JP2010189565A - Electroconductive resin composition and electroconductive resin composition molding produced therefrom - Google Patents

Electroconductive resin composition and electroconductive resin composition molding produced therefrom Download PDF

Info

Publication number
JP2010189565A
JP2010189565A JP2009036449A JP2009036449A JP2010189565A JP 2010189565 A JP2010189565 A JP 2010189565A JP 2009036449 A JP2009036449 A JP 2009036449A JP 2009036449 A JP2009036449 A JP 2009036449A JP 2010189565 A JP2010189565 A JP 2010189565A
Authority
JP
Japan
Prior art keywords
resin composition
volume
melting point
zinc
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036449A
Other languages
Japanese (ja)
Inventor
Satoshi Fukutake
聡 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATE Co Ltd
Original Assignee
MATE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATE Co Ltd filed Critical MATE Co Ltd
Priority to JP2009036449A priority Critical patent/JP2010189565A/en
Publication of JP2010189565A publication Critical patent/JP2010189565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a material, as an electroconductive resin composition, containing a metallic powder and a low melting point metal is poor in cost performance and mechanical strengths in the form of a molding and, when injection-molded, suffers from non-electroconductive spots formed on the surface of a molding because of phase separation occurring near the gate due to the viscosity difference between the metallic filler and the matrix resin. <P>SOLUTION: There is provided an electroconductive resin composition which comprises 20-38 vol.% zinc-based metallic powder and a low melting point metal in an amount of 0.1-0.3 time the volume of the zinc-based metallic powder and comprises a glass fiber in an amount 0.09-0.49 time the volume of the matrix resin and can therefore exhibit high cost performance and high mechanical strengths even when the amount of the metallic filler used is small. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高い導電性と高い機械強度を有する導電性樹脂組成物、およびそれを用いて製造された導電性樹脂組成物成形体に関するものである。 The present invention relates to a conductive resin composition having high conductivity and high mechanical strength, and a conductive resin composition molded article produced using the conductive resin composition.

近年樹脂に高い導電性を付与する方法として例えば特許第3525071号のような金属粉末と低融点金属を主要構成成分とした材料が報告されている。その体積抵抗率は5.8×10−5〜3.6×10−2Ω・cmと金属素材に近い高い導電性を有している(特許文献1)。 In recent years, as a method for imparting high conductivity to a resin, for example, a material having a metal powder and a low-melting point metal as main constituents as described in Japanese Patent No. 3525071 has been reported. The volume resistivity is 5.8 × 10 −5 to 3.6 × 10 −2 Ω · cm, which is high conductivity close to that of a metal material (Patent Document 1).

特許第3525071号Patent No. 3525071

前記のように高い導電性を得るためにはマトリクス樹脂中に亜鉛系金属粉末や低融点金属である金属フィラ−成分を多く含む必要があり、金属フィラ−間が狭く密集した成形体が必要であった。そのため成形体の密度が高く体積当たりのコストパフォ−マンスが低かった。また使用する亜鉛系金属粉体表面は低融点金属である錫と共晶化し濡れ性が良いためその表面に低融点金属が移行し易くなる。そのため低融点金属とマトリクス樹脂が相分離し難く上手くマトリクス樹脂中に分散されるのだが、射出成形の際では、特に剪断の高いゲ−ト付近ではマトリクス樹脂と金属フィラ−の粘度差が生じてしまい、相分離により不通な成形体表面箇所ができやすく、それを抑制するためには特殊な成形方法が必要であり、かつ金属フィラ−とマトリクス樹脂との界面接着力等が低いため成形体の機械強度が低いといった問題があった。 In order to obtain high conductivity as described above, the matrix resin must contain a large amount of zinc-based metal powder and a metal filler component which is a low melting point metal, and a molded body in which the space between the metal fillers is narrow and dense is required. there were. Therefore, the density of the molded body was high and the cost performance per volume was low. Further, since the surface of the zinc-based metal powder used is eutectic with tin, which is a low melting point metal, and has good wettability, the low melting point metal is likely to migrate to the surface. For this reason, the low melting point metal and the matrix resin are not easily phase-separated and are well dispersed in the matrix resin. However, during injection molding, a difference in the viscosity between the matrix resin and the metal filler occurs especially near the gate with high shear. Therefore, it is easy to form an imperfect surface of the molded body due to phase separation, and a special molding method is necessary to suppress it, and since the interfacial adhesive force between the metal filler and the matrix resin is low, There was a problem that the mechanical strength was low.

本発明はかかる問題を解決するもので、成形体の機械強度が高く、コストパフォ−マンスに優れ、かつ射出成形時に金属フィラ−成分とマトリクス樹脂との相分離が起きにくい導電性樹脂組成物、およびその成形体の製造方法を提供することにある。 The present invention solves such problems, a conductive resin composition having high mechanical strength of a molded body, excellent cost performance, and hardly causing phase separation between a metal filler component and a matrix resin during injection molding, And providing a method for producing the molded body.

前記課題を解決するため、本発明者は亜鉛系金属粉末、および低融点金属を金属フィラ−とした組成系に対し、さらにガラス繊維を加えた組成系とすることで、金属フィラ−の使用量を低減しても、マトリクス樹脂中に取り込まれたガラス繊維が物理的な流れの抵抗となることで、金属フィラ−の接合を上手く押し広げるように必要最低限の導電ネットワ−クを形成し、かつガラス繊維の形状が溶融材料の流れを均一化し、射出成形の際の金属フィラ−とマトリクス樹脂との粘度差を縮め、これにより相分離を抑える効果があることを見出し、本発明を完成させたものである。 In order to solve the above-mentioned problems, the present inventor uses a metal filler as a composition system in which glass fibers are further added to a composition system in which a zinc-based metal powder and a low melting point metal are used as a metal filler. Even if the glass fiber incorporated in the matrix resin becomes a resistance to physical flow, the minimum necessary conductive network is formed so that the bonding of the metal filler is well spread, And the shape of the glass fiber makes the flow of the molten material uniform, reduces the viscosity difference between the metal filler and the matrix resin at the time of injection molding, and thereby finds the effect of suppressing phase separation, thereby completing the present invention. It is a thing.

またガラス繊維はアスペクト比が高く成形体の機械強度を上げる一方、金属フィラ−よりも低密度であるため成形体の密度が下がりコストパフォ−マンスに優れた製品を提供できる。 Further, the glass fiber has a high aspect ratio and increases the mechanical strength of the molded body. On the other hand, since the glass fiber has a lower density than the metal filler, the density of the molded body is reduced, and a product with excellent cost performance can be provided.

具体的には第1の発明として、亜鉛系金属粉末とマトリクス樹脂の融点以下で溶融する低融点金属、およびガラス繊維をマトリクス樹脂中に含むことを特徴とする導電性樹脂組成物である。 Specifically, as a first invention, there is provided a conductive resin composition comprising a matrix resin containing a zinc-based metal powder, a low melting point metal that melts below the melting point of the matrix resin, and glass fibers.

第2の発明としては、使用される低融点金属が錫または錫合金であることが特徴の上記に記載の導電性樹脂組成物である。 The second invention is the conductive resin composition as described above, wherein the low melting point metal used is tin or a tin alloy.

第3の発明としては、使用される亜鉛系金属粉末の平均粒子径が1〜100μmであり、その含有量が全組成物中20〜38体積%であることが特徴の上記のいずれかに記載された導電性樹脂組成物である。 As a third invention, the zinc-based metal powder used has an average particle diameter of 1 to 100 μm, and the content thereof is 20 to 38% by volume in the total composition. It is the made conductive resin composition.

第4の発明としては、使用される低融点金属の含有量が亜鉛系金属粉末の含有量に対して体積比で0.05〜0.4倍であることが特徴の上記のいずれかに記載された導電性樹脂組成物である。 According to a fourth aspect of the present invention, the content of the low-melting-point metal used is 0.05 to 0.4 times by volume with respect to the content of the zinc-based metal powder. It is the made conductive resin composition.

第5の発明としては、使用されるガラス繊維の含有量がマトリクス樹脂の含有量に対して体積比で0.09〜0.49倍であることが特徴の上記のいずれかに記載された導電性樹脂組成物である。 As 5th invention, content of the glass fiber used is 0.09 to 0.49 times by volume ratio with respect to content of matrix resin, The electroconductivity described in either of the above characterized by It is an adhesive resin composition.

第6の発明としては、使用されるマトリクス樹脂がPPSであることが特徴の上記のいずれかに記載された導電性樹脂組成物である。 A sixth invention is the conductive resin composition according to any one of the above, characterized in that the matrix resin used is PPS.

第7の発明としては、その樹脂組成物を用いて製造された成形品の密度が4g/cm3以下であり、かつその体積抵抗率が1.1×10−3Ω・cm以下であることが特徴の上記いずれかに記載された導電性樹脂組成物である。 As a seventh invention, the density of a molded product produced using the resin composition is 4 g / cm 3 or less and the volume resistivity is 1.1 × 10 −3 Ω · cm or less. Is a conductive resin composition described in any of the above features.

第8の発明としては、その樹脂組成物を用いて製造された成形体の引張り強度が35MPa以上であることが特徴の上記のいずれかに記載された導電性樹脂組成物である。 The eighth invention is the conductive resin composition described in any one of the above, characterized in that the tensile strength of a molded article produced using the resin composition is 35 MPa or more.

第9の発明としては、上記のいずれかに記載された導電性樹脂組成物を用いて製造したことが特徴の成形体である。 According to a ninth aspect of the present invention, there is provided a molded article characterized by being manufactured using any one of the conductive resin compositions described above.

本発明によれば、亜鉛系金属粉末と低融点金属を含む導電性樹脂組成物に対し、ガラス繊維を配合することで、亜鉛系金属粉末の含有量がより少ない場合であっても、比較的高い導電性が得られる。さらに、得られる成形体の密度は低く抑えることができるため、コストパフォ−マンスの高い導電性樹脂組成物が提供できる。またこの導電性樹脂組成物は相分離を起こし難いため、成形体表面に均質な電気接点が得られるため、より信頼性の高い導電性成型体の提供が可能となる。また機械強度の高い成形体を提供することが可能であるため、より設計自由度が高くなる。 According to the present invention, the conductive resin composition containing the zinc-based metal powder and the low-melting-point metal is blended with glass fiber, so that the content of the zinc-based metal powder is relatively small. High conductivity is obtained. Furthermore, since the density of the obtained molded body can be kept low, a conductive resin composition having high cost performance can be provided. In addition, since this conductive resin composition is unlikely to cause phase separation, a homogeneous electrical contact can be obtained on the surface of the molded body, so that a more reliable conductive molded body can be provided. In addition, since it is possible to provide a molded body having high mechanical strength, the degree of freedom in design becomes higher.

金属フィラ−の配合量による体積抵抗率の変化を示した図である。It is the figure which showed the change of the volume resistivity by the compounding quantity of a metal filler. 比較例1の導電性樹脂組成物の成形体表面のSEM写真である。3 is a SEM photograph of the surface of a molded body of the conductive resin composition of Comparative Example 1. 実施例3の導電性樹脂組成物の成形体表面のSEM写真である。4 is a SEM photograph of the surface of a molded body of the conductive resin composition of Example 3. 実施例3の導電性樹脂組成物の成形体表面におけるSi元素の分布状態を示すマッピング写真である。4 is a mapping photograph showing a distribution state of Si elements on the surface of a molded body of the conductive resin composition of Example 3. FIG. 実施例3の導電性樹脂組成物の成形体表面におけるZn元素の分布状態を示すマッピング写真である。It is a mapping photograph which shows the distribution state of Zn element in the molded object surface of the conductive resin composition of Example 3.

以下に本発明の導電性樹脂組成物について詳細に説明する。本発明の導電性樹脂組成物は亜鉛系金属粉末と低融点金属、マトリクス樹脂、およびガラス繊維と溶融混練することにより作製される。 The conductive resin composition of the present invention will be described in detail below. The conductive resin composition of the present invention is produced by melt-kneading a zinc-based metal powder, a low melting point metal, a matrix resin, and glass fibers.

亜鉛系金属粉末としては金属亜鉛粉末、亜鉛−鉄、亜鉛−アルミ、亜鉛−マグネシウム、黄銅粉末、錫−亜鉛粉末等を挙げることができ、特に金属亜鉛粉末は低融点金属、特に錫と金属亜鉛粉末表面上で共晶化し金属亜鉛粉末表面上に錫合金として存在し易くなる。金属亜鉛粉末の形態としては球状、楕円状、薄片状、涙滴状等の粉末を使用できる。 Examples of the zinc-based metal powder include metal zinc powder, zinc-iron, zinc-aluminum, zinc-magnesium, brass powder, tin-zinc powder and the like. In particular, metal zinc powder is a low melting point metal, particularly tin and metal zinc. It becomes eutectic on the powder surface and tends to exist as a tin alloy on the metal zinc powder surface. As the form of the metal zinc powder, spherical, elliptical, flaky, teardrop-like powders can be used.

亜鉛系金属粉末の粒度は平均粒子径で1〜100μmが好ましく、15〜80μm程度であればさらに好ましい。なお粒径が小さくなるほど粒子表面に形成された酸化皮膜が多くなり導電性が悪くなる。逆に粒度が大きくなると分散性が低下し成形性と成形体強度が低下する。 The average particle size of the zinc-based metal powder is preferably 1 to 100 μm, and more preferably about 15 to 80 μm. Note that the smaller the particle size, the more oxide film formed on the particle surface and the worse the conductivity. On the contrary, when the particle size is increased, the dispersibility is lowered and the moldability and the strength of the molded body are lowered.

低融点金属としては、マトリクス樹脂の加工における実用的な温度域で混練可能であり、その工程で亜鉛系金属と共晶化できる導電性金属であれば良い。例えばPPSであれば、330℃以下にて溶融加工可能な金属が好ましい。低融点金属としては、ビスマス、鉛、あるいは錫、錫−亜鉛、錫−銅、錫−インジウム、錫−銀、錫−金等の合金を使用出来る。比重が小さいために結果的に成形体での密度を軽くすることができ、さらに金属が安価であるため錫を選択するのが好ましい。また使用される用途によっては、得られる成形体での耐熱性を上げるため亜鉛系金属粉末と共晶化した際に融点の高い合金組成となるビスマスも好ましい。
例えば、錫を選択した場合金属亜鉛と共晶物を形成し200℃前後の融点となる。
The low melting point metal may be any conductive metal that can be kneaded in a practical temperature range in the processing of the matrix resin and can be eutectic with the zinc-based metal in the process. For example, if it is PPS, the metal which can be melt-processed at 330 degrees C or less is preferable. As the low melting point metal, bismuth, lead, or an alloy such as tin, tin-zinc, tin-copper, tin-indium, tin-silver, tin-gold can be used. Since the specific gravity is small, it is possible to reduce the density of the molded body as a result, and it is preferable to select tin because the metal is inexpensive. Depending on the intended use, bismuth that has an alloy composition with a high melting point when eutecticized with zinc-based metal powder is also preferred in order to increase the heat resistance of the resulting molded body.
For example, when tin is selected, it forms a eutectic with metallic zinc and has a melting point of around 200 ° C.

実用上は、低融点金属は微粉末としてマトリクス樹脂に配合される。低融点金属の好ましい粒度は平均粒径で6〜50μm程度である。低融点金属の含有量は亜鉛系金属粉末の含有量に対して体積比で0.05〜0.4倍が好ましく、より好ましくは0.1〜0.3倍程度である。0.05倍以下であると、樹脂組成物中に分散された金属粒子間の接合が少なくなり、得られる樹脂組成物成型体の導電性が悪くなる。一方0.4倍以上であると、好適な金属間の接合を形成する状態に対して低融点金属の含有量が過剰気味となり、樹脂組成物の混練時や成形時に樹脂組成物の表面へ低融点金属がブリ−ドアウトしてしまい、得られる製品の機能や外観を損ねてしまう。 In practice, the low melting point metal is blended into the matrix resin as a fine powder. The preferred particle size of the low melting point metal is about 6 to 50 μm in average particle size. The content of the low-melting-point metal is preferably 0.05 to 0.4 times, more preferably about 0.1 to 0.3 times in volume ratio with respect to the content of the zinc-based metal powder. When it is 0.05 times or less, the bonding between the metal particles dispersed in the resin composition is reduced, and the resulting resin composition molded article has poor conductivity. On the other hand, if it is 0.4 times or more, the content of the low-melting point metal tends to be excessive with respect to a state in which a suitable metal-to-metal bond is formed, and the content of the low-melting-point metal is low when kneading or molding the resin composition The melting point metal bleeds out, and the function and appearance of the resulting product are impaired.

ガラス繊維としては特に制限はないが、導電性樹脂組成物中に含まれた状態で、共晶物の粒子を物理的に遮断できる程度の形状であれば良い。形成される共結晶物の大きさによって、必要なガラス繊維の長さや繊維径は異なってくるが、例えば繊維径は1〜30μmが好ましく、5〜25μmがさらに好ましい。また繊維長は10〜500μmであれば実用的であるため好ましい。アスペクト比では5〜30程度が好ましい。混練後に得られる導電性樹脂組成物に含まれるガラス繊維の繊維長が長すぎると、例えば、500μm以上では成型が困難となり、加工性や品質上の問題となる。一方、導電性樹脂組成物に含まれるガラス繊維の繊維長が短すぎると、マトリクス樹脂中で隣接して存在する亜鉛と低融点金属の共晶物の粒同士をさえぎることが出来ない。このような状況では共晶物の粒が凝集してしまい、結果的に効率よく導電性を高める効果が発揮されず好ましくない。また、得られる樹脂組成物成型体の強度向上にも効果が得られない。例えば、粉末状のガラスビ−ズを配合した場合には、ガラス繊維を使用した場合に比較して得られる成型体の強度や導電性で大きく劣るものである。 Although it does not have a restriction | limiting in particular as a glass fiber, What is necessary is just a shape of the grade which can interrupt | block physically the particle of a eutectic substance in the state contained in the conductive resin composition. Depending on the size of the co-crystal formed, the length and fiber diameter of the required glass fiber vary. For example, the fiber diameter is preferably 1 to 30 μm, and more preferably 5 to 25 μm. Moreover, since fiber length is practical if it is 10-500 micrometers, it is preferable. The aspect ratio is preferably about 5 to 30. If the fiber length of the glass fiber contained in the conductive resin composition obtained after kneading is too long, for example, if it is 500 μm or more, molding becomes difficult, which causes problems in workability and quality. On the other hand, if the fiber length of the glass fiber contained in the conductive resin composition is too short, the eutectic grains of zinc and low-melting-point metal that are adjacent to each other in the matrix resin cannot be blocked. In such a situation, the grains of the eutectic are aggregated, and as a result, the effect of efficiently increasing the conductivity is not exhibited, which is not preferable. Moreover, an effect is not acquired also in the strength improvement of the resin composition molded object obtained. For example, when powdered glass beads are blended, the strength and conductivity of the molded product obtained are much inferior compared to the case where glass fibers are used.

ガラス繊維を添加することで、ガラス繊維がマトリクス樹脂を補足したようになり、マトリクス樹脂が金属フィラ−を包み込むように回り込むのを抑える効果があり、導電ネットワ−クが維持されながらマトリクス樹脂中に効率よく分散されるため好ましい。 By adding the glass fiber, the glass fiber becomes supplemented with the matrix resin, which has an effect of suppressing the matrix resin from wrapping around so as to wrap around the metal filler, and the conductive resin is maintained in the matrix resin. This is preferable because it is efficiently dispersed.

実際の製造においては、混練においてガラス繊維が切断されるため、原材料として使用するガラス繊維長はさらに長いものが採用されるべきである。これに関しては、混練工程で使用する設備や条件によって適宜選択する必要がある。例えば、予めガラス繊維を含む原材料を予備混合してから、2軸混練機で混練する場合には、繊維長で1〜6mm程度のものが好ましい。これ以上長いと混練工程でトルクが高くなり十分に分散ができないなどの問題が起こる。 In actual production, glass fiber is cut during kneading, so that the glass fiber length used as a raw material should be longer. In this regard, it is necessary to select appropriately according to the equipment and conditions used in the kneading step. For example, when a raw material containing glass fibers is preliminarily mixed and then kneaded with a biaxial kneader, the fiber length is preferably about 1 to 6 mm. If the length is longer than this, a problem occurs in that the torque becomes high in the kneading step and the dispersion cannot be sufficiently performed.

ガラス繊維の含有量はマトリクス樹脂の含有量に対して体積比で0.09倍以上が好ましい。これ未満の含有量の場合には、得られる導電性樹脂組成物の導電性を著しく高めるという、本発明の効果が得られず、また成型体の強度を高める効果も顕著でなくなる。あまりに含有量が高い場合には、加工性が低下する傾向がみられ、0.7倍以下が好ましい。射出成型による加工を考えると、0.49以下が好ましい。0.09倍以下であると成形体強度を上げる効果が薄く、またマトリクス樹脂が導電ネットワ−ク形成を阻害して導電性が悪くなる。 The glass fiber content is preferably 0.09 times or more by volume with respect to the matrix resin content. When the content is less than this, the effect of the present invention, which remarkably increases the conductivity of the obtained conductive resin composition, is not obtained, and the effect of increasing the strength of the molded article is not significant. When the content is too high, the workability tends to decrease, and 0.7 times or less is preferable. Considering processing by injection molding, 0.49 or less is preferable. If it is 0.09 times or less, the effect of increasing the strength of the molded article is thin, and the matrix resin inhibits the formation of a conductive network, resulting in poor conductivity.

なおこれら亜鉛系金属粉末、およびガラス繊維は予めその表面にシラン系あるいはチタネ−ト系、アルミネ−ト系等のカップリング剤やオイル等で処理されていても良い。 The zinc-based metal powder and glass fiber may be previously treated with a coupling agent such as silane, titanate, or aluminate, oil, or the like on the surface thereof.

マトリクス樹脂としては、熱可塑性樹脂であっても、熱硬化性樹脂であっても良く、使用される低融点金属の融点以上で塑性加工が可能であり、マトリクス樹脂として使用したときに混練時に低融点金属と亜鉛系金属の共晶化が可能であれば良い。熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカ−ボネ−ト樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリアミド樹脂、ポリフェニレンエ−テル系樹脂、ポリフェニレンスルフィド系樹脂、ポリエ−テルエ−テルケトン系樹脂、ポリスルホン系樹脂、フッ素系樹脂、及び前記樹脂を改質した種種のエラストマ−や、アロイ樹脂などが例示できる。これらの熱可塑性樹脂は少なくとも1種類が使用され、さらには2種以上組み合わせて使用することもできる。また樹脂の選択には、その融点と使用される低融点金属の融点の兼ね合いで慎重に選択する必要がある。 The matrix resin may be a thermoplastic resin or a thermosetting resin, and can be plastically processed at a melting point higher than that of the low melting point metal used. Any eutectic crystal of the melting point metal and the zinc-based metal may be used. Examples of the thermoplastic resin include polyolefin resins, polyester resins, polycarbonate resins, polystyrene resins, acrylic resins, polyamide resins, polyphenylene ether resins, polyphenylene sulfide resins, and polyether resins. Examples include terketone resins, polysulfone resins, fluorine resins, various elastomers modified from the above resins, and alloy resins. These thermoplastic resins are used in at least one kind, and can be used in combination of two or more kinds. Further, the selection of the resin requires careful selection in consideration of the melting point of the resin and the melting point of the low melting point metal used.

また熱硬化性樹脂としては、例えば、フェノ−ル樹脂、フルフラ−ル樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、ビニルエステル樹脂、不飽和ポリエステル系樹脂、ポリウレタン系樹脂、熱硬化性アクリル樹脂、ジアリルフタレ−ト樹脂、シリコ−ン樹脂、アミノ樹脂などが例示できる。これらの熱硬化性樹脂は少なくとも1種類が使用され、さらには2種以上組み合わせて使用することもでき特に限定されるものではない。またこれらに使用される硬化剤、硬化促進剤等の種類においても組み合わせることもできる。 Examples of the thermosetting resin include phenol resin, furfural resin, epoxy resin, urea resin, melamine resin, vinyl ester resin, unsaturated polyester resin, polyurethane resin, thermosetting acrylic resin, diallyl phthalate. Examples thereof include a resin, a silicone resin, and an amino resin. These thermosetting resins are used in at least one kind, and can be used in combination of two or more kinds without any particular limitation. Moreover, it can also combine in the kind of hardening | curing agent, hardening accelerator, etc. which are used for these.

さらには本発明の導電性樹脂組成物は、可塑剤、外部離型剤、内部離型剤、熱安定剤、酸化防止剤、摺動剤、安定剤、難燃剤などを1種、あるいは2種以上を組み合わせて配合しても良い。 Furthermore, the conductive resin composition of the present invention is composed of one or two kinds of plasticizer, external mold release agent, internal mold release agent, thermal stabilizer, antioxidant, sliding agent, stabilizer, flame retardant and the like. You may mix | blend the above in combination.

本発明の導電性樹脂組成物は熱可塑性樹脂、熱硬化性樹脂、ゴム等の加工に対し慣用な方法、およびその製造装置を利用して製造することができる。すなわち亜鉛系金属粉末と低融点金属、およびガラス繊維などのフィラ−とマトリクス樹脂とを予備混合分散する工程では、タンブラ−ミキサ−、ヘンシェルミキサ−、ス−パ−ミキサ−、ハイスピ−ドミキサ−、レ−ディゲミキサ−などの混合装置を用い予備的に混合分散する。これを1軸、あるいは2軸押し出し機、バンバリ−ミキサ−、ニ−ダ−などを使用して溶融混練し、押し出して成形用の導電性樹脂組成物とする。なおガラス繊維においては溶融混練途中にサイドフィ−ドにより添加しても良い。ここで得られる成形用のコンパウンドの形状は特に限定されることは無く、塊状、粒状、粉体状であってもよく、必要により後に成形用に適した形状に粉砕等の加工がされても良い。 The conductive resin composition of the present invention can be produced by utilizing a conventional method and processing equipment for processing thermoplastic resins, thermosetting resins, rubbers and the like. That is, in the step of premixing and dispersing zinc-based metal powder, low melting point metal, and glass fiber filler and matrix resin, a tumbler mixer, a Henschel mixer, a super mixer, a high speed mixer, Preliminarily mix and disperse using a mixing device such as a Leedige mixer. This is melt kneaded using a single-screw or twin-screw extruder, a Banbury mixer, a kneader or the like, and extruded to obtain a conductive resin composition for molding. In addition, in glass fiber, you may add with a side feed in the middle of melt-kneading. The shape of the molding compound obtained here is not particularly limited, and may be in the form of a lump, granule, or powder, and may be processed into a shape suitable for molding later if necessary. good.

本発明の導電性樹脂組成物の成形加工方法は、射出成形、熱プレス成形、トランスファ−成形、ロ−ル成形等の合成樹脂一般に対する慣用な方法を用いて製造できる。射出成形では一般の射出成形機と所定の金型を用いることで成形体が得られるが、より好ましくは射出圧縮成形、射出プレス成形を用いることでより均質な成形体を得ることができる。ここで言う射出圧縮成形、射出プレス成形とは溶融した材料を所定よりも若干隙間を空けた金型内に高速で射出し、射出が完了し材料が充填したと同時に金型が所定の位置まで圧力をかけながら閉まる機構を持った方法である。この成型方法を使用することで金型内で溶融材料に均質に圧力が掛かるため金属フィラ−とマトリクス樹脂の相分離を起こし難いため好ましい。 The method for molding the conductive resin composition of the present invention can be produced using a conventional method for general synthetic resins such as injection molding, hot press molding, transfer molding and roll molding. In the injection molding, a molded body can be obtained by using a general injection molding machine and a predetermined mold. More preferably, a more homogeneous molded body can be obtained by using injection compression molding or injection press molding. The injection compression molding and injection press molding referred to here is a method of injecting molten material into a mold with a gap slightly larger than a predetermined speed at a high speed, and when the injection is completed and the material is filled, the mold reaches a predetermined position. It is a method with a mechanism that closes while applying pressure. Use of this molding method is preferable because the molten material is uniformly pressurized in the mold and the metal filler and the matrix resin are unlikely to undergo phase separation.

また2色成形により本発明の導電性樹脂組成物は電気回路を形成することができる。すなわち非導電性の樹脂組成物で成形された回路溝のある成形体に本発明の導電性樹脂組成物を2次成形する、あるいは先に回路状に成形した導電性樹脂組成物に対し非導電性樹脂組成物をアウトサ−ト成形することで優れた樹脂成形電気回路部品を得ることができる。 Moreover, the conductive resin composition of the present invention can form an electric circuit by two-color molding. That is, the conductive resin composition of the present invention is secondarily molded on a molded body having a circuit groove formed of a nonconductive resin composition, or nonconductive with respect to the conductive resin composition previously molded into a circuit shape. An excellent resin-molded electric circuit component can be obtained by outsert-molding the conductive resin composition.

以下のように実施例、および比較例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 The present invention will be described in detail based on examples and comparative examples as follows, but the present invention is not limited to these examples.

(混練、成型)実施例1〜8、及び比較例1〜4はマトリクス樹脂としてPPSを使用し、亜鉛金属粉末、及び低融点金属としての錫(融点232℃)を使用した。さらに比較例5〜9においては、実施例3で使用されているガラス繊維の代わりに種々のフィラ−を表に示した体積比率で配合した。これらをミキサ−で3分間乾式混合し、300℃に設定された2軸混練機を用いて溶融混練押し出した。得られたコンパウンドは一般的な射出成形にて315℃で成形し成形体(長さ127.0mm、幅13.0mm、厚み3.0mm)を作製した。その際の射出成形性は成形体ゲ−ト付近や表面に相分離が現れた場合を(×)、現れない場合を(○)としている。 (Kneading and molding) Examples 1 to 8 and Comparative Examples 1 to 4 used PPS as the matrix resin, and used zinc metal powder and tin (melting point 232 ° C.) as the low melting point metal. Further, in Comparative Examples 5 to 9, various fillers were blended in the volume ratios shown in the table instead of the glass fibers used in Example 3. These were dry-mixed for 3 minutes with a mixer and melt-kneaded and extruded using a twin-screw kneader set at 300 ° C. The obtained compound was molded at 315 ° C. by general injection molding to produce a molded body (length 127.0 mm, width 13.0 mm, thickness 3.0 mm). The injection moldability at that time is (x) when the phase separation appears in the vicinity of the molded body gate or on the surface, and (◯) when the phase separation does not appear.

(強度の評価)得られた製成型体を用いて引っ張り強度を測定した。ヘッドスピードは5mm/秒とした。 (Evaluation of strength) Tensile strength was measured using the obtained molded product. The head speed was 5 mm / second.

(体積抵抗率の測定)330℃に設定されたバッチ式の小型ニ−ダ−にて混練を3分間行い、混練物を取り出して冷却後に粉砕し、330℃に設定された熱プレスにて板(80mm角、厚み3.0mm)を成形し、その体積抵抗率を測定した。ここで体積抵抗率はJIS K7194に準拠した4探針法を用いて測定した。体積抵抗値が低いほど導電率が高いことになる。 (Measurement of volume resistivity) Kneading with a batch type small kneader set at 330 ° C for 3 minutes, taking out the kneaded material, crushing it after cooling, and plate with a hot press set at 330 ° C (80 mm square, thickness 3.0 mm) was molded and its volume resistivity was measured. Here, the volume resistivity was measured using a four-probe method based on JIS K7194. The lower the volume resistance value, the higher the conductivity.

(混練性の評価)導電性樹脂塑性物の混練性の評価は、バッチ式の小型ニ−ダ−で混練した時の混練トルク値で判断し、この値が高くなると材料の流動性は悪い傾向であり、実用性が低下する。射出成形性に適する値としては1.5kg・m未満が好適である。また混練分散性の評価は、小型バッチ式ニ−ダ−での混練において、溶融した低融点金属が一体化した混練物からはじかれて分離し、樹脂塑性物の外に低融点金属がブリ−ドアウトした場合を(×)、低融点金属が分離せず、樹脂塑性物中に分散された場合を(○)と記した。 (Evaluation of kneadability) Evaluation of kneadability of conductive resin plastics is judged by the kneading torque value when kneading with a batch type small kneader, and if this value becomes high, the fluidity of the material tends to be poor And practicality is reduced. A value suitable for injection moldability is preferably less than 1.5 kg · m. The kneading dispersibility was evaluated by repelling and separating the melted low melting point metal from the kneaded material in which the melted low melting point metal was integrated in the small batch type kneader. The case where it was pulled out (×), and the case where the low melting point metal was not separated and was dispersed in the resin plastic material was indicated as (◯).

(SEM観察、元素マッピング)得られた導電性樹脂組成物を使用した成型体の表面についてSEM観察を行い、さらに含有成分の分布状態を調べるためにエネルギ−分散型X線分析装置により含有成分の元素マッピングを行った。 (SEM observation, element mapping) SEM observation is performed on the surface of the molded body using the obtained conductive resin composition, and in order to investigate the distribution state of the contained component, the content of the contained component is measured by an energy dispersive X-ray analyzer. Elemental mapping was performed.

(実施例1)亜鉛金属粉末(30μm;20体積%)、錫粉末(45μmアンダ−;4.0体積%)、ガラス繊維(チョップド;20体積%)をPPS樹脂中に混合、および溶融混練、押し出し、裁断により3〜5mm程度のコンパウンドを作製した。このコンパウンドを射出成形し長さ127.0mm、幅13.0mm、厚み3.0mmの板状の射出成形体を得た。この射出成形体のゲ−ト付近には相分離は無かった。また同様の配合をバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られた射出成形体の引っ張り強度は78MPaと高く、また射出成形体およびプレス成形体の体積抵抗率を測定したところ、どちらも同等な体積抵抗率を得た(表記載はプレス成形体での値;1.1×10−3 Ω・cm)。
(実施例2)亜鉛金属粉末(30μm;25体積%)、錫粉末(45μmアンダ−;4.0体積%)、ガラス繊維(チョップド;15体積%)をPPS樹脂中に混合、および溶融混練、押し出し、裁断により3〜5mm程度のコンパウンドを作製した。このコンパウンドを射出成形し長さ127.0mm、幅13.0mm、厚み3.0mmの板状の射出成形体を得た。この射出成形体のゲ−ト付近には相分離は無かった。また同様の配合をバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られた射出成形体の引っ張り強度は69MPaと高く、また射出成形体およびプレス成形体の体積抵抗率を測定したところ、どちらも同等な体積抵抗率を得た(表記載はプレス成形体での値;3.7×10−4 Ω・cm)。
(実施例3)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)、ガラス繊維(チョップド;15体積%)をPPS樹脂中に混合、および溶融混練、押し出し、裁断により3〜5mm程度のコンパウンドを作製した。このコンパウンドを射出成形し長さ127.0mm、幅13.0mm、厚み3.0mmの板状の射出成形体を得た。この射出成形体のゲ−ト付近には相分離は無かった。また同様の配合をバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られた射出成形体の引っ張り強度は61MPaと高く、また射出成形体およびプレス成形体の体積抵抗率を測定したところ、どちらも同等な低い体積抵抗率を得た(表記載はプレス成形体での値;8.3×10−5 Ω・cm)。
(実施例4)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)、ガラス繊維(チョップド;5体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、実施例3と比較し高い体積抵抗率となった(5.7×10−4 Ω・cm)。
(実施例5)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)、ガラス繊維(チョップド;10体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、実施例3と比較しやや高い体積抵抗率となった(1.3×10−4 Ω・cm)。
(実施例6)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)、ガラス繊維(チョップド;20体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、実施例3と比較し同程度の体積抵抗率となった(9.5×10−5 Ω・cm)。
(実施例7)亜鉛金属粉末(30μm;30体積%)、錫粉末(45μmアンダ−;4.5体積%)、ガラス繊維(チョップド;10体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率は実施例2に対し密度を高く設定したが(3.7×10−3 Ω・cm)と高く、ガラス繊維量が低く、さらに同じPPS量を配合した場合、導電ネットワ−ク形成が悪いことがわかる。
(実施例8)亜鉛金属粉末(30μm;15体積%)、錫粉末(45μmアンダ−;3.0体積%)、ガラス繊維(チョップド;15体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率は(1.7×10Ω・cm)と亜鉛金属粉末が20体積%を下回ると急激に高くなっている。
(比較例1)亜鉛金属粉末(30μm;50体積%)、錫粉末(45μmアンダ−;6.5体積%)をPPS樹脂中に混合、および溶融混練、押し出し、裁断により3〜5mm程度のコンパウンドを作製した。このコンパウンドを射出成形し長さ127.0mm、幅13.0mm、厚み3.0mmの板状の射出成形体を得た。この射出成形体のゲ−ト付近には相分離が見られた。また同様の配合をバッチ式の小型ニ−ダ−にて混練したところ特に錫合金の分離は無く分散は良好であった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られた射出成形体の引っ張り強度は25MPaと低い。得られた射出成形体、およびプレス成形体の体積抵抗率を測定したところ、どちらも同等な低い体積抵抗率である(5.6×10−5 Ω・cm)。
(比較例2)亜鉛金属粉末(30μm;45体積%)、錫粉末(45μmアンダ−;6.5体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であり、混練のトルクも0.5kg・mと低く良好なものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率は(8.5×10−5 Ω・cm)であり、亜鉛金属粉末の減量により若干上昇した。
(比較例3)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。混練のトルクは0.1kg・mと低く液状に近いものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、高い体積抵率となった(8.6×10−2 Ω・cm)。
(比較例4)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)、ガラス繊維(チョップド;25体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。混練のトルクは20kg・mと高いものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、実施例3と比較しやや高い体積抵抗率となった(1.4×10−4 Ω・cm)。
(比較例5)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;4.5体積%)、炭素繊維(チョップド;15体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であったが、混練のトルクは1.6kg・mとやや高いものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、実施例3と比較し高い体積抵抗率となった(1.7×10−4 Ω・cm)。炭素繊維が導電パスの形成に寄与することが予測されたが、予測に反してガラスフィラーの場合に比べて体積抵抗率が大きくなっていた。共晶物の分離もなったことから、共晶物が炭素繊維表面に固定されているために導電パスを効率的に形成できなかったことが原因と考えられた。
(比較例6)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;45体積%)、人造黒鉛(芋状100μm;15体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であり、混練のトルクも0.4kg・mと低く良好なものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、比較例1同様、実施例3と比較し高い体積抵抗率となった(15×10−4 Ω・cm)。これは比較例5と同様に共晶物が炭素系である黒鉛の表面付近に固定されていると推測された。
(比較例7)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;45体積%)、珪素(Si)粉(球状70μm;15体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ特に低融点金属の分離も無く分散は良好であった。混練のトルクは0.1kg・mと更に低く液状に近いものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、比較例5と比較しさらに高い体積抵抗率となった(6.6×10−4 Ω・cm)。球状の珪素粉はマトリクス樹脂中に取り込まれるが粘性が低くマトリクス樹脂と同様な挙動となり、アスペクト比が小さいため共晶物が凝集してしまうのを阻害する効果がガラス繊維ほど高くないために、ガラス繊維に見られたような効果が見られなかったと考えられた。
(比較例8)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;45体積%)、フェライト粉(六角板状4μm;15体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ低融点金属の分離が見られた。混練のトルクは0.1kg・mと低く液状に近いものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、比較例3と比較しまたさらに高い体積抵抗率となった(1.1×10−3 Ω・cm)。酸化物フィラ−では材料中の低融点金属をはじいてしまい、うまく導電ネットワークを形成できていないことが考えられた。
(比較例9)亜鉛金属粉末(30μm;35体積%)、錫粉末(45μmアンダ−;45体積%)、タルク(13μm;15体積%)をPPS樹脂中に混合しバッチ式の小型ニ−ダ−にて混練したところ低融点金属の分離が見られた。混練のトルクは0.3kg・mと低く液状に近いものであった。これを取り出し粉砕後、80mm角、厚み3.0mmの板状にプレスしプレス成形体を得た。得られたプレス成形体の体積抵抗率を測定したところ、比較例4同様比較例3と比較し高い体積抵抗率となった(15×10−3 Ω・cm)。タルクも前記酸化物フィラ−同様に材料中の低融点金属をはじいてしまいうまく導電ネットワークが形成できないことが考えられた。
Example 1 Zinc metal powder (30 μm; 20% by volume), tin powder (45 μm under; 4.0% by volume), glass fiber (chopped; 20% by volume) were mixed in PPS resin, and melt-kneaded. A compound of about 3 to 5 mm was produced by extrusion and cutting. This compound was injection molded to obtain a plate-shaped injection molded body having a length of 127.0 mm, a width of 13.0 mm, and a thickness of 3.0 mm. There was no phase separation in the vicinity of the gate of this injection molded body. Further, when the same composition was kneaded with a batch type small kneader, the dispersion was good without particularly separating the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. The tensile strength of the obtained injection-molded product was as high as 78 MPa, and the volume resistivity of the injection-molded product and the press-molded product was measured. Value; 1.1 × 10 −3 Ω · cm).
Example 2 Zinc metal powder (30 μm; 25% by volume), tin powder (45 μm under; 4.0% by volume), glass fiber (chopped; 15% by volume) were mixed in PPS resin, and melt-kneaded. A compound of about 3 to 5 mm was produced by extrusion and cutting. This compound was injection molded to obtain a plate-shaped injection molded body having a length of 127.0 mm, a width of 13.0 mm, and a thickness of 3.0 mm. There was no phase separation in the vicinity of the gate of this injection molded body. Further, when the same composition was kneaded with a batch type small kneader, the dispersion was good without particularly separating the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. The tensile strength of the obtained injection-molded product was as high as 69 MPa, and the volume resistivity of the injection-molded product and the press-molded product was measured. Value; 3.7 × 10 −4 Ω · cm).
(Example 3) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 4.5% by volume), glass fiber (chopped; 15% by volume) were mixed in PPS resin, and melt-kneaded. A compound of about 3 to 5 mm was produced by extrusion and cutting. This compound was injection molded to obtain a plate-shaped injection molded body having a length of 127.0 mm, a width of 13.0 mm, and a thickness of 3.0 mm. There was no phase separation in the vicinity of the gate of this injection molded body. Further, when the same composition was kneaded with a batch type small kneader, the dispersion was good without particularly separating the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. The tensile strength of the obtained injection-molded product was as high as 61 MPa, and the volume resistivity of the injection-molded product and the press-molded product was measured. Value; 8.3 × 10 −5 Ω · cm).
(Example 4) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 4.5% by volume), glass fiber (chopped; 5% by volume) were mixed in PPS resin and batch-type compact When kneaded with a kneader, the dispersion was good without any separation of the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was higher than that of Example 3 (5.7 × 10 −4 Ω · cm).
(Example 5) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 4.5% by volume), glass fiber (chopped; 10% by volume) were mixed in PPS resin and batch-type compact When kneaded with a kneader, the dispersion was good without any separation of the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was slightly higher than that of Example 3 (1.3 × 10 −4 Ω · cm).
(Example 6) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 4.5% by volume), glass fiber (chopped; 20% by volume) were mixed in PPS resin and batch-type compact When kneaded with a kneader, the dispersion was good without any separation of the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was comparable to that of Example 3 (9.5 × 10 −5 Ω · cm).
(Example 7) Zinc metal powder (30 μm; 30% by volume), tin powder (45 μm under; 4.5% by volume), glass fiber (chopped; 10% by volume) were mixed in PPS resin and batch-type compact When kneaded with a kneader, the dispersion was good without any separation of the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. Although the volume resistivity of the obtained press-molded body was set to a higher density than Example 2 (3.7 × 10 −3 Ω · cm), it was high, the glass fiber amount was low, and the same PPS amount was further blended. In this case, it can be seen that the formation of the conductive network is bad.
(Example 8) Zinc metal powder (30 μm; 15% by volume), tin powder (45 μm underer; 3.0% by volume), glass fiber (chopped; 15% by volume) were mixed in PPS resin and batch-type compact When kneaded with a kneader, the dispersion was good without any separation of the low melting point metal. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. The volume resistivity of the obtained press-molded body is (1.7 × 10 4 Ω · cm) and the zinc metal powder is rapidly increased when it is less than 20% by volume.
Comparative Example 1 Zinc metal powder (30 μm; 50% by volume) and tin powder (45 μm under; 6.5% by volume) were mixed in PPS resin, melt kneaded, extruded, and cut to a compound of about 3 to 5 mm. Was made. This compound was injection molded to obtain a plate-shaped injection molded body having a length of 127.0 mm, a width of 13.0 mm, and a thickness of 3.0 mm. Phase separation was observed in the vicinity of the gate of this injection molded body. Further, when the same composition was kneaded by a batch type small kneader, the tin alloy was not particularly separated and the dispersion was good. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. The tensile strength of the obtained injection-molded product is as low as 25 MPa. When the volume resistivity of the obtained injection-molded product and the press-molded product was measured, both had the same low volume resistivity (5.6 × 10 −5 Ω · cm).
(Comparative Example 2) When zinc metal powder (30 μm; 45% by volume) and tin powder (45 μm under; 6.5% by volume) were mixed in PPS resin and kneaded by a batch type small kneader, Dispersion was good without separation of low melting point metals, and kneading torque was as low as 0.5 kg · m. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. The volume resistivity of the obtained press-molded product was (8.5 × 10 −5 Ω · cm), and increased slightly due to the weight loss of the zinc metal powder.
(Comparative Example 3) When zinc metal powder (30 μm; 35% by volume) and tin powder (45 μm underer; 4.5% by volume) were mixed in PPS resin and kneaded by a batch type small kneader, Dispersion was good without separation of low melting point metals. The kneading torque was as low as 0.1 kg · m and almost liquid. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, a high volume resistivity was obtained (8.6 × 10 −2 Ω · cm).
(Comparative Example 4) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 4.5% by volume), glass fiber (chopped; 25% by volume) were mixed in PPS resin and batch-type compact When kneaded with a kneader, the dispersion was good without any separation of the low melting point metal. The kneading torque was as high as 20 kg · m. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was slightly higher than that of Example 3 (1.4 × 10 −4 Ω · cm).
(Comparative Example 5) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 4.5% by volume), carbon fiber (chopped; 15% by volume) were mixed in a PPS resin and batch-type compact When kneading with a kneader, the dispersion was good with no separation of the low melting point metal, but the kneading torque was a little as high as 1.6 kg · m. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was higher than that of Example 3 (1.7 × 10 −4 Ω · cm). Although it was predicted that the carbon fiber contributes to the formation of the conductive path, contrary to the prediction, the volume resistivity was larger than that of the glass filler. Since the eutectic was separated, it was considered that the conductive path could not be formed efficiently because the eutectic was fixed on the carbon fiber surface.
(Comparative Example 6) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 45% by volume), artificial graphite (100 μm in bowl shape; 15% by volume) are mixed in PPS resin and batch-type compact When kneading with a kneader, the dispersion was good without any separation of the low melting point metal, and the kneading torque was as low as 0.4 kg · m. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press-formed body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was higher than that of Example 3 as in Comparative Example 1 (15 × 10 −4 Ω · cm). This was presumed that the eutectic was fixed in the vicinity of the surface of carbon-based graphite as in Comparative Example 5.
(Comparative Example 7) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 45% by volume), silicon (Si) powder (spherical 70 μm; 15% by volume) were mixed in a PPS resin and batch type When the mixture was kneaded with a small kneader, the low-melting point metal was not particularly separated and the dispersion was good. The kneading torque was as low as 0.1 kg · m and almost liquid. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press molded body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was higher than that of Comparative Example 5 (6.6 × 10 −4 Ω · cm). Spherical silicon powder is taken into the matrix resin but has a low viscosity and behaves like a matrix resin, and since the aspect ratio is small, the effect of inhibiting the eutectic from aggregating is not as high as glass fiber. It was thought that the effect as seen with glass fiber was not observed.
(Comparative Example 8) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm under; 45% by volume), ferrite powder (hexagonal plate 4 μm; 15% by volume) were mixed in a PPS resin and batch type When kneaded with a small kneader, separation of the low melting point metal was observed. The kneading torque was as low as 0.1 kg · m and almost liquid. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press molded body. When the volume resistivity of the obtained press-molded product was measured, it was higher than that of Comparative Example 3 (1.1 × 10 −3 Ω · cm). It was considered that the oxide filler could repel the low melting point metal in the material and could not successfully form a conductive network.
(Comparative Example 9) Zinc metal powder (30 μm; 35% by volume), tin powder (45 μm underer; 45% by volume), and talc (13 μm; 15% by volume) were mixed in a PPS resin and batch type compact kneader When kneaded at −, separation of the low melting point metal was observed. The kneading torque was as low as 0.3 kg · m and was almost liquid. This was taken out and pulverized, and then pressed into a plate having an 80 mm square and a thickness of 3.0 mm to obtain a press molded body. When the volume resistivity of the obtained press-molded product was measured, the volume resistivity was higher than that of Comparative Example 3 as in Comparative Example 4 (15 × 10 −3 Ω · cm). It has been considered that talc also repels low melting point metals in the material like the oxide filler and cannot form a conductive network.

ここで、実施例及び比較例で採用した金属亜鉛粉末(Zn)と低融点金属である金属錫(Sn)およびガラス繊維及びマトリクス樹脂であるPPSの含有量、及びそれらの評価結果を表1にまとめた。 Here, Table 1 shows the contents of metal zinc powder (Zn), metal tin (Sn), which is a low melting point metal, and glass fiber and PPS which is a matrix resin, and the evaluation results thereof used in Examples and Comparative Examples. Summarized.

また、これらの数値を形成される共晶物含有量(Zn+Sn)と導電性組成物成型体の体積抵抗率の関係をまとめたのが図1である。ガラス繊維を含まない場合(図中表示「GF無し」比較例1、比較例2、比較例3)に対して、ガラス繊維を含んでいる場合(図中表示「GF有り」実施例1〜実施例3、比較例9)には、同じ含有量であっても体積抵抗率が低くなり、同じ体積低効率を達成するために必要な共晶物含有量が低いことがわかる。 Moreover, FIG. 1 summarizes the relationship between the eutectic content (Zn + Sn) and the volume resistivity of the conductive composition molded body forming these numerical values. When glass fiber is not included (in the figure, “without GF” Comparative Example 1, Comparative Example 2, Comparative Example 3), when glass fiber is included (in the figure, “with GF” Examples 1 to In Example 3 and Comparative Example 9), it can be seen that the volume resistivity is low even at the same content, and the eutectic content required to achieve the same volume low efficiency is low.

ここで実施例3の配合において配合されているガラス繊維を、組成や形状の異なるフィラ−で置換した場合の効果の違いを比較評価して表2にまとめた。 Here, the glass fiber blended in the blending of Example 3 was compared and evaluated in Table 2 by comparing and evaluating the difference in effect when the glass fiber was replaced with fillers having different compositions and shapes.

他のフィラ−を用いた場合(比較例5〜比較例9)に比較して、ガラス繊維を用いた場合(実施例3)は高い導電性を示すことがわかる。 It can be seen that when glass fibers are used (Example 3), the conductivity is higher than when other fillers are used (Comparative Examples 5 to 9).

好適な範囲の導電性樹脂組成物は引っ張り強度が35MPa以上であった。また、得られた成型品の密度は4.0g/cm以下であり、かつ体積抵抗率が1.1×10−3Ω・cm以下であった。 The conductive resin composition in a suitable range had a tensile strength of 35 MPa or more. Moreover, the density of the obtained molded product was 4.0 g / cm 3 or less, and the volume resistivity was 1.1 × 10 −3 Ω · cm or less.

図2はガラス繊維が含まれていない場合(比較例1)の導電性樹脂組成物の成型体表面のSEM写真である。1に示されているのは亜鉛と錫の共晶物であり、およそ10〜100μm程度の塊となり、それらが互いにつながりあってネックを持ったさらに大きな塊になった状態であることがわかる。2に示されているのはマトリクス樹脂であるPPSである。 FIG. 2 is an SEM photograph of the surface of the molded body of the conductive resin composition when no glass fiber is contained (Comparative Example 1). 1 shows a eutectic of zinc and tin, which is a lump of about 10 to 100 μm, which are connected to each other to form a larger lump with a neck. Shown in 2 is PPS which is a matrix resin.

一方、図3はガラス繊維が含まれた場合である本発明実施例3の導電性樹脂組成物の成型体表面のSEM写真である。1は亜鉛と錫の共晶物であり、2はマトリクス樹脂であるPPSであり、3で示されているのはガラス繊維である。また、図4と図5はそれぞれ、図3で示された樹脂組成物成型品の成型体表面の同じ部分について、ガラス繊維の主成分である珪素(Si)と共晶物の主成分である亜鉛(Zn)の分布状態をマッピングしたものである。元素が検出された部分が白い点(シグナル)で表されるので、その元素が存在する部分は白くなって示される。
図2に示された比較例1の場合、つまりガラス繊維が含まれていない場合と同様に、図3に示された実施例3では図中1で示されている亜鉛と錫の共晶物がおよそ10〜100μm程度の塊となり、それらが互いにつながってネックを持ったさらに大きな塊になって導電ネットワークを形成していることがわかる。一方、図4では図中4で示されているSiの固まりが棒状になり、概略水平方向に並んでいる様子がわかる。また、図5では図中5で示されるZnの存在を示す塊が数珠繋ぎに概略水平方向に並んでいる様子がわかる。図3〜図5より、ガラス繊維が概略水平方向配向しており、それらによってさえぎられた状態で共晶物も概略水平に並んで存在している様子がわかる。ガラス繊維はマトリクス樹脂中にきれいに並んで分散されており、共晶物がその間に効率よく接合状態を確保しながら分散されることで導電ネットワークが形成されていることがわかる。
On the other hand, FIG. 3 is a SEM photograph of the surface of the molded body of the conductive resin composition of Example 3 of the present invention, which is a case where glass fibers are included. 1 is a eutectic of zinc and tin, 2 is PPS which is a matrix resin, and 3 is a glass fiber. 4 and 5 are the main components of silicon (Si), which are the main components of the glass fiber, and the eutectic, for the same portion of the surface of the molded product of the resin composition molded product shown in FIG. The distribution state of zinc (Zn) is mapped. Since the part where the element is detected is represented by a white dot (signal), the part where the element exists is shown in white.
In the case of Comparative Example 1 shown in FIG. 2, that is, in the case where no glass fiber is contained, in Example 3 shown in FIG. 3, the eutectic of zinc and tin shown in FIG. It turns out that it becomes a lump of about 10-100 micrometers, and they are mutually connected and become a larger lump with a neck, and form a conductive network. On the other hand, in FIG. 4, it can be seen that the Si lumps indicated by 4 in the figure are rod-shaped and arranged in a substantially horizontal direction. Moreover, in FIG. 5, it can be seen that the lumps indicating the presence of Zn shown in FIG. 3 to 5, it can be seen that the glass fibers are oriented substantially in the horizontal direction, and the eutectics are also arranged substantially horizontally in a state of being interrupted by them. It can be seen that the glass fibers are neatly dispersed in the matrix resin and the eutectic is dispersed while efficiently securing a bonded state therebetween, thereby forming a conductive network.

本発明は通電、静電、ESD対策、抵抗体、発熱などの電気抵抗を利用する分野のほか、熱伝導、冷却などの熱を伝達する分野に使用される材料へも応用が可能である。 The present invention can be applied to materials used in the field of transferring heat, such as heat conduction and cooling, in addition to fields that use electrical resistance such as energization, electrostatics, ESD countermeasures, resistors, and heat generation.

1 金属亜鉛と金属錫の共晶物
2 PPS
3 ガラス繊維
4 Si元素を示すシグナル
5 Zn元素の存在を示すシグナル
1 Eutectic of metallic zinc and metallic tin 2 PPS
3 Glass fiber 4 Signal indicating Si element 5 Signal indicating presence of Zn element

Claims (9)

亜鉛系金属粉末とマトリクス樹脂の融点以下で溶融する低融点金属、およびガラス繊維をマトリクス樹脂中に含むことを特徴とする導電性樹脂組成物。 A conductive resin composition comprising a matrix resin comprising a zinc-based metal powder and a low melting point metal that melts at or below the melting point of the matrix resin, and glass fibers. 使用される低融点金属が錫または錫合金であることが特徴の請求項1または請求項2に記載された導電性樹脂組成物。 The conductive resin composition according to claim 1 or 2, wherein the low melting point metal used is tin or a tin alloy. 使用される亜鉛系金属粉末の平均粒子径が1〜100μmであり、その含有量が全組成物中20〜38体積%であることが特徴の請求項1記載または請求項2のいずれかに記載された導電性樹脂組成物。 The average particle size of the zinc-based metal powder used is 1 to 100 µm, and the content thereof is 20 to 38% by volume in the total composition. Conductive resin composition. 使用される低融点金属の含有量が亜鉛系金属粉末の含有量に対して体積比で0.1〜0.3倍であることが特徴の請求項1〜請求項3のいずれかに記載された導電性樹脂組成物。 The content of the low melting point metal used is 0.1 to 0.3 times in volume ratio with respect to the content of the zinc-based metal powder. Conductive resin composition. 使用されるガラス繊維の含有量がマトリクス樹脂の含有量に対して体積比で0.09〜0.49倍であることが特徴の請求項1〜請求項4のいずれかに記載された導電性樹脂組成物。 The electrical conductivity according to any one of claims 1 to 4, wherein the content of the glass fiber used is 0.09 to 0.49 times by volume with respect to the content of the matrix resin. Resin composition. 使用されるマトリクス樹脂がPPSであることが特徴の請求項1〜請求項5のいずれかに記載された導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein the matrix resin used is PPS. その樹脂組成物を用いて製造された成形品の密度が4g/cm3以下であり、かつその体積抵抗率が1.1×10−3Ω・cm以下であることが特徴の請求項1または請求項2のいずれかに記載された導電性樹脂組成物。 The density of a molded article produced using the resin composition is 4 g / cm 3 or less and the volume resistivity is 1.1 × 10 −3 Ω · cm or less. The conductive resin composition according to claim 2. その樹脂組成物を用いて製造された成形体の引張り強度が35〜85MPaであることが特徴の請求項1または請求項2のいずれかに記載された導電性樹脂組成物。 3. The conductive resin composition according to claim 1, wherein a tensile strength of a molded body produced using the resin composition is 35 to 85 MPa. 請求項1から請求項8のいずれかに記載された導電性樹脂組成物を用いて製造したことが特徴の導電性樹脂組成物成形体。 A conductive resin composition molded article characterized by being manufactured using the conductive resin composition according to claim 1.
JP2009036449A 2009-02-19 2009-02-19 Electroconductive resin composition and electroconductive resin composition molding produced therefrom Pending JP2010189565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036449A JP2010189565A (en) 2009-02-19 2009-02-19 Electroconductive resin composition and electroconductive resin composition molding produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036449A JP2010189565A (en) 2009-02-19 2009-02-19 Electroconductive resin composition and electroconductive resin composition molding produced therefrom

Publications (1)

Publication Number Publication Date
JP2010189565A true JP2010189565A (en) 2010-09-02

Family

ID=42815934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036449A Pending JP2010189565A (en) 2009-02-19 2009-02-19 Electroconductive resin composition and electroconductive resin composition molding produced therefrom

Country Status (1)

Country Link
JP (1) JP2010189565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349926A (en) * 2019-07-18 2019-10-18 深圳前海量子翼纳米碳科技有限公司 A method of reducing liquid metal for conducting heat piece thermal resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349926A (en) * 2019-07-18 2019-10-18 深圳前海量子翼纳米碳科技有限公司 A method of reducing liquid metal for conducting heat piece thermal resistance
CN110349926B (en) * 2019-07-18 2021-01-08 深圳前海量子翼纳米碳科技有限公司 Method for reducing thermal resistance of liquid metal heat conducting fin

Similar Documents

Publication Publication Date Title
KR101139412B1 (en) Thermally Conductive Insulating Resin Composition and Plastic Article
US5958303A (en) Electrically conductive compositions and methods for producing same
JP5296085B2 (en) Thermally conductive polymer composite and molded article using the same
CN1914694B (en) Metal/plastic hybrid and shaped body produced therefrom
CN105111695B (en) Conductive polymer matrix composite material with continuous conductive channel and preparation method therefor
CN101928452B (en) Poly(arylene ether nitrile) and aluminum oxide composite insulating heat-conduction material and preparation method thereof
JP5340595B2 (en) Insulating thermally conductive resin composition, molded article, and method for producing the same
US20210189112A1 (en) Electrically conductive, high strength, high temperature polymer composite for additive manufacturing
CA2493818A1 (en) Static dissipative thermoplastic polymer composition
WO2010053226A1 (en) Electrically insulated thermal conductive polymer composition
JP5359825B2 (en) Thermally conductive resin composition
KR20010109288A (en) Electrically conductive compositions and methods for producing same
JP2016204570A (en) Heat conductive resin molded body and manufacturing method therefor
CN100373504C (en) Nano silver wire added conductive composite material, and preparation method
CN101010386B (en) Electrically conductive composites with resin and VGCF, production process, and use thereof
WO2010053225A1 (en) Electrically insulated high thermal conductive polymer composition
CN104448825A (en) Polyphenylene sulfide composite material and preparation method thereof
JP3525071B2 (en) Conductive resin composition
JP6496109B2 (en) Method for producing electrically insulating heat conductive resin composition
JP2010189565A (en) Electroconductive resin composition and electroconductive resin composition molding produced therefrom
CN115803368B (en) Method for suppressing burrs of polyarylene sulfide resin composition
US20060135655A1 (en) Method for improving filler dispersal and reducing tensile modulus in a thermally conductive polymer composition
KR102213536B1 (en) Long fiber reinforced thermoplastic resin composition having excellent thermal conductivity and EMI shielding property and molded article comprising the same
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
JP2004047470A (en) Conductive resin composition and method for manufacturing resin molding using it