JP2010189227A - Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same - Google Patents

Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same Download PDF

Info

Publication number
JP2010189227A
JP2010189227A JP2009036272A JP2009036272A JP2010189227A JP 2010189227 A JP2010189227 A JP 2010189227A JP 2009036272 A JP2009036272 A JP 2009036272A JP 2009036272 A JP2009036272 A JP 2009036272A JP 2010189227 A JP2010189227 A JP 2010189227A
Authority
JP
Japan
Prior art keywords
nitrogen
semiconductor material
added
tantalum
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036272A
Other languages
Japanese (ja)
Inventor
Shu Saeki
周 佐伯
Kenji Morikawa
健志 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009036272A priority Critical patent/JP2010189227A/en
Publication of JP2010189227A publication Critical patent/JP2010189227A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a p-type semiconductor having photo-responsibility. <P>SOLUTION: There is provided the p-type semiconductor material containing tantalum (Ta) to which nitrogen (N) is added, and oxygen (O). In particular, it is preferable that the p-type semiconductor material has a Ta<SB>2</SB>O<SB>5</SB>structure in which the amount of addition of nitrogen is set to 7.1-49.9 atom.%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光応答性を有する半導体材料及び光電極材料及びその製造方法に関する。   The present invention relates to a semiconductor material and a photoelectrode material having photoresponsiveness and a method for manufacturing the same.

タンタル(Ta)及び酸素(O)を含むTa粉末をアンモニア(NH)雰囲気下で熱処理し、窒素(N)が添加されたTa−Nを製造する技術が報告されている(非特許文献1)。窒素(N)は7原子%以下(Ta5−x−Nx:x≦0.35)ドープされ、ドープ量が増大するほど吸収波長端は長波長側に変化し、可視光応答性が高まることが示されている。 A technique for producing Ta 2 O 5 -N to which nitrogen (N) is added by heat-treating Ta 2 O 5 powder containing tantalum (Ta) and oxygen (O) in an ammonia (NH 3 ) atmosphere has been reported. (Non-Patent Document 1). Nitrogen (N) is doped at 7 atomic% or less (Ta 2 O 5-x -Nx: x ≦ 0.35), and as the doping amount increases, the absorption wavelength end changes to the longer wavelength side, and the visible light responsiveness increases. It has been shown to increase.

また、タンタル(Ta)及び酸素(O)を含むTa粉末をアンモニア(NH)雰囲気下で熱処理し、TaON又はTaを生成する技術が報告されている(非特許文献2)。生成されたTaON又はTaに420nm以上の波長の光を照射して、犠牲剤存在下における水分解の実験を行ったところ、最大量子収率は水素(H)で0.06%(犠牲剤メタノール)と酸素(O)で10%(犠牲剤Ag(NO))となった。 In addition, a technique has been reported in which Ta 2 O 5 powder containing tantalum (Ta) and oxygen (O) is heat-treated in an ammonia (NH 3 ) atmosphere to generate TaON or Ta 3 N 5 (Non-patent Document 2). ). When the generated TaON or Ta 3 N 5 was irradiated with light having a wavelength of 420 nm or more and subjected to water splitting in the presence of a sacrificial agent, the maximum quantum yield was 0.06% in hydrogen (H 2 ). (Sacrificial agent methanol) and oxygen (O 2 ) gave 10% (sacrificial agent Ag (NO 3 )).

T. Murase et al., J. Phys. Chem. B (2004) Vol.108, pp.15803-15807.T. Murase et al., J. Phys. Chem. B (2004) Vol.108, pp.15803-15807. M. Hara et al., Catalysis Today (2003) Vol.78, pp.555-560.M. Hara et al., Catalysis Today (2003) Vol.78, pp.555-560.

ところで、非特許文献1の技術における可視光照射下でのイソプロピルアルコール(IPA)の分解実験では、窒素(N)ドープ量が少ない条件で分解が促進されて二酸化炭素(CO)生成量が多くなることが示されている。Ta5−x−Nxにおいて窒素(N)ドープ量がx≧0.17では二酸化炭素(CO)生成量が低下することが示され、実験においても窒素(N)のドープ量が7原子%以下の結果しか得ていない。 By the way, in the decomposition experiment of isopropyl alcohol (IPA) under visible light irradiation in the technique of Non-Patent Document 1, decomposition is promoted under a condition that the amount of nitrogen (N) doping is small, and the amount of carbon dioxide (CO 2 ) generated is large. It has been shown to be. In Ta 2 O 5-x -Nx, it is shown that the amount of carbon dioxide (CO 2 ) produced decreases when the nitrogen (N) doping amount is x ≧ 0.17, and the nitrogen (N) doping amount is 7 in the experiment. Only results below atomic% have been obtained.

これは、非特許文献1では可視光照射下において高い酸化力を実現することが目的であり、還元反応については検討していないからである。また、7原子%以下の窒素(N)のドープ量では、伝導帯下端は窒素(N)がドープされていないTaとほぼ同じエネルギーレベルを維持しており、還元反応に有効な半導体材料は生成されていない。 This is because Non-Patent Document 1 aims to realize a high oxidizing power under visible light irradiation, and does not consider a reduction reaction. In addition, when the doping amount of nitrogen (N) is 7 atomic% or less, the lower end of the conduction band maintains the same energy level as Ta 2 O 5 not doped with nitrogen (N), which is an effective semiconductor for the reduction reaction. No material is produced.

また、非特許文献2の技術では、最終的にはTaON又はTaとなり、可視光反応性は高まるが、n型半導体となり、その伝導帯下端のエネルギーレベルは低く維持されたままである。 Further, in the technique of Non-Patent Document 2, eventually it becomes TaON or Ta 3 N 5 and the visible light reactivity is increased, but it becomes an n-type semiconductor, and the energy level at the lower end of its conduction band is kept low.

そこで、本発明は、還元反応に有効な光応答性を有する半導体材料及び光電極材料及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the semiconductor material and photoelectrode material which have the photoresponsiveness effective in a reductive reaction, and its manufacturing method.

本発明の1つの態様は、窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料である。   One embodiment of the present invention is a p-type semiconductor material containing tantalum (Ta) and oxygen (O) to which nitrogen (N) is added.

このような半導体材料は、窒素(N)を含む雰囲気下においてタンタル(Ta)及び酸素(O)を含むターゲットをスパッタリングすることによって、窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料を形成する半導体材料の製造方法により製造することができる。   Such a semiconductor material is obtained by sputtering a target containing tantalum (Ta) and oxygen (O) in an atmosphere containing nitrogen (N) to thereby add tantalum (Ta) and oxygen (O ) Containing a p-type semiconductor material.

また、タンタル(Ta)を含む原料を加水分解して得られるタンタル(Ta)の酸化物又は水酸化物を、アンモニア(NH3)又は尿素((HN)C=0)を含む雰囲気で熱処理して窒化することによって、窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料を形成する半導体材料の製造方法により製造することができる。 Further, an oxide or hydroxide of tantalum (Ta) obtained by hydrolyzing a raw material containing tantalum (Ta) is used in an atmosphere containing ammonia (NH 3) or urea ((H 2 N) 2 C = 0). By nitriding by heat treatment, the semiconductor material can be manufactured by a method for manufacturing a semiconductor material that forms a p-type semiconductor material containing tantalum (Ta) and oxygen (O) to which nitrogen (N) is added.

ここで、窒素の添加量が7.1原子%以上49.9原子%以下であることがより好適である。   Here, it is more preferable that the addition amount of nitrogen is 7.1 atomic% or more and 49.9 atomic% or less.

また、可視光応答性を有することが好適である。JIS Z8120の定義によれば、可視光とは波長360nm以上830nm以下の光をいう。特に、420nm以上の光に応答性を有することが好適である。   Moreover, it is suitable to have visible light responsiveness. According to the definition of JIS Z8120, visible light refers to light having a wavelength of 360 nm or more and 830 nm or less. In particular, it is preferable to have responsiveness to light of 420 nm or more.

また、本発明における半導体材料は、窒素が添加されたTa構造を有することが好適である。 The semiconductor material in the present invention preferably has a Ta 2 O 5 structure to which nitrogen is added.

また、本発明の別の態様は、上記本発明における半導体材料を含むことを特徴とする光還元触媒体である。また、上記本発明における半導体材料を含むことを特徴とする光カソード電極材料である。   Another embodiment of the present invention is a photoreduction catalyst body comprising the semiconductor material according to the present invention. Moreover, it is a photocathode electrode material characterized by including the semiconductor material in the present invention.

本発明によれば、窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料を提供することができる。   According to the present invention, a p-type semiconductor material containing tantalum (Ta) and oxygen (O) to which nitrogen (N) is added can be provided.

本発明の実施の形態における窒素の導入割合と窒素の添加量(ドープ量)との関係を示す図である。It is a figure which shows the relationship between the introduction ratio of nitrogen and the addition amount (dope amount) of nitrogen in embodiment of this invention. 実施例2における伝導帯下端のエネルギー準位を示す図である。It is a figure which shows the energy level of the conduction band lower end in Example 2. FIG. 実施例2及び比較例1における光電流の測定結果を示す図である。It is a figure which shows the measurement result of the photocurrent in Example 2 and Comparative Example 1. 実施例1及び比較例3における光電流の測定結果を示す図である。It is a figure which shows the measurement result of the photocurrent in Example 1 and Comparative Example 3. 実施例4及び比較例4における光電流の測定結果を示す図である。It is a figure which shows the measurement result of the photocurrent in Example 4 and Comparative Example 4. 実施例4のX線回折の測定結果を示す図である。It is a figure which shows the measurement result of the X-ray diffraction of Example 4.

[半導体材料の製造方法]
以下、本発明の実施の形態における半導体材料の製造方法について説明する。本発明の実施の形態における半導体材料はスパッタリング法及び粉末法により製造することができる。
[Method of manufacturing semiconductor material]
Hereinafter, the manufacturing method of the semiconductor material in embodiment of this invention is demonstrated. The semiconductor material in the embodiment of the present invention can be manufactured by a sputtering method and a powder method.

<スパッタリング法>
Taターゲットをスパッタリング装置の真空チャンバ内に配置し、真空チャンバを真空排気した後、アルゴン(Ar)及び窒素(N)の混合ガスのプラズマを発生させてTaターゲットをスパッタリングして基板上に窒素(N)が添加されたTaを含む半導体材料を形成する。その後、窒素(N)が添加されたTaを含む半導体材料が形成された基板を真空チャンバから取り出し、雰囲気炉内に導入して窒素(N)雰囲気にて熱処理する。
<Sputtering method>
A Ta 2 O 5 target is placed in a vacuum chamber of a sputtering apparatus, and after the vacuum chamber is evacuated, plasma of a mixed gas of argon (Ar) and nitrogen (N 2 ) is generated to sputter the Ta 2 O 5 target. Then, a semiconductor material containing Ta 2 O 5 to which nitrogen (N) is added is formed over the substrate. After that, the substrate on which the semiconductor material containing Ta 2 O 5 to which nitrogen (N) is added is formed is taken out from the vacuum chamber, introduced into an atmospheric furnace, and heat-treated in a nitrogen (N 2 ) atmosphere.

一例であるが、直径3インチのTaターゲットを用い、透明導電膜ATO(アンチモン(Sb)が添加された酸化錫)を表面に形成したガラス基板上に窒素(N)が添加されたTaを含む半導体材料を形成した。成膜時の投入電力は425W、真空チャンバ内の圧力は4.0×10−3Torrに維持した。成膜中に基板は加熱しなかった。また、雰囲気炉中における熱処理は、窒素(N)雰囲気にて575℃で2時間の熱処理とした。 As an example, nitrogen (N) was added on a glass substrate on which a transparent conductive film ATO (antimony (Sb) -added tin oxide) was formed using a Ta 2 O 5 target having a diameter of 3 inches. A semiconductor material containing Ta 2 O 5 was formed. The input power during film formation was 425 W, and the pressure in the vacuum chamber was maintained at 4.0 × 10 −3 Torr. The substrate was not heated during film formation. The heat treatment in the atmosphere furnace was a heat treatment at 575 ° C. for 2 hours in a nitrogen (N 2 ) atmosphere.

混合ガス中の窒素(N)の割合を変化させることで、基板表面上に形成されるTaを含む半導体材料の窒素(N)の添加量(ドープ量)を調整した。混合ガス中の窒素(N)の割合は0%以上80%以下の範囲で変化させた。 By changing the ratio of nitrogen (N 2 ) in the mixed gas, the addition amount (doping amount) of nitrogen (N) in the semiconductor material containing Ta 2 O 5 formed on the substrate surface was adjusted. The ratio of nitrogen (N 2 ) in the mixed gas was changed in the range of 0% to 80%.

ただし、成膜条件はこれに限定されるものではなく、窒素(N)が添加されたTaを含む半導体材料が形成される条件、好ましくは窒素(N)が7.1原子%以上49.9原子%以下添加されたTaを含む半導体材料が形成される条件であればよい。 However, the film formation conditions are not limited to these, and conditions for forming a semiconductor material containing Ta 2 O 5 to which nitrogen (N) is added, preferably nitrogen (N) is 7.1 atomic% or more. Any condition may be used as long as a semiconductor material containing Ta 2 O 5 added to 49.9 atomic% or less is formed.

<粉末法>
塩化タンタルをアルコール等の溶媒に溶解させ、アンモニア(NH)水溶液を加えてメスアップし、撹拌することによってTaの白色粉末を得る。タンタル(Ta)の原料は臭化タンタル、ヨウ化タンタル、硝酸タンタル、タンタルメトキシド、タンタルエトキシド、タンタルプロポキシド、タンタルブトキシドでもよい。このTa白色粉末をそのまま、又は、大気中で熱処理する。加熱時間は数時間程度とすることが好ましい。その後、アンモニア(NH)及びアルゴン(Ar)のガスの雰囲気中で熱処理して窒化する。これにより、窒素(N)が添加されたTaを含む半導体材料を形成する。
<Powder method>
A white powder of Ta 2 O 5 is obtained by dissolving tantalum chloride in a solvent such as alcohol, adding an aqueous ammonia (NH 3 ) solution to make up, and stirring. The raw material of tantalum (Ta) may be tantalum bromide, tantalum iodide, tantalum nitrate, tantalum methoxide, tantalum ethoxide, tantalum propoxide, or tantalum butoxide. This Ta 2 O 5 white powder is heat-treated as it is or in the air. The heating time is preferably about several hours. Then, it is nitrided by heat treatment in an atmosphere of ammonia (NH 3 ) and argon (Ar) gas. Thus, a semiconductor material containing Ta 2 O 5 to which nitrogen (N) is added is formed.

一例であるが、5gの塩化タンタルを100ミリリットルのエタノール中に溶解させ、5%のンモニア(NH)水溶液を加えてメスアップし、5時間撹拌して白色のTaの粉末を得た。この粉末を大気中で500℃以上1000℃以下の範囲で5時間熱処理した後、アンモニア(NH)を0.4リットル/分〜0.5リットル/分、アルゴン(Ar)を0.2リットル/分以下の流量割合で供給しつつ、500℃以上800℃以下の温度範囲で5時間熱処理して窒化した。 As an example, 5 g of tantalum chloride is dissolved in 100 ml of ethanol, 5% ammonia (NH 3 ) aqueous solution is added to make up the volume, and the mixture is stirred for 5 hours to obtain a white Ta 2 O 5 powder. It was. This powder was heat-treated in the range of 500 ° C. to 1000 ° C. for 5 hours in the atmosphere, then ammonia (NH 3 ) was 0.4 liter / min to 0.5 liter / min, and argon (Ar) was 0.2 liter. While supplying at a flow rate of less than / min, nitriding was performed by heat treatment for 5 hours in a temperature range of 500 ° C. to 800 ° C.

アンモニア(NH)とアルゴン(Ar)との割合及びTa粉末の前処理温度、窒化処理の温度又は時間を変化させることで、生成されるTaを含む半導体材料の粉末における窒素(N)の添加量(ドープ量)を調整した。 By changing the ratio of ammonia (NH 3 ) to argon (Ar) and the pretreatment temperature of Ta 2 O 5 powder, the temperature or time of nitriding treatment, the semiconductor material powder containing Ta 2 O 5 is produced. The addition amount (dope amount) of nitrogen (N) was adjusted.

ただし、生成条件はこれに限定されるものではなく、窒素(N)が添加されたTaを含む半導体材料の粉末が形成される条件、好ましくは窒素(N)が7.1原子%以上49.9原子%以下添加されたTaを含む半導体材料が形成される条件であればよい。 However, the generation conditions are not limited to this, and conditions for forming a powder of a semiconductor material containing Ta 2 O 5 to which nitrogen (N) is added, preferably 7.1 atomic% of nitrogen (N). Any condition may be used as long as a semiconductor material containing Ta 2 O 5 added to 49.9 atomic% or less is formed.

[測定方法]
以下、上記本発明の実施の形態における半導体材料の製造方法において製造された半導体材料の特性の測定方法について説明する。
[Measuring method]
Hereinafter, a method for measuring characteristics of a semiconductor material manufactured in the method for manufacturing a semiconductor material in the embodiment of the present invention will be described.

<窒素添加量(ドープ量)の測定>
製造した半導体材料に含まれる窒素(N)の添加量(ドープ量)は、X線光電子分光法(XPS:X-Ray Photoemission spectroscopy)により測定した。XPS測定にはアルバック・ピーエイチアイ(ULVAC PHI)社製”Quantera SXM”を用いて行った。X線源にはモノクロ化された(Monochromated)Al−Kα線を使用した。
<Measurement of nitrogen addition amount (dope amount)>
The addition amount (doping amount) of nitrogen (N) contained in the manufactured semiconductor material was measured by X-ray photoemission spectroscopy (XPS). The XPS measurement was performed using “Quantera SXM” manufactured by ULVAC PHI. Monochromated Al-Kα rays were used as the X-ray source.

製造した半導体材料に含まれる窒素(N)の添加量(ドープ量)は、窒素(N)の1s軌道のピーク面積Pから求めた。窒素(N)の1s軌道のピーク面積P、タンタル(Ta)の4p3/2軌道のピーク面積PTa及び酸素(O)の1s軌道のピーク面積Pを求めるためShirley法によりバックグラウンドを設定した。次に、感度補正を行うために、各ピーク面積に装置固有の相対感度係数を乗算した。すなわち、窒素(N)の添加量(ドープ量)=α×P/(α×P+β×PTa+γ×P)で算出した。ただし、α,β,γは補正係数であり、例えば、α=0.499である。最後に、不純物を含めた全元素の合計が100%となるよう規格化した。 Amount of nitrogen (N) contained in the semiconductor materials produced (doping amount) was determined from the peak area P N of 1s orbital of nitrogen (N). Nitrogen (N) of the 1s orbital peak area P N, the background by Shirley method for determining the peak area P O of 1s orbit of tantalum peak area of 4p 3/2 trajectory (Ta) P Ta and oxygen (O) Set. Next, in order to perform sensitivity correction, each peak area was multiplied by a device-specific relative sensitivity coefficient. In other words, the amount of nitrogen (N) added (doping amount) = α × P N / (α × P N + β × P Ta + γ × P O ). However, α, β, and γ are correction coefficients, for example, α = 0.499. Finally, normalization was performed so that the total of all elements including impurities was 100%.

<光学特性の測定>
製造した半導体材料の光学バンドギャップは分光光度計により測定した。分光光度計は島津製作所製”UV-3600”を用いて測定した。分光光度計により製造した半導体材料の吸収スペクトルを測定し、吸収端波長から式(1)により算出した。
<Measurement of optical properties>
The optical band gap of the manufactured semiconductor material was measured with a spectrophotometer. The spectrophotometer was measured using “UV-3600” manufactured by Shimadzu Corporation. The absorption spectrum of the semiconductor material produced by the spectrophotometer was measured and calculated from the absorption edge wavelength according to the formula (1).

(数1)
バンドギャップ(eV)=1240/吸収端波長(nm)・・・(1)
(Equation 1)
Band gap (eV) = 1240 / absorption edge wavelength (nm) (1)

伝導帯下端(CBM: Conduction Band Minimum)のエネルギー準位は、大気中光電子分光法により測定した。大気中光電子分光法には、理研計器製の大気中光電子分光装置”AC-2”を用いた。大気中光電子分光法により、製造した半導体材料のイオン化ポテンシャル(真空準位からの価電子帯上端(VBM: Valence Band Maximum)のエネルギー準位に等しい)とバンドギャップから式(2)により算出した。ここで、標準水素電極を基準とし、真空準位から−4.44eVを0V(対NHE)とした。   The energy level of the conduction band minimum (CBM) was measured by atmospheric photoelectron spectroscopy. For atmospheric photoelectron spectroscopy, an atmospheric photoelectron spectrometer “AC-2” manufactured by Riken Keiki was used. It was calculated by equation (2) from the ionization potential (equal to the energy level of the valence band maximum (VBM) from the vacuum level) and the band gap of the manufactured semiconductor material by atmospheric photoelectron spectroscopy. Here, with reference to the standard hydrogen electrode, −4.44 eV from the vacuum level was set to 0 V (vs NHE).

(数2)
CBM(V対NHE)=(イオン化ポテンシャル)−(バンドギャップ)−4.44
・・・(2)
(Equation 2)
CBM (V vs NHE) = (ionization potential) − (band gap) −4.44
... (2)

<光電流の測定>
製造した半導体材料の光応答性については光電流測定により測定した。粉末の半導体材料については少量の水を加えてスラリー化したものを、表面に透明導電膜ATOを形成したガラス基板上に塗布して、大気中で乾燥させた試料を作成して光電流測定を行った。乾燥は、120℃で1時間行った。
<Measurement of photocurrent>
The photoresponsiveness of the manufactured semiconductor material was measured by photocurrent measurement. For a powdered semiconductor material, a slurry obtained by adding a small amount of water is applied to a glass substrate having a transparent conductive film ATO formed on the surface, and a sample dried in the air is prepared to measure photocurrent. went. Drying was performed at 120 ° C. for 1 hour.

光源は600Wのキセノン(Xe)ランプを使用した。試料を0.2M−KSO溶液を満たした石英セルにセットし、ポテンショスタットにより試料の半導体材料の部分に電圧を印加し、その印加電圧値を変化させながらキセノン全光又は420nmより短い波長領域をカットするフィルタを通してオン・オフを繰り返しながら可視光を照射し、電流値を測定した。参照電極としてAg/AgCl電極を使用した。 A 600 W xenon (Xe) lamp was used as the light source. The sample is set in a quartz cell filled with a 0.2M-K 2 SO 4 solution, a voltage is applied to the semiconductor material portion of the sample by a potentiostat, and the applied voltage value is changed, and the xenon total light or shorter than 420 nm. Visible light was irradiated while repeating ON / OFF through a filter that cuts the wavelength region, and the current value was measured. An Ag / AgCl electrode was used as a reference electrode.

[実施例及び比較例]
以下、本発明における実施例及び比較例について説明する。
(実施例1)
スパッタリング法において、アルゴン(Ar)及び窒素(N)の混合ガスにおいて窒素(N)の割合が50%の条件下で作製し、窒素(N)雰囲気にて575℃で2時間熱処理した半導体材料の膜を実施例1とした。
(実施例2)
スパッタリング法において、アルゴン(Ar)及び窒素(N)の混合ガスにおいて窒素(N)の割合が60%の条件下で作製し、窒素(N)雰囲気にて575℃で2時間熱処理した半導体材料の膜を実施例2とした。
(実施例3)
スパッタリング法において、アルゴン(Ar)及び窒素(N)の混合ガスにおいて窒素(N)の割合が80%の条件下で作製し、窒素(N)雰囲気にて575℃で2時間熱処理した半導体材料の膜を実施例3とした。
(実施例4)
粉末法において、前処理温度800℃とし、アンモニア(NH)を0.4リットル/分及びアルゴン(Ar)を0.2リットル/分の流量割合で供給しつつ600℃で5時間熱処理して窒化して得られた粉末を実施例4とした。
[Examples and Comparative Examples]
Hereinafter, examples and comparative examples in the present invention will be described.
Example 1
In the sputtering method, a mixed gas of argon (Ar) and nitrogen (N 2 ) was manufactured under the condition that the ratio of nitrogen (N 2 ) was 50%, and heat-treated at 575 ° C. for 2 hours in a nitrogen (N 2 ) atmosphere. A film made of a semiconductor material was taken as Example 1.
(Example 2)
In a sputtering method, a mixed gas of argon (Ar) and nitrogen (N 2 ) was produced under a condition where the ratio of nitrogen (N 2 ) was 60%, and heat-treated at 575 ° C. for 2 hours in a nitrogen (N 2 ) atmosphere. A film of a semiconductor material was taken as Example 2.
(Example 3)
In a sputtering method, a mixed gas of argon (Ar) and nitrogen (N 2 ) was produced under the condition that the ratio of nitrogen (N 2 ) was 80%, and was heat-treated at 575 ° C. for 2 hours in a nitrogen (N 2 ) atmosphere. A film made of a semiconductor material was taken as Example 3.
Example 4
In the powder method, the pretreatment temperature was 800 ° C., and heat treatment was performed at 600 ° C. for 5 hours while supplying ammonia (NH 3 ) at a flow rate of 0.4 liter / minute and argon (Ar) at a flow rate of 0.2 liter / minute. The powder obtained by nitriding was designated as Example 4.

(比較例1)
スパッタリング法において、アルゴン(Ar)に窒素(N)を混合せず(0%)、代わりに酸素(O2)を20%の割合で混合した混合ガスを用いた条件下で作製し、窒素(N)雰囲気にて575℃で2時間熱処理したスパッタ膜を比較例1として用いた。
(比較例2)
スパッタリング法において、アルゴン(Ar)及び窒素(N)の混合ガスにおいて窒素(N)の割合が20%の条件下で作製し、窒素(N)雰囲気にて575℃で2時間熱処理した半導体材料の膜を比較例2とした。
(比較例3)
スパッタリング法において、アルゴン(Ar)及び窒素(N)の混合ガスにおいて窒素(N)の割合が40%の条件下で作製し、窒素(N)雰囲気にて575℃で2時間熱処理した半導体材料の膜を比較例3とした。
(比較例4)
粉末法において、前処理温度800℃として、アンモニア(NH)及びアルゴン(Ar)の雰囲気中における熱処理を行わなかった粉末を比較例4とした。
(Comparative Example 1)
In the sputtering method, nitrogen (N 2 ) was not mixed with argon (Ar) (0%), and instead, oxygen (O 2) was mixed under a condition of using a mixed gas of 20%, and nitrogen ( A sputtered film that was heat-treated at 575 ° C. for 2 hours in an N 2 ) atmosphere was used as Comparative Example 1.
(Comparative Example 2)
In the sputtering method, a mixture gas of argon (Ar) and nitrogen (N 2 ) was produced under the condition that the ratio of nitrogen (N 2 ) was 20%, and heat-treated at 575 ° C. for 2 hours in a nitrogen (N 2 ) atmosphere. The film of the semiconductor material was set as Comparative Example 2.
(Comparative Example 3)
In a sputtering method, a mixed gas of argon (Ar) and nitrogen (N 2 ) was produced under a condition where the ratio of nitrogen (N 2 ) was 40%, and heat-treated at 575 ° C. for 2 hours in a nitrogen (N 2 ) atmosphere. The film of the semiconductor material was set as Comparative Example 3.
(Comparative Example 4)
In the powder method, a pretreatment temperature of 800 ° C. and a powder that was not subjected to heat treatment in an atmosphere of ammonia (NH 3 ) and argon (Ar) were used as Comparative Example 4.

図1に、スパッタリング法における混合ガス中の窒素(N)の割合に対する製造された半導体材料の窒素(N)の添加量(ドープ量)の関係を示す。図1より、スパッタリング法における混合ガス中の窒素(N)の割合を増加させると、それに伴って製造された半導体材料の窒素(N)の添加量(ドープ量)も増加することが分かる。 Figure 1 shows the relationship between the amount of nitrogen of the semiconductor material prepared for the proportion of nitrogen in the mixed gas in the sputtering method (N 2) (N) (doping amount). From FIG. 1, it can be seen that when the proportion of nitrogen (N 2 ) in the mixed gas in the sputtering method is increased, the amount of nitrogen (N) added (doping amount) of the semiconductor material produced is increased accordingly.

図2に、実施例2とTaON,Taの伝導帯下端のエネルギー準位(CBM)の測定結果を示す。窒素(N)の添加量(ドープ量)が50%以上のTaONやTaに比べて、実施例2の試料のCBMは高い。製造された半導体材料の窒素(N)の添加量(ドープ量)が50%を超えるとTaONやTaの構造となると考えられ、過度の窒化は光還元能に対して逆効果であり、窒素(N)の添加量(ドープ量)の調整が重要であると推考できる。 FIG. 2 shows the measurement results of the energy level (CBM) at the lower end of the conduction band of Example 2 and TaON and Ta 3 N 5 . The CBM of the sample of Example 2 is higher than TaON or Ta 3 N 5 in which the amount of nitrogen (N) added (doping amount) is 50% or more. When the amount of nitrogen (N) added (doping amount) in the manufactured semiconductor material exceeds 50%, it is considered that the structure of TaON or Ta 3 N 5 is formed, and excessive nitridation has an adverse effect on the photoreduction ability. It can be assumed that adjustment of the amount of nitrogen (N) added (doping amount) is important.

図3に、実施例2と比較例1の試料の可視光照射下での光電流測定結果を示す。横軸が印加電圧であり、縦軸が電流値である。また、実施例2の測定結果を破線で示し、比較例1の測定結果を実線で示す。ここでは、上記光電流の測定方法に則って、光をオン・オフしながら照射しつつ電圧1.0Vから−1.0Vまで印加電圧を掃引し電流値を測定した結果を示す。正(+)バイアス側でアノード電流(+電流)が流れればn型半導体、負(−)バイアス側でカソード電流(−電流)が流れればp型半導体であることが確認できる。   In FIG. 3, the photocurrent measurement result under visible light irradiation of the sample of Example 2 and Comparative Example 1 is shown. The horizontal axis is the applied voltage, and the vertical axis is the current value. Moreover, the measurement result of Example 2 is shown by a broken line, and the measurement result of Comparative Example 1 is shown by a solid line. Here, the result of measuring the current value by sweeping the applied voltage from voltage 1.0 V to −1.0 V while irradiating light on and off in accordance with the above-described method for measuring photocurrent is shown. It can be confirmed that if an anode current (+ current) flows on the positive (+) bias side, it is an n-type semiconductor, and if a cathode current (−current) flows on the negative (−) bias side, it is a p-type semiconductor.

実施例2の試料には低電位側に光電流が観察され、p型半導体に典型的な特性が発現していることが確認される。比較例1の試料には光電流が観察されないことから、窒素(N)の添加により、可視光応答性を有するp型の半導体材料が形成されているといえる。   In the sample of Example 2, a photocurrent is observed on the low potential side, and it is confirmed that characteristics typical of the p-type semiconductor are expressed. Since no photocurrent is observed in the sample of Comparative Example 1, it can be said that a p-type semiconductor material having visible light responsiveness is formed by addition of nitrogen (N).

図4に、実施例1と比較例3の試料のキセノン(Xe)全光照射下での光電流測定結果を示す。横軸が印加電圧であり、縦軸が電流値である。また、実施例1の測定結果を破線で示し、比較例3の測定結果を実線で示す。比較例3の試料では真性半導体に特徴的な特性が確認される。一方、実施例1ではp型の半導体材料に典型的な光電流が観察される。スパッタリングの際の混合ガス中の窒素(N)の割合が50%以上では完全なp型半導体であることから、製造された半導体材料の窒素(N)の添加量(ドープ量)は7.1原子%以上49.9原子%以下、より好ましくは7.5原子%以上25原子%以下の範囲とすることが好ましい。 In FIG. 4, the photocurrent measurement result under the xenon (Xe) all-light irradiation of the sample of Example 1 and Comparative Example 3 is shown. The horizontal axis is the applied voltage, and the vertical axis is the current value. Moreover, the measurement result of Example 1 is shown by a broken line, and the measurement result of Comparative Example 3 is shown by a solid line. In the sample of Comparative Example 3, a characteristic characteristic of the intrinsic semiconductor is confirmed. On the other hand, in Example 1, a photocurrent typical of a p-type semiconductor material is observed. When the ratio of nitrogen (N 2 ) in the mixed gas at the time of sputtering is 50% or more, a complete p-type semiconductor is used. Therefore, the amount of nitrogen (N) added (doping amount) to the manufactured semiconductor material is 7. It is preferable to be in the range of 1 atomic% to 49.9 atomic%, more preferably 7.5 atomic% to 25 atomic%.

図5に、実施例4と比較例4の粉末試料の420nm以下の波長領域の光をカットしたキセノン(Xe)光照射下での光電流測定結果を示す。横軸が印加電圧であり、縦軸が電流値である。また、実施例4の測定結果を破線で示し、比較例4の測定結果を実線で示す。実施例4の粉末試料は低電位側にp型の半導体材料に典型的な光電流が観察されることから、可視光に応答するp型半導体であることが示される。一方、比較例4の粉末試料では光電流は観察されず、可視光応答性を有していないことが分かる。   FIG. 5 shows the results of photocurrent measurement under irradiation with xenon (Xe) light in which light in the wavelength region of 420 nm or less of the powder samples of Example 4 and Comparative Example 4 was cut. The horizontal axis is the applied voltage, and the vertical axis is the current value. Moreover, the measurement result of Example 4 is shown by a broken line, and the measurement result of Comparative Example 4 is shown by a solid line. The powder sample of Example 4 is a p-type semiconductor that responds to visible light because a typical photocurrent is observed in the p-type semiconductor material on the low potential side. On the other hand, in the powder sample of Comparative Example 4, no photocurrent is observed, and it can be seen that there is no visible light response.

図6に、実施例4の粉末試料を2θ/θ法を適用して測定したX線回折パターンを示す。横軸は2θの角度、横軸はX線回折の強度を示す。図6より、主相はTaであり、TaON及びTaの結晶相は確認されなかった。すなわち、得られた可視光応答型p型半導体粉末は窒素(N)が添加(ドープ)されたTaであるといえる。 FIG. 6 shows an X-ray diffraction pattern obtained by measuring the powder sample of Example 4 by applying the 2θ / θ method. The horizontal axis represents an angle of 2θ, and the horizontal axis represents the intensity of X-ray diffraction. From FIG. 6, the main phase was Ta 2 O 5 , and the crystal phases of TaON and Ta 3 N 5 were not confirmed. That is, it can be said that the obtained visible light responsive p-type semiconductor powder is Ta 2 O 5 to which nitrogen (N) is added (doped).

以上のように、窒素(N)が適量添加されたTaは光応答性を有するp型の半導体材料となる。これは、窒素がTaにおいてアクセプタとして働いているからといえる。 As described above, Ta 2 O 5 to which an appropriate amount of nitrogen (N) is added becomes a p-type semiconductor material having photoresponsiveness. This is because nitrogen works as an acceptor in Ta 2 O 5 .

ここで、p型半導体の価電子帯上端(VBM)にある正孔は高ポテンシャルの位置においてより安定であるため、本発明の窒素(N)が添加されたTaのVBMは窒素(N)が添加されていないTaのVBMよりも高ポテンシャル側に位置する。その結果、必然的に、窒素(N)を添加したTaのCBMは窒素(N)が添加されていないTaのCBMよりも高ポテンシャル側に位置する。そのため、光励起によって生じた電子がCBMから他の物質に移動しやすくなり、光還元能が向上すると考えられる。 Here, since the holes at the top of the valence band (VBM) of the p-type semiconductor are more stable at the high potential position, the VBM of Ta 2 O 5 to which nitrogen (N) of the present invention is added is nitrogen ( N) is located on the higher potential side than the VBM of Ta 2 O 5 not added. As a result, the CBM of Ta 2 O 5 to which nitrogen (N) is added is necessarily positioned on the higher potential side than the CBM of Ta 2 O 5 to which nitrogen (N) is not added. Therefore, it is considered that electrons generated by photoexcitation are easily transferred from the CBM to another substance, and the photoreduction ability is improved.

また、窒素(N)の添加により酸素(O)サイトの一部が窒素(N)に置き換わることで、酸素(O)の2p軌道によって形成される価電子帯が、それよりも高ポテンシャル側にある窒素(N)の2p軌道との混成効果で形成される。したがって、バンドギャップが狭まり、可視光応答化すると考えられる。このような半導体材料は光電極材料として適している。なお、上記のTaのp型化の原理は現時点における考察である。 In addition, by adding nitrogen (N), part of the oxygen (O) site is replaced with nitrogen (N), so that the valence band formed by the 2p orbit of oxygen (O) is on the higher potential side. It is formed by a hybrid effect with 2p orbits of some nitrogen (N). Therefore, it is considered that the band gap is narrowed and visible light response is achieved. Such a semiconductor material is suitable as a photoelectrode material. The principle of making Ta 2 O 5 p-type is a consideration at present.

また、光エネルギーにより励起された電子、正孔を用いた酸化還元反応を生じさせる光触媒においては、光励起により生じる電子が対象とする反応の電位よりも高い電位をもつことが必要である。例えば、水を分解して水素ガスと酸素ガスを発生させる場合を考える。光触媒が照射される場合、光吸収体にて吸収される光子に応じたエネルギーの電子・正孔が生成し、電子はCBMに、正孔はVBMに到達し、その後反応が生じる。従って、光吸収体のCBMは水素ガスの生成電位よりも高くなければならない。水分解水素生成効率の向上、又は、二酸化炭素(CO)の還元反応への適用が考えられる。 In addition, in a photocatalyst that generates an oxidation-reduction reaction using electrons and holes excited by light energy, it is necessary that electrons generated by photoexcitation have a higher potential than the target reaction potential. For example, consider a case where water is decomposed to generate hydrogen gas and oxygen gas. When the photocatalyst is irradiated, electrons and holes having energy corresponding to the photons absorbed by the light absorber are generated, the electrons reach the CBM, the holes reach the VBM, and then a reaction occurs. Therefore, the CBM of the light absorber must be higher than the hydrogen gas generation potential. It is conceivable to improve the efficiency of water splitting hydrogen generation or apply it to the reduction reaction of carbon dioxide (CO 2 ).

Claims (8)

窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料。   A p-type semiconductor material containing tantalum (Ta) and oxygen (O) to which nitrogen (N) is added. 請求項1に記載の半導体材料であって、
窒素の添加量が7.1原子%以上49.9原子%以下であることを特徴とする半導体材料。
The semiconductor material according to claim 1,
A semiconductor material characterized in that the amount of nitrogen added is 7.1 atomic percent or more and 49.9 atomic percent or less.
請求項1及び2に記載の半導体材料であって、
可視光応答性を有することを特徴とする半導体材料。
A semiconductor material according to claim 1 and 2,
A semiconductor material having visible light responsiveness.
請求項1〜3のいずれか1つに記載の半導体材料であって、
窒素が添加されたTa構造を有することを特徴とする半導体材料。
The semiconductor material according to any one of claims 1 to 3,
A semiconductor material having a Ta 2 O 5 structure to which nitrogen is added.
請求項1〜4のいずれか1つに記載の半導体材料を含むことを特徴とする光還元触媒体。   A photoreduction catalyst body comprising the semiconductor material according to claim 1. 請求項1〜4のいずれか1つに記載の半導体材料を含むことを特徴とする光カソード電極材料。   A photocathode electrode material comprising the semiconductor material according to claim 1. 窒素(N)を含む雰囲気下においてタンタル(Ta)及び酸素(O)を含むターゲットをスパッタリングすることによって、窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料を形成する半導体材料の製造方法。   A p-type semiconductor containing tantalum (Ta) and oxygen (O) to which nitrogen (N) is added by sputtering a target containing tantalum (Ta) and oxygen (O) in an atmosphere containing nitrogen (N). A method for manufacturing a semiconductor material for forming a material. タンタル(Ta)を含む原料を加水分解して得られるタンタル(Ta)の酸化物又は水酸化物を、アンモニア(NH3)又は尿素((HN)C=0)を含む雰囲気で熱処理して窒化することによって、窒素(N)が添加されたタンタル(Ta)及び酸素(O)を含むp型の半導体材料を形成する半導体材料の製造方法。 An oxide or hydroxide of tantalum (Ta) obtained by hydrolyzing a raw material containing tantalum (Ta) is heat-treated in an atmosphere containing ammonia (NH 3) or urea ((H 2 N) 2 C = 0). A semiconductor material manufacturing method for forming a p-type semiconductor material containing tantalum (Ta) and oxygen (O) to which nitrogen (N) is added by nitriding.
JP2009036272A 2009-02-19 2009-02-19 Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same Pending JP2010189227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036272A JP2010189227A (en) 2009-02-19 2009-02-19 Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036272A JP2010189227A (en) 2009-02-19 2009-02-19 Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010189227A true JP2010189227A (en) 2010-09-02

Family

ID=42815705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036272A Pending JP2010189227A (en) 2009-02-19 2009-02-19 Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010189227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110316706A (en) * 2019-06-06 2019-10-11 武汉大学 A kind of fused salt chemistry method nitrogenizing tantalum pentoxide and its nitridation tantalum pentoxide prepared
CN111905795A (en) * 2020-08-27 2020-11-10 杭州洲钜电子科技有限公司 Simple and convenient environment-friendly Ta preparation method3N5Method for preparing photocatalyst
US11183596B2 (en) 2019-01-07 2021-11-23 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Thin film transistor and method for fabricating same
US11248304B2 (en) 2017-08-09 2022-02-15 Mitsubishi Chemical Corporation Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248304B2 (en) 2017-08-09 2022-02-15 Mitsubishi Chemical Corporation Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same
US11183596B2 (en) 2019-01-07 2021-11-23 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Thin film transistor and method for fabricating same
CN110316706A (en) * 2019-06-06 2019-10-11 武汉大学 A kind of fused salt chemistry method nitrogenizing tantalum pentoxide and its nitridation tantalum pentoxide prepared
CN110316706B (en) * 2019-06-06 2022-10-18 武汉大学 Molten salt chemical method for tantalum pentoxide nitride and tantalum pentoxide prepared by same
CN111905795A (en) * 2020-08-27 2020-11-10 杭州洲钜电子科技有限公司 Simple and convenient environment-friendly Ta preparation method3N5Method for preparing photocatalyst

Similar Documents

Publication Publication Date Title
Chen et al. Doped semiconductor nanomaterials
Akkerman et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells
Zhao et al. Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells
Shinde et al. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films
WO2013084447A1 (en) Niobium nitride and method for producing same, niobium nitride-containing film and method for producing same, semiconductor, semiconductor device, photocatalyst, hydrogen generation device, and energy system
Impellizzeri et al. C ion-implanted TiO2 thin film for photocatalytic applications
Cho et al. Improved photoelectrochemical properties of TiO2 nanotubes doped with Er and effects on hydrogen production from water splitting
Sarkar et al. Enlarged broad band photodetection using Indium doped TiO2 alloy thin film
Li et al. Coupling long‐range facet junction and interfacial heterojunction via edge‐selective deposition for high‐performance Z‐scheme photocatalyst
Atabaev et al. Ti-doped hematite thin films for efficient water splitting
Larsen et al. Nanostructured homogenous CdSe–TiO 2 composite visible light photoanodes fabricated by oblique angle codeposition
JP5803288B2 (en) Semiconductor material and photocatalyst, photoelectrode and solar cell using the same
Song et al. Enhanced light response of titania nanotube arrays sensitized with pyrite FeS2
JP2010189227A (en) Semiconductor material having photo-responsibility, photoelectrode material and method for manufacturing the same
Hild et al. Structural and photoluminescence properties of evaporated SnO2 thin films doped with rare earths
Ibrahim et al. Highly efficient sputtered Ni-doped Cu2O photoelectrodes for solar hydrogen generation from water-splitting
Mohite et al. Photoelectrochemical performance and photoelectrocatalytic degradation of organic compounds using Ga: WO3 thin films
Yang et al. Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by gC 3 N 4 nanosheets
Sun et al. An efficient and extremely stable photocatalytic PtSe2/FTO thin film for water splitting
RU2499850C1 (en) Production method of metal-containing carbon nanomaterial
Sariket et al. Improvement of photocatalytic activity of surfactant modified In 2 O 3 towards environmental remediation
Marchal et al. Combustion deposition of MoO 3 films: from fundamentals to OPV applications
JP2019026934A (en) Method of manufacturing optical semiconductor, optical semiconductor, and hydrogen production device
CN107416940B (en) Ir doped titanium dioxide electrode material with heterogeneous photoelectrocatalysis performance
Liu et al. Design of a solar-driven TiO 2 nanofilm on Ti foil by self-structure modifications