface 12, the pressing means 7 is further contracted and a predetermined load is applied to the base 61a toward the rotation center P2 of the base 5. Then, a predetermined load is applied to the pedestal 61b in a direction retreating from the rotation center P2 of the base 5. As a result, the contact 63 a is pressed against the outer peripheral surface 11 of the tubular body 10, and the contact 63 b is pressed against the inner peripheral surface 12 of the tubular body 10. Note that the load applied by the pressing means 7 to the pedestals 61 a and 61 b is substantially constant regardless of the rotation angle of the base 5.

次に、基台5を回転中心P2周りに回転させる。これにより、接触子63aが外周面11を周方向に摺動し、接触子63bが内周面12を周方向に摺動する。接触子63aが外周面12を摺動すると、台座61aの進退動可能な方向における接触子63aの位置が外周面11の形状に応じて変動する。同様に、接触子63bが内周面12を摺動すると、台座61bの進退動可能な方向における接触子63bの位置が内周面12の形状に応じて変動する。   Next, the base 5 is rotated around the rotation center P2. Accordingly, the contact 63a slides on the outer peripheral surface 11 in the circumferential direction, and the contact 63b slides on the inner peripheral surface 12 in the circumferential direction. When the contact 63 a slides on the outer peripheral surface 12, the position of the contact 63 a in the direction in which the pedestal 61 a can move forward and backward varies depending on the shape of the outer peripheral surface 11. Similarly, when the contact 63 b slides on the inner peripheral surface 12, the position of the contact 63 b in the direction in which the pedestal 61 b can move forward and backward varies depending on the shape of the inner peripheral surface 12.

台座61aには、荷重調整手段8aによって、接触体6aの重力成分T’と向きが反対で大きさが略同じである接触体6aに対する調整荷重V’が付加されている。このため、接触体6aに作用する接触体6aの重力成分T’と、調整荷重V’とは略相殺される。従って、台座61aの進退動可能な方向におけるアーム62aの撓み量に影響を及ぼす力は、実質、押圧手段7が台座61aに付加する荷重となる。押圧手段7が台座61aに付加する荷重は、向きが基台5の回転中心P2に向けて進行する向きであり、大きさが略一定である。このため、台座61aの進退動可能な方向におけるアーム62aの撓み量に影響を及ぼす力は一定となる。このため、摺動時において、アーム62aの撓み量が略一定になる。   The pedestal 61a is applied with an adjustment load V 'applied to the contact body 6a having the opposite direction and substantially the same size as the gravity component T' of the contact body 6a by the load adjusting means 8a. For this reason, the gravity component T ′ of the contact body 6 a acting on the contact body 6 a and the adjustment load V ′ are substantially canceled. Accordingly, the force that affects the amount of bending of the arm 62a in the direction in which the pedestal 61a can move forward and backward is substantially the load that the pressing means 7 applies to the pedestal 61a. The load applied to the pedestal 61 a by the pressing means 7 is a direction in which the direction proceeds toward the rotation center P <b> 2 of the base 5, and the size is substantially constant. For this reason, the force that affects the amount of bending of the arm 62a in the direction in which the pedestal 61a can move forward and backward is constant. For this reason, the amount of bending of the arm 62a becomes substantially constant during sliding.

また、台座61bには、荷重調整手段8bによって、接触体6bの重力成分T’と向きが反対で大きさが略同じである接触体6bに対する調整荷重V’が付加されている。このため、アーム62aの撓み量と同様に、摺動時において、アーム62bの撓み量も略一定になる。   Further, an adjustment load V 'for the contact body 6b having the opposite direction and the substantially same size as the gravity component T' of the contact body 6b is applied to the pedestal 61b by the load adjusting means 8b. For this reason, similarly to the bending amount of the arm 62a, the bending amount of the arm 62b becomes substantially constant during sliding.

寸法算出手段は、接触子63a、63bが外周面11及び内周面12を摺動しているとき(以下、適宜「摺動時」という。)の、台座61aの進退動可能な方向における台座61aの位置(軸心P1から台座61aまでの距離d)に基づいて、管体10の周方向における軸心P1から外周面11までの距離の分布(以下、適宜「外周面の周方向分布」という。)を求める。図3(a)に示すように、この距離dは、台座61aと管体10の軸心P1とを結ぶ直線L1上に位置する先端部52の所定の位置(以下、適宜「基準位置522」という。)から軸心P1までの第1距離d1と、該基準位置522から台座61aまでの第2距離d2とを合計することで算出される。第1距離d1は、半径調整軸53の回転量に基づいて算出することができ、第2距離d2は、先端部52に取り付けられた光学式の非接触距離計やマグネスケール(登録商標)などによって測定することができる。距離dは、寸法算出手段が算出しても、寸法算出手段と異なる手段が算出してもよい。   The dimension calculation means is a pedestal in a direction in which the pedestal 61a can move forward and backward when the contacts 63a and 63b slide on the outer peripheral surface 11 and the inner peripheral surface 12 (hereinafter referred to as “sliding” as appropriate). Based on the position of 61a (the distance d from the axis P1 to the pedestal 61a), the distribution of the distance from the axis P1 to the outer circumferential surface 11 in the circumferential direction of the tubular body 10 (hereinafter referred to as “circumferential distribution of the outer circumferential surface” as appropriate). ). As shown in FIG. 3A, the distance d is a predetermined position (hereinafter referred to as “reference position 522” as appropriate) of the tip 52 located on a straight line L1 connecting the base 61a and the axis P1 of the tube body 10. And the second distance d2 from the reference position 522 to the base 61a is calculated. The first distance d1 can be calculated based on the amount of rotation of the radius adjustment shaft 53, and the second distance d2 can be an optical non-contact distance meter attached to the tip 52, a Magnescale (registered trademark), or the like. Can be measured. The distance d may be calculated by a dimension calculating unit or a unit different from the dimension calculating unit.

寸法算出手段は、摺動時における、台座61bの進退動可能な方向における台座61bの位置(軸心P1から台座61bまでの距離)に基づいて、管体10の周方向における軸心P1から内周面12までの距離の分布(以下、適宜「内周面の周方向分布」という。)を求める。内周面の周方向分布は、外周面の周方向分布と同様にして求められる。   Based on the position of the pedestal 61b in the direction in which the pedestal 61b can be moved back and forth (the distance from the axis P1 to the pedestal 61b) during sliding, the dimension calculating means A distance distribution to the peripheral surface 12 (hereinafter referred to as “circumferential distribution of the inner peripheral surface” as appropriate) is obtained. The circumferential distribution of the inner circumferential surface is obtained in the same manner as the circumferential distribution of the outer circumferential surface.

寸法算出手段は、外周面の周方向分布から管体10の外径を、内周面の周方向分布から管体10の内径を算出し、算出した外径と内径とをモニタ等に出力する。また、寸法測定手段は、算出した外径と算出した内径との差分に基づいて、管体10の肉厚を算出し、該肉厚を出力してもよい。また、管体の寸法算出手段は、接触子63a、63bが外周面11及び内周面12を摺動しているときに、接触子63a、63bが軸心P1に対して所定角度摺動する度に、軸心P1から台座61aまでの距離と軸心P1から台座61bまでの距離との差分を算出させ、該差分に基づいて管体100の肉厚を算出してもよい。このような方法によれば、外周面の周方向分布及び内周面の周方向分布を求めることなく肉厚を算出することができる。   The dimension calculating means calculates the outer diameter of the tubular body 10 from the circumferential distribution of the outer peripheral surface, calculates the inner diameter of the tubular body 10 from the circumferential distribution of the inner peripheral surface, and outputs the calculated outer diameter and inner diameter to a monitor or the like. . Further, the dimension measuring means may calculate the thickness of the tubular body 10 based on the difference between the calculated outer diameter and the calculated inner diameter, and output the thickness. Further, the tube size calculation means is configured such that when the contacts 63a and 63b slide on the outer peripheral surface 11 and the inner peripheral surface 12, the contacts 63a and 63b slide at a predetermined angle with respect to the axis P1. Each time, the difference between the distance from the axis P1 to the pedestal 61a and the distance from the axis P1 to the pedestal 61b may be calculated, and the wall thickness of the tubular body 100 may be calculated based on the difference. According to such a method, the thickness can be calculated without obtaining the circumferential distribution of the outer circumferential surface and the circumferential distribution of the inner circumferential surface.

以上のように、各アーム62a、62bの撓み量が略一定であるため、寸法算出手段は、より一層精度良く外径及び内径を算出することができる。   As described above, since the bending amounts of the arms 62a and 62b are substantially constant, the dimension calculating means can calculate the outer diameter and the inner diameter with higher accuracy.

また、押圧手段7は、台座61aを基台5の回転中心P2に対して進退動させる第1押圧部材と、台座61bを基台5の回転中心P2に対して進退動させる第2押圧部材との2つの部材から構成されてもよい。   The pressing means 7 includes a first pressing member that moves the base 61 a forward and backward with respect to the rotation center P <b> 2 of the base 5, and a second pressing member that moves the base 61 b forward and backward with respect to the rotation center P <b> 2 of the base 5. These two members may be used.

また、接触体6a、6bは、進退動可能な方向が異なるように、基台5の先端部52に取り付けられてもよい。即ち、基台5の回転中心P2から接触体6aに向かう向きと、基台5の回転中心P2から接触体6bに向かう向きとが異なるように、接触体6a、6bが基台5の先端部52に取り付けられてもよい。このような構成においては、管体10の周方向における接触体6aの位置と接触体6bの位置とがずれた状態で、接触子63aを外周面11に、接触子61bを内周面12に摺動させることになる。このようにずれた状態で摺動させる場合であっても、外周面の周方向分布と、内周面の周方向分布に基づいて肉厚を算出することができる。   In addition, the contact bodies 6a and 6b may be attached to the distal end portion 52 of the base 5 so that the directions in which they can advance and retract are different. That is, the contact bodies 6a and 6b are arranged at the distal end portion of the base 5 so that the direction from the rotation center P2 of the base 5 toward the contact body 6a is different from the direction from the rotation center P2 of the base 5 toward the contact body 6b. 52 may be attached. In such a configuration, the contact 63 a is placed on the outer peripheral surface 11 and the contact 61 b is placed on the inner peripheral surface 12 in a state where the position of the contact body 6 a and the position of the contact body 6 b in the circumferential direction of the tube body 10 are shifted. It will slide. Even in the case of sliding in such a shifted state, the wall thickness can be calculated based on the circumferential distribution of the outer circumferential surface and the circumferential distribution of the inner circumferential surface.

接触体6aに対する調整荷重V’が接触体6aの重力成分T’と向きが反対で大きさが略同じになることについて説明する。尚、接触体6a、接触体6bに対する調整荷重V’が接触体6a、接触体6bの重力成分T’と向きが反対で大きさが略同じになる原理は同一であるので、ここでは、接触体6bに対する調整荷重V’が接触体6bの重力成分T’と向きが反対で大きさが略同じになるとについては説明を省略する。   A description will be given of the fact that the adjustment load V 'applied to the contact body 6a is opposite in direction to the gravity component T' of the contact body 6a and has substantially the same magnitude. The principle that the adjustment load V ′ for the contact body 6a and the contact body 6b is opposite in direction to the gravity component T ′ of the contact body 6a and the contact body 6b and substantially the same is the same. The description that the adjustment load V ′ applied to the body 6b is opposite in direction to the gravity component T ′ of the contact body 6b and substantially the same in magnitude is omitted.

図3は、接触体6aに対する調整荷重V’が接触体6aの重力成分T’と向きが反対で大きさが略同じになることを説明するための模式図である。図3(a)は、台座61aが管体10の軸心P1より鉛直方向下方に位置しているときの接触体6aの重力成分T’を表す模式図であり、図3(b)は、図3(a)の管体の寸法測定装置1の部分の拡大図である。図3(a)に示すように、台座61aの進退動可能な方向(台座61aと管体10の軸心P1とを結ぶ直線L1の方向)が水平方向と成す鋭角の角度をθ1とし、接触子6aに作用する重力をTとすると、接触体6aの重力成分T’は、向きが管体10の軸心P1から退行する向きであり、大きさがTsinθ1である。   FIG. 3 is a schematic diagram for explaining that the adjustment load V ′ applied to the contact body 6a is opposite in direction to the gravity component T ′ of the contact body 6a and has substantially the same size. FIG. 3A is a schematic diagram showing the gravitational component T ′ of the contact body 6a when the pedestal 61a is positioned vertically below the axis P1 of the tubular body 10, and FIG. FIG. 4 is an enlarged view of a portion of the tubular body dimension measuring apparatus 1 in FIG. As shown in FIG. 3A, the acute angle formed by the horizontal direction of the direction in which the pedestal 61a can move forward and backward (the direction of the straight line L1 connecting the pedestal 61a and the axis P1 of the tubular body 10) is θ1, and the contact Assuming that the gravity acting on the child 6a is T, the gravity component T ′ of the contact body 6a has a direction retreating from the axis P1 of the tubular body 10 and has a magnitude of Tsin θ1.

一方、図3(b)に示すように、荷重調整手段8aを構成する2つのローラ81a、82aは、台座61aの進退動可能な方向に沿って取り付けられており、第1巻き掛け部83a及び第2巻き掛け部84aの向きは、基台5の回転角度に関わらず、台座61aの進退動可能な方向となっている。   On the other hand, as shown in FIG. 3B, the two rollers 81a and 82a constituting the load adjusting means 8a are attached along the direction in which the pedestal 61a can move forward and backward, and the first winding portion 83a and The direction of the second wrapping portion 84a is a direction in which the pedestal 61a can move forward and backward regardless of the rotation angle of the base 5.

このため、カウンターウエイト85aと結合される第1巻き掛け部83a及び第2巻き掛け部84aの他端には、カウンターウエイト85aに作用する重力Uのうち台座61aの進退動可能な方向の成分U’(以下、適宜「カウンターウエイト85aの重力成分U’」という。)が作用する。カウンターウエイト85aの重力成分U’は、向きが管体10の軸心P1から退行する方向であり、大きさがUsinθ1である。   Therefore, the other end of the first winding portion 83a and the second winding portion 84a coupled to the counterweight 85a has a component U in the direction in which the pedestal 61a can move forward and backward among the gravity U acting on the counterweight 85a. '(Hereinafter referred to as “gravity component U ′ of counterweight 85a”) acts as appropriate. The gravity component U ′ of the counterweight 85 a is a direction in which the direction retreats from the axis P <b> 1 of the tubular body 10, and the magnitude is Usin θ <b> 1.

図2(c)に示すように、第1巻き掛け部83a及び第2巻き掛け部84aの他端にカウンターウエイト85aの重力成分U’が作用すると、第1巻き掛け部83a及び第2巻き掛け部84aの一端には、該重力成分U’と向きが反対で大きさが同じである接触体6aに対する調整荷重V’が作用する。   As shown in FIG. 2C, when the gravity component U ′ of the counterweight 85a acts on the other end of the first winding portion 83a and the second winding portion 84a, the first winding portion 83a and the second winding portion. An adjustment load V ′ applied to the contact body 6a having the opposite direction and the same size as the gravity component U ′ acts on one end of the portion 84a.

よって、接触体6aに対する調整荷重V’の向きは、管体10の軸心P1向けて進行する向きであり、大きさは、Usinθ1である。   Therefore, the direction of the adjustment load V ′ with respect to the contact body 6 a is a direction that proceeds toward the axis P <b> 1 of the tubular body 10, and the magnitude is Usin θ <b> 1.

以上のことから、台座61aが管体10の軸心P1より鉛直方向下方に位置しているときは、接触体6aに対する調整荷重V’が接触体6aの重力成分T’と向きが反対で大きさが略同じになる。   From the above, when the pedestal 61a is positioned vertically below the axis P1 of the tubular body 10, the adjustment load V ′ for the contact body 6a is large in the direction opposite to the gravity component T ′ of the contact body 6a. Are almost the same.

また、図3(c)は、台座61aが管体10の軸心P1より鉛直方向上方に位置しているときの接触体6aの重力成分T’を表す模式図であり、図3(d)は、図3(c)の荷重調整手段8a、8bの部分の拡大図である。図3(c)、及び、図3(d)に示すように、台座61aが管体10の軸心P1より鉛直方向上方に位置している場合、接触体6aの重力成分T’及びカウンターウエイト85aの重力成分U’の大きさは、Tsinθ1、Usinθ1となる。また、重力成分T’及び重力成分U’の向きは、管体10の軸心P1に向けて進行する向きとなる。   FIG. 3C is a schematic diagram showing the gravity component T ′ of the contact body 6a when the pedestal 61a is positioned vertically above the axis P1 of the tubular body 10, and FIG. These are enlarged views of the portions of the load adjusting means 8a, 8b in FIG. As shown in FIGS. 3C and 3D, when the pedestal 61a is positioned vertically above the axis P1 of the tubular body 10, the gravity component T ′ and the counterweight of the contact body 6a. The magnitude of the gravity component U ′ of 85a is Tsin θ1 and Usin θ1. In addition, the direction of the gravity component T ′ and the gravity component U ′ is a direction that proceeds toward the axis P <b> 1 of the tubular body 10.

従って、接触体6aの重力成分T’は、向きが管体10の軸心P1に向けて進行する向きであり、大きさがTsinθ1である。   Therefore, the gravity component T ′ of the contact body 6 a is a direction in which the direction proceeds toward the axis P <b> 1 of the tube body 10, and the magnitude is Tsin θ <b> 1.

一方、カウンターウエイト85aの重力成分U’は、向きが管体10の軸心P1に向けて進行する向きであり、大きさがUsinθ1である。このため、接触体6aに対する調整荷重V’の向きは、管体10の軸心P1から退行する向きであり、大きさがUsinθ1である。   On the other hand, the gravity component U 'of the counterweight 85a is a direction in which the direction proceeds toward the axis P1 of the tubular body 10, and the magnitude is Usin θ1. For this reason, the direction of the adjustment load V ′ with respect to the contact body 6 a is a direction retreating from the axis P <b> 1 of the tubular body 10, and the magnitude is Usin θ <b> 1.

以上のように、Tsinθ1とUsinθ1とは略同一であるため、台座61aが管体10の軸心P1より鉛直方向上方に位置しているときも、接触体6aに対する調整荷重V’が接触体6aの重力成分T’と向きが反対で大きさが略同じになる。   As described above, since Tsin θ1 and Usin θ1 are substantially the same, even when the pedestal 61a is positioned above the axis P1 of the tubular body 10 in the vertical direction, the adjustment load V ′ with respect to the contact body 6a is maintained at the contact body 6a. The gravity component T ′ is opposite in direction and substantially the same size.

よって、台座61aが管体10の軸心P1より鉛直方向下方及び上方の何れに位置していても、接触体6aに対する調整荷重V’が接触体6aの重力成分T’と向きが反対で大きさが略同じになる。   Therefore, regardless of whether the pedestal 61a is positioned vertically below or above the axis P1 of the tube body 10, the adjustment load V ′ for the contact body 6a is large in the direction opposite to the gravity component T ′ of the contact body 6a. Are almost the same.

本実施形態においては、各台座61a、61bの進退動可能な方向は一致している(図2(a)、(c)、(d)の矢印J方向で一致している。)。このため、押圧手段7を基台5の回転中心P2に対して進退動する方向に沿って収縮させることで、接触子63aが外周面11に接触するまで、台座61aを管体10の軸心P1に向けて進行させ、接触子63bが内周面11に接触するまで、台座61bを管体10の軸心P1から退行させることができる。また、接触子63aが外周面11に接触し、接触子63bが内周面12に接触した状態で、更に押圧手段7を基台5の回転中心P2に対して進退動する方向に沿って収縮させることで、管体10の軸心P1に向けて、所定の荷重を台座61aに加え、管体10の軸心P1から退行する向きに、所定の荷重を台座61bに加えることができる。従って、本実施形態の管体の寸法測定装置1においては、押圧手段7を、一軸方向に伸縮可能な1つの部材で構成することができる。押圧手段7を、1つの部材で構成することで、管体の寸法測定装置1の部品数を抑えることができる。   In this embodiment, the directions in which the pedestals 61a and 61b can move forward and backward are the same (the directions are the same in the arrow J directions in FIGS. 2A, 2C, and 2D). For this reason, the pressing means 7 is contracted along the direction of advancing and retreating with respect to the rotation center P <b> 2 of the base 5, so that the pedestal 61 a is moved to the axial center of the tube body 10 until the contact 63 a contacts the outer peripheral surface 11. The base 61b can be retracted from the axial center P1 of the tubular body 10 until the contact 63b comes into contact with the inner peripheral surface 11 by moving toward the P1. Further, in a state where the contact 63a is in contact with the outer peripheral surface 11 and the contact 63b is in contact with the inner peripheral surface 12, the pressing means 7 is further contracted along the direction of moving forward and backward with respect to the rotation center P2 of the base 5. By doing so, a predetermined load can be applied to the pedestal 61a toward the axis P1 of the tubular body 10, and a predetermined load can be applied to the pedestal 61b in a direction retreating from the axial center P1 of the tubular body 10. Therefore, in the tubular body dimension measuring apparatus 1 of the present embodiment, the pressing means 7 can be configured by a single member that can expand and contract in a uniaxial direction. By configuring the pressing means 7 with one member, the number of parts of the tubular body dimension measuring apparatus 1 can be suppressed.

以下、本発明の実施例及び比較例を説明する。   Examples of the present invention and comparative examples will be described below.

図4に示すように、本実施形態の管体の寸法測定装置の接触子63aを管体20の外周面21に摺動させ、管体20の外周面の周方向分布を求めた。尚、管体20の外径は、814mmである。   As shown in FIG. 4, the contact 63 a of the tubular body dimension measuring apparatus of the present embodiment was slid on the outer peripheral surface 21 of the tubular body 20, and the circumferential distribution of the outer peripheral surface of the tubular body 20 was obtained. In addition, the outer diameter of the tubular body 20 is 814 mm.

比較例Comparative example

前述の第2の管体の寸法測定装置の接触子203aを管体20の外周面21に摺動させ、管体20の外周面の周方向分布を求めた。尚、実施例において外周面の周方向分布が求められた管体と、比較例において外周面の周方向分布が求められた管体とは、同一の管体である。   The contact 203a of the second tubular body dimension measuring device described above was slid on the outer peripheral surface 21 of the tubular body 20, and the circumferential distribution of the outer peripheral surface of the tubular body 20 was obtained. In addition, the pipe body from which the circumferential direction distribution of the outer peripheral surface was calculated | required in the Example and the pipe body from which the circumferential direction distribution of the outer peripheral surface was calculated | required in the comparative example are the same pipe bodies.

実施例及び比較例で求めた外周面の周方向分布、実際の外周面の周方向分布との偏差を図5に示す。図5に示すグラフの横軸の角度は、図4に示すように、外周面21の周方向の位置を表し、最も鉛直方向下方の部位21aを0°とするものである。   FIG. 5 shows a deviation between the circumferential distribution of the outer circumferential surface and the actual circumferential distribution of the outer circumferential surface obtained in Examples and Comparative Examples. The angle of the horizontal axis of the graph shown in FIG. 5 represents the position of the outer peripheral surface 21 in the circumferential direction, as shown in FIG.

図5に示すように、実施例で求めた外周面の周方向分布と、実際の外周面の周方向分布との偏差は、どの角度においても非常に小さかった。一方、比較例で求めた外周面の周方向分布は、実施例で求めた外周面の周方向分布に比べて、実際の外周面の周方向分布との偏差が大きく、角度が110°〜240°の範囲においては、軸心P20から外周面20までの距離が著しく小さく測定されている。これは、アーム207aの撓みに影響を及ぼす荷重Fと重力成分W’との合成力が、台座206aが外周面21の最も鉛直方向上方の部位(180°対応する部位)に近づけば近づくほど、基台202の回転中心P2(軸心20)に向けて進行する向きに大きくなり、アーム207aが軸心20に向けて大きく撓むためと考えられる。以上のことから、比較例に比べ、実施例では精度良く管体の寸法を測定することができた。   As shown in FIG. 5, the deviation between the circumferential distribution of the outer circumferential surface obtained in the example and the actual circumferential distribution of the outer circumferential surface was very small at any angle. On the other hand, the circumferential distribution of the outer circumferential surface obtained in the comparative example has a larger deviation from the actual circumferential distribution of the outer circumferential surface than the circumferential distribution of the outer circumferential surface obtained in the example, and the angle is 110 ° to 240 °. In the range of °, the distance from the axis P20 to the outer peripheral surface 20 is remarkably small. This is because, as the combined force of the load F and the gravity component W ′ that affects the bending of the arm 207a approaches the uppermost part of the outer peripheral surface 21 in the vertical direction (part corresponding to 180 °), This is considered to be because the arm 207a is greatly bent toward the axis 20 due to an increase in the direction of progress toward the rotation center P2 (axis 20) of the base 202. From the above, compared with the comparative example, the dimension of the tubular body could be measured with high accuracy in the example.

1…管体の寸法測定装置、3…回転ヘッド、5…基台、6a、6b…接触体、61a、61b…台座、62a、62b…アーム、63a、63b…接触子、7…押圧手段、8a、8b…荷重調整手段 DESCRIPTION OF SYMBOLS 1 ... Tube dimension measuring apparatus, 3 ... Rotary head, 5 ... Base, 6a, 6b ... Contact body, 61a, 61b ... Base, 62a, 62b ... Arm, 63a, 63b ... Contact, 7 ... Pressing means, 8a, 8b ... Load adjusting means

Claims (4)

軸心が水平方向と略平行となるように配置された管体に対し、前記軸心方向に対向して配置される回転ヘッドと、前記管体の寸法を算出する寸法算出手段とを備える管体の寸法測定装置であって、
前記回転ヘッドは、
水平方向と略平行な回転中心周りに回転する基台と、
前記基台の回転中心に対して進退動可能に前記基台に取り付けられる接触体と、
前記接触体を進退動させて、前記管体の周面に前記接触体を押圧するための押圧手段と、
前記接触体の進退動可能な方向の荷重を前記接触体に加える荷重調整手段とを有し、
前記接触体は、
前記基台の回転中心に対して進退動可能に前記基台に取り付けられる台座と、
前記台座から前記管体側に延び、前記台座と一体的に進退動するアームと、
前記管体の周面に接触可能なように前記アームの先端部に取り付けられ、前記アームと一体的に進退動する接触子とを具備し、
前記押圧手段は、前記接触子が前記管体の周面に接触するまで前記台座を進退動させ、前記接触子が前記管体の周面に接触した状態で、前記基台の回転角度に関わらず、前記台座の進退動可能な方向に略一定の荷重を前記台座に付加し、
前記荷重調整手段は、前記接触体に作用する重力のうち前記台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ荷重を前記台座に付加し、
前記寸法算出手段は、前記基台の回転によって前記管体の周面を前記接触子が摺動しているときの、前記台座の進退動可能な方向における前記台座の位置に基づいて前記管体の寸法を算出することを特徴とする管体の寸法測定装置。
A tube provided with a rotary head arranged opposite to the axial direction with respect to a tubular body arranged so that its axial center is substantially parallel to the horizontal direction, and a dimension calculating means for calculating the dimension of the tubular body A body dimension measuring device,
The rotary head is
A base that rotates about a rotation center substantially parallel to the horizontal direction;
A contact body attached to the base so as to be movable back and forth with respect to the center of rotation of the base;
A pressing means for moving the contact body forward and backward to press the contact body against the peripheral surface of the tubular body;
Load adjusting means for applying a load in a direction in which the contact body can be advanced and retracted to the contact body;
The contact body is:
A pedestal attached to the base so as to be movable back and forth with respect to the rotation center of the base;
An arm extending from the pedestal toward the tubular body and moving forward and backward integrally with the pedestal;
A contact that is attached to the tip of the arm so as to be in contact with the peripheral surface of the tubular body, and moves forward and backward integrally with the arm;
The pressing means moves the pedestal forward and backward until the contactor contacts the peripheral surface of the tube body, and the contactor is in contact with the peripheral surface of the tube body, regardless of the rotation angle of the base. First, a substantially constant load is applied to the pedestal in the direction in which the pedestal can move forward and backward,
The load adjusting means applies a load that is opposite in direction to the component of the pedestal in the direction in which the pedestal can move forward and backward in the gravity acting on the contact body, and substantially the same size as the component, to the pedestal,
The dimension calculating means is configured to determine the tube body based on a position of the pedestal in a direction in which the pedestal can advance and retreat when the contactor slides on a peripheral surface of the tube body by rotation of the base. An apparatus for measuring a size of a tubular body, characterized by calculating a size of the tube.
前記荷重調整手段は、
前記台座の進退動可能な方向に沿って前記基台に取り付けられる複数のローラからなるローラ群と、
前記ローラ群の一方の端部に位置するローラに巻き掛けられ、一端が前記台座に結合される第1巻き掛け部と、
前記ローラ群の他方の端部に位置するローラに巻き掛けられ、一端が前記台座に結合される第2巻き掛け部と、
前記第1巻き掛け部及び前記第2巻き掛け部の他端に結合され、前記接触体の重量と略同じ重量のカウンターウエイトとを備え、
前記第1巻き掛け部と、前記カウンターウエイトと、前記第2巻き掛け部と、前記台座と、前記ローラ群とでループを構成するようにしたことを特徴とする請求項1に記載の管体の寸法測定装置。
The load adjusting means is
A roller group consisting of a plurality of rollers attached to the base along the direction in which the base can be advanced and retracted;
A first wrapping portion wound around a roller located at one end of the roller group, one end coupled to the pedestal;
A second winding part wound around a roller located at the other end of the roller group, one end of which is coupled to the pedestal;
A counterweight coupled to the other ends of the first winding part and the second winding part and having a weight substantially equal to the weight of the contact body;
The tubular body according to claim 1, wherein the first winding portion, the counterweight, the second winding portion, the pedestal, and the roller group constitute a loop. Dimension measuring device.
前記接触体を2つ備え、
前記押圧手段は、一方の前記接触体の前記接触子が前記管体の外周面に接触するまで一方の前記接触体の前記台座を前記基台の回転中心に向けて進行させ、一方の前記接触体の前記接触子が前記管体の外周面に接触した状態で、前記基台の回転角度に関わらず、前記基台の回転中心に向けて略一定の荷重を一方の前記接触体の前記台座に付加し、他方の前記接触体の前記接触子が前記管体の内周面に接触するまで他方の前記接触体の前記台座を前記基台の回転中心から退行させ、他方の前記接触体の前記接触子が前記管体の内周面に接触した状態で、前記基台の回転角度に関わらず、前記基台の回転中心から退行する向きに略一定の荷重を他方の前記接触体の前記台座に付加し、
前記荷重調整手段は、一方の前記接触体に作用する重力のうち一方の前記接触体の前記台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ荷重を一方の前記接触体の前記台座に付加し、他方の前記接触体に作用する重力のうち他方の前記接触体の前記台座の進退動可能な方向の成分と向きが反対で、且つ、該成分と大きさが略同じ荷重を他方の前記接触体の前記台座に付加し、
前記寸法算出手段は、
前記基台の回転によって、前記管体の外周面を一方の前記接触体の前記接触子が摺動し、前記管体の内周面を他方の前記接触体の前記接触子が摺動しているときの、一方の前記接触体の前記台座の進退動可能な方向における該台座の位置に基づいて前記管体の外径を算出すると共に、他方の前記接触体の前記台座の進退動可能な方向における該台座の位置に基づいて前記管体の内径を算出し、
算出した前記管体の外径及び内径を出力する、又は、算出した前記管体の外径及び内径に基づいて算出した前記管体の肉厚を出力することを特徴とする請求項1または2に記載の管体の寸法測定装置。
Two contact bodies are provided,
The pressing means advances the pedestal of one of the contact bodies toward the rotation center of the base until the contact of one of the contact bodies contacts the outer peripheral surface of the tubular body, With the contact of the body in contact with the outer peripheral surface of the tubular body, a substantially constant load is applied toward the center of rotation of the base regardless of the rotation angle of the base. And the base of the other contact body is retracted from the center of rotation of the base until the contact of the other contact body contacts the inner peripheral surface of the tubular body. In a state where the contactor is in contact with the inner peripheral surface of the tubular body, a substantially constant load is applied in the direction of retreating from the rotation center of the base regardless of the rotation angle of the base. Add to the pedestal,
The load adjusting means is a load whose direction is opposite to a component of the gravitational force acting on one of the contact bodies in a direction in which the pedestal of the one of the contact bodies can move forward and backward, and whose magnitude is substantially the same as the component. Is added to the pedestal of one of the contact bodies, the direction of the gravity acting on the other contact body is opposite to the component of the other contact body in the direction in which the pedestal can move back and forth, and the component A load having substantially the same size as that of the other contact body is applied to the pedestal,
The dimension calculating means includes
Due to the rotation of the base, the contact of one of the contact bodies slides on the outer peripheral surface of the tube body, and the contact of the other contact body slides on the inner peripheral surface of the tube body. The outer diameter of the tubular body is calculated based on the position of the pedestal in the direction in which the pedestal of one of the contact bodies can move forward and backward, and the pedestal of the other contact body can move forward and backward Calculating the inner diameter of the tube based on the position of the pedestal in the direction;
3. The calculated outer diameter and inner diameter of the tubular body are output, or the thickness of the tubular body calculated based on the calculated outer diameter and inner diameter of the tubular body is output. An apparatus for measuring a size of a tubular body according to 1.
前記2つの接触子は、進退動可能な方向が一致するように取り付けられ、
前記押圧手段は、一方の前記接触体の前記台座と他方の前記接触体の前記台座とを連結することを特徴とする請求項3に記載の管体の寸法測定装置。
The two contacts are attached so that the directions in which they can move forward and backward match,
The said press means connects the said base of one said contact body, and the said base of the other said contact body, The dimension measuring apparatus of the tubular body of Claim 3 characterized by the above-mentioned.
JP2009033165A 2009-02-16 2009-02-16 Tube dimension measuring device Active JP5334172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033165A JP5334172B2 (en) 2009-02-16 2009-02-16 Tube dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033165A JP5334172B2 (en) 2009-02-16 2009-02-16 Tube dimension measuring device

Publications (2)

Publication Number Publication Date
JP2010190622A true JP2010190622A (en) 2010-09-02
JP5334172B2 JP5334172B2 (en) 2013-11-06

Family

ID=42816834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033165A Active JP5334172B2 (en) 2009-02-16 2009-02-16 Tube dimension measuring device

Country Status (1)

Country Link
JP (1) JP5334172B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158505A (en) * 1981-03-14 1982-09-30 Mauzaa Beruke Oberundorufu Gmb Height measuring apparatus
JPH06185937A (en) * 1992-12-03 1994-07-08 Sumitomo Metal Ind Ltd Shape measuring apparatus for pipe body
JPH11197744A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp Method for measuring thickness of hot metal, and its measuring instrument
JP2003302216A (en) * 2002-04-05 2003-10-24 Jfe Steel Kk Wall thickness measuring method in pipe shape measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158505A (en) * 1981-03-14 1982-09-30 Mauzaa Beruke Oberundorufu Gmb Height measuring apparatus
JPH06185937A (en) * 1992-12-03 1994-07-08 Sumitomo Metal Ind Ltd Shape measuring apparatus for pipe body
JPH11197744A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp Method for measuring thickness of hot metal, and its measuring instrument
JP2003302216A (en) * 2002-04-05 2003-10-24 Jfe Steel Kk Wall thickness measuring method in pipe shape measuring device

Also Published As

Publication number Publication date
JP5334172B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
EP2818825B1 (en) Inside-diameter measurement device and inside-diameter measurement method
JP5880096B2 (en) Inner diameter measuring device
ES2930273T3 (en) spiral formation
JP2003513259A5 (en)
US10119848B2 (en) Inspection machine and attachment jig therefor
CN107044818B (en) Measuring probe and measuring probe system
KR101869128B1 (en) Automated tube straightening apparatus
CN104034539B (en) Tyre tester
US7472490B2 (en) Shape-measuring assembly for a grinding machine
JP5317549B2 (en) Cam profile measuring device
JP2011183411A (en) Bender
JP5334172B2 (en) Tube dimension measuring device
JP5438924B2 (en) Inner diameter measuring device
JP2017166888A5 (en) Rolling bearing ellipse measuring device, ellipse measuring method, and rolling bearing manufacturing method
JP5675530B2 (en) Inner diameter measuring device
CN107218912A (en) A kind of three coordinate measuring machine positioned based on expansible support inner chamber formula and measuring method
JP6425074B2 (en) Shape measuring machine and shape measuring method
JP2010271047A (en) Apparatus for measuring shaft having optical type and touch probe type measuring mechanisms and shaft supporting mechanism, and method for measuring specifications and accuracy of shaft by the apparatus
JP5286239B2 (en) Measuring element and roundness measuring machine
JPH07119579B2 (en) Inner diameter measuring device
JP5310217B2 (en) Pipe inner surface measuring device
CN207113828U (en) A kind of three coordinate measuring machine based on the positioning of expansible support inner chamber formula
JP6085432B2 (en) Pipe end shape measuring apparatus and shape measuring method using the same
JP6739750B2 (en) Inner gauge measuring device and measuring method
JP5550529B2 (en) Method for measuring the inner shape of tire molds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5334172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250