JP2010186685A - Fuel battery and fuel battery system - Google Patents

Fuel battery and fuel battery system Download PDF

Info

Publication number
JP2010186685A
JP2010186685A JP2009031152A JP2009031152A JP2010186685A JP 2010186685 A JP2010186685 A JP 2010186685A JP 2009031152 A JP2009031152 A JP 2009031152A JP 2009031152 A JP2009031152 A JP 2009031152A JP 2010186685 A JP2010186685 A JP 2010186685A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
separator
current collector
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009031152A
Other languages
Japanese (ja)
Inventor
Toshiaki Seki
敏昭 関
Akio Kano
昭雄 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2009031152A priority Critical patent/JP2010186685A/en
Publication of JP2010186685A publication Critical patent/JP2010186685A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain electric contact resistance between a collector and a separator of a fuel battery for a long period of time. <P>SOLUTION: The fuel battery includes a laminated body 19 laminating a plurality of layers of unit cells 31 each equipped with an electrolyte film 10, a fuel electrode 38 and an oxidant electrode 39 pinching the electrolyte film 10 from either side, and conductive separators 11, 18 having a fuel gas circulation channel 12 supplying fuel gas to the fuel electrode 38 as well as an oxidant gas circulation channel 13 supplying oxidant gas to the oxidant electrode 39. The fuel battery is further provided with a collector plate 32 arranged at an outside face of the separator 18 at an end part of the laminated body 19 for extracting power generation current of the laminated body 19 outside, and a clamping plate 33 arranged outside the collector plate 32 for clamping the laminated body 19 in its lamination direction. The collector plate 32 includes a rugged part formed on a face of the separator 18 in contact with an outside face of the laminated body 19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、単位セルを積層した積層体と集電板とを有する燃料電池およびそのシステムに関し、特に、集電板とセパレータの間の接触電気抵抗(以下、単に「接触抵抗」と呼ぶ)を長期にわたって抑制できる燃料電池およびそのシステムに関する。   The present invention relates to a fuel cell and a system thereof having a laminate in which unit cells are laminated and a current collector plate, and in particular, a contact electric resistance between the current collector plate and a separator (hereinafter simply referred to as “contact resistance”). The present invention relates to a fuel cell that can be controlled over a long period of time and a system thereof.

燃料電池は、水素等の燃料と空気等の酸化剤を燃料電池本体に供給して、電気化学的に反応させることにより、燃料の持つ化学エネルギーを直接電気エネルギーに変換して外部へ取り出す発電装置である。   A fuel cell is a power generator that supplies fuel such as hydrogen and an oxidant such as air to the fuel cell body and reacts them electrochemically, thereby converting the chemical energy of the fuel directly into electrical energy and taking it out. It is.

従来の典型的な固体高分子膜を用いた燃料電池では、複数の単位セル(単電池)を積層した積層体が形成される。各単位セルは、固体高分子膜の両端に触媒を塗布した燃料極(アノード極)および酸化剤極(カソード極)を配し、その両側に燃料ガス流通路と酸化剤ガス流通路を備えた燃料極流路板と酸化剤極流路板で構成されている。複数の単位セルを積層し、その積層体の両端に集電板と締付板が位置し、スタッドとナットと皿バネで積層体を締め付けている(特許文献1参照)。   In a conventional fuel cell using a typical solid polymer membrane, a laminate in which a plurality of unit cells (unit cells) are laminated is formed. Each unit cell has a fuel electrode (anode electrode) and an oxidant electrode (cathode electrode) coated with a catalyst on both ends of the solid polymer membrane, and has a fuel gas flow path and an oxidant gas flow path on both sides thereof. It consists of a fuel electrode flow path plate and an oxidant electrode flow path plate. A plurality of unit cells are stacked, current collector plates and clamping plates are positioned at both ends of the stacked body, and the stacked body is tightened with studs, nuts, and disc springs (see Patent Document 1).

この固体高分子形燃料電池積層体は、一般的には一セル毎にセパレータが挿入されて構成される。このセパレータは、セル発電に伴う発熱を除去するための冷却除熱機能、セルを電気的に直列に接続するための導電機能、およびセパレータを介し配置された一方のセルのセパレータ側に流通する燃料ガスと同上セパレータを介して配置された他の一方セルのセパレータ側に流通する酸化剤ガスの混合を防止する反応ガス遮断機能を有している。   This polymer electrolyte fuel cell stack is generally configured by inserting a separator for each cell. This separator has a cooling and heat removal function for removing heat generated by cell power generation, a conductive function for electrically connecting cells in series, and a fuel flowing to the separator side of one of the cells arranged via the separator. It has a reactive gas blocking function for preventing the mixing of the oxidant gas flowing to the separator side of the other one cell arranged via the separator same as the gas.

一方、固体高分子型燃料電池からの電気エネルギーの外部への取り出しは、複数の単位セルを積層した積層体両端に設置された集電板を介して行なわれる。この集電板は、接触しているセルから燃料電池の発電環境下で安定してかつ効率良く電流を取り出すこと、あるいは接触しているセルに供給することが機能として必要である。集電板でのエネルギー損は集電板の電圧損として示すことができ、これを小さくすることが重要である。また、この電圧損の低減のためには集電板自体の抵抗とこの集電板とこれと接触するセパレータ間の接触抵抗を低減することが必要であるが、とりわけ集電板とこれと接触するセパレータ間の接触抵抗を低減かつ経時的な増大を防止することが重要である。   On the other hand, the extraction of the electric energy from the polymer electrolyte fuel cell to the outside is performed through current collecting plates installed at both ends of the laminate in which a plurality of unit cells are laminated. This current collector plate needs to function as a function of stably and efficiently extracting current from the contacting cells in the power generation environment of the fuel cell or supplying the current to the contacting cells. The energy loss at the current collector can be shown as the voltage loss of the current collector, and it is important to reduce it. In order to reduce the voltage loss, it is necessary to reduce the resistance of the current collector plate itself and the contact resistance between the current collector plate and the separator in contact with the current collector plate. It is important to reduce the contact resistance between separators and prevent an increase over time.

この接触抵抗は集電板とセパレータの材質、およびこの両材料の締付接触圧力で決まる。また、この締付接触圧力と接触抵抗の関係は、一般に、ある所定の接触圧力以上においてはほぼ一定の接触抵抗を示すが、ある所定の接触圧力より低下するとその低下ともにその接触抵抗は急激に増加し絶縁性を示す特性を持っている。   This contact resistance is determined by the material of the current collector plate and the separator, and the tightening contact pressure of both materials. Further, the relationship between the tightening contact pressure and the contact resistance generally shows a substantially constant contact resistance above a certain predetermined contact pressure, but when the pressure falls below a certain predetermined contact pressure, the contact resistance rapidly increases with the decrease. Increased insulation properties.

これらのことから、接触抵抗を低減し、また、これを低く維持するためには、セパレータ材と接触抵抗の小さい、かつ電池運転下での積層体塑性変形による全締付力低下およびそれに伴う接触面内の接触圧低下および面圧分布変化(面圧集中に伴う接触圧力分布の発生)に対し接触圧力感受性の小さい材料・構造にすることが必要である。   From these facts, in order to reduce the contact resistance and keep it low, the contact resistance with the separator material is small, and the total tightening force is reduced due to the plastic deformation of the laminate under battery operation, and the accompanying contact. It is necessary to make the material / structure less sensitive to contact pressure against in-plane contact pressure drop and surface pressure distribution change (generation of contact pressure distribution due to concentration of surface pressure).

これらを実現するために、集電板の腐食による接触抵抗増大を防止する方法として腐食に対して安定な貴金属をコーテイグする方法(特許文献2)や、電池運転下での積層体の塑性変形による締付力低下緩和のためにバネを介して積層体を締め付けることにより、結果的に接触圧の低下抑制をはかる方法(特許文献1)等が知られている。   In order to realize these, as a method for preventing contact resistance increase due to corrosion of the current collector plate, a method of coating a noble metal that is stable against corrosion (Patent Document 2), or plastic deformation of the laminate under battery operation As a result, there is known a method (Patent Document 1) or the like that suppresses a decrease in contact pressure as a result of tightening the laminated body via a spring for reducing the tightening force.

特許第2566757号公報Japanese Patent No. 2566757 特開平5−182679号公報JP-A-5-182679

しかしながら、貴金属コーテイング集電板自体は腐食に対して高い信頼性を持つ反面、非常に高価なため商用化に対してネックとなっている。また、バネで積層体の塑性変形を吸収し締付力低下の緩和、すなわち集電板/セパレータ間の接触圧力低下の緩和の点から効果はあるものの、電池締付圧を維持するためには特別な大きなバネを必要とすることから同様にコストの観点から商用化に対してネックとなっている。   However, while the noble metal coating current collector plate itself has high reliability against corrosion, it is very expensive and has become a bottleneck for commercialization. In order to maintain the battery clamping pressure, it is effective from the point of absorbing the plastic deformation of the laminate with a spring and mitigating the reduction in clamping force, that is, mitigating the reduction in contact pressure between the current collector and separator. Since a special large spring is required, it is similarly a bottleneck for commercialization from the viewpoint of cost.

また、上記積層体を含む一般の燃料電池においても、集電板とセパレータはその接触面は両方とも平滑面であるため面接触となっているのが一般的である。一方、積層体の各種構成部品は機械強度・圧縮弾性特性に差を有しており、積層体締付下において締付方法およびそれら構成部品の機械強度・圧縮弾性特性差に起因した面圧分布を有している。この発生した面圧分布おける最小圧力が、集電板とセパレータの材質に依存する接触抵抗が急激に増大するある所定面圧以上になるように積層体の初期締付力が設定されている。   Further, even in a general fuel cell including the above laminate, the current collector plate and the separator are generally in surface contact since the contact surfaces thereof are both smooth surfaces. On the other hand, the various components of the laminate have differences in mechanical strength and compression elastic properties, and the surface pressure distribution due to the tightening method and the mechanical strength / compressive elastic properties of these components under tightening of the laminate have. The initial tightening force of the laminate is set so that the minimum pressure in the generated surface pressure distribution is equal to or higher than a predetermined surface pressure at which the contact resistance depending on the material of the current collector plate and the separator increases rapidly.

しかし、電池の長期運転を行なうに伴い、その温度・運転環境で積層体構成部品の塑性変形は避けられず、結果的に初期面圧分布に変化が生じることになる。この塑性変形に起因する面圧分布変化は、面圧集中方向になり、塑性変形が微少な部分はより接触面圧が増加し、大きな部分はより面圧が低下する。この面圧低下部分の面圧値がある値を下回ると、集電板全体としての抵抗が増大して電圧損が大きくなり、電池としての発電効率の低下を招くことが問題となっていた。   However, as the battery is operated for a long period of time, plastic deformation of the laminate components is inevitable due to the temperature and operating environment, resulting in a change in the initial surface pressure distribution. The change in surface pressure distribution due to this plastic deformation is in the direction in which the surface pressure is concentrated, and the contact surface pressure increases in the portion where the plastic deformation is small, and the surface pressure decreases more in the large portion. When the surface pressure value of the surface pressure reduction portion is lower than a certain value, the resistance of the current collector plate as a whole increases and the voltage loss increases, which causes a problem of reducing the power generation efficiency as a battery.

本発明は上記に鑑みてなされたもので、その目的は、燃料電池の集電板とセパレータの間の接触電気抵抗を長期にわたって抑制することにある。   This invention is made | formed in view of the above, The objective is to suppress the contact electrical resistance between the collector plate of a fuel cell and a separator over a long period of time.

上記目的を達成するために、本発明に係る燃料電池は、電解質膜と、前記電解質膜をその両面からはさむように配置された燃料極および酸化剤極と、前記燃料極に燃料ガスを供給するための燃料ガス流通路および前記酸化剤極に酸化剤ガスを供給するための酸化剤ガス流通路を備えた導電性で板状のセパレータと、を備えた単位セルを複数層積層した積層体と、前記積層体の端部に配置されたセパレータの前記積層体の外側の面に接して配置されて、前記セパレータの前記積層体の外側の面に接する面に凹凸部が形成された、前記積層体の発電電流を外部へ取り出す導電性の集電板と、前記集電板の外側に配置されて前記積層体をその積層方向に締め付ける締付板と、を有することを特徴とする。   In order to achieve the above object, a fuel cell according to the present invention supplies an electrolyte membrane, a fuel electrode and an oxidant electrode arranged so as to sandwich the electrolyte membrane from both sides, and a fuel gas to the fuel electrode. A stack of unit cells having a plurality of unit cells each including a fuel gas flow passage for supplying a conductive gas and a conductive plate separator having an oxidant gas flow passage for supplying an oxidant gas to the oxidant electrode; The laminate, wherein the separator disposed at the end of the laminate is disposed in contact with the outer surface of the laminate, and an uneven portion is formed on a surface of the separator that is in contact with the outer surface of the laminate. It has an electroconductive current collection board which takes out the generated current of a body outside, and a clamping board which is arranged outside the current collection board and clamps the layered product in the layering direction.

本発明によれば、燃料電池の集電板とセパレータの間の接触電気抵抗を長期にわたって抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the contact electrical resistance between the collector plate of a fuel cell and a separator can be suppressed over a long period of time.

本発明に係る燃料電池の一実施形態の積層体の集電部付近を示す模式的部分縦断面図。The typical fragmentary longitudinal cross-section which shows the current collection part vicinity of the laminated body of one Embodiment of the fuel cell which concerns on this invention. 本発明に係る燃料電池の一実施形態のマニホルドをはずした状体の本体を示す立面図。The elevation view which shows the main body of the state which removed the manifold of one embodiment of the fuel cell concerning the present invention. 本発明に係る燃料電池の一実施形態の模式的平断面図。The typical plane sectional view of one embodiment of the fuel cell concerning the present invention. 図3のIV−IV線矢視部分立断面図。FIG. 4 is a partial vertical sectional view taken along line IV-IV in FIG. 3. 本発明に係る燃料電池の一実施形態の集電板をこれに接する端部セパレータ側から見た部分斜視図。The partial perspective view which looked at the current collecting plate of one Embodiment of the fuel cell which concerns on this invention from the edge part separator side which contact | connects this. 本発明に係る燃料電池の一実施形態における集電板の電圧損の経時変化の試験結果を示す表。The table | surface which shows the test result of the time-dependent change of the voltage loss of the current collecting plate in one Embodiment of the fuel cell which concerns on this invention.

以下に、図面を参照して本発明に係る燃料電池の一実施形態について説明する。図1は本発明に係る燃料電池の一実施形態の積層体の集電部付近を示す模式的部分縦断面図、図2は本発明に係る燃料電池の一実施形態のマニホルドをはずした状体の本体を示す立面図である。また、図3は本発明に係る燃料電池の一実施形態の模式的平断面図、図4は図3のIV−IV線矢視部分立断面図である。さらに、図5は本発明に係る燃料電池の一実施形態の集電板をこれに接する端部セパレータ側から見た部分斜視図である。ただし、図1で、積層体締付のためのスタッド、ナットおよび皿バネ等は省略してある。また、図1には積層体の両端集電構造のうちの片側の構造のみを示してある。   Hereinafter, an embodiment of a fuel cell according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic partial longitudinal sectional view showing the vicinity of a current collecting portion of a laminated body of an embodiment of a fuel cell according to the present invention, and FIG. 2 is a state in which a manifold of an embodiment of the fuel cell according to the present invention is removed. It is an elevation view which shows the main body. 3 is a schematic plan sectional view of one embodiment of the fuel cell according to the present invention, and FIG. 4 is a partial vertical sectional view taken along line IV-IV in FIG. FIG. 5 is a partial perspective view of the current collector plate of one embodiment of the fuel cell according to the present invention as viewed from the end separator side in contact with the current collector plate. However, in FIG. 1, studs, nuts, disc springs and the like for tightening the laminate are omitted. Further, FIG. 1 shows only one side of the current collecting structure at both ends of the laminate.

[実施形態の構成]
この燃料電池は、図2に示すように、複数の単位セル(単電池)31が積層されて積層体(スタック)19が構成され、その積層体19の積層方向の両端に2枚の集電板32が配置され、それらの集電板32をその外側からはさむように2枚の締付板33が配置されている。これらの締付板33の周辺部に、積層方向に延びる複数本のスタッド34が配置され、これにより、ナットと皿バネで積層体19が積層方向に締め付けられている。締付板33は、たとえばプラスチックなどの絶縁材料からできている。
[Configuration of the embodiment]
In this fuel cell, as shown in FIG. 2, a plurality of unit cells (unit cells) 31 are stacked to form a stacked body (stack) 19, and two current collectors are disposed at both ends of the stacked body 19 in the stacking direction. A plate 32 is arranged, and two clamping plates 33 are arranged so as to sandwich the current collecting plates 32 from the outside. A plurality of studs 34 extending in the laminating direction are arranged around the fastening plates 33, whereby the laminated body 19 is clamped in the laminating direction by nuts and disc springs. The fastening plate 33 is made of an insulating material such as plastic.

図4などに示すように、この燃料電池は固体高分子電解膜10を用いるものであって、各単位セル31は、固体高分子膜10の両面にそれぞれ、触媒を塗布したアノード極(燃料極)38およびカソード極(酸化剤極)39を配し、これらをはさんで両面に配置されたセパレータ11で構成されている。セパレータ11はカーボンなどの導電性材質からなる板状であって、アノード極38に接する面上に燃料ガス流通路12を成す溝が形成され、カソード極39に接する面上に酸化剤ガス流通路13を成す溝が形成されている。さらに、図1、図3および図4に示す例では、セパレータ11に冷却水流通路22が形成されている。   As shown in FIG. 4 and the like, this fuel cell uses a solid polymer electrolyte membrane 10, and each unit cell 31 has an anode electrode (fuel electrode) in which a catalyst is applied to both surfaces of the solid polymer membrane 10, respectively. ) 38 and a cathode electrode (oxidizer electrode) 39, and the separator 11 is disposed on both sides of the cathode electrode (oxidant electrode) 39. The separator 11 has a plate shape made of a conductive material such as carbon. The separator 11 has a groove that forms the fuel gas flow passage 12 formed on the surface in contact with the anode 38, and the oxidant gas flow passage on the surface in contact with the cathode 39. 13 is formed. Furthermore, in the example shown in FIGS. 1, 3, and 4, a cooling water flow passage 22 is formed in the separator 11.

図3に例示するように、各単位セル31の燃料ガス流通路12、酸化剤ガス流通路13、冷却水流通路22にそれぞれ、燃料ガス、酸化剤ガス、冷却水を供給するために、積層体19の周囲に、燃料ガス供給ガスマニホルド14、空気供給ガスマニホルド15、冷却水供給マニホルド41が配置されている。さらに、各単位セル31の燃料ガス流通路12、酸化剤ガス流通路13、冷却水流通路22からそれぞれ、燃料ガス、酸化剤ガス、冷却水を排出するために、燃料ガス排出ガスマニホルド16、空気排出ガスマニホルド17、冷却水排出マニホルド42が積層体19の周囲に配置されている。   As illustrated in FIG. 3, in order to supply fuel gas, oxidant gas, and cooling water to the fuel gas flow path 12, the oxidant gas flow path 13, and the cooling water flow path 22 of each unit cell 31, respectively, A fuel gas supply gas manifold 14, an air supply gas manifold 15, and a cooling water supply manifold 41 are disposed around 19. Further, in order to discharge the fuel gas, the oxidant gas, and the cooling water from the fuel gas flow path 12, the oxidant gas flow path 13, and the cooling water flow path 22 of each unit cell 31, respectively, a fuel gas discharge gas manifold 16 and air An exhaust gas manifold 17 and a cooling water discharge manifold 42 are arranged around the laminate 19.

さらに、この燃料電池に燃料ガスを供給する燃料ガス供給装置や、冷却水を供給する冷却水循環設備、各種機器を制御する制御装置など(図示せず)が配置されて、燃料電池システムが構成されている。   In addition, a fuel gas supply device for supplying fuel gas to the fuel cell, a cooling water circulation facility for supplying cooling water, a control device for controlling various devices, etc. (not shown) are arranged to constitute a fuel cell system. ing.

図1に示すように、締付板33を貫通する穴を貫通して集電板端子部21が配置されている。集電板端子部21は導電性材料からなり、一端は集電板32に固定されている。集電板32は無酸素銅などの導電性材料からなり、端部セパレータ18に接する面50には、たとえば図5に示すように、機械加工のエンボス加工による凹凸面が形成され、さらにニッケルメッキが施されている。凹凸面の形成に当たっては、たとえば、平板の片面に切削加工を施して縦横に複数の溝51を作ってこれらを凹部とし、残りの部分を凸部52としてもよい。この場合は凸部52の先端は平坦な面となるので好ましい。集電板32の厚さはたとえば5mmであり、凹凸の高さはたとえば0.5mmである。凸部52の全体に対する面積割合は、好ましくは30ないし60%程度である。   As shown in FIG. 1, the current collector plate terminal portion 21 is disposed through a hole penetrating the fastening plate 33. The current collector terminal portion 21 is made of a conductive material, and one end is fixed to the current collector plate 32. The current collecting plate 32 is made of a conductive material such as oxygen-free copper, and a surface 50 in contact with the end separator 18 is provided with a rough surface formed by machining embossing as shown in FIG. Is given. In forming the concavo-convex surface, for example, one surface of a flat plate may be cut to form a plurality of grooves 51 in the vertical and horizontal directions, and these may be used as concave portions, and the remaining portions may be used as convex portions 52. In this case, the tip of the convex portion 52 is preferably a flat surface. The thickness of the current collector plate 32 is, for example, 5 mm, and the height of the unevenness is, for example, 0.5 mm. The area ratio with respect to the entire convex portion 52 is preferably about 30 to 60%.

集電板32の周囲には、積層体19の端部に配置された端部セパレータ18と締付板33とにはさまれて集電板32を囲むように周囲シール部20が配置されている。周囲シール部20は、燃料電池の運転中および停止中における側面から集電板32への水分の浸入を防止する機能を有している。   Around the current collector plate 32, a peripheral seal portion 20 is disposed so as to surround the current collector plate 32 by being sandwiched between the end separator 18 and the fastening plate 33 disposed at the end portion of the laminate 19. Yes. The peripheral seal portion 20 has a function of preventing moisture from entering the current collector plate 32 from the side surface during operation and stop of the fuel cell.

集電板32の集電部の大きさは、各単位セル31の反応部よりも大きくかつ周囲シール部20の内部と同じかまたは小さいことが好ましい。   The size of the current collecting portion of the current collecting plate 32 is preferably larger than the reaction portion of each unit cell 31 and the same as or smaller than the inside of the peripheral seal portion 20.

[実施形態の作用]
つぎに、この実施形態の燃料電池の作用について説明する。
[Operation of the embodiment]
Next, the operation of the fuel cell of this embodiment will be described.

水素を含む燃料ガスは、燃料ガス供給ガスマニホルド14から各単位セル31の燃料ガス流通路12に供給されて、燃料ガス排出ガスマニホルド16を通じて排出される。同様に、酸素を含む酸化剤ガスである空気が、空気供給ガスマニホルド15から各単位セル31の酸化剤ガス流通路13に供給されて、空気排出ガスマニホルド17を通じて排出される。冷却水は、冷却水供給マニホルド41から冷却水流通路22に供給されて、冷却水排出マニホルド42を通じて排出される。これにより、各単位セル31で発電が行なわれるとともに冷却が行なわれる。   The fuel gas containing hydrogen is supplied from the fuel gas supply gas manifold 14 to the fuel gas flow passage 12 of each unit cell 31 and is discharged through the fuel gas exhaust gas manifold 16. Similarly, air, which is an oxidant gas containing oxygen, is supplied from the air supply gas manifold 15 to the oxidant gas flow passage 13 of each unit cell 31 and is discharged through the air exhaust gas manifold 17. The cooling water is supplied from the cooling water supply manifold 41 to the cooling water flow passage 22 and is discharged through the cooling water discharge manifold 42. As a result, power is generated in each unit cell 31 and cooling is performed.

電池反応によって燃料ガス中の水素と酸化剤ガス中の酸素が消費され、反応生成物の水が水蒸気として排出される。   The battery reaction consumes hydrogen in the fuel gas and oxygen in the oxidant gas, and the reaction product water is discharged as water vapor.

固体高分子型燃料電池からの電気エネルギーの外部への取り出しは集電板32を介して行なわれる。積層体19の両端部に位置する端部セパレータ18に対向する集電板32の面50に凹凸が形成されていることから、その面50の凸部52と端部セパレータ18とが互いに押し付けられて電気的接触が確保される。しかも、この集電板32は接触しているセルから燃料電池の発電環境下で安定してかつ効率良く電流を取り出すことができる。集電板32でのエネルギー損は集電板32の電圧損として示すことができるが、これを小さくすることができる。しかも、集電板32とこれと接触する端部セパレータ18の間の接触抵抗の経時的な増大を防止することができる。   Electrical energy from the polymer electrolyte fuel cell is taken out through the current collector plate 32. Since irregularities are formed on the surface 50 of the current collector plate 32 facing the end separators 18 located at both ends of the laminate 19, the convex portions 52 of the surface 50 and the end separators 18 are pressed against each other. This ensures electrical contact. Moreover, the current collecting plate 32 can stably and efficiently take out current from the cells in contact with each other in the power generation environment of the fuel cell. The energy loss at the current collector plate 32 can be shown as the voltage loss of the current collector plate 32, but this can be reduced. Moreover, it is possible to prevent the contact resistance between the current collector plate 32 and the end separator 18 in contact with the current collector plate 32 from increasing with time.

この実施形態によれば、端部セパレータ18と集電板32の接触抵抗が小さく、かつ電池運転下での積層体19塑性変形による全締付力低下およびそれに伴う接触面内の接触圧低下および面圧分布変化(面圧集中に伴う接触圧力分布の発生)に対し接触圧力感受性の小さい構造にすることができる。これにより、接触抵抗低減および維持を実現できる。   According to this embodiment, the contact resistance between the end separator 18 and the current collector plate 32 is small, and the total tightening force is reduced due to the plastic deformation of the laminate 19 under battery operation, and the contact pressure in the contact surface is reduced accordingly. A structure having a small contact pressure sensitivity to a change in the contact pressure distribution (generation of contact pressure distribution due to concentration of contact pressure) can be achieved. Thereby, contact resistance reduction and maintenance are realizable.

すなわち、この実施形態では、集電板32と端部セパレータ18の接触面積を小さくすることにより、同一締付力下で集電板32と端部セパレータ18のとの接触面の面圧を高くすることができる。また、電池運転下での積層体19構成部品の個別塑性変形差に起因する面圧分布変化に対して、その最も面圧が低下した部分でも接触面の面圧を従来の平板集電板の接触面圧より高く維持できる。すなわち、平板集電板32が接触抵抗増大を引き起こす同一面圧分布下でも、その接触面の面圧をそれ以下では接触抵抗が急激に増大する所定面圧以上に保持することが可能となる。これにより、長期的に安定した接触抵抗を有する、すなわち電圧損・エネルギー一損の増大のない、安定した燃料電池を実現できる。   That is, in this embodiment, by reducing the contact area between the current collector plate 32 and the end separator 18, the contact pressure between the current collector plate 32 and the end separator 18 is increased under the same tightening force. can do. In addition, with respect to changes in the surface pressure distribution due to the individual plastic deformation differences of the laminate 19 components under battery operation, the surface pressure of the contact surface is reduced even at the portion where the surface pressure is the lowest. It can be maintained higher than the contact surface pressure. That is, even if the flat current collector 32 has the same surface pressure distribution that causes an increase in contact resistance, the surface pressure of the contact surface can be maintained at a predetermined surface pressure or higher, at which the contact resistance increases rapidly. Thereby, it is possible to realize a stable fuel cell having a stable contact resistance for a long period of time, that is, without an increase in voltage loss and energy loss.

[実施例の試験]
上記構成で電池を組立て、発電試験を行ない本発明の実施例の効果を確認した。また、比較としてエンボス加工なし銅板集電板32およびニッケルメッキエンボス加工なし銅集電板32の同一形状の集電板32を組み込んで上記同様各々電池組立てを行ない、発電試験を実施した。この試験結果を図6に示す。ここで、集電板Aは平滑銅プレート(メッキなし)を用いた従来タイプであり、集電板Bは集電板Aの表面にニッケルメッキ処理を施した従来タイプであり、集電板Cは本発明の実施例の集電板(ニッケルメッキ処理エンボス加工銅プレート)である。
[Testing of Examples]
A battery was assembled with the above configuration, and a power generation test was performed to confirm the effect of the embodiment of the present invention. Further, as a comparison, a current collecting plate 32 having the same shape as the copper current collecting plate 32 without embossing and the copper current collecting plate 32 without nickel plating embossing was assembled, and each battery was assembled in the same manner as described above, and a power generation test was performed. The test results are shown in FIG. Here, the current collector plate A is a conventional type using a smooth copper plate (no plating), and the current collector plate B is a conventional type in which the surface of the current collector plate A is subjected to nickel plating, and the current collector plate C Is a current collector plate (nickel-plated embossed copper plate) of an embodiment of the present invention.

この発明の実施例の効果は、一定の発電電流を取り出したときの集電板端子部21と接触する端部セパレータ18に埋め込んだ金線端子間の電圧損で評価した。また、起動・停止試験を行ない、それによる電圧損の変化を測定した。図6で、電圧損は従来構成集電板(無酸素銅プレート)の1回目の発電試験時での所定取り出し電流下での電圧損を1.0とし、他の試験結果をその相対値で示した。   The effect of the embodiment of the present invention was evaluated by the voltage loss between the gold wire terminals embedded in the end separator 18 in contact with the current collector plate terminal portion 21 when a constant generated current was taken out. In addition, a start / stop test was performed, and the change in voltage loss due to this was measured. In FIG. 6, the voltage loss is 1.0 as the voltage loss under a predetermined extraction current in the first power generation test of the current collector plate (oxygen-free copper plate), and the other test results are relative values. Indicated.

図6の結果に示されるように、従来の銅板による集電板Aは起動停止回数ともに電圧損が急激に増大していくことが確認できた。またニッケルメッキ処理をした従来型集電板Bは銅表面酸化物膜生成防止効果により、従来の銅板集電板より電圧損の増大量は小さいがやはり増大傾向を示している。本発明の実施例によるニッケルメッキエンボス加工集電板Cでは、初期電圧損は大きいものの、起動・停止による電圧損増加は小さく、安定していることが確認できた。   As shown in the results of FIG. 6, it was confirmed that the voltage loss of the current collector plate A using the conventional copper plate increased rapidly with the number of start / stop operations. Further, the conventional current collector plate B subjected to nickel plating shows an increasing tendency although the increase in voltage loss is smaller than that of the conventional copper current collector due to the effect of preventing the formation of the copper surface oxide film. In the nickel-plated embossed current collector plate C according to the example of the present invention, although the initial voltage loss was large, the increase in the voltage loss due to start / stop was small and confirmed to be stable.

以上の試験結果から明らかなように、本発明の実施例による無酸素銅プレートに機械加工のエンボス加工による凸面を形成した後ニッケルメッキ処理した集電板32を用いることにより、燃料電池の集電部の発電ロス・エネルギーロスを低減することが確認できた。   As is clear from the above test results, the current collecting plate of the fuel cell is obtained by using the current collecting plate 32 formed with the nickel-plated after forming the convex surface by the embossing of machining on the oxygen-free copper plate according to the embodiment of the present invention. It was confirmed that the power generation loss and energy loss of the part were reduced.

[変形例]
以上、本発明に係る燃料電池の実施形態について説明したが、これは単なる例示であって、本発明はこれに限定されるものではない。
[Modification]
Although the embodiment of the fuel cell according to the present invention has been described above, this is merely an example, and the present invention is not limited to this.

たとえば、上記実施形態の説明では、集電板32の凹凸をエンボス加工によって形成するものとしたが、同様の凹凸を形成できる加工方法であれば、他の機械加工あるいは化学処理によってもよい。   For example, in the description of the above embodiment, the unevenness of the current collector plate 32 is formed by embossing. However, other machining or chemical treatment may be used as long as the processing method can form the same unevenness.

さらに、集電板32の凹凸の形状としては、図5に示すような直線的なものに限らず、曲線的なものでもよく、たとえば、同心円状や渦巻状の溝または畝を形成したものでもよい。   Furthermore, the uneven shape of the current collector plate 32 is not limited to a linear shape as shown in FIG. 5, but may be a curved shape, for example, a concentric or spiral groove or ridge. Good.

また、上記実施形態の説明では集電板32の銅表面の酸化物生成の抑制のためにニッケルメッキを施す場合を示したが、これに限定する必要はなく、十分な導電性を持ち(形成表面酸化物層による導電性低下が小さく)、十分な強度を持ち、かつ下地金属板への酸素拡散を防止できるメッキであればいずれでも良い。すなわち、スズ(Sn)、銀(Ag)、白金(Pt)、金(Au)、ルテニウム(Ru)、ロジウム(Ro)、イリジウム(Ir)等の金属メッキでも同等の効果が得られる。   Moreover, although the case where nickel plating was performed in order to suppress the oxide production | generation of the copper surface of the current collecting plate 32 was shown in description of the said embodiment, it is not necessary to limit to this and it has sufficient electroconductivity (formation) Any plating may be used as long as the decrease in conductivity due to the surface oxide layer is small), has sufficient strength, and can prevent oxygen diffusion to the base metal plate. That is, the same effect can be obtained by metal plating such as tin (Sn), silver (Ag), platinum (Pt), gold (Au), ruthenium (Ru), rhodium (Ro), iridium (Ir).

なお、以上の説明で、「立面図」、「平面図」などの表現を用いたが、これらは説明の都合によるものであって、この燃料電池を重力方向に対してどのように配置してもよい。   In the above description, expressions such as “elevation” and “plan” are used for convenience of explanation, and how this fuel cell is arranged in the direction of gravity. May be.

10:固体高分子電解質膜
11: セパレータ
12:燃料ガス流通路
13:酸化剤ガス流通路
14:燃料ガス供給ガスマニホルド
15:空気供給ガスマニホルド
16:燃料ガス排出ガスマニホルド
17:空気排出ガスマニホルド
18:端部セパレータ
19:積層体
20:周囲シール部
21:集電板端子部
22:冷却水流通路
31:単位セル
32:集電板
33:締付板
34:スタッド
38:アノード極(燃料極)
39:カソード極(酸化剤極、空気極)
41:冷却水供給マニホルド
42:冷却水排出マニホルド
50:面
51:溝
52:凸部
10: Solid polymer electrolyte membrane 11: Separator 12: Fuel gas flow passage 13: Oxidant gas flow passage 14: Fuel gas supply gas manifold 15: Air supply gas manifold 16: Fuel gas discharge gas manifold 17: Air discharge gas manifold 18 : End separator 19: Laminate 20: Peripheral seal 21: Current collector terminal 22: Cooling water passage 31: Unit cell 32: Current collector 33: Fastening plate 34: Stud 38: Anode electrode (fuel electrode)
39: Cathode electrode (oxidizer electrode, air electrode)
41: Cooling water supply manifold 42: Cooling water discharge manifold 50: Surface 51: Groove 52: Convex

Claims (7)

電解質膜と、前記電解質膜をその両面からはさむように配置された燃料極および酸化剤極と、前記燃料極に燃料ガスを供給するための燃料ガス流通路および前記酸化剤極に酸化剤ガスを供給するための酸化剤ガス流通路を備えた導電性で板状のセパレータと、を備えた単位セルを複数層積層した積層体と、
前記積層体の端部に配置されたセパレータの前記積層体の外側の面に接して配置されて、前記セパレータの前記積層体の外側の面に接する面に凹凸部が形成された、前記積層体の発電電流を外部へ取り出す導電性の集電板と、
前記集電板の外側に配置されて前記積層体をその積層方向に締め付ける締付板と、
を有することを特徴とする燃料電池。
An electrolyte membrane, a fuel electrode and an oxidant electrode arranged so as to sandwich the electrolyte membrane from both sides thereof, a fuel gas flow passage for supplying fuel gas to the fuel electrode, and an oxidant gas in the oxidant electrode A laminate obtained by laminating a plurality of unit cells each including a conductive plate-like separator having an oxidant gas flow passage for supplying;
The laminated body, which is disposed in contact with an outer surface of the laminated body of the separator disposed at an end portion of the laminated body, and an uneven portion is formed on a surface contacting the outer surface of the laminated body of the separator. A conductive current collector plate for extracting the generated current to the outside,
A clamping plate that is disposed outside the current collector plate and clamps the laminate in the laminating direction;
A fuel cell comprising:
前記凹凸部のうちの少なくとも凸部表面に導電性金属メッキが施されていることを特徴とする請求項1に記載の燃料電池。   2. The fuel cell according to claim 1, wherein conductive metal plating is applied to at least a surface of the convex portion of the concavo-convex portion. 前記金属メッキの材質が、スズ、銀、白金、金、ルテニウム、ロジウム、イリジウムのいずれかまたはそれらの組み合わせであること、を特徴とする請求項2に記載の燃料電池。   3. The fuel cell according to claim 2, wherein a material of the metal plating is any one of tin, silver, platinum, gold, ruthenium, rhodium, iridium, or a combination thereof. 前記集電板の主材質が、銅、鉄、ステンレス鋼、アルミニウムのいずれかであること、を特徴とする請求項1ないし請求項3のいずれか一項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein a main material of the current collecting plate is any one of copper, iron, stainless steel, and aluminum. 前記積層体の端部に配置されたセパレータと前記締付板とにはさまれて前記集電板を囲むように配置された周囲シール部を有し、
前記集電板の集電部の大きさが、前記各単位セルの反応部よりも大きくかつ前記周囲シール部内部と同じかまたは小さいことを特徴とする請求項1ないし請求項4のいずれか一項に記載の燃料電池。
A peripheral seal portion disposed so as to surround the current collector plate sandwiched between the separator disposed at the end of the laminate and the fastening plate;
The size of the current collecting portion of the current collecting plate is larger than the reaction portion of each unit cell and is the same as or smaller than the inside of the peripheral seal portion. The fuel cell according to item.
前記集電板の凹凸部は、平坦な面に切削加工を施して複数の直線的溝を形成することによって凹部を形成したものであること、を特徴とする請求項5に記載の燃料電池。   6. The fuel cell according to claim 5, wherein the uneven portion of the current collector plate is formed by forming a plurality of linear grooves by cutting a flat surface to form a plurality of linear grooves. 請求項1ないし請求項5のいずれか一項に記載の燃料電池を用いた燃料電池システム。   A fuel cell system using the fuel cell according to any one of claims 1 to 5.
JP2009031152A 2009-02-13 2009-02-13 Fuel battery and fuel battery system Withdrawn JP2010186685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031152A JP2010186685A (en) 2009-02-13 2009-02-13 Fuel battery and fuel battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031152A JP2010186685A (en) 2009-02-13 2009-02-13 Fuel battery and fuel battery system

Publications (1)

Publication Number Publication Date
JP2010186685A true JP2010186685A (en) 2010-08-26

Family

ID=42767218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031152A Withdrawn JP2010186685A (en) 2009-02-13 2009-02-13 Fuel battery and fuel battery system

Country Status (1)

Country Link
JP (1) JP2010186685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210984A (en) * 2014-04-28 2015-11-24 東芝燃料電池システム株式会社 Fuel cell stack
JP2019087424A (en) * 2017-11-07 2019-06-06 東芝燃料電池システム株式会社 Fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210984A (en) * 2014-04-28 2015-11-24 東芝燃料電池システム株式会社 Fuel cell stack
JP2019087424A (en) * 2017-11-07 2019-06-06 東芝燃料電池システム株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
WO2003088395A1 (en) Polymeric electrolyte type fuel cell
WO2006077762A1 (en) Flat laminate type fuel cell and fuel cell stack
JP4935176B2 (en) Separator unit and fuel cell stack
JP4440958B2 (en) Fuel cell
JP5454301B2 (en) Fuel cell stack
JP5054049B2 (en) Electrolyzer
JP4047265B2 (en) Fuel cell and cooling separator used therefor
JP6059615B2 (en) Fuel cell stack
US9190691B2 (en) Fuel cell stack
US20060216558A1 (en) Monitor connection of fuel cell stack
JP2009187729A (en) Fuel cell
JP2019061772A (en) Fuel cell stack
JP2010186685A (en) Fuel battery and fuel battery system
JP4516403B2 (en) Fuel cell
JP5078573B2 (en) Fuel cell system
JP5151270B2 (en) Fuel cell components
JP2010065271A (en) Feed conductor, water electrolysis stack equipped with the feed conductor, and water electrolysis device equipped with the water electrolysis stack
KR20100033618A (en) Current collector and stack of fuel cell
JP5125376B2 (en) Fuel cell
JP3130802U (en) Fuel cell
US11056709B2 (en) Fuel cell stack structure
JP2006107898A (en) Separator for flat type polymer electrolyte fuel cell
JP5205816B2 (en) Fuel cell
JP5474744B2 (en) Fuel cell system
KR20120075232A (en) Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110425

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501