JP2010188351A - Casting method - Google Patents

Casting method Download PDF

Info

Publication number
JP2010188351A
JP2010188351A JP2009032314A JP2009032314A JP2010188351A JP 2010188351 A JP2010188351 A JP 2010188351A JP 2009032314 A JP2009032314 A JP 2009032314A JP 2009032314 A JP2009032314 A JP 2009032314A JP 2010188351 A JP2010188351 A JP 2010188351A
Authority
JP
Japan
Prior art keywords
casting
molten metal
cavity
pressure
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009032314A
Other languages
Japanese (ja)
Other versions
JP5424384B2 (en
Inventor
Akio Miyamoto
晃雄 宮本
Arihiro Matsuo
有裕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009032314A priority Critical patent/JP5424384B2/en
Publication of JP2010188351A publication Critical patent/JP2010188351A/en
Application granted granted Critical
Publication of JP5424384B2 publication Critical patent/JP5424384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting method by which a product portion can be molded without causing casting defects and also a casting apparatus can be downsized. <P>SOLUTION: Molten metal in a sub-cavity is solidified before an initial casting pressure is reached, by positively cooling the molten metal in the sub-cavity while a casting pressure is increased. Consequently, at the point of time when the initial casting pressure is reached, a molten metal pressure receiving area S is reduced by the solidified portion of the molten metal in the sub-cavity, enabling a mold clamping force F to be reduced that is for withstanding the initial casting pressure P<SB>0</SB>and enabling the casting equipment to be miniaturized. Although at this time there is a possibility that casting defects may occur because the molten metal in the sub-cavity solidifies in a low pressure state, it will not be a problem since the portion molded in the sub-cavity has no bearing upon the product. Then, after the initial casting pressure P<SB>0</SB>is reached, the molten metal in the main cavity is solidified, which enables a product portion to be molded without causing casting defects. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鋳造方法に関する。   The present invention relates to a casting method.

一般に、鋳造は、金型に形成されたキャビティに溶湯を射出した後、所定の鋳造圧を加え、溶湯を凝固させることにより行われる。鋳造圧が低い状態で溶湯が凝固すると、溶湯に気泡等が混入したまま凝固し、製品部分に鋳造欠陥が生じる恐れがある。このため、溶湯を凝固させる際には、所定以上の鋳造圧を加えてキャビティ内の溶湯に混入した気泡を除去し、鋳造欠陥の生成を抑える必要がある。このとき、製品の品質を保証するために最低限必要とされる鋳造圧を「初期鋳造圧」と言う(以下、同様)。   In general, casting is performed by injecting molten metal into a cavity formed in a mold and then applying a predetermined casting pressure to solidify the molten metal. If the molten metal is solidified in a state where the casting pressure is low, the molten metal may be solidified with bubbles and the like mixed therein, which may cause casting defects in the product portion. For this reason, when solidifying the molten metal, it is necessary to apply a casting pressure of a predetermined level or more to remove bubbles mixed in the molten metal in the cavity to suppress the generation of casting defects. At this time, the minimum casting pressure required to guarantee the quality of the product is referred to as “initial casting pressure” (hereinafter the same).

金型に許容される最大鋳造圧Pmaxは、特許文献1に示されているように、金型の型締め力F、及び型開き方向の溶湯受圧面積Sを用いて、Pmax=F/Sで表される。同文献では、鋳造圧が初期鋳造圧Pに達した後、キャビティ内の溶湯の凝固層の生成に応じて鋳造圧を高めることにより、最大鋳造圧Pmaxを高めることを可能としている。すなわち、キャビティ内の溶湯の凝固層が生成するにしたがって溶湯受圧面積Sが小さくなるため、この溶湯受圧面積Sが減少した分だけ最大鋳造圧Pmaxを大きくすることができる。 As shown in Patent Document 1, the maximum casting pressure P max allowed for the mold is determined by using the mold clamping force F and the molten metal pressure receiving area S in the mold opening direction, and P max = F / Represented by S. In this document, after the casting pressure reaches the initial casting pressure P 0 , the maximum casting pressure P max can be increased by increasing the casting pressure according to the generation of the solidified layer of the molten metal in the cavity. That is, since the molten metal pressure receiving area S decreases as the molten metal solidified layer in the cavity is generated, the maximum casting pressure P max can be increased by the amount of the decreased molten metal pressure receiving area S.

特開平7−60427号公報Japanese Patent Laid-Open No. 7-60427

上記の鋳造方法では、少なくとも初期鋳造圧Pに耐え得る型締め力が必要となる。例えば、鋳造圧を加え始めてから初期鋳造圧Pに達するまでの間にも、上記と同様に、キャビティ内の溶湯の凝固層の生成に応じて鋳造圧を高めれば、初期鋳造圧Pに達する時には溶湯受圧面積Sが減っているため、型締め力Fを小さくすることができ、鋳造設備の小型化を図ることができる。しかし、この場合、鋳造圧が初期鋳造圧Pに満たない状態でキャビティ内の溶湯が凝固し始めるため、製品部分に鋳造欠陥が生じる恐れがある。 In the above casting method, a mold clamping force to withstand at least initial casting pressure P 0 is required. For example, if the casting pressure is increased according to the generation of the solidified layer of the molten metal in the cavity between the time when the casting pressure is started and the time when the initial casting pressure P 0 is reached, the initial casting pressure P 0 can be obtained. Since the molten metal pressure receiving area S is reduced when reaching, the mold clamping force F can be reduced, and the casting equipment can be downsized. However, in this case, since the molten metal in the cavity starts to solidify in a state where the casting pressure is less than the initial casting pressure P 0 , there is a possibility that casting defects may occur in the product portion.

本発明が解決しようとする課題は、鋳造欠陥を生じることなく製品部分を成形できると共に、鋳造設備を小型化することができる鋳造方法を提供することにある。   The problem to be solved by the present invention is to provide a casting method capable of forming a product portion without causing casting defects and reducing the size of the casting equipment.

前記課題を解決するために、本発明は、製品部分を成形する主キャビティと、主キャビティに連通し、製品以外の部分を成形する副キャビティとを有する金型を用いた鋳造方法であって、主キャビティ及び副キャビティ内に溶湯を満たした後、副キャビティ内の溶湯を冷却しながら鋳造圧を高め、初期鋳造圧に達するまでの間に副キャビティ内の溶湯の少なくとも一部を凝固させ、初期鋳造圧に達した後に主キャビティ内の溶湯を凝固させ始める鋳造方法を提供する。   In order to solve the above problems, the present invention is a casting method using a mold having a main cavity for molding a product part and a sub-cavity communicating with the main cavity and molding a part other than the product, After filling the main cavity and the sub-cavity with the molten metal, the casting pressure is increased while cooling the molten metal in the sub-cavity, and at least a part of the molten metal in the sub-cavity is solidified until the initial casting pressure is reached. A casting method is provided in which the molten metal in the main cavity begins to solidify after reaching the casting pressure.

このように、本発明の鋳造方法では、副キャビティ内の溶湯を冷却しながら鋳造圧を高めることで、初期鋳造圧Pに達するまでに副キャビティ内の溶湯を積極的に凝固させる。これにより、初期鋳造圧Pに達した時点で、副キャビティ内の溶湯が凝固した分だけ溶湯受圧面積Sが低減され、初期鋳造圧Pに耐え得るための型締め力F(=P・S)を小さくすることができ、鋳造設備を小型化することができる。このとき、副キャビティ内の溶湯は低圧状態で凝固するため、鋳造欠陥が発生する恐れがあるが、副キャビティ内で成形される部分は製品とは関係がないため問題ない。そして、初期鋳造圧Pに達した後に、主キャビティ内の溶湯を凝固させ始めることにより、鋳造欠陥が発生させることなく製品部分を成形することができる。 As described above, in the casting method of the present invention, the molten metal in the sub-cavity is positively solidified until the initial casting pressure P 0 is reached by increasing the casting pressure while cooling the molten metal in the sub-cavity. Thus, upon reaching the initial casting pressure P 0, by the amount of molten metal in the sub-cavity has solidified melt pressure-receiving area S is reduced, the clamping force F to withstand the initial casting pressure P 0 (= P · S) can be reduced, and the casting equipment can be reduced in size. At this time, since the molten metal in the sub-cavity is solidified in a low pressure state, casting defects may occur. However, there is no problem because the portion formed in the sub-cavity is not related to the product. Then, after reaching the initial casting pressure P 0 , the product portion can be molded without causing casting defects by starting to solidify the molten metal in the main cavity.

以上のように、本発明の鋳造方法によれば、鋳造欠陥を生じることなく製品部分を成形できると共に、鋳造設備を小型化することができる。   As described above, according to the casting method of the present invention, the product portion can be molded without causing casting defects, and the casting equipment can be downsized.

図2のY−Y線における金型の断面図である。It is sectional drawing of the metal mold | die in the YY line | wire of FIG. 固定型の正面図(図1のX−X線を矢印方向から見た図)である。FIG. 2 is a front view of a fixed mold (a view of the XX line of FIG. 1 viewed from the direction of an arrow). 図2のZ−Z線における金型の断面図である。It is sectional drawing of the metal mold | die in the ZZ line | wire of FIG. 鋳造圧Pの時間Tに対する変化を示すグラフである。It is a graph which shows the change to time T of casting pressure P.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す鋳造金型1は、例えばダイカスト法による高圧鋳造を行うためのものであり、固定型10と、固定型10に対して移動可能な可動型20とを有する。固定型10及び可動型20を型締めすると、金型内部に、製品部分を成形する主キャビティ30と、製品以外の部分を成形する副キャビティとが形成される。副キャビティは、主キャビティと連通し、製品と関係の無い部分を成形するものであれば、その形状等は限定されない。本実施形態では、主キャビティ30内を減圧するための減圧ランナ40を副キャビティとして機能させている。また、図示例では、固定型10及び可動型20のそれぞれに、主キャビティ30を構成するための凹部と、減圧ランナ40を構成するための溝部とが形成され、これらの凹部あるいは溝部を型合わせすることにより、主キャビティ30及び減圧ランナ40が形成される。   A casting mold 1 shown in FIG. 1 is for performing high pressure casting by, for example, a die casting method, and includes a fixed mold 10 and a movable mold 20 movable with respect to the fixed mold 10. When the fixed mold 10 and the movable mold 20 are clamped, a main cavity 30 that molds a product part and a sub-cavity that molds a part other than the product are formed inside the mold. The shape or the like of the sub cavity is not limited as long as the sub cavity communicates with the main cavity and molds a part unrelated to the product. In this embodiment, the decompression runner 40 for decompressing the inside of the main cavity 30 is made to function as a sub cavity. Further, in the illustrated example, a recessed portion for forming the main cavity 30 and a groove portion for forming the decompression runner 40 are formed in each of the fixed mold 10 and the movable mold 20. By doing so, the main cavity 30 and the decompression runner 40 are formed.

減圧ランナ40は、図2に示すように、主キャビティ30の上部及び側部の複数箇所から延び、これらが一本にまとめられてチルベント50に接続されている。チルベント50は、図3に示すように、一対のチルベント部材51・52からなり、一方のチルベント部材51が固定型10に、他方のチルベント部材52が可動型20に固定される。固定型10及び可動型20を型締めすると、チルベント部材51・52の間に通路53が形成される。各チルベント部材51・52の互いに対向する面には凹凸部が形成され、これらの凹凸部の間にジグザグに屈曲した通路53が形成される。通路53の外部側端部は、減圧手段(例えば真空ポンプ、図示省略)に接続され、この減圧手段を稼動すると、チルベント50の通路53及び減圧ランナ40を介して主キャビティ30内の空気が排出され、鋳造金型1の内部空間が減圧される。尚、減圧手段は、真空ポンプのように積極的にキャビティ内を減圧するものに限らず、例えば通路53の外部側端部を大気と連通してキャビティ内の圧力を大気圧に維持する消極的な手段でもよい。   As shown in FIG. 2, the decompression runner 40 extends from a plurality of locations on the upper and side portions of the main cavity 30, and these are integrated together and connected to the chill vent 50. As shown in FIG. 3, the chill vent 50 includes a pair of chill vent members 51 and 52. One chill vent member 51 is fixed to the fixed mold 10 and the other chill vent member 52 is fixed to the movable mold 20. When the fixed mold 10 and the movable mold 20 are clamped, a passage 53 is formed between the chill vent members 51 and 52. Concave and convex portions are formed on the surfaces of the chill vent members 51 and 52 facing each other, and a passage 53 bent zigzag is formed between the concave and convex portions. The outer end of the passage 53 is connected to a decompression means (for example, a vacuum pump, not shown). When this decompression means is operated, the air in the main cavity 30 is discharged via the passage 53 of the chill vent 50 and the decompression runner 40. Then, the internal space of the casting mold 1 is decompressed. Note that the decompression means is not limited to the one that actively decompresses the inside of the cavity, such as a vacuum pump. Simple means may be used.

固定型10には、主キャビティ30に溶湯を供給するための湯道11と、内部を冷媒が流通する冷却路とが形成される。本実施形態では、図2に示すように、2本の冷却路12・13が設けられる。冷却路12・13は、主キャビティ30の上方に入口12a・13aを有し、主キャビティ30の両側の側方に回り込むように延びて、固定型10の下方部分(図示例では主キャビティ30よりも下方部分)に出口12b・13bが開口している。これにより、主キャビティ30の周りを囲むように冷却路12・13が配される。一方の冷却路12は減圧ランナ40の付近を通っており、具体的には減圧ランナ40との最短距離L1が主キャビティ30との最短距離L2よりも短くなっている(L1<L2、図1参照)。図示例の一方の冷却路12は、図2に示す正面視で、主キャビティ30から延びた減圧ランナ40を跨いで設けられる。   The fixed mold 10 is formed with a runner 11 for supplying the molten metal to the main cavity 30 and a cooling passage through which the refrigerant flows. In the present embodiment, as shown in FIG. 2, two cooling paths 12 and 13 are provided. The cooling passages 12 and 13 have inlets 12a and 13a above the main cavity 30, and extend so as to wrap around the sides of the main cavity 30. The lower portions of the fixed mold 10 (from the main cavity 30 in the illustrated example). Also, the outlets 12b and 13b are opened in the lower part. Thereby, the cooling paths 12 and 13 are arranged so as to surround the main cavity 30. One cooling path 12 passes through the vicinity of the decompression runner 40. Specifically, the shortest distance L1 to the decompression runner 40 is shorter than the shortest distance L2 to the main cavity 30 (L1 <L2, FIG. 1). reference). One cooling path 12 in the illustrated example is provided across the decompression runner 40 extending from the main cavity 30 in a front view shown in FIG.

上記構成の金型1を用いた鋳造方法を、以下に説明する。   A casting method using the mold 1 having the above configuration will be described below.

まず、固定型10及び可動型20を型締めして、主キャビティ30、減圧ランナ40、及びチルベント50の通路53を形成する。その後、減圧手段により主キャビティ30を減圧しながら、湯道11を介して主キャビティ30内に溶湯を射出する。このように、主キャビティ30内を減圧しながら溶湯を射出することにより、主キャビティ30の細部まで溶湯を素早く行き渡らせることができると共に、空気の巻き込みを低減できる。また、射出当初の溶湯は、金型に付着したゴミや金属カスが混入しやすいため、このような不純物を含んだ溶湯を減圧ランナ40内に引き込むことで、製品部分(主キャビティ30)への不純物の混入を抑えることができる。   First, the fixed mold 10 and the movable mold 20 are clamped to form the main cavity 30, the decompression runner 40, and the passage 53 of the chill vent 50. Thereafter, the molten metal is injected into the main cavity 30 through the runner 11 while decompressing the main cavity 30 by the decompression means. In this way, by injecting the molten metal while reducing the pressure in the main cavity 30, the molten metal can be quickly distributed to the details of the main cavity 30, and the entrainment of air can be reduced. In addition, since the molten metal at the beginning of injection is liable to be mixed with dust and metal debris attached to the mold, the molten metal containing such impurities is drawn into the decompression runner 40 so that the product portion (main cavity 30) is introduced. Mixing of impurities can be suppressed.

主キャビティ30に射出された溶湯が、減圧ランナ40を通ってチルベント50の通路53まで達すると、一対のチルベント部材51・52に接触して冷却され、通路53内で凝固する。これにより、主キャビティ30に射出された溶湯が、減圧ランナ40及び通路53を介して鋳造金型1の外部に流出する事態を防止できる。   When the molten metal injected into the main cavity 30 reaches the passage 53 of the chill vent 50 through the decompression runner 40, the molten metal comes into contact with the pair of chill vent members 51 and 52 and is cooled and solidifies in the passage 53. Thereby, it is possible to prevent the molten metal injected into the main cavity 30 from flowing out of the casting mold 1 through the decompression runner 40 and the passage 53.

主キャビティ30、減圧ランナ40、及び湯道11を含めた金型1の内部空間に溶湯が満たされたら、シリンダで溶湯を押し込んで鋳造圧を加え始める。このときの鋳造圧Pの時間Tに対する変化を図4に示す。図示のように、鋳造圧Pは、基準時Tから徐々に高められ、所定の圧力Pに達するまで時間Tの経過と共に無段階且つ連続的に単調増加する。 When the molten metal is filled in the inner space of the mold 1 including the main cavity 30, the decompression runner 40, and the runner 11, the molten metal is pushed into the cylinder and casting pressure is started. The change with respect to time T of the casting pressure P at this time is shown in FIG. As illustrated, the casting pressure P is gradually increased from the reference time T 0, steplessly and continuously increases monotonically with time T to reach a predetermined pressure P 1.

こうして鋳造圧を徐々に高めると共に、鋳造金型1を冷却する。具体的には、冷却路12・13の入口12a・13aから冷媒(例えば水)を流入して固定型10を冷却する。この冷却路12・13による冷却は、例えば基準時Tと同時に開始される。上記のように、冷却路12・13は、主キャビティ30よりも減圧ランナ40に近接して配されるため(L1<L2、図1参照)、減圧ランナ40が主キャビティ30に対して相対的に冷却される。特に、本実施形態では、冷却路12の二箇所の開口部12a・12bうち、減圧ランナ40に近接した側(上側)の開口部12aから冷媒が流入されるため、流入されたばかりの低温の冷媒が減圧ランナ40付近を通り、減圧ランナ40がより一層冷却される。以上により、減圧ランナ40内の溶湯が積極的に冷却され、初期凝固圧力Pに達するまでに少なくとも一部が凝固する(図4参照)。 Thus, the casting pressure is gradually increased and the casting mold 1 is cooled. Specifically, a coolant (for example, water) is introduced from the inlets 12 a and 13 a of the cooling passages 12 and 13 to cool the fixed mold 10. The cooling by the cooling passage 12, 13 is started at the same time as for example the reference time T 0. As described above, the cooling passages 12 and 13 are arranged closer to the decompression runner 40 than the main cavity 30 (L1 <L2, see FIG. 1), so that the decompression runner 40 is relative to the main cavity 30. To be cooled. In particular, in the present embodiment, the refrigerant flows in from the opening 12a on the side (upper side) close to the decompression runner 40 out of the two openings 12a and 12b of the cooling path 12, so that the low-temperature refrigerant just flowed in Passes through the vicinity of the decompression runner 40, and the decompression runner 40 is further cooled. As described above, the molten metal in the decompression runner 40 is actively cooled, and at least a part thereof is solidified until the initial solidification pressure P 0 is reached (see FIG. 4).

鋳造圧が初期鋳造圧Pに達した状態では、溶湯内に混入した気泡が溶湯に溶け込んで除去されている。このとき、金型の型締め力Fは、初期鋳造圧Pと溶湯受圧面積Sとの積よりも大きく設定する必要がある(F>P・S)。本発明の鋳造方法では、上記のように、鋳造圧が初期鋳造圧Pに達するまでに減圧ランナ40内の溶湯の少なくとも一部が凝固しているため、この凝固した分だけ溶湯受圧面積Sが低減されている。従って、型締め力Fを小さくすることができ、型締めに要するシリンダ等の小型化、ひいては鋳造設備全体の小型化を図ることができる。 In a state where the casting pressure has reached the initial casting pressure P 0 , bubbles mixed in the molten metal are dissolved in the molten metal and removed. At this time, the mold clamping force F of the mold needs to be set larger than the product of the initial casting pressure P 0 and the molten metal pressure receiving area S (F> P 0 · S). In the casting method of the present invention, as described above, since at least a part of the molten metal in the decompression runner 40 is solidified until the casting pressure reaches the initial casting pressure P 0 , the molten metal pressure receiving area S is increased by this solidified amount. Has been reduced. Therefore, the mold clamping force F can be reduced, and the size of the cylinder and the like required for mold clamping can be reduced, and consequently the size of the entire casting equipment can be reduced.

その後、主キャビティ30内の溶湯も冷却路12・13により十分に冷却され、凝固し始める(図4参照)。このとき、主キャビティ30内の溶湯の凝固層の形成に応じて金型に許容される最大鋳造圧が高められるため、型締め力を大きくすることなく鋳造圧を所定値Pまで高めることができる。製品部分が完全に凝固したら、型開きされ、押し出し棒(図示省略)で製品を押し出して金型から製品が離脱される。 Thereafter, the molten metal in the main cavity 30 is also sufficiently cooled by the cooling paths 12 and 13 and begins to solidify (see FIG. 4). At this time, depending on the formation of molten metal solidification layers in the main cavity 30 for maximum casting pressure allowed is increased to the mold, to increase the casting pressure without increasing the clamping force to a predetermined value P 1 it can. When the product portion is completely solidified, the mold is opened, and the product is pushed out by an extrusion bar (not shown) to be removed from the mold.

図4に示すように、減圧ランナ内の溶湯は、初期鋳造圧Pに満たない低圧状態で凝固するため、鋳造欠陥が生じる恐れが高いが、この部分は製品とは関係のない廃棄される部分であるため、鋳造欠陥の生じても問題ない。一方、主キャビティ30内の溶湯は、初期鋳造圧P以上の鋳造圧の下で凝固するため、溶湯内に混入した空気が除去され、製品部分に鋳造欠陥が生じる恐れを回避できる。 As shown in FIG. 4, the molten metal in the decompression runner is solidified at a low pressure that is less than the initial casting pressure P 0 , so there is a high risk of casting defects, but this portion is discarded regardless of the product. Since it is a part, there is no problem even if casting defects occur. On the other hand, since the molten metal in the main cavity 30 is solidified under a casting pressure equal to or higher than the initial casting pressure P 0 , the air mixed in the molten metal is removed, and the risk of casting defects occurring in the product portion can be avoided.

本発明は上記の実施形態に限られない。例えば、上記に示した金型1に主キャビティ30の溶湯を保温する保温手段を設ければ、初期鋳造圧Pに満たない状態で主キャビティ内の溶湯が凝固し始める事態を防止し、製品部分への鋳造欠陥の生成を確実に防止できる。保温手段としては、例えば、冷却水温コントロールする制御部を設けたり、主キャビティを構成する金型の成形面に保温効果の高い油性離型剤を塗布したりすることが考えられる。 The present invention is not limited to the above embodiment. For example, if the mold 1 shown above is provided with a heat retaining means for keeping the molten metal in the main cavity 30, it prevents the molten metal in the main cavity from starting to solidify in a state where the initial casting pressure P 0 is not reached. It is possible to reliably prevent casting defects from being generated on the part. As the heat retaining means, for example, a control unit for controlling the cooling water temperature may be provided, or an oil-based mold release agent having a high heat retaining effect may be applied to the molding surface of the mold constituting the main cavity.

また、上記の実施形態では、副キャビティが減圧ランナである場合を示しているが、これに限らず、外部と連通しない別個の副キャビティを金型内に形成してもよい。ただし、上記実施形態のようにダイカスト鋳造法では減圧ランナを設けられる場合が多いため、この減圧ランナを副キャビティとして有効に活用することが望ましい。   In the above embodiment, the sub cavity is a decompression runner. However, the present invention is not limited to this, and a separate sub cavity that does not communicate with the outside may be formed in the mold. However, since the die cast casting method is often provided with a decompression runner as in the above embodiment, it is desirable to effectively utilize this decompression runner as a sub-cavity.

1 金型
10 固定型
11 湯道
12・13 冷却路
20 可動型
30 主キャビティ
40 減圧ランナ(副キャビティ)
50 チルベント
P 鋳造圧
初期鋳造圧
T 時間
1 Mold 10 Fixed mold 11 Runway 12/13 Cooling path 20 Movable mold 30 Main cavity 40 Depressurization runner (sub cavity)
50 Chill vent P Casting pressure P 0 Initial casting pressure T Time

Claims (1)

製品部分を成形する主キャビティと、主キャビティに連通し、製品以外の部分を成形する副キャビティとを有する金型を用いた鋳造方法であって、
主キャビティ及び副キャビティに溶湯を満たした後、副キャビティ内の溶湯を冷却しながら鋳造圧を高め、初期鋳造圧に達するまでの間に副キャビティ内の溶湯の少なくとも一部を凝固させ、初期鋳造圧に達した後に主キャビティ内の溶湯を凝固させ始める鋳造方法。
A casting method using a mold having a main cavity for molding a product part and a sub-cavity communicating with the main cavity and molding a part other than the product,
After filling the main cavity and sub-cavity with the molten metal, the casting pressure is increased while cooling the molten metal in the sub-cavity, and at least a part of the molten metal in the sub-cavity is solidified until the initial casting pressure is reached. A casting method that begins to solidify the molten metal in the main cavity after reaching pressure.
JP2009032314A 2009-02-16 2009-02-16 Casting method Expired - Fee Related JP5424384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032314A JP5424384B2 (en) 2009-02-16 2009-02-16 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032314A JP5424384B2 (en) 2009-02-16 2009-02-16 Casting method

Publications (2)

Publication Number Publication Date
JP2010188351A true JP2010188351A (en) 2010-09-02
JP5424384B2 JP5424384B2 (en) 2014-02-26

Family

ID=42814983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032314A Expired - Fee Related JP5424384B2 (en) 2009-02-16 2009-02-16 Casting method

Country Status (1)

Country Link
JP (1) JP5424384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107931581A (en) * 2017-11-22 2018-04-20 中国船舶重工集团公司第十二研究所 The more echelon pressure regulation combined shaping methods of aluminum matrix composite
JP2020011289A (en) * 2018-07-20 2020-01-23 リョービ株式会社 Apparatus and method for die casting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213003A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Die casting method and die casting machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213003A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Die casting method and die casting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107931581A (en) * 2017-11-22 2018-04-20 中国船舶重工集团公司第十二研究所 The more echelon pressure regulation combined shaping methods of aluminum matrix composite
CN107931581B (en) * 2017-11-22 2019-06-21 中国船舶重工集团公司第十二研究所 The more echelon pressure regulation combined shaping methods of aluminum matrix composite
JP2020011289A (en) * 2018-07-20 2020-01-23 リョービ株式会社 Apparatus and method for die casting

Also Published As

Publication number Publication date
JP5424384B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2009113370A1 (en) Multiple-cavity mold
JP2014507287A (en) Die casting mold
KR101805853B1 (en) Method and casting mold for producing castings, in particular cylinder blocks and cylinder heads, having functional connection of the feeder
JP5424384B2 (en) Casting method
JP2008137022A (en) Die flow divider and cooling mechanism therefor
JP6351319B2 (en) Mold cooling structure and manufacturing method thereof
JP2004322138A (en) New low pressure casting method in die casting
US20210129213A1 (en) Vaccum die casting method and a die for vaccum die casting
KR20200022198A (en) Apparatus and method for high-pressure die casting
WO2004004945A1 (en) Die cast mold
JP2005305466A (en) Molten metal forging apparatus and molten metal forging method
JP2798604B2 (en) Casting method and casting apparatus
JP2004122146A (en) High-pressure casting method for thick-walled product
JP2011143446A (en) Apparatus and method for pressure-casting half-solidified metal
JP2006239721A (en) Chill vent insert
JP2008149369A (en) Aluminum die-cast product, and its manufacturing method
JP5246939B2 (en) Low pressure casting mold
WO2018181894A1 (en) Casting device
JP2005334909A (en) Die casting method
JP2008272796A (en) Die, method for manufacturing formed product, and formed product
JP2008055487A (en) Die-casting mold and casting method
JP5939834B2 (en) Chill vent and casting mold
JP2005193241A (en) Die casting die, and die casting method
US20050155738A1 (en) Device and method for cooling a shot plug
JP2004090012A (en) Casting apparatus for die casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees