JP2010185533A - Solenoid control valve - Google Patents

Solenoid control valve Download PDF

Info

Publication number
JP2010185533A
JP2010185533A JP2009030795A JP2009030795A JP2010185533A JP 2010185533 A JP2010185533 A JP 2010185533A JP 2009030795 A JP2009030795 A JP 2009030795A JP 2009030795 A JP2009030795 A JP 2009030795A JP 2010185533 A JP2010185533 A JP 2010185533A
Authority
JP
Japan
Prior art keywords
valve
chamber
elastic member
electromagnetic
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030795A
Other languages
Japanese (ja)
Other versions
JP5356854B2 (en
Inventor
Shinji Kasai
慎二 葛西
Ichiro Ogawara
一郎 大河原
Shinichi Kitano
信一 北野
Takehisa Yokota
健久 横田
Kazuhiko Osawa
一彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2009030795A priority Critical patent/JP5356854B2/en
Publication of JP2010185533A publication Critical patent/JP2010185533A/en
Application granted granted Critical
Publication of JP5356854B2 publication Critical patent/JP5356854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid control valve capable of generating no leakage flow rate between an equalizing chamber and a secondary chamber, when closing a valve element, in simple constitution. <P>SOLUTION: A primary chamber 11 and the equalizing chamber 15 communicated with an inlet port 1a are communicated through an equalizing introduction passage 16. A through-hole 18 is provided between the secondary chamber 12 and the equalizing chamber 15 communicated with an outlet port 1b. The piston 23 of a valve rod 2 is inserted into the through-hole 18. A diameter of the piston 23 is made same to that of the valve element 21. A tapered face 18b is formed on the periphery of the piston and an opening edge 18a of the through-hole 18. An elastic member 41 is pressed onto the opening edge 18a of the through-hole 18 and the piston 23, with a guide spring 44, under a closed state of the valve element 21. The elastic member 41 is applied with a back pressure from the equalizing chamber 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁制御弁に関し、特に、燃料電池システム用の電磁式比例流量弁等として使用される電磁制御弁に関する。   The present invention relates to an electromagnetic control valve, and more particularly to an electromagnetic control valve used as an electromagnetic proportional flow valve for a fuel cell system.

従来、燃料電池システム用に使用される電磁制御弁として、例えば特開2003−343758号公報(特許文献1)、特開2004−245243号公報(特許文献2)に開示されたものがある。   Conventionally, electromagnetic control valves used for fuel cell systems include those disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-343758 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2004-245243 (Patent Document 2).

これらの電磁制御弁は、弁ハウジング内に弁ポートの開度調節を行う弁体を有し、電磁ソレノイドが発生する電磁力と当該電磁力に対抗するばね力との平衡関係によって弁体を中心軸に沿った方向に移動させ、弁ポートの開度を比例的に変化させるものである。また、電磁ソレノイド装置が生じる電磁力に応じて、つまり、電磁ソレノイド装置の電磁コイルに通電する電流の大小に応じて弁ポートの開度(弁開度)を比例的に変化し、コイル電流に応じて流量を定量的に制御する。   These electromagnetic control valves have a valve body that adjusts the opening degree of the valve port in the valve housing, and the valve body is centered by an equilibrium relationship between the electromagnetic force generated by the electromagnetic solenoid and the spring force against the electromagnetic force. It is moved in a direction along the axis, and the opening degree of the valve port is changed proportionally. Further, according to the electromagnetic force generated by the electromagnetic solenoid device, that is, according to the magnitude of the current supplied to the electromagnetic coil of the electromagnetic solenoid device, the opening degree of the valve port (valve opening degree) is proportionally changed to the coil current. Accordingly, the flow rate is controlled quantitatively.

さらに、弁ポートの一方の側に入口ポートと連通して弁体を収容する一次室が設けられ、弁ポートの他方の側に出口ポートと連通した二次室が設けられたものにおいて、一次室側に均圧通路(均圧導入路)によって二次室と連通した均圧室を設け、当該均圧室の圧力が二次室に対抗して弁体に作用するように構成している。そして、弁ポートの口径と均圧室の有効径とを等しく設定することにより、一次室と二次室との差圧が弁ポートの部分で弁体に作用する力を、一次室と均圧室との差圧が弁体に作用する力でキャンセルするようにしている。   Further, a primary chamber is provided on one side of the valve port to communicate with the inlet port and accommodates the valve body, and a secondary chamber is provided on the other side of the valve port to communicate with the outlet port. A pressure equalizing chamber communicated with the secondary chamber by a pressure equalizing passage (equal pressure introducing passage) is provided on the side, and the pressure in the pressure equalizing chamber opposes the secondary chamber and acts on the valve body. Then, by setting the valve port diameter equal to the effective diameter of the pressure equalizing chamber, the force that the differential pressure between the primary chamber and the secondary chamber acts on the valve body at the valve port portion is equalized with the primary chamber. The differential pressure with the chamber is canceled by the force acting on the valve body.

これにより、この圧力バランス方式の電磁制御弁では、一次側圧力と二次側圧力との差圧の影響を受けず、定電流時においては、一定の弁開度を維持した安定した流量制御を行うことが可能になる。   As a result, this pressure balance type electromagnetic control valve is not affected by the differential pressure between the primary side pressure and the secondary side pressure, and at constant current, stable flow rate control is maintained while maintaining a constant valve opening. It becomes possible to do.

特開2003−343758号公報JP 2003-343758 A 特開2004−245243号公報Japanese Patent Laid-Open No. 2004-245243

しかしながら、上述した電磁制御弁では、一次室と均圧室とを気密分離しての漏れ流量を無くすために、ダイヤフラムを用いている。このため構造が複雑になるという問題がある。これに対して、例えば図6に示すような電磁制御弁がある。この電磁制御弁は、弁体aの端部を均圧室bに望ませて、一次室cと均圧室bとの差圧の力を弁体aに与えることにより、一次室cと二次室eとの差圧により弁体aに加わる力をキャンセルするようにしたものである。この場合、一次室cから均圧室bまで挿通孔fが設けられているが、この挿通孔fと弁体aとのクリアランスからの漏れを防止するために弁体aの回りにOリングgを配設するようにしているので、このOリングgと弁体aとの摺動抵抗が大きく流量制御が難しくなるという問題がある。また、この摺動抵抗を小さくすると、漏れが生じる。   However, in the electromagnetic control valve described above, a diaphragm is used in order to eliminate a leakage flow rate by hermetically separating the primary chamber and the pressure equalizing chamber. For this reason, there is a problem that the structure becomes complicated. On the other hand, for example, there is an electromagnetic control valve as shown in FIG. This electromagnetic control valve makes the end of the valve body a desired for the pressure equalizing chamber b, and applies a force of differential pressure between the primary chamber c and the pressure equalizing chamber b to the valve body a. The force applied to the valve body a due to the differential pressure with the next chamber e is canceled. In this case, an insertion hole f is provided from the primary chamber c to the pressure equalization chamber b. In order to prevent leakage from the clearance between the insertion hole f and the valve element a, an O-ring g is provided around the valve element a. Since the sliding resistance between the O-ring g and the valve body a is large, it is difficult to control the flow rate. Further, when this sliding resistance is reduced, leakage occurs.

本発明は、上述の如き問題点を解消するためになされたものであり、簡単な構成で弁体が弁閉とした時に均圧室と二次室間の漏れ流量を無くすことができる電磁制御弁を提供することを課題とする。   The present invention has been made to solve the above-described problems, and electromagnetic control that can eliminate the leakage flow rate between the pressure equalizing chamber and the secondary chamber when the valve body is closed with a simple configuration. It is an object to provide a valve.

請求項1の電磁制御弁は、入口ポートに連通する一次室と、出口ポートに連通する二次室と、前記一次室と前記二次室とを連通するとともに一次室側開口の周りに弁座シール部を画定する弁ポートとを有する弁ハウジングと、前記一次室及び前記二次室内に延在され前記弁座シール部に対して離接が可能な弁体を有する弁棒と、前記弁棒を該弁棒の中心軸に沿った方向に移動する電磁ソレノイド装置と、電磁ソレノイド装置が生じる電磁力に対抗するばね力を生じるばね手段とを有し、前記電磁ソレノイド装置が生じる電磁力と前記ばね手段のばね力との平衡関係によって前記弁棒が中心軸に沿った方向に移動し、当該移動により前記弁体で前記弁ポートの開度を変化させる電磁制御弁において、前記二次室を挟む前記一次室と反対側に該一次室に連通された均圧室が設けられるとともに、前記弁ハウジングには、該二次室から該均圧室まで連通する挿通孔が形成され、前記弁棒には前記挿通孔に整合して挿通されるピストン部が形成され、前記均圧室内に、前記弁体が前記弁座シール部に接触した弁閉時に、前記挿通孔の均圧室側の開口の周囲と前記ピストン部の端面の縁とに当接するように、該ピストン部側に付勢されたリング状の弾性部材が配設されていることを特徴とする。   An electromagnetic control valve according to claim 1 is configured to communicate a primary chamber communicating with an inlet port, a secondary chamber communicating with an outlet port, the primary chamber and the secondary chamber, and a valve seat around the primary chamber side opening. A valve housing having a valve port defining a seal portion; a valve rod having a valve body extending into the primary chamber and the secondary chamber and capable of being connected to and detached from the valve seat seal portion; and the valve rod An electromagnetic solenoid device that moves in a direction along the central axis of the valve stem, and spring means that generates a spring force that opposes the electromagnetic force generated by the electromagnetic solenoid device, and the electromagnetic force generated by the electromagnetic solenoid device and the In the electromagnetic control valve in which the valve rod moves in a direction along the central axis by an equilibrium relationship with the spring force of the spring means, and the opening of the valve port is changed by the valve body by the movement, the secondary chamber is The one on the opposite side of the primary chamber A pressure equalizing chamber communicated with the chamber is provided, and an insertion hole communicating from the secondary chamber to the pressure equalizing chamber is formed in the valve housing, and the valve rod is inserted in alignment with the insertion hole. When the valve closes when the valve body contacts the valve seat seal portion, the periphery of the opening on the pressure equalizing chamber side of the insertion hole and the edge of the end surface of the piston portion are formed in the pressure equalizing chamber A ring-shaped elastic member urged toward the piston portion side is disposed so as to abut against.

請求項2の電磁制御弁は、請求項1に記載の電磁制御弁であって、前記挿通孔の均圧室側の開口の周囲に、該均圧室側の開口縁から傾斜したテーパ面が形成され、前記リング状の弾性部材が該テーパ面に対してに押圧するように構成したことを特徴とする。   An electromagnetic control valve according to a second aspect is the electromagnetic control valve according to the first aspect, wherein a tapered surface inclined from an opening edge on the pressure equalizing chamber side is provided around the opening on the pressure equalizing chamber side of the insertion hole. The ring-shaped elastic member is formed so as to press against the tapered surface.

請求項1の電磁制御弁によれば、出口ポートに連通する二次室と、一次室に連通する均圧室との間で、弁棒のピストン部と挿通孔とのクリアランス部が弾性部材で封止されるので、弁閉時に漏れ流量を無くすことができる。   According to the electromagnetic control valve of the first aspect, the clearance portion between the piston portion of the valve stem and the insertion hole is an elastic member between the secondary chamber communicating with the outlet port and the pressure equalizing chamber communicating with the primary chamber. Since it is sealed, the leakage flow rate can be eliminated when the valve is closed.

請求項2の電磁制御弁によれば、請求項1の効果に加えて、弁棒のピストン部が弾性部材を移動しても、弾性部材がピストン部の端面の縁に当接した状態で該弾性部材がテーパ面に押圧当接するので、弁体が弁座シール部に接触して弁閉となるとき、この弁閉の直前から弁閉時まで、弁棒のピストン部と挿通孔とのクリアランス部の封止を実現することができる。   According to the electromagnetic control valve of the second aspect, in addition to the effect of the first aspect, even when the piston portion of the valve rod moves the elastic member, the elastic member is in contact with the edge of the end surface of the piston portion. Since the elastic member presses and contacts the taper surface, when the valve contacts the valve seat seal part and closes the valve, the clearance between the piston part of the valve stem and the insertion hole is from immediately before the valve is closed to when the valve is closed. The sealing of the part can be realized.

本発明の実施形態の電磁制御弁の弁閉状態の縦断面図である。It is a longitudinal cross-sectional view of the valve closed state of the electromagnetic control valve of the embodiment of the present invention. 本発明の実施形態の電磁制御弁の流量制御状態の縦断面図である。It is a longitudinal cross-sectional view of the flow control state of the electromagnetic control valve of the embodiment of the present invention. 本発明の実施形態の電磁制御弁における均圧室部分の弁閉状態及び流量制御状態の拡大断面図である。It is an expanded sectional view of the valve closed state and flow control state of the pressure equalization chamber part in the electromagnetic control valve of the embodiment of the present invention. 本発明の実施形態におけるピストン部、弾性部材及びテーパ面の作用を説明する図である。It is a figure explaining the effect | action of the piston part in the embodiment of this invention, an elastic member, and a taper surface. 弾性部材を固定とした場合の問題点を説明する図である。It is a figure explaining the problem at the time of fixing an elastic member. 従来の電磁制御弁の一例を示す図である。It is a figure which shows an example of the conventional electromagnetic control valve.

次に、本発明の実施形態について説明する。図1は実施形態の電磁制御弁の弁閉状態の縦断面図、図2は実施形態の電磁制御弁の流量制御状態の縦断面図、図3(A) は実施形態の電磁制御弁における均圧室部分の弁閉状態の拡大断面図、図3(B) は実施形態の電磁制御弁における均圧室部分の流量制御状態の拡大断面図である。この実施形態の電磁制御は、電磁弁ユニット10と、燃料電池システムのハウジング20とで構成されている。ハウジング20には、弁ユニット装着孔20A、この弁ユニット装着孔20Aに連通する流入通路210及び流出通路220が形成されている。そして、弁ユニット装着孔20A内に弁ユニット10が嵌合され、弁ユニット10のフランジ10Aが図示しないボルト等により固着されている。   Next, an embodiment of the present invention will be described. FIG. 1 is a longitudinal sectional view of the electromagnetic control valve of the embodiment in a closed state, FIG. 2 is a longitudinal sectional view of a flow control state of the electromagnetic control valve of the embodiment, and FIG. FIG. 3B is an enlarged sectional view of the flow rate control state of the pressure equalizing chamber portion in the electromagnetic control valve of the embodiment. The electromagnetic control of this embodiment is composed of an electromagnetic valve unit 10 and a fuel cell system housing 20. The housing 20 is formed with a valve unit mounting hole 20A and an inflow passage 210 and an outflow passage 220 communicating with the valve unit mounting hole 20A. The valve unit 10 is fitted in the valve unit mounting hole 20A, and the flange 10A of the valve unit 10 is fixed by a bolt or the like (not shown).

弁ユニット10は弁ハウジング1を有している。弁ハウジング1には、ハウジング20の流入通路210に連通する入口ポート1a、ハウジング20の流出通路220に連通する出口ポート1b、入口ポート1aに連通する一次室11、出口ポート1bに連通する二次室12、一次室11と二次室12を連通する弁ポート13を有している。弁ポート13は水平断面形状が円形であり、その一次室11側開口には円筒状の弁座部材14が配設されている。弁座部材14は一次室11側の端部に「弁座シール部」としてのリング状の弁シール14aを有している。これにより、弁ポート13は一次室11側開口の周りに弁座シール部を画定している。   The valve unit 10 has a valve housing 1. The valve housing 1 has an inlet port 1a communicating with the inflow passage 210 of the housing 20, an outlet port 1b communicating with the outflow passage 220 of the housing 20, a primary chamber 11 communicating with the inlet port 1a, and a secondary communicating with the outlet port 1b. The chamber 12 has a valve port 13 communicating with the primary chamber 11 and the secondary chamber 12. The valve port 13 has a circular horizontal cross-sectional shape, and a cylindrical valve seat member 14 is disposed in the opening on the primary chamber 11 side. The valve seat member 14 has a ring-shaped valve seal 14 a as a “valve seat seal portion” at an end portion on the primary chamber 11 side. Accordingly, the valve port 13 defines a valve seat seal portion around the opening on the primary chamber 11 side.

一次室11、二次室12及び弁ポート13内には中心軸Lに沿った方向に移動可能な弁棒2が延在されている。弁棒2は、一次室11内に位置して弁シール(弁座シール部)14aに対して離接が可能な円柱状の弁体21を有している。なお、弁座部材14及び弁シール14aを無くして弁ポート13の一次室側開口のみとし、弁体21の下端周囲に弁シール14a同等のシール部材を設けてもよい。この場合は、弁ポートの開口周囲が弁座シール部となる。   In the primary chamber 11, the secondary chamber 12, and the valve port 13, the valve rod 2 that can move in the direction along the central axis L is extended. The valve stem 2 has a cylindrical valve body 21 that is located in the primary chamber 11 and can be separated from and connected to a valve seal (valve seat seal portion) 14a. The valve seat member 14 and the valve seal 14a may be eliminated so that only the primary chamber side opening of the valve port 13 is provided, and a seal member equivalent to the valve seal 14a may be provided around the lower end of the valve body 21. In this case, the periphery of the opening of the valve port is the valve seat seal portion.

弁体21は、弁棒2の中心軸Lに沿った方向への移動により決まる弁シール14aとの位置関係により、弁ポート13の開度を設定する。そして、図2で見て下方への移動により、弁ポート13の開度を減少し、これとは逆の上方への移動により、弁ポート13の開度を増大する。また、一次室11の内圧は二次室12の内圧より高圧であり、弁体21には、この一次室11の内圧と二次室12の内圧との差圧が作用し、弁体21は下方に力を受ける。この差圧が弁体21に作用する面積は、弁ポート13の内径(弁体21の有効受圧径)により決まる。   The valve body 21 sets the opening degree of the valve port 13 based on the positional relationship with the valve seal 14a determined by the movement of the valve stem 2 in the direction along the central axis L. 2, the opening degree of the valve port 13 is decreased by moving downward, and the opening degree of the valve port 13 is increased by moving upward in the opposite direction. Further, the internal pressure of the primary chamber 11 is higher than the internal pressure of the secondary chamber 12, and a differential pressure between the internal pressure of the primary chamber 11 and the internal pressure of the secondary chamber 12 acts on the valve body 21. Receives downward force. The area where this differential pressure acts on the valve body 21 is determined by the inner diameter of the valve port 13 (effective pressure receiving diameter of the valve body 21).

弁ハウジング1の一次室11側(上側)には、電磁ソレノイド装置3のプランジャケース31が気密に固定され、さらにプランジャケース31の上部には、吸引子32が気密に固定されている。また、プランジャケース31の内部にはプランジャ33が配設されている。そして、プランジャ33の中心にプランジャロッド34を貫通させ、このプランジャロッド34の下部を弁棒2の連結ロッド22にネジ込み、または圧入することにより、プランジャ33と弁棒2及びプランジャロッド34が一体に固着されている。   A plunger case 31 of the electromagnetic solenoid device 3 is airtightly fixed to the primary chamber 11 side (upper side) of the valve housing 1, and an attractor 32 is airtightly fixed to the upper portion of the plunger case 31. A plunger 33 is disposed inside the plunger case 31. Then, the plunger rod 34 is passed through the center of the plunger 33, and the lower portion of the plunger rod 34 is screwed or press-fitted into the connecting rod 22 of the valve rod 2, whereby the plunger 33, the valve rod 2 and the plunger rod 34 are integrated. It is fixed to.

また、プランジャロッド34は吸引子32の中心を貫通し、このプランジャロッド34の上端部34aは吸引子32の中央のばね室32a内に突出している。ばね室32a内には、「ばね手段」を構成するばね受け35と調整ばね36が配設されている。また、吸引子32の上端には調整ネジ37がネジ込まれている。そして、ばね受け35はプランジャロッド34の上端部34aに当接され、このばね受け35と調整ねじ37の間に調整ばね36が設けられている。吸引子32およびプランジャケース31の外周部には、ボビン38aに巻回された電磁コイル38と磁気ガイド部材39が設けられており、電磁コイル38の励磁により、吸引子32の下端面がプランジャ33に対する磁気吸引面となる。   The plunger rod 34 passes through the center of the suction element 32, and the upper end portion 34 a of the plunger rod 34 projects into the spring chamber 32 a at the center of the suction element 32. In the spring chamber 32a, a spring receiver 35 and an adjustment spring 36 that constitute "spring means" are disposed. An adjustment screw 37 is screwed into the upper end of the suction element 32. The spring receiver 35 is brought into contact with the upper end 34 a of the plunger rod 34, and an adjustment spring 36 is provided between the spring receiver 35 and the adjustment screw 37. An electromagnetic coil 38 and a magnetic guide member 39 wound around a bobbin 38 a are provided on the outer periphery of the attractor 32 and the plunger case 31, and the lower end surface of the attractor 32 is moved to the plunger 33 by excitation of the electromagnetic coil 38. It becomes the magnetic attraction surface against.

ハウジング20の弁ユニット装着孔20Aの最奥部分は均圧室15を構成している。また、弁ハウジング1には、入口ポート1aを介して一次室11と均圧室15とを連通する均圧導入路16が形成されている。   The innermost part of the valve unit mounting hole 20 </ b> A of the housing 20 constitutes a pressure equalizing chamber 15. The valve housing 1 is formed with a pressure equalization introduction path 16 that communicates the primary chamber 11 and the pressure equalization chamber 15 via the inlet port 1a.

弁ハウジング1の下端部には、開口17aを有する円筒形状のケース17が形成されている。ケース17内には、Oリング状の弾性部材41と、弾性部材41を保持する弾性部材ガイド42と、開口17aの内側に固定された下ばね受け43と、弾性部材ガイド42と下ばね受け43の間に配設されたガイドばね44とを備えている。弾性部材ガイド42と下ばね受け43はそれぞれ開口42a,43aを有しており、Oリング状の弾性部材41の内周部分は、この開口42a,43aを介して均圧室15に導通されている。   A cylindrical case 17 having an opening 17 a is formed at the lower end of the valve housing 1. In the case 17, an O-ring-shaped elastic member 41, an elastic member guide 42 that holds the elastic member 41, a lower spring receiver 43 that is fixed inside the opening 17 a, an elastic member guide 42 and a lower spring receiver 43. And a guide spring 44 disposed therebetween. The elastic member guide 42 and the lower spring receiver 43 have openings 42a and 43a, respectively, and the inner peripheral portion of the O-ring shaped elastic member 41 is conducted to the pressure equalizing chamber 15 through the openings 42a and 43a. Yes.

弁ハウジング1には、二次室12からシールケース17内(すなわち均圧室15)まで連通する挿通孔18が形成され、弁棒2には挿通孔18に整合して挿通されるピストン部23が形成されている。この挿通孔18は水平断面形状が円形であり、弁ポート13と同径寸法となっている。また、図1及び図3(A) に示すように、ピストン部23の均圧室15側の端面23aの縁23a1は、弁体21が弁シール14aに着座したときに挿通孔18の均圧室15側の開口縁18aに略一致するように設定されている。   The valve housing 1 is formed with an insertion hole 18 that communicates from the secondary chamber 12 to the inside of the seal case 17 (that is, the pressure equalizing chamber 15), and the piston portion 23 that is inserted into the valve rod 2 in alignment with the insertion hole 18. Is formed. The insertion hole 18 has a circular horizontal cross section and has the same diameter as the valve port 13. Further, as shown in FIGS. 1 and 3A, the edge 23a1 of the end face 23a on the pressure equalizing chamber 15 side of the piston portion 23 is equalized in the insertion hole 18 when the valve element 21 is seated on the valve seal 14a. It is set so as to substantially coincide with the opening edge 18a on the chamber 15 side.

そして、弾性部材41は、ガイドばね44により挿通孔18及びピストン部23側に付勢されており、この弾性部材41は、弁体21が弁シール14aに着座する直前に、ピストン部23の端面23aの縁23a1とに当接する。   The elastic member 41 is urged toward the insertion hole 18 and the piston part 23 by the guide spring 44. The elastic member 41 is an end face of the piston part 23 immediately before the valve body 21 is seated on the valve seal 14a. It abuts against the edge 23a1 of 23a.

前記挿通孔18の均圧室15側の開口縁18aの周囲にはテーパ面18bが形成されており、このテーパ面18bは均圧室15側から見てすり鉢状に傾斜している。そして、弁体21が弁シール14aに着座した弁閉時に、弾性部材41はガイドばね44の付勢力によりテーパ面18bとピストン部23の端面23aの縁23a1とに押圧される。さらに、後述のように、この弾性部材41は均圧室15の内圧により、テーパ面18bに対して中心軸Lから外側半径方向に押圧される。   A tapered surface 18b is formed around the opening edge 18a on the pressure equalizing chamber 15 side of the insertion hole 18, and this tapered surface 18b is inclined in a mortar shape when viewed from the pressure equalizing chamber 15 side. When the valve body 21 is seated on the valve seal 14 a and the valve is closed, the elastic member 41 is pressed against the tapered surface 18 b and the edge 23 a 1 of the end surface 23 a of the piston portion 23 by the biasing force of the guide spring 44. Further, as will be described later, the elastic member 41 is pressed against the tapered surface 18b in the outer radial direction from the central axis L by the internal pressure of the pressure equalizing chamber 15.

以上の構成により、実施形態の電磁制御弁は次のように作用する。電磁ソレノイド装置3において調整ばね36はプランジャロッド34を介して弁棒2を弁座部材14側に付勢している。電磁コイル38を励磁することにより、プランジャ33が吸引子32に吸引され、弁棒2は調整ばね36の付勢力に抗して弁座部材14から離れる方向に移動し、弁閉から弁開となるとともに前述のように弁体21と弁シール14aとの中心軸Lに沿った方向の位置関係により、弁ポート13の開度(流量)が制御される。また、電磁コイル38の励磁を無くすことにより弁体21が弁シール14aに着座(接触)し、弁閉となる。なお、調整ネジ37の締め具合により、調整ばね36が弁棒2に加える付勢力が調整され、開度の制御特性が調整される。このように、電磁ソレノイド装置3が生じる電磁力と、調整ばね36のばね力との平衡関係によって弁棒2が中心軸Lに沿った方向に移動し、弁体21で弁ポート13の開度を変化させる。   With the above configuration, the electromagnetic control valve according to the embodiment operates as follows. In the electromagnetic solenoid device 3, the adjustment spring 36 biases the valve stem 2 toward the valve seat member 14 via the plunger rod 34. By exciting the electromagnetic coil 38, the plunger 33 is attracted by the attractor 32, and the valve rod 2 moves away from the valve seat member 14 against the biasing force of the adjustment spring 36. In addition, as described above, the opening degree (flow rate) of the valve port 13 is controlled by the positional relationship in the direction along the central axis L between the valve body 21 and the valve seal 14a. Further, by eliminating the excitation of the electromagnetic coil 38, the valve element 21 is seated (contacted) on the valve seal 14a and the valve is closed. Note that the biasing force applied by the adjustment spring 36 to the valve stem 2 is adjusted by the tightening degree of the adjustment screw 37, and the control characteristic of the opening degree is adjusted. Thus, the valve rod 2 moves in the direction along the central axis L due to the balanced relationship between the electromagnetic force generated by the electromagnetic solenoid device 3 and the spring force of the adjustment spring 36, and the valve element 21 opens the valve port 13. To change.

また、弁体21には前述のように一次室11の内圧と二次室12の内圧の差圧が作用して下方に力が加わる。一方、均圧室15は均圧導入路16によって一次室11と連通されているので、均圧室15の内圧と二次室12の内圧との差圧がピストン部23に作用し、ピストン部23には上方に力が加わる。そして、弁ポート13の内径(弁体21の有効受圧径)と、挿通孔18の内径(ピストン部23の有効受圧径)とが等しいので、弁棒2に対しては、差圧による力は互いにキャンセルされ、弁体21の開閉に差圧の影響を受けない流量制御が可能になる。   Further, as described above, the differential pressure between the internal pressure of the primary chamber 11 and the internal pressure of the secondary chamber 12 acts on the valve body 21 and a force is applied downward. On the other hand, since the pressure equalizing chamber 15 is communicated with the primary chamber 11 by the pressure equalizing introduction path 16, the differential pressure between the internal pressure of the pressure equalizing chamber 15 and the internal pressure of the secondary chamber 12 acts on the piston portion 23. A force is applied to 23 upward. Since the inner diameter of the valve port 13 (effective pressure receiving diameter of the valve body 21) is equal to the inner diameter of the insertion hole 18 (effective pressure receiving diameter of the piston portion 23), the force due to the differential pressure is not exerted on the valve stem 2. The flow rates can be controlled without being influenced by the differential pressure in the opening and closing of the valve body 21 because they are mutually canceled.

弾性部材41は挿通孔18とピストン部23とのクリアランスからの漏れをシールするための部材である。図4はピストン部23、弾性部材41及びテーパ面18bの作用を説明する図であり、図4(A) は弁体21が弁シール14aに着座する直前の状態、図4(B) は弁体21が弁シール14aに着座したときの状態を示している。   The elastic member 41 is a member for sealing leakage from the clearance between the insertion hole 18 and the piston portion 23. 4A and 4B are views for explaining the operation of the piston portion 23, the elastic member 41, and the tapered surface 18b. FIG. 4A is a state immediately before the valve body 21 is seated on the valve seal 14a, and FIG. The state when the body 21 is seated on the valve seal 14a is shown.

図4(A) に示すように、ピストン部23の縁23a1と、挿通孔18の開口縁18aとが一致する状態は、弁体21が弁シール14aに着座する直前の状態である。このとき、弾性部材41はピストン部23の縁23a1と挿通孔18の開口縁18aとに当接した状態で押圧されている。そして、この状態から弁体21が弁シール14aに着座する方向に移動すると、図4(B) に示すように、ピストン部23の縁23a1が弾性部材41を押圧し、この弾性部材41と弾性部材ガイド42はガイドばね44の付勢力に抗して僅かに下方に移動する。   As shown in FIG. 4A, the state in which the edge 23a1 of the piston portion 23 and the opening edge 18a of the insertion hole 18 coincide with each other is a state immediately before the valve body 21 is seated on the valve seal 14a. At this time, the elastic member 41 is pressed while being in contact with the edge 23 a 1 of the piston portion 23 and the opening edge 18 a of the insertion hole 18. Then, when the valve element 21 moves from this state in the direction in which the valve element 21 is seated on the valve seal 14a, the edge 23a1 of the piston portion 23 presses the elastic member 41 as shown in FIG. The member guide 42 moves slightly downward against the urging force of the guide spring 44.

しかしながら、このとき弾性部材41はテーパ面18bに接触したまま押圧される。すなわち、Oリング状の弾性部材41には均圧室15からの背圧を受けて、テーパ面18b(及びピストン部23の端面23a)に押圧される。これにより、弁体21が弁シール14aに着座した着座状態でも、挿通孔18とピストン部23との間のクリアランスからの漏れを防止できる。なお、図4(B) は高さ方向の移動量を誇張して図示してあるが、弁体21が弁シール14aに着座したときのピストン部23の端面23aの開口縁18aからの移動量ρ(高さ)は最大でも0.1ミリ程度である。   However, at this time, the elastic member 41 is pressed while being in contact with the tapered surface 18b. That is, the O-ring-shaped elastic member 41 receives a back pressure from the pressure equalizing chamber 15 and is pressed against the tapered surface 18b (and the end surface 23a of the piston portion 23). Thereby, even if the valve body 21 is seated on the valve seal 14a, leakage from the clearance between the insertion hole 18 and the piston portion 23 can be prevented. Although FIG. 4B exaggerates the amount of movement in the height direction, the amount of movement from the opening edge 18a of the end surface 23a of the piston portion 23 when the valve body 21 is seated on the valve seal 14a. ρ (height) is about 0.1 mm at the maximum.

なお、図3(B) 及び図2に示す流量制御時(弁開時)では、挿通孔18とピストン部23から多少の漏れを生じるが、このときは弁シール14a及び弁体21との間を流れる流量が多いので、この漏れは流量の制御に影響を及ぼさない。   Note that, during the flow rate control (when the valve is open) shown in FIGS. 3B and 2, some leakage occurs from the insertion hole 18 and the piston portion 23, but at this time, there is a gap between the valve seal 14 a and the valve body 21. This leakage does not affect the flow rate control because of the high flow rate through the.

また、ガイドばね44の付勢力は弾性部材41が挿通孔18の開口縁18aに当接する程度の弱い力となっており、ピストン部23が弾性部材41に当接してこの弾性部材41を押圧するとき、弾性部材41は容易に下方に変位するので、弾性部材41の弾性変形は殆どなく、着座時あるいは離座時の制御が容易になる。例えば、弾性部材が変位しないような固定とした場合、ピストン部が弾性部材に当接すると、それ以降、当接するまでの電磁力と調整ばねの力とのつり合いに対してさらに弾性部材の弾性係数(弾性力)が加わる。このような場合、図5に示すように、電流量−流量の流量特性に変曲点が生じ、変曲点を有するので制御しにくくなる。また、弁閉から弁開とする(離座する)方向でも同様である。しかしながら、前記のように弾性部材41が容易に変位するので、このような変曲点は殆ど生じることなく、制御が容易になる。なお、図5に示すヒステリシスは、例えば前掲の図6の従来例のようにピストン部の摺動抵抗が大きいほど大きくなるが、前記のように弾性部材41により漏れを防止できるので、ピストン部23と挿通孔18とのクリアランスを十分とって摺動抵抗をゼロにすることができ、このようなヒステリシスも低減できる。   Further, the biasing force of the guide spring 44 is weak enough that the elastic member 41 abuts against the opening edge 18 a of the insertion hole 18, and the piston portion 23 abuts against the elastic member 41 and presses the elastic member 41. At this time, since the elastic member 41 is easily displaced downward, there is almost no elastic deformation of the elastic member 41, and the control at the time of sitting or leaving becomes easy. For example, when the elastic member is fixed so as not to be displaced, when the piston portion comes into contact with the elastic member, the elastic coefficient of the elastic member is further increased against the balance between the electromagnetic force until the contact and the force of the adjusting spring thereafter. (Elastic force) is added. In such a case, as shown in FIG. 5, an inflection point occurs in the flow rate characteristic of the current amount-flow rate, and since it has an inflection point, it becomes difficult to control. The same applies to the direction from valve closing to valve opening (separating). However, since the elastic member 41 is easily displaced as described above, such an inflection point hardly occurs and the control becomes easy. The hysteresis shown in FIG. 5 increases as the sliding resistance of the piston portion increases as in the conventional example of FIG. 6 described above. However, since the elastic member 41 can prevent leakage as described above, the piston portion 23 And the insertion hole 18 can have a sufficient clearance to make the sliding resistance zero, and such hysteresis can be reduced.

なお、以上の実施形態では、弁体21が弁シール14aに当接する前にピストン部23が弾性部材41に当接する場合について説明したが、弁体21が弁シール14aに当接すると同時にピストン部23が弾性部材41に当接するようにしてもよい。   In the above embodiment, the case where the piston portion 23 contacts the elastic member 41 before the valve body 21 contacts the valve seal 14a has been described. However, at the same time as the valve body 21 contacts the valve seal 14a, the piston portion 23 may contact the elastic member 41.

また、実施形態では、ピストン部23が弾性部材41に当接してから弁体21が弁閉となるまでに、この移動量ρは0〜1.0mm程度である。すなわち、ガイドばね44が縮むことで弾性部材41はテーパ面18bに接触したまま移動させて、ピストン部23が弾性部材41に当接している状態でも、弁の開度を制御することができる。   In the embodiment, the amount of movement ρ is about 0 to 1.0 mm after the piston portion 23 comes into contact with the elastic member 41 and until the valve body 21 is closed. That is, when the guide spring 44 contracts, the elastic member 41 is moved while being in contact with the tapered surface 18b, and the opening degree of the valve can be controlled even when the piston portion 23 is in contact with the elastic member 41.

また、実施形態では、一次室11と均圧室15とを連通する均圧導入路16を弁ユニット10の弁ハウジング1に設けるようにしているが、ハウジング20に設けるようにしてもよい。このようにすると弁ユニット10自体をコンパクトにできる。   Further, in the embodiment, the pressure equalization introduction path 16 that communicates the primary chamber 11 and the pressure equalization chamber 15 is provided in the valve housing 1 of the valve unit 10, but may be provided in the housing 20. In this way, the valve unit 10 itself can be made compact.

1 弁ハウジング
1a 入口ポート
1b 出口ポート
11 一次室
12 二次室
13 弁ポート
14 弁座部材
14a 弁シール
15 均圧室
16 均圧導入路
18 挿通孔
18a 開口縁
18b テーパ面
2 弁棒
21 弁体
23 ピストン部
23a 端面
23a1 縁
3 電磁ソレノイド装置
35 ばね受け
36 調整ばね(ばね手段)
41 弾性部材
42 弾性部材ガイド
43 下ばね受け
44 ガイドばね
L 中心軸
DESCRIPTION OF SYMBOLS 1 Valve housing 1a Inlet port 1b Outlet port 11 Primary chamber 12 Secondary chamber 13 Valve port 14 Valve seat member 14a Valve seal 15 Pressure equalizing chamber 16 Pressure equalizing introduction path 18 Insertion hole 18a Opening edge 18b Tapered surface 2 Valve rod 21 Valve body 23 piston part 23a end face 23a1 edge 3 electromagnetic solenoid device 35 spring receiver 36 adjusting spring (spring means)
41 Elastic member 42 Elastic member guide 43 Lower spring receiver 44 Guide spring L Center shaft

Claims (2)

入口ポートに連通する一次室と、出口ポートに連通する二次室と、前記一次室と前記二次室とを連通するとともに一次室側開口の周りに弁座シール部を画定する弁ポートとを有する弁ハウジングと、
前記一次室及び前記二次室内に延在され前記弁座シール部に対して離接が可能な弁体を有する弁棒と、
前記弁棒を該弁棒の中心軸に沿った方向に移動する電磁ソレノイド装置と、
電磁ソレノイド装置が生じる電磁力に対抗するばね力を生じるばね手段とを有し、
前記電磁ソレノイド装置が生じる電磁力と前記ばね手段のばね力との平衡関係によって前記弁棒が中心軸に沿った方向に移動し、当該移動により前記弁体で前記弁ポートの開度を変化させる電磁制御弁において、
前記二次室を挟む前記一次室と反対側に該一次室に連通された均圧室が設けられるとともに、前記弁ハウジングには、該二次室から該均圧室まで連通する挿通孔が形成され、
前記弁棒には前記挿通孔に整合して挿通されるピストン部が形成され、
前記均圧室内に、前記弁体が前記弁座シール部に接触した弁閉時に、前記挿通孔の均圧室側の開口の周囲と前記ピストン部の端面の縁とに当接するように、該ピストン部側に付勢されたリング状の弾性部材が配設されていることを特徴とする電磁制御弁。
A primary chamber that communicates with the inlet port, a secondary chamber that communicates with the outlet port, and a valve port that communicates the primary chamber and the secondary chamber and defines a valve seat seal around the primary chamber side opening. A valve housing having,
A valve stem having a valve body that extends into the primary chamber and the secondary chamber and can be separated from and connected to the valve seat seal portion;
An electromagnetic solenoid device that moves the valve stem in a direction along a central axis of the valve stem;
Spring means for generating a spring force that opposes the electromagnetic force generated by the electromagnetic solenoid device;
The valve rod moves in a direction along the central axis by an equilibrium relationship between the electromagnetic force generated by the electromagnetic solenoid device and the spring force of the spring means, and the opening of the valve port is changed by the valve body by the movement. In electromagnetic control valve,
A pressure equalizing chamber that communicates with the primary chamber is provided on the opposite side of the primary chamber across the secondary chamber, and an insertion hole that communicates from the secondary chamber to the pressure equalizing chamber is formed in the valve housing. And
The valve stem is formed with a piston portion that is inserted in alignment with the insertion hole,
The valve body is in contact with the periphery of the pressure equalization chamber side opening of the insertion hole and the edge of the end surface of the piston portion when the valve body is in contact with the valve seat seal portion in the pressure equalization chamber. An electromagnetic control valve, characterized in that a ring-shaped elastic member biased toward the piston portion side is disposed.
前記挿通孔の均圧室側の開口の周囲に、該均圧室側の開口縁から傾斜したテーパ面が形成され、前記リング状の弾性部材が該テーパ面に対してに押圧するように構成したことを特徴とする請求項1に記載の電磁制御弁。   A tapered surface inclined from the opening edge on the pressure equalizing chamber side is formed around the opening on the pressure equalizing chamber side of the insertion hole, and the ring-shaped elastic member is configured to press against the tapered surface. The electromagnetic control valve according to claim 1.
JP2009030795A 2009-02-13 2009-02-13 Solenoid control valve Expired - Fee Related JP5356854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030795A JP5356854B2 (en) 2009-02-13 2009-02-13 Solenoid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030795A JP5356854B2 (en) 2009-02-13 2009-02-13 Solenoid control valve

Publications (2)

Publication Number Publication Date
JP2010185533A true JP2010185533A (en) 2010-08-26
JP5356854B2 JP5356854B2 (en) 2013-12-04

Family

ID=42766310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030795A Expired - Fee Related JP5356854B2 (en) 2009-02-13 2009-02-13 Solenoid control valve

Country Status (1)

Country Link
JP (1) JP5356854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080533A (en) * 2009-10-07 2011-04-21 Saginomiya Seisakusho Inc Sealing structure and control valve
CN110785590A (en) * 2017-06-21 2020-02-11 罗伯特·博世有限公司 Proportional valve for controlling a gaseous medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464679U (en) * 1990-10-16 1992-06-03
JPH09189364A (en) * 1995-10-26 1997-07-22 Ranco Inc Of Delawere Valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464679U (en) * 1990-10-16 1992-06-03
JPH09189364A (en) * 1995-10-26 1997-07-22 Ranco Inc Of Delawere Valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080533A (en) * 2009-10-07 2011-04-21 Saginomiya Seisakusho Inc Sealing structure and control valve
CN110785590A (en) * 2017-06-21 2020-02-11 罗伯特·博世有限公司 Proportional valve for controlling a gaseous medium
JP2020523533A (en) * 2017-06-21 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Proportional valve for controlling gaseous medium

Also Published As

Publication number Publication date
JP5356854B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP6084175B2 (en) Solenoid control valve
US6220569B1 (en) Electrically controlled proportional valve
JP5924652B2 (en) Solenoid control valve
EP3362718B1 (en) Control member for a fluid control device
JP2011214612A (en) Balance poppet type solenoid valve
JP2009518587A (en) Pressure compensation method
JP5356854B2 (en) Solenoid control valve
JP5468932B2 (en) Solenoid control valve
JP2013196399A (en) Pressure reducing valve
JP2008052381A (en) Pressure reducing valve for low flow rate and very low pressure
JP5649570B2 (en) Pressure control valve for fuel cell
JP2009019742A (en) Bleed type valve device
JP4213484B2 (en) Solenoid control valve
JP2020063834A (en) solenoid valve
JP4115436B2 (en) Solenoid proportional valve
JP5393386B2 (en) Seal structure and control valve
JP4053846B2 (en) Electric expansion valve
JP4629258B2 (en) Solenoid control valve
JP2001021059A (en) Proportional control valve
JP2003227578A (en) Solenoid feed water valve
WO2023013620A1 (en) Solenoid valve
WO2022185451A1 (en) Proportional valve
JP2003269504A (en) Valve system
JPH10196932A (en) Gas proportional controller
JPH0599363A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5356854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees