JP2010185307A - Control device for hydraulically driven cooling fan - Google Patents

Control device for hydraulically driven cooling fan Download PDF

Info

Publication number
JP2010185307A
JP2010185307A JP2009028738A JP2009028738A JP2010185307A JP 2010185307 A JP2010185307 A JP 2010185307A JP 2009028738 A JP2009028738 A JP 2009028738A JP 2009028738 A JP2009028738 A JP 2009028738A JP 2010185307 A JP2010185307 A JP 2010185307A
Authority
JP
Japan
Prior art keywords
upper limit
speed
temperature
fan
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009028738A
Other languages
Japanese (ja)
Inventor
Hiroyuki Azuma
宏行 東
Koji Hyodo
幸次 兵藤
Atsushi Shimazu
淳志 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
TCM Corp
Original Assignee
Hitachi Construction Machinery Co Ltd
TCM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, TCM Corp filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2009028738A priority Critical patent/JP2010185307A/en
Publication of JP2010185307A publication Critical patent/JP2010185307A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To surely prevent the overheated condition of a cooled object while improving fuel economy. <P>SOLUTION: This control device for a hydraulically driven cooling fan includes a cooling fan 4, a hydraulic pump 2 to be driven by an engine 1, a hydraulic motor 3 to be driven by pressure oil discharged from the hydraulic pump 1 to rotate the cooling fan 4, temperature detecting means 11-13 for detecting the temperatures of the cooled objects, a revolving speed detecting means 14 for detecting an engine revolving speed Ne, a target fan rotating speed computing means 10 for computing a target fan rotating speed Nf in accordance with temperature detected values detected by the temperature detecting means 11-13, an upper limit value computing means 10 for computing an upper limit value Ns for the target fan rotating speed in accordance with the revolving speed detected value Ne detected by the revolving speed detecting means 14, and fan rotating speed control means 2a, 10 for controlling the fan rotating speed to be the target fan rotating speed Nf while using the upper limit value Ns for restricting the upper limit of the target fan rotating speed. As a difference ΔT between an upper limit temperature representing the overheated condition of the cooled object and the temperature detected value is greater, the upper limit value Ns is set smaller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ホイールローダ等の作業車両に設けられる油圧駆動冷却ファンの制御装置に関する。   The present invention relates to a control device for a hydraulically driven cooling fan provided in a work vehicle such as a wheel loader.

従来より、エンジンによって駆動された可変油圧ポンプからの圧油を油圧モータに導き、油圧モータの駆動により冷却ファンを回転させて、ラジエータやオイルクーラに冷却風を送風するようにした装置が知られている(例えば特許文献1参照)。この特許文献1記載の装置では、エンジン冷却水温や作動油温の増加に伴い目標ファン回転数が増加するような特性、およびエンジン回転数の増加に伴い目標ファン回転数が増加するような特性を予め設定し、前者の特性により求められた目標ファン回転数を、後者の特性によって制限する。   Conventionally, there has been known a device in which pressure oil from a variable hydraulic pump driven by an engine is guided to a hydraulic motor, and a cooling fan is rotated by driving the hydraulic motor to blow cooling air to a radiator or an oil cooler. (For example, refer to Patent Document 1). The device described in Patent Document 1 has such characteristics that the target fan speed increases as the engine coolant temperature and hydraulic oil temperature increase, and the target fan speed increases as the engine speed increases. The target fan speed set in advance and obtained from the former characteristic is limited by the latter characteristic.

特開2007−127036号公報JP 2007-127036 A

しかしながら、上記後者の特性により目標ファン回転数を一律に制限すると、例えばエンジン回転数が低い領域で発熱量が大きくなるような作業が行われた場合に、必要十分なファン回転数が得られないことがあり、エンジン冷却水や作動油が過熱状態となるおそれがある。   However, if the target fan speed is uniformly limited by the latter characteristic, a necessary and sufficient fan speed cannot be obtained, for example, when an operation that increases the heat generation amount is performed in a region where the engine speed is low. In some cases, engine cooling water and hydraulic oil may be overheated.

冷却対象物を冷却するための冷却風を送風する冷却ファンと、エンジンによって駆動される油圧ポンプと、油圧ポンプから吐出される圧油によって駆動し、冷却ファンを回転させる油圧モータと、冷却対象物の温度を検出する温度検出手段と、エンジン回転数を検出する回転数検出手段と、温度検出手段により検出された温度検出値に基づき、目標ファン回転数を演算する目標ファン回転数演算手段と、回転数検出手段により検出された回転数検出値に基づき、目標ファン回転数演算手段により演算された目標ファン回転数の上限値を演算する上限値演算手段と、目標ファン回転数の上限を上限値演算手段により演算された上限値によって制限しつつ、ファン回転数を目標ファン回転数演算手段により演算された目標ファン回転数に制御するファン回転数制御手段とを備え、上限値演算手段は、冷却対象物の過熱状態を表す予め設定された上限温度と温度検出手段により検出された温度検出値との差分が大きいほど、上限値を小さくすることを特徴とする。   A cooling fan that blows cooling air for cooling a cooling target, a hydraulic pump driven by an engine, a hydraulic motor that is driven by pressure oil discharged from the hydraulic pump and rotates the cooling fan, and a cooling target Temperature detection means for detecting the temperature of the engine, rotation speed detection means for detecting the engine rotation speed, target fan rotation speed calculation means for calculating the target fan rotation speed based on the temperature detection value detected by the temperature detection means, Based on the rotation speed detection value detected by the rotation speed detection means, upper limit value calculation means for calculating the upper limit value of the target fan rotation speed calculated by the target fan rotation speed calculation means, and the upper limit value of the target fan rotation speed The fan speed is controlled to the target fan speed calculated by the target fan speed calculating means while being limited by the upper limit value calculated by the calculating means. An upper limit value calculating means, the upper limit value calculating means, the larger the difference between the preset upper limit temperature indicating the overheating state of the object to be cooled and the temperature detected value detected by the temperature detecting means, the higher the upper limit value. It is characterized by making small.

本発明によれば、冷却対象物の過熱状態を表す上限温度と温度検出値との差分が大きいほど、目標ファン回転数の上限値を小さくするようにしたので、冷却対象物が過熱状態となることを防止できる。   According to the present invention, as the difference between the upper limit temperature representing the overheated state of the object to be cooled and the temperature detection value is larger, the upper limit value of the target fan speed is made smaller, so that the object to be cooled becomes overheated. Can be prevented.

本発明の第1の実施の形態に係る油圧駆動冷却ファンの制御装置の概略構成を示す図。The figure which shows schematic structure of the control apparatus of the hydraulic drive cooling fan which concerns on the 1st Embodiment of this invention. 図1の制御装置が搭載されるホイールローダの側面図。The side view of the wheel loader by which the control apparatus of FIG. 1 is mounted. 図1のコントローラにおける処理の一例を示すブロック図。The block diagram which shows an example of the process in the controller of FIG. 図3の制限値演算部32における特性を示す図。The figure which shows the characteristic in the limit value calculating part 32 of FIG. 本発明の第2の実施の形態に係る油圧駆動冷却ファンの制御装置の要部構成を示す図。The figure which shows the principal part structure of the control apparatus of the hydraulic drive cooling fan which concerns on the 2nd Embodiment of this invention. 図5の変形例を示す図。The figure which shows the modification of FIG. 図1の第1の変形例を示す図。The figure which shows the 1st modification of FIG. 図1の第2の変形例を示す図。The figure which shows the 2nd modification of FIG. 図1の第3の変形例を示す図。The figure which shows the 3rd modification of FIG.

−第1の実施の形態−
以下、図1〜図4を参照して本発明の第1の実施の形態について説明する。
図1は、第1の実施の形態に係る油圧駆動冷却ファンの制御装置の概略構成を示す図である。この制御装置は、例えば図2に示すようなホイールローダに搭載される。図2に示すようにホイールローダ100は、アーム111,バケット112,タイヤ113等を有する前部車体110と、運転室121,エンジン室122,タイヤ123等を有する後部車体120とで構成される。アーム111はアームシリンダ114の駆動により上下方向に回動(俯仰動)し、バケット112はバケットシリンダ115の駆動により上下方向に回動(ダンプまたはクラウド)する。前部車体110と後部車体120はセンタピン101により互いに回動自在に連結され、ステアリングシリンダ(不図示)の伸縮により後部車体120に対し前部車体110が左右に屈折する。
-First embodiment-
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram illustrating a schematic configuration of a control device for a hydraulically driven cooling fan according to a first embodiment. This control device is mounted on, for example, a wheel loader as shown in FIG. As shown in FIG. 2, the wheel loader 100 includes a front vehicle body 110 having an arm 111, a bucket 112, a tire 113, and the like, and a rear vehicle body 120 having an operator cab 121, an engine compartment 122, a tire 123, and the like. The arm 111 rotates up and down (up and down) by driving the arm cylinder 114, and the bucket 112 rotates up and down (dump or cloud) by driving the bucket cylinder 115. The front vehicle body 110 and the rear vehicle body 120 are rotatably connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of a steering cylinder (not shown).

図1に示す制御装置は、エンジン1により駆動される可変容量型の油圧ポンプ2と、油圧ポンプ2から吐出された圧油によって駆動する固定容量型の油圧モータ3と、油圧モータ3によって回転させられる冷却ファン4と、冷却ファン4により送風された冷却風とエンジン冷却用のエンジン冷却水とを熱交換するラジエータ5と、冷却ファン4により送風された冷却風とポンプやモータ駆動用の作動油とを熱交換するオイルクーラ6と、冷却ファン4により送風された冷却風とトランスミッション用の潤滑油とを熱交換するオイルクーラ7と、エンジン冷却水の温度Ta、作動油の温度Tb、および潤滑油の温度Tcをそれぞれ検出する温度センサ11〜13と、エンジン回転数Neを検出する回転数センサ14と、センサ11〜14からの検出値に基づきポンプレギュレータ2aに制御信号を出力し、ポンプ容量(ポンプ傾転角)を制御するコントローラ10とを備える。   The control device shown in FIG. 1 is rotated by a variable displacement hydraulic pump 2 driven by an engine 1, a fixed displacement hydraulic motor 3 driven by pressure oil discharged from the hydraulic pump 2, and the hydraulic motor 3. The cooling fan 4, the radiator 5 that exchanges heat between the cooling air blown by the cooling fan 4 and the engine cooling water for engine cooling, the cooling air blown by the cooling fan 4, and the hydraulic oil for driving the pump and the motor An oil cooler 6 that exchanges heat with the oil, an oil cooler 7 that exchanges heat between the cooling air blown by the cooling fan 4 and the lubricating oil for transmission, the engine cooling water temperature Ta, the hydraulic oil temperature Tb, and lubrication. From the temperature sensors 11 to 13 for detecting the oil temperature Tc, the rotational speed sensor 14 for detecting the engine rotational speed Ne, and the sensors 11 to 14, respectively. It outputs a control signal to the pump regulator 2a, based on the detection value, and a controller 10 for controlling the pump displacement (pump tilting angle).

コントローラ10からの信号によりポンプ容量を大きくすると、ポンプ吐出量が増大し、油圧モータ3の回転数が増加して、冷却ファン4の回転数が増加する。このようにポンプ容量とファン回転数との間には所定の相関関係があり、本実施の形態では、ポンプ容量を制御することによりファン回転数を制御する。   When the pump capacity is increased by a signal from the controller 10, the pump discharge amount increases, the rotational speed of the hydraulic motor 3 increases, and the rotational speed of the cooling fan 4 increases. Thus, there is a predetermined correlation between the pump capacity and the fan speed, and in this embodiment, the fan speed is controlled by controlling the pump capacity.

図3は、第1の実施の形態に係るコントローラ10内における処理を説明するためのブロック図である。目標ファン回転数演算部21では、予め定められた特性f21に基づき、温度センサ11により検出されたエンジン冷却水温Taに応じた目標ファン回転数Nfaを演算する。特性faによれば、エンジン冷却水温Taが高いほど、目標ファン回転数Nfaは高くなる。   FIG. 3 is a block diagram for explaining processing in the controller 10 according to the first embodiment. The target fan rotational speed calculation unit 21 calculates a target fan rotational speed Nfa corresponding to the engine coolant temperature Ta detected by the temperature sensor 11 based on a predetermined characteristic f21. According to the characteristic fa, the target fan speed Nfa increases as the engine coolant temperature Ta increases.

目標ファン回転数演算部22では、予め定められた特性f22に基づき、温度センサ12により検出された作動油温Tbに応じた目標ファン回転数Nfbを演算する。特性f22によれば、作動油温Tbが高いほど、目標ファン回転数Nfbは高くなる。   The target fan speed calculation unit 22 calculates a target fan speed Nfb corresponding to the hydraulic oil temperature Tb detected by the temperature sensor 12 based on a predetermined characteristic f22. According to the characteristic f22, the higher the hydraulic oil temperature Tb, the higher the target fan speed Nfb.

目標ファン回転数演算部23では、予め定められた特性f23に基づき、温度センサ13により検出された潤滑油温Tcに応じた目標ファン回転数Nfcを演算する。特性f23によれば、潤滑油温Tcが高いほど、目標ファン回転数Nfcは高くなる。なお、特性f21〜f23において、目標ファン回転数Nfa〜Nfcの上限は、例えば後述する所定値Ns1(図4)に制限されている。   The target fan rotational speed calculation unit 23 calculates a target fan rotational speed Nfc corresponding to the lubricating oil temperature Tc detected by the temperature sensor 13 based on a predetermined characteristic f23. According to the characteristic f23, the higher the lubricating oil temperature Tc, the higher the target fan speed Nfc. In the characteristics f21 to f23, the upper limits of the target fan rotation speeds Nfa to Nfc are limited to, for example, a predetermined value Ns1 (FIG. 4) described later.

最大値選択部24では、目標ファン回転数演算部21〜23で演算された目標ファン回転数Nfa,Nfb,Nfcのうち最大値を選択し、これを目標ファン回転数Nfとして最小値選択部25に入力する。   The maximum value selection unit 24 selects the maximum value among the target fan rotation speeds Nfa, Nfb, and Nfc calculated by the target fan rotation speed calculation units 21 to 23, and uses this as the target fan rotation speed Nf, and the minimum value selection unit 25 To enter.

減算部27では、予め定められたエンジン冷却水の過熱状態を表す上限温度Ta1からエンジン冷却水温の検出値Taを減算し、エンジン冷却水温の差分ΔTa(=Ta1−Ta)を求める。減算部28では、予め定められた作動油の過熱状態を表す上限温度Tb1から作動油温の検出値Tbを減算し、作動油温の差分ΔTb(=Tb1−Tb)を求める。減算部29では、予め定められた潤滑油の過熱状態を表す上限温度Tc1から潤滑油温の検出値Tcを減算し、潤滑油温の差分ΔTc(=Tc1−Tc)を求める。なお、各冷却対象物の過熱状態を表す上限温度Ta1,Tb1,Tc1とは、例えばオーバーヒート状態における温度である。   The subtracting unit 27 subtracts the detected value Ta of the engine cooling water temperature from a predetermined upper limit temperature Ta1 representing an overheated state of the engine cooling water to obtain a difference ΔTa (= Ta1-Ta) of the engine cooling water temperature. The subtracting unit 28 subtracts the detected value Tb of the hydraulic oil temperature from a predetermined upper limit temperature Tb1 representing the overheated state of the hydraulic oil, and obtains the hydraulic oil temperature difference ΔTb (= Tb1−Tb). The subtracting unit 29 subtracts the detected value Tc of the lubricating oil temperature from a predetermined upper limit temperature Tc1 representing the overheated state of the lubricating oil to obtain a lubricating oil temperature difference ΔTc (= Tc1−Tc). In addition, upper limit temperature Ta1, Tb1, Tc1 showing the overheating state of each cooling target object is a temperature in an overheating state, for example.

最小値選択部30では、これら温度の差分ΔTa,ΔTb,ΔTcの中から最小値を選択し、これを最小温度差分ΔTとしてテーブル選択部31に入力する。テーブル選択部31では、予め定められた図示の特性f31に基づき、ΔTに応じたテーブルを選択する。すなわち、ΔTが所定値ΔT1(例えば6℃)未満ではテーブルIIIを選択し、ΔTが所定値ΔT1以上かつ所定値ΔT2(例えば10℃)未満ではテーブルIIを選択し、ΔTが所定値ΔT2以上ではテーブルIを選択する。   The minimum value selection unit 30 selects the minimum value from these temperature differences ΔTa, ΔTb, ΔTc, and inputs this to the table selection unit 31 as the minimum temperature difference ΔT. The table selection unit 31 selects a table corresponding to ΔT based on a predetermined illustrated characteristic f31. That is, when ΔT is less than a predetermined value ΔT1 (eg, 6 ° C.), the table III is selected, when ΔT is equal to or greater than the predetermined value ΔT1 and less than the predetermined value ΔT2 (eg, 10 ° C.), the table II is selected. Select table I.

各テーブルI〜IIIには、予めエンジン回転数Neと目標ファン回転数の上限値(回転数上限値)Nsの関係を表す特性f321〜f323が記憶されている。図4は、これらの特性f321〜f333を示す図である。図中の特性f320は、冷却ファン4の最高回転数を表す基準特性であり、エンジン回転数Neの増加に伴い最高回転数は比例的に増加する。この基準特性f320は、油圧ポンプ2の容量、ポンプ駆動用の駆動軸のギヤ比、油圧モータ3の容量、油圧モータ3と冷却ファン4の接続軸のギヤ比等により定まる。   In each table I to III, characteristics f321 to f323 representing the relationship between the engine speed Ne and the upper limit value (revolution upper limit value) Ns of the target fan speed are stored in advance. FIG. 4 is a diagram showing these characteristics f321 to f333. A characteristic f320 in the figure is a reference characteristic representing the maximum rotational speed of the cooling fan 4, and the maximum rotational speed increases proportionally with an increase in the engine rotational speed Ne. This reference characteristic f320 is determined by the capacity of the hydraulic pump 2, the gear ratio of the drive shaft for driving the pump, the capacity of the hydraulic motor 3, the gear ratio of the connecting shaft of the hydraulic motor 3 and the cooling fan 4, and the like.

特性f323は、基準特性f320の上限を所定値Ns1に制限した特性である。すなわち回転数上限値Nsが所定値Ns1に達するまでは、エンジン回転数Neの増加に伴い回転数上限値Nsは基準特性f320に沿って増加し、回転数上限値Nsが所定値Ns1に達すると、エンジン回転数Neが増加しても回転数上限値Nsは所定値Ns1に保たれる。なお、所定値Ns1は、実際の作業状態や走行状態において出しうる最高回転数であり、冷却ファン駆動用油圧機器の仕様や冷却能力等によって定められる。   The characteristic f323 is a characteristic in which the upper limit of the reference characteristic f320 is limited to the predetermined value Ns1. That is, until the engine speed upper limit Ns reaches the predetermined value Ns1, the engine speed upper limit Ns increases along the reference characteristic f320 as the engine speed Ne increases, and when the engine speed upper limit Ns reaches the predetermined value Ns1. Even if the engine speed Ne increases, the engine speed upper limit Ns is maintained at the predetermined value Ns1. The predetermined value Ns1 is the maximum number of revolutions that can be obtained in an actual working state or traveling state, and is determined by the specifications of the cooling fan driving hydraulic device, the cooling capacity, or the like.

特性f322は、回転数上限値Nsを特性f323よりも小さくした特性であり、特性f321は、回転数上限値Nsを特性f322よりもさらに小さくした特性である。換言すると、ファン回転数の制限量は特性f321が最も大きく、特性f323が最も小さい。特性f321、f322においても、回転数上限値Nsが所定値Ns1に達するまでは、エンジン回転数Neの増加に伴い回転数上限値Nsが増加し、回転数上限値Nsが所定値Ns1に達すると、エンジン回転数Neが増加しても回転数上限値Nsは所定値Ns1に保たれる。特性f321,f322では、それぞれエンジン回転数Neの低い領域で回転数上限値Nsの増加の割合が小さく、エンジン回転数Neの高い領域で回転数上限値Nsの増加の割合が大きくなるようにしているが、回転数上限値Nsの増加パターンはこれに限らない。   The characteristic f322 is a characteristic in which the rotation speed upper limit value Ns is smaller than the characteristic f323, and the characteristic f321 is a characteristic in which the rotation speed upper limit value Ns is further smaller than the characteristic f322. In other words, the limit amount of the fan speed is the largest in the characteristic f321 and the smallest in the characteristic f323. Also in the characteristics f321 and f322, until the rotational speed upper limit value Ns reaches the predetermined value Ns1, the rotational speed upper limit value Ns increases as the engine rotational speed Ne increases, and when the rotational speed upper limit value Ns reaches the predetermined value Ns1. Even if the engine speed Ne increases, the engine speed upper limit Ns is maintained at the predetermined value Ns1. In the characteristics f321 and f322, the rate of increase of the rotational speed upper limit value Ns is small in the region where the engine rotational speed Ne is low, and the rate of increase of the rotational speed upper limit value Ns is large in the region where the engine rotational speed Ne is high. However, the increase pattern of the rotation speed upper limit Ns is not limited to this.

図3の制限値演算部32では、テーブル選択部31で選択されたテーブルI〜IIIのいずれかの特性f321〜f333に基づき、回転数センサ14により検出されたエンジン回転数Neに応じた冷却ファン4の回転数上限値Nsを演算する。最小値選択部25では、最大値選択部24で選択した目標ファン回転数Nfと回転数上限値Nsの最小値を選択し、これを目標ファン回転数Nfとして設定する。すなわち目標ファン回転数Nfの上限を回転数上限値Nsにより制限する。   In the limit value calculation unit 32 of FIG. 3, the cooling fan according to the engine speed Ne detected by the speed sensor 14 based on any of the characteristics f321 to f333 of the tables I to III selected by the table selection unit 31. 4 is calculated. The minimum value selection unit 25 selects the minimum value of the target fan rotational speed Nf and the rotational speed upper limit Ns selected by the maximum value selection unit 24, and sets this as the target fan rotational speed Nf. That is, the upper limit of the target fan rotation speed Nf is limited by the rotation speed upper limit value Ns.

電流演算部26では、回転数センサ14で検出したエンジン回転数Neと目標ファン回転数Naとから、ファン回転数をその目標ファン回転数Neとするための油圧ポンプ2の目標傾転角を演算する。さらに、ポンプ傾転角を目標傾転角とするための制御電流を演算し、レギュレータ2aに出力する。これによりポンプ傾転角が目標傾転角となり、ファン回転数が目標ファン回転数Nfに制御される。   The current calculation unit 26 calculates a target tilt angle of the hydraulic pump 2 for setting the fan rotation speed to the target fan rotation speed Ne from the engine rotation speed Ne detected by the rotation speed sensor 14 and the target fan rotation speed Na. To do. Further, a control current for setting the pump tilt angle to the target tilt angle is calculated and output to the regulator 2a. As a result, the pump tilt angle becomes the target tilt angle, and the fan speed is controlled to the target fan speed Nf.

第1の実施の形態の主要な動作を説明する。エンジン冷却水温Ta、作動油温Tb、潤滑油温Tcがともに低く、上限温度Ta1,Tb1,Tc1との差分ΔTa,ΔTb,ΔTcが全て所定値ΔT2より大きいと、テーブル選択部31で回転数上限値の特性f321が選択される。したがって、とくにエンジン回転数Neが低い領域におけるファン回転数の制限量が大きく(制限値Nsは小さく)なり、ポンプ吐出量が抑えられ、燃費の向上を図ることができる。この場合、冷却対象であるエンジン冷却水、作動油、および潤滑油の温度Ta〜Tcと上限温度Ta1〜Tc1との温度差ΔTa〜ΔTcが大きいので、ファン回転数を抑えることにより例えばエンジン冷却水温Taが高くなったとしても、すぐに上限温度Ta1を超えることはなく、問題ない。   The main operation of the first embodiment will be described. If engine cooling water temperature Ta, hydraulic oil temperature Tb, and lubricating oil temperature Tc are all low and differences ΔTa, ΔTb, ΔTc from upper limit temperatures Ta1, Tb1, Tc1 are all greater than a predetermined value ΔT2, table selection unit 31 sets the upper limit of rotation speed. A value characteristic f321 is selected. Accordingly, the fan speed limit amount is particularly large (the limit value Ns is small) in a region where the engine speed Ne is low, the pump discharge amount is suppressed, and fuel consumption can be improved. In this case, since the temperature difference ΔTa to ΔTc between the temperature Ta to Tc and the upper limit temperature Ta1 to Tc1 of the engine coolant, hydraulic oil, and lubricating oil to be cooled is large, for example, the engine coolant temperature Even if Ta becomes high, the upper limit temperature Ta1 is not immediately exceeded and there is no problem.

一方、エンジン回転数Neが低い領域でエンジン1の発熱量が大きくなる作業が行われ、例えばエンジン冷却水温Taが上昇して、温度差ΔTaが所定値ΔT1より小さくなると、テーブル選択部31で回転数上限値の特性f323が選択される。したがって、ファン回転数の制限量が小さく(制限値Nsは大きく)なり、ファン回転数は図3の特性f21により定まる目標ファン回転数Nfaとなる。その結果、エンジン冷却水の十分な冷却性を確保でき、エンジン冷却水温Taを上限温度Ta1以下に抑えることができる。   On the other hand, when the engine heating speed Ne is low, an operation for increasing the heat generation amount of the engine 1 is performed. For example, when the engine cooling water temperature Ta rises and the temperature difference ΔTa becomes smaller than the predetermined value ΔT1, the table selection unit 31 rotates. The number f upper limit characteristic f323 is selected. Therefore, the limit amount of the fan speed is small (the limit value Ns is large), and the fan speed is the target fan speed Nfa determined by the characteristic f21 in FIG. As a result, sufficient cooling performance of the engine cooling water can be secured, and the engine cooling water temperature Ta can be suppressed to the upper limit temperature Ta1 or lower.

第1の実施の形態によれば以下のような作用効果を奏することができる。
(1)エンジン回転数Neと回転数上限値Nsとの関係を表す複数のテーブルI〜IIIを設定し、冷却対象物(エンジン冷却水、作動油、潤滑油)の過熱状態を表す上限温度Ta1〜Tc1とその冷却対象物の温度検出値Ta〜Tcとの差分ΔTa〜ΔTcが大きいほど、回転数上限値Nsを小さくした。これによりエンジン回転数が低い領域で発熱量が大きくなるような作業が行われた場合であっても、必要十分なファン回転数が得られ、エンジン1のオーバーヒート等を確実に防止できる。必要以上にファン回転数が大きくならず、燃費も向上できる。
(2)複数の冷却対象物の温度差分ΔTa〜ΔTcの中から最小値を選択し、この最小差分ΔTに応じた特性に基づいて回転数上限値Nsを演算するようにしたので、全ての冷却対象物を過熱状態としないようにできる。
According to 1st Embodiment, there can exist the following effects.
(1) A plurality of tables I to III representing the relationship between the engine rotational speed Ne and the rotational speed upper limit value Ns are set, and an upper limit temperature Ta1 representing an overheated state of the object to be cooled (engine cooling water, hydraulic oil, lubricating oil) The rotation speed upper limit Ns is decreased as the difference ΔTa to ΔTc between the temperature detection values Ta to Tc of the object to be cooled and Tc1 increases. As a result, even when an operation in which the heat generation amount is increased in a region where the engine speed is low, a necessary and sufficient fan speed is obtained, and overheating of the engine 1 can be reliably prevented. Fan speed does not increase more than necessary, and fuel consumption can be improved.
(2) Since the minimum value is selected from the temperature differences ΔTa to ΔTc of the plurality of cooling objects and the rotation speed upper limit value Ns is calculated based on the characteristics corresponding to the minimum difference ΔT, all the cooling The object can be prevented from being overheated.

−第2の実施の形態−
図5、6を参照して本発明の第2の実施の形態について説明する。
第2の実施の形態が第1の実施の形態と異なるのはコントローラ10における処理である。すなわち第1の実施の形態では、複数のテーブルI〜IIIの中から温度差分ΔTに応じた特性を選択し、この特性に基づき回転数上限値Nsを設定したが、第2の実施の形態では、回転数上限値Nsの基準特性を温度差分ΔTに応じて補正して回転数上限値Nsを設定する。なお、以下では第1の実施の形態との相違点を主に説明する。
-Second Embodiment-
A second embodiment of the present invention will be described with reference to FIGS.
The second embodiment differs from the first embodiment in the processing in the controller 10. That is, in the first embodiment, a characteristic corresponding to the temperature difference ΔT is selected from the plurality of tables I to III, and the rotation speed upper limit value Ns is set based on this characteristic. In the second embodiment, The reference value of the rotational speed upper limit value Ns is corrected according to the temperature difference ΔT to set the rotational speed upper limit value Ns. In the following description, differences from the first embodiment will be mainly described.

図5は、第2の実施の形態に係るコントローラ10内における処理の一例を説明するためのブロック図である。なお、図3と同一の処理を行う箇所には同一の符号を付している。補正回転数演算部40では、予め定められた特性f40に基づき、エンジン冷却水温Taの温度差分ΔTa(=Ta1−Ta)に応じた補正回転数ΔNaを演算する。特性f40によれば、温度差分ΔTaが高いほど、補正回転数ΔNaが低くなる。   FIG. 5 is a block diagram for explaining an example of processing in the controller 10 according to the second embodiment. In addition, the same code | symbol is attached | subjected to the location which performs the same process as FIG. The corrected rotation speed calculation unit 40 calculates a corrected rotation speed ΔNa corresponding to the temperature difference ΔTa (= Ta1-Ta) of the engine coolant temperature Ta based on a predetermined characteristic f40. According to the characteristic f40, the higher the temperature difference ΔTa, the lower the correction rotation speed ΔNa.

補正回転数演算部41では、予め定められた特性f41に基づき、作動油温Tbの温度差分ΔTb(=Tb1−Tb)に応じた補正回転数ΔNbを演算する。特性f41によれば、温度差分ΔTbが高いほど、補正回転数ΔNbが低くなる。   The corrected rotation speed calculation unit 41 calculates a corrected rotation speed ΔNb corresponding to the temperature difference ΔTb (= Tb1−Tb) of the hydraulic oil temperature Tb based on a predetermined characteristic f41. According to the characteristic f41, the higher the temperature difference ΔTb, the lower the corrected rotation speed ΔNb.

補正回転数演算部42では、予め定められた特性f42に基づき、潤滑油温Tcの温度差分ΔTc(=Tc1−Tc)に応じた補正回転数ΔNcを演算する。特性f42によれば、温度差分ΔTcが高いほど、補正回転数ΔNcが低くなる。   The corrected rotation speed calculator 42 calculates a corrected rotation speed ΔNc corresponding to the temperature difference ΔTc (= Tc1−Tc) of the lubricating oil temperature Tc based on a predetermined characteristic f42. According to the characteristic f42, the higher the temperature difference ΔTc, the lower the corrected rotation speed ΔNc.

最大値選択部43では、補正回転数演算部41〜43で演算された補正回転数ΔNa,ΔNb,ΔNcのうち最大値を選択し、これを補正回転数ΔNとして加算部45に入力する。   The maximum value selection unit 43 selects the maximum value among the correction rotation speeds ΔNa, ΔNb, ΔNc calculated by the correction rotation speed calculation sections 41 to 43 and inputs this to the addition section 45 as the correction rotation speed ΔN.

制限値演算部44では、予め定めたエンジン回転数Neと回転数上限値Ns0との関係を表す基準特性f44に基づき、エンジン回転数Neに応じた回転数上限値Ns0を演算する。特性f44は図4の特性f321と同一のものであり、とくにエンジン回転数の低い領域でファン回転数が最高回転数よりも大きく制限されている。   The limit value calculation unit 44 calculates a rotation speed upper limit value Ns0 corresponding to the engine rotation speed Ne based on a reference characteristic f44 representing a relationship between a predetermined engine rotation speed Ne and a rotation speed upper limit value Ns0. The characteristic f44 is the same as the characteristic f321 in FIG. 4, and the fan rotational speed is limited to be larger than the maximum rotational speed particularly in a region where the engine rotational speed is low.

加算部45では、制限値演算部44で演算された回転数上限値Ns0に、最大値選択部43で選択された補正回転数ΔNを加算する。すなわち回転数上限値Ns0を補正回転数ΔNで補正し、これを補正回転数Nsとして最小値選択部25に入力する。   The adder 45 adds the corrected rotation speed ΔN selected by the maximum value selector 43 to the rotation speed upper limit Ns0 calculated by the limit value calculator 44. That is, the rotation speed upper limit value Ns0 is corrected with the correction rotation speed ΔN, and this is input to the minimum value selection unit 25 as the correction rotation speed Ns.

第2の実施の形態の主要な動作を説明する。例えばエンジン冷却水温Taが低いとき、上限温度Ta1との差分ΔTaが大きくなり、補正回転数ΔNaは小さくなる。したがって、最大値選択部43で補正回転数ΔNaが選択されたとき、基準回転数Ns0からの回転数上限値Nsの増分は小さく、目標ファン回転数Nfが大きく制限される。   The main operation of the second embodiment will be described. For example, when the engine coolant temperature Ta is low, the difference ΔTa from the upper limit temperature Ta1 increases, and the correction rotational speed ΔNa decreases. Therefore, when the correction rotation speed ΔNa is selected by the maximum value selection unit 43, the increment of the rotation speed upper limit value Ns from the reference rotation speed Ns0 is small, and the target fan rotation speed Nf is largely limited.

一方、エンジン回転数Neが低い領域でエンジン1の発熱量が大きくなる作業が行われ、例えばエンジン冷却水温Taが上昇して、温度差ΔTaが小さくなると、補正回転数ΔNaは大きくなる。したがって、最大値選択部43で補正回転数ΔNaが選択されたとき、基準回転数Ns0からの回転数上限値Nsの増分は大きくなり、目標ファン回転数Nfの制限量は小さくなる。その結果、エンジン冷却水の十分な冷却性を確保でき、エンジン冷却水温Taを上限温度Ta1以下に抑えることができる。   On the other hand, an operation for increasing the heat generation amount of the engine 1 is performed in a region where the engine rotational speed Ne is low. For example, when the engine cooling water temperature Ta rises and the temperature difference ΔTa decreases, the corrected rotational speed ΔNa increases. Accordingly, when the correction rotation speed ΔNa is selected by the maximum value selection unit 43, the increment of the rotation speed upper limit value Ns from the reference rotation speed Ns0 is increased, and the limit amount of the target fan rotation speed Nf is decreased. As a result, sufficient cooling performance of the engine cooling water can be secured, and the engine cooling water temperature Ta can be suppressed to the upper limit temperature Ta1 or lower.

第2の実施の形態によれば以下のような作用効果を奏することができる。
(1)予めエンジン回転数Neとファン回転数の上限値Ns0との関係を表す基準特性を設定し、温度差分ΔTが小さいほど基準特性に対して加算する補正回転数ΔNを大きくするようにしたので、エンジン回転数が低い領域で発熱量が大きくなるような作業が行われた場合であっても、必要十分なファン回転数が得られ、エンジン1のオーバーヒート等を確実に防止できる。必要以上にファン回転数が大きくならず、燃費も向上できる。
(2)複数の冷却対象物の温度差分ΔTa〜ΔTcに対して補正回転数ΔNa〜ΔNcをそれぞれ求め、その中から最大値を選択して基準特性を補正するようにしたので、全ての冷却対象物を過熱状態としないようにできる。
According to 2nd Embodiment, there can exist the following effects.
(1) A reference characteristic representing the relationship between the engine speed Ne and the upper limit value Ns0 of the fan speed is set in advance, and the correction speed ΔN to be added to the reference characteristic is increased as the temperature difference ΔT is smaller. Therefore, even when an operation that increases the heat generation amount is performed in a region where the engine speed is low, a necessary and sufficient fan speed can be obtained, and overheating of the engine 1 can be reliably prevented. Fan speed does not increase more than necessary, and fuel consumption can be improved.
(2) Since the correction rotation speeds ΔNa to ΔNc are respectively obtained for the temperature differences ΔTa to ΔTc of a plurality of cooling objects, the maximum value is selected from among them, and the reference characteristics are corrected. Things can be kept from overheating.

図6は、第2の実施の形態の変形例を示す図である。図5では、補正回転数の最大値ΔNを回転数上限値Ns0に加算するようにしたが、図6では、比率演算部46においてエンジン回転数Neに対する補正回転数の比率αを求め、この比率αを乗算部43で補正回転数の最大値ΔNに乗じて、回転数上限値Ns0に加算するようにしている。比率αは、比率演算部46の特性f46に示すようにエンジン回転数Neが低い領域では小さく、エンジン回転数Neが大きい領域では大きい。なお、特性f46の形状はこれに限らない。   FIG. 6 is a diagram illustrating a modification of the second embodiment. In FIG. 5, the maximum value ΔN of the corrected rotational speed is added to the rotational speed upper limit value Ns0. However, in FIG. 6, the ratio calculator 46 obtains the ratio α of the corrected rotational speed to the engine rotational speed Ne, and this ratio The multiplication unit 43 multiplies the maximum value ΔN of the corrected rotational speed and adds it to the rotational speed upper limit value Ns0. The ratio α is small in the region where the engine speed Ne is low as indicated by the characteristic f46 of the ratio calculation unit 46, and is large in the region where the engine speed Ne is large. The shape of the characteristic f46 is not limited to this.

なお、上記実施の形態では、ポンプ容量を制御してファン回転数の上限を回転数上限値Nsに制限しつつ、ファン回転数を目標ファン回転数Nfに制御するようにしたが、ファン回転数制御手段の構成はこれに限らない。例えば図7に示すように油圧モータ3を可変容量型モータとして構成し、コントローラ10からモータレギュレータ3aに制御信号を出力してファン回転数を制御するようにしてもよい。図8に示すようにポンプ吐出側管路に電磁切換弁8を接続し、コントローラ10からの制御信号により電磁切換弁8の切換量を調整してファン回転数を制御するようにしてもよい。図9に示すように油圧ポンプ2に可変リリーフ弁9を接続し、コントローラ10からの制御信号により可変リリーフ弁9のリリーフ圧を設定してファン回転数を制御するようにしてもよい。   In the above embodiment, the fan speed is controlled to the target fan speed Nf while controlling the pump capacity to limit the upper limit of the fan speed to the speed upper limit value Ns. The configuration of the control means is not limited to this. For example, as shown in FIG. 7, the hydraulic motor 3 may be configured as a variable displacement motor, and a control signal may be output from the controller 10 to the motor regulator 3a to control the fan speed. As shown in FIG. 8, an electromagnetic switching valve 8 may be connected to the pump discharge side pipe, and the fan rotation speed may be controlled by adjusting the switching amount of the electromagnetic switching valve 8 by a control signal from the controller 10. As shown in FIG. 9, the variable relief valve 9 may be connected to the hydraulic pump 2, and the fan pressure may be controlled by setting the relief pressure of the variable relief valve 9 by a control signal from the controller 10.

上記実施の形態では、エンジン冷却水、作動油、および潤滑油を冷却対象物として説明したが、冷却対象物はこれに限らない。例えばトルクコンバータ用の作動油を冷却対象物としてもよい。冷却対象物の数は3つに限らず、4つ以上でもよく、1つでもよい。冷却対象物を1つとした場合、最大値選択部24や最小値選択部30等を省略できる。上記実施の形態では、目標ファン回転数演算部21〜23で目標ファン回転数Nfを演算するようにしたが、目標ファン回転数演算手段の構成は上述したものに限らない。   In the above embodiment, engine cooling water, hydraulic oil, and lubricating oil have been described as objects to be cooled, but the object to be cooled is not limited to this. For example, it is good also considering the hydraulic fluid for torque converters as a cooling target. The number of objects to be cooled is not limited to three, but may be four or more, or one. When the number of cooling objects is one, the maximum value selection unit 24, the minimum value selection unit 30, and the like can be omitted. In the above embodiment, the target fan speed Nf is calculated by the target fan speed calculators 21 to 23, but the configuration of the target fan speed calculator is not limited to that described above.

エンジン回転数の検出値Neに基づき目標ファン回転数の上限値Nsを演算するとともに、冷却対象物の過熱状態を表す上限温度Ta1〜Tc1と温度検出値Ta〜Tcとの差分ΔTa〜ΔTcが大きいほど、上限値Nsを小さくするのであれば、制限値演算手段の構成はいかなるものでもよい。温度検出手段としての温度センサ11〜13、回転数検出手段としての回転数センサ14の構成はいかなるものでもよい。   The upper limit value Ns of the target fan speed is calculated based on the detected value Ne of the engine speed, and the differences ΔTa to ΔTc between the upper limit temperatures Ta1 to Tc1 representing the overheating state of the object to be cooled and the detected temperature values Ta to Tc are large. As long as the upper limit value Ns is made smaller, the limit value calculation means may have any configuration. The temperature sensors 11 to 13 as temperature detection means and the rotation speed sensor 14 as rotation speed detection means may have any configuration.

以上では、本発明をホイールローダに適用する例について説明したが、油圧駆動冷却ファンを有する他の作業車両にも本発明は同様に適用可能である。すなわち、本発明の特徴、機能を実現できる限り、本発明は実施の形態の油圧駆動冷却ファンの制御装置に限定されない。   The example in which the present invention is applied to a wheel loader has been described above, but the present invention can be similarly applied to other work vehicles having a hydraulically driven cooling fan. That is, as long as the features and functions of the present invention can be realized, the present invention is not limited to the hydraulically driven cooling fan control device of the embodiment.

1 エンジン
2 油圧ポンプ
2a ポンプレギュレータ
3 油圧モータ
3a モータレギュレータ
4 冷却ファン
10 コントローラ
11〜13 温度センサ
14 回転数センサ
21〜23 目標ファン回転数演算部
31 テーブル選択部
32 制限値演算部
40〜42 補正回転数演算部
44 制限値演算部
DESCRIPTION OF SYMBOLS 1 Engine 2 Hydraulic pump 2a Pump regulator 3 Hydraulic motor 3a Motor regulator 4 Cooling fan 10 Controller 11-13 Temperature sensor 14 Speed sensor 21-23 Target fan speed calculating part 31 Table selection part 32 Limit value calculating part 40-42 Correction Rotational speed calculation unit 44 Limit value calculation unit

Claims (5)

冷却対象物を冷却するための冷却風を送風する冷却ファンと、
エンジンによって駆動される油圧ポンプと、
前記油圧ポンプから吐出される圧油によって駆動し、前記冷却ファンを回転させる油圧モータと、
前記冷却対象物の温度を検出する温度検出手段と、
エンジン回転数を検出する回転数検出手段と、
前記温度検出手段により検出された温度検出値に基づき、目標ファン回転数を演算する目標ファン回転数演算手段と、
前記回転数検出手段により検出された回転数検出値に基づき、前記目標ファン回転数演算手段により演算された目標ファン回転数の上限値を演算する上限値演算手段と、
前記目標ファン回転数の上限を前記上限値演算手段により演算された上限値によって制限しつつ、ファン回転数を前記目標ファン回転数演算手段により演算された目標ファン回転数に制御するファン回転数制御手段とを備え、
前記上限値演算手段は、前記冷却対象物の過熱状態を表す予め設定された上限温度と前記温度検出手段により検出された温度検出値との差分が大きいほど、前記上限値を小さくすることを特徴とする油圧駆動冷却ファンの制御装置。
A cooling fan that blows cooling air to cool the object to be cooled;
A hydraulic pump driven by an engine;
A hydraulic motor driven by pressure oil discharged from the hydraulic pump and rotating the cooling fan;
Temperature detecting means for detecting the temperature of the cooling object;
A rotational speed detecting means for detecting the engine rotational speed;
Target fan speed calculating means for calculating a target fan speed based on the temperature detection value detected by the temperature detecting means;
Upper limit value calculating means for calculating an upper limit value of the target fan rotational speed calculated by the target fan rotational speed calculating means based on the rotational speed detected value detected by the rotational speed detecting means;
Fan speed control for controlling the fan speed to the target fan speed calculated by the target fan speed calculating means while limiting the upper limit of the target fan speed by the upper limit value calculated by the upper limit value calculating means Means and
The upper limit calculating means decreases the upper limit value as the difference between a preset upper limit temperature indicating an overheated state of the cooling object and the temperature detection value detected by the temperature detection means is larger. Control device for hydraulically driven cooling fan.
請求項1に記載の油圧駆動冷却ファンの制御装置において、
前記上限値演算手段は、予め設定されたエンジン回転数とファン回転数の上限値との関係を表す複数の特性の中から、前記冷却対象物の上限温度と前記温度検出値との差分に応じた特性を選択し、この特性に基づき前記上限値を演算することを特徴とする油圧駆動冷却ファンの制御装置。
The control device for a hydraulically driven cooling fan according to claim 1,
The upper limit calculating means is configured to respond to a difference between the upper limit temperature of the cooling object and the temperature detection value from among a plurality of characteristics representing a relationship between a preset engine speed and an upper limit value of the fan speed. A control device for a hydraulically driven cooling fan, wherein the upper limit value is calculated based on the selected characteristic.
請求項2に記載の油圧駆動冷却ファンの制御装置において、
前記冷却対象物は複数あり、前記上限値演算手段は、各冷却対象物毎に設定された上限温度と各冷却対象物の温度検出値との差分の中から最小の差分を選択し、この最小差分に応じた特性に基づき前記上限値を演算することを特徴とする油圧駆動冷却ファンの制御装置。
The control device for a hydraulically driven cooling fan according to claim 2,
There are a plurality of the cooling objects, and the upper limit calculating means selects the minimum difference from the differences between the upper limit temperature set for each cooling object and the temperature detection value of each cooling object, and this minimum A control device for a hydraulically driven cooling fan, wherein the upper limit value is calculated based on a characteristic corresponding to a difference.
請求項1に記載の油圧駆動冷却ファンの制御装置において、
前記上限値演算手段は、前記冷却対象物の上限温度と前記温度検出値との差分に応じた補正回転数を演算し、予め設定されたエンジン回転数とファン回転数の上限値との関係を表す基準特性を前記補正回転数により補正して前記上限値を演算することを特徴とする油圧駆動冷却ファンの制御装置。
The control device for a hydraulically driven cooling fan according to claim 1,
The upper limit calculating means calculates a correction rotational speed corresponding to a difference between the upper limit temperature of the cooling object and the detected temperature value, and sets a relationship between a preset engine rotational speed and an upper limit value of the fan rotational speed. A control device for a hydraulically driven cooling fan, wherein the upper limit value is calculated by correcting a reference characteristic to be expressed by the corrected rotational speed.
請求項4に記載の油圧駆動冷却ファンの制御装置において、
前記冷却対象物は複数あり、前記上限値演算手段は、各冷却対象物毎に設定された上限温度と各冷却対象物の温度検出値との差分に応じた補正回転数をそれぞれ演算し、これら補正回転数の中から最大の補正回転数を選択し、この最大補正回転数により前記基準特性を補正して前記上限値を演算することを特徴とする油圧駆動冷却ファンの制御装置。
The control device for a hydraulically driven cooling fan according to claim 4,
There are a plurality of the objects to be cooled, and the upper limit calculating means calculates a correction rotation number corresponding to the difference between the upper limit temperature set for each cooling object and the temperature detection value of each cooling object, A control device for a hydraulically driven cooling fan, wherein the maximum correction rotation speed is selected from the correction rotation speeds, and the upper limit value is calculated by correcting the reference characteristic based on the maximum correction rotation speed.
JP2009028738A 2009-02-10 2009-02-10 Control device for hydraulically driven cooling fan Pending JP2010185307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028738A JP2010185307A (en) 2009-02-10 2009-02-10 Control device for hydraulically driven cooling fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028738A JP2010185307A (en) 2009-02-10 2009-02-10 Control device for hydraulically driven cooling fan

Publications (1)

Publication Number Publication Date
JP2010185307A true JP2010185307A (en) 2010-08-26

Family

ID=42766119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028738A Pending JP2010185307A (en) 2009-02-10 2009-02-10 Control device for hydraulically driven cooling fan

Country Status (1)

Country Link
JP (1) JP2010185307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034489A (en) * 2013-08-08 2015-02-19 いすゞ自動車株式会社 Engine cooling system
CN115163278A (en) * 2022-06-29 2022-10-11 三一重机有限公司 Fan control method and device and working machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197681A (en) * 2002-12-19 2004-07-15 Komatsu Ltd Construction machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197681A (en) * 2002-12-19 2004-07-15 Komatsu Ltd Construction machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034489A (en) * 2013-08-08 2015-02-19 いすゞ自動車株式会社 Engine cooling system
CN115163278A (en) * 2022-06-29 2022-10-11 三一重机有限公司 Fan control method and device and working machine

Similar Documents

Publication Publication Date Title
JP5518589B2 (en) Work machine
US7953520B2 (en) Cooling fan controller for controlling revolving fan based on fluid temperature and air temperature
JP4285866B2 (en) Hydraulically driven cooling fan
JP4664246B2 (en) Engine control device for work vehicle
WO2007052495A1 (en) Cooling fan drive device for traveling working machine
JP5124504B2 (en) Motor vehicle control device for work vehicle
KR101754544B1 (en) Control device for construction machine cooling fan
JP6402124B2 (en) Construction machine cooling system
JP5074571B2 (en) Work vehicle and control method of work vehicle
JP2007016659A (en) Control device for cooling fan
WO2019188415A1 (en) Work vehicle
JP2010185307A (en) Control device for hydraulically driven cooling fan
JP5261509B2 (en) Construction machinery
JP4922795B2 (en) Travel control device for work vehicle
JP4504276B2 (en) Engine control device for work machines
WO2013146392A1 (en) Work machine
JP2019060282A (en) Cooling fan control device
JP5124656B2 (en) Engine output control device
JP4745202B2 (en) Cooling fan drive control device
JP5027289B2 (en) Engine cooling system
JP4785715B2 (en) Cooling fan drive control device
KR100849502B1 (en) Control method of cooling fan speed of excavator
JP2017067014A (en) Cooling control device
JP2004197681A (en) Construction machine
WO2011111338A1 (en) Cooling fan drive circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101213

A621 Written request for application examination

Effective date: 20110401

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120120

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Effective date: 20120605

Free format text: JAPANESE INTERMEDIATE CODE: A02