JP2010184981A - Heat storage rubber material - Google Patents

Heat storage rubber material Download PDF

Info

Publication number
JP2010184981A
JP2010184981A JP2009028967A JP2009028967A JP2010184981A JP 2010184981 A JP2010184981 A JP 2010184981A JP 2009028967 A JP2009028967 A JP 2009028967A JP 2009028967 A JP2009028967 A JP 2009028967A JP 2010184981 A JP2010184981 A JP 2010184981A
Authority
JP
Japan
Prior art keywords
heat storage
mass
latent heat
rubber material
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009028967A
Other languages
Japanese (ja)
Inventor
Shinkichi Mori
信吉 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2009028967A priority Critical patent/JP2010184981A/en
Publication of JP2010184981A publication Critical patent/JP2010184981A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage rubber material obtained by kneading with microcapsules internally encapsulating a heat storage material and having the less reduction of heat storage function due to the leakage of the heat storage material which is the material encapsulated in the microcapsules, especially on being used repeatedly. <P>SOLUTION: By producing an olefin-based heat storage rubber material by the disclosed method, it is possible to provide the olefin-based heat storage rubber material obtained by kneading with the microcapsules internally encapsulating the heat storage material, and decreasing the reduction of the heat storage function due to the leakage of the heat storage material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、潜熱蓄熱材を内包するマイクロカプセルを含有してなる蓄熱性ゴム材料に関するものである。   The present invention relates to a heat storage rubber material containing microcapsules enclosing a latent heat storage material.

近年、生活環境における快適性や省エネルギー対策が求められるなか、建築・土木材料、空調システム、車両等の内装材、機械機器や電気・電子機器、保冷・保温用品、カーテンやカーペット等のインテリア用品、寝具、衣料用品、日用雑貨用品等において、温度調節機能や定温保持機能を有する潜熱蓄熱材を含有する材料が提案されている。   In recent years, as comfort and energy-saving measures in the living environment have been demanded, architectural and civil engineering materials, air conditioning systems, interior materials such as vehicles, mechanical equipment, electrical and electronic equipment, cold and warm products, interior products such as curtains and carpets, In bedding, clothing goods, daily goods, etc., materials containing a latent heat storage material having a temperature control function and a constant temperature holding function have been proposed.

液体−固体間での相変化に伴い潜熱の蓄熱・放熱を行うことができる潜熱蓄熱材は、液体時には潜熱蓄熱材の流出が生じる。これを防ぐために、容器に入れる等の対策を施した上で使用される。その対策の一例が潜熱蓄熱材を内包するマイクロカプセルであり、これを含有する蓄熱性樹脂組成物や蓄熱性ゴム材料が提案されている(例えば、特許文献1〜5参照)。また、潜熱蓄熱材を内包するマイクロカプセルを含有した蓄熱性アクリル系樹脂組成物並びにそれを用いた蓄熱性シート状成形体も提案されている(例えば、特許文献6参照)。しかし、これらの蓄熱性ゴム材料等は、繰り返し使用されることにより潜熱蓄熱材が漏出(ブリードアウト)したり、ゴム材料の劣化や形状変化が見られるという課題があった。   A latent heat storage material capable of storing and releasing latent heat with a phase change between a liquid and a solid causes the latent heat storage material to flow out when liquid. To prevent this, it is used after taking measures such as putting it in a container. An example of the countermeasure is a microcapsule containing a latent heat storage material, and a heat storage resin composition or a heat storage rubber material containing the microcapsule has been proposed (see, for example, Patent Documents 1 to 5). A heat storage acrylic resin composition containing microcapsules enclosing a latent heat storage material and a heat storage sheet-like molded body using the same have also been proposed (see, for example, Patent Document 6). However, these heat storage rubber materials and the like have problems that the latent heat storage material leaks out (bleeds out) due to repeated use, and deterioration and shape change of the rubber material are observed.

特開2005−23229号公報JP 2005-23229 A 特開2003−261716号公報JP 2003-261716 A 特開昭63−178191号公報JP-A-63-178191 実公平6−25914号公報No. 6-25914 特開2000−314187号公報JP 2000-314187 A 特開2007−31610号公報JP 2007-31610 A

潜熱蓄熱材を内包するマイクロカプセルを練り込んだ蓄熱性ゴム材料において、繰り返し使用された際に、マイクロカプセル内包物である潜熱蓄熱材の漏出が少なく、ゴム材料の劣化や形状変化が少ない蓄熱性ゴム材料を提供することにある。   In heat storage rubber materials kneaded with microcapsules containing latent heat storage materials, there is little leakage of latent heat storage materials, which are microcapsule inclusions, and there is little deterioration and shape change of rubber materials when used repeatedly. It is to provide a rubber material.

上記課題を解決するために、以下の発明を見出した。
(1)潜熱蓄熱材を内包するマイクロカプセルを含有してなる蓄熱性ゴム材料において、−10℃、10分間保持及び130℃、10分間保持を1サイクルとした熱サイクル試験にて、試験前の蓄熱性ゴム材料の潜熱量に対する500サイクル後の潜熱量再現率が80%以上であることを特徴とする蓄熱性ゴム材料。
(2)潜熱蓄熱材を内包するマイクロカプセルの潜熱量に対する蓄熱性ゴム材料中の蓄熱成分の潜熱量再現率が90%以上である上記(1)記載の蓄熱性ゴム材料、
(3)ゴム材料が、ニトリルゴム、イソプレンゴムまたはオレフィン系ゴムである上記(1)記載の蓄熱性ゴム材料、
(4)マイクロカプセルの皮膜を構成する樹脂が、尿素ホルマリン樹脂またはメラミンホルマリン樹脂である上記(1)記載の蓄熱性ゴム材料。
In order to solve the above problems, the inventors have found the following invention.
(1) In a heat storage rubber material containing a microcapsule containing a latent heat storage material, in a heat cycle test in which a cycle is held at -10 ° C, 10 minutes and 130 ° C, 10 minutes, A regenerative rubber material characterized by having a latent heat reproducibility after 500 cycles of 80% or more with respect to the latent heat amount of the regenerative rubber material.
(2) The heat storage rubber material according to the above (1), wherein the latent heat reproducibility of the heat storage component in the heat storage rubber material with respect to the latent heat amount of the microcapsules enclosing the latent heat storage material is 90% or more,
(3) The heat storage rubber material according to the above (1), wherein the rubber material is nitrile rubber, isoprene rubber or olefin rubber,
(4) The heat storage rubber material according to the above (1), wherein the resin constituting the microcapsule film is urea formalin resin or melamine formalin resin.

本発明によれば、繰り返し使用された際に、マイクロカプセル内包物である潜熱蓄熱材の漏出が少なく、ゴム材料の劣化や形状変化が少ない蓄熱性ゴム材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when repeatedly used, the heat storage rubber material which has few leakage of the latent heat storage material which is a microcapsule inclusion, and there is little deterioration of a rubber material and a shape change can be provided.

本発明の蓄熱性ゴム材料は、潜熱蓄熱材を内包するマイクロカプセルをゴム材料に含有させてなる。ゴム材料としては、天然ゴム、イソプレンゴム等のイソプレン系ゴム、スチレンブタジエンゴム、ブタジエンゴム等のブタジエン系ゴム、ニトリルゴム、ニトリルブタジエンゴム、クロロプレンゴム、水素化ニトリルゴム等のジエン系特殊ゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、アクリルゴム、ブチルゴム、ハロゲン化ブチルゴム等のオレフィン系ゴム、エピクロロヒドリンゴム、エチレンオキシド−エピクロロヒドリンゴム等のポリエーテル系ゴム、多硫化ゴム等のポリスルフィド系ゴム、ポリエステルウレタンゴム、ポリエーテルウレタンゴム等のポリウレタン系ゴム、フッ化ビニリデン系ゴム、フルオロシリコーン系ゴム、テトラフルオロエチレン−プロピレン系ゴム、フルオロホスファゼン系ゴム、テトラフルオロエチレン−パーフルオロビニルエーテル系ゴム等のフッ素ゴム、ポリジメチルシリコーンゴム、メチルビニルシリコーンゴム、メチルフェニルシリコーンゴム、フルオロシリコーンゴム等のシリコーンゴム等が挙げられる。これらは単独または二種類以上組み合わせて使用しても良い。このうち、繰り返し使用された際に、マイクロカプセル内包物である潜熱蓄熱材の漏出が少なく、ゴム材料の劣化や形状変化が少ない蓄熱性ゴム材料を得るためには、ニトリルゴム、イソプレンゴムまたはオレフィン系ゴムを使用することが好ましい。特に、ポリオレフィン系ゴムのエチレンプロピレンジエンゴムを使用すると、下記で説明する潜熱量再現率Aをより高くすることができるので特に好ましい。   The heat-storing rubber material of the present invention comprises a rubber material containing microcapsules enclosing a latent heat storage material. Rubber materials include natural rubber, isoprene rubber such as isoprene rubber, butadiene rubber such as styrene butadiene rubber and butadiene rubber, diene special rubber such as nitrile rubber, nitrile butadiene rubber, chloroprene rubber and hydrogenated nitrile rubber, ethylene Olefin rubber such as propylene rubber, ethylene propylene diene rubber, acrylic rubber, butyl rubber, halogenated butyl rubber, polyether rubber such as epichlorohydrin rubber and ethylene oxide-epichlorohydrin rubber, polysulfide rubber such as polysulfide rubber, polyester Polyurethane rubber such as urethane rubber, polyether urethane rubber, vinylidene fluoride rubber, fluorosilicone rubber, tetrafluoroethylene-propylene rubber, fluorophosphazene rubber, tetra Ruoroechiren - fluororubber such as perfluoro vinyl ether rubbers, polydimethyl silicone rubber, methyl vinyl silicone rubber, methylphenyl silicone rubber, silicone rubber such as fluorosilicone rubber. You may use these individually or in combination of 2 or more types. Among these, in order to obtain a heat storage rubber material with little leakage of the latent heat storage material that is contained in the microcapsule when repeatedly used, and less deterioration and shape change of the rubber material, nitrile rubber, isoprene rubber or olefin It is preferable to use a base rubber. In particular, it is particularly preferable to use ethylene-propylene diene rubber, which is a polyolefin-based rubber, because the latent heat reproducibility A described below can be further increased.

機械機器や電気・電子機器等の用途では、使用するゴムや樹脂材料由来のアウトガス発生により電気接点障害等が生じることが一般的に嫌われる。このため、これらの用途に蓄熱性ゴム材料が使われる場合には、シリコーンゴム以外のゴム材料を使用することが、アウトガスが発生しにくいため、好ましい。   In applications such as mechanical equipment and electrical / electronic equipment, it is generally disliked that an electrical contact failure or the like is caused by outgas generation derived from rubber or resin material used. For this reason, when a heat storage rubber material is used for these applications, it is preferable to use a rubber material other than silicone rubber because outgas is hardly generated.

上述のゴム材料に必要があれば、加硫剤、加硫促進剤、架橋剤、老化防止剤、酸化防止剤、可塑剤、発泡剤、難燃剤、粘着付与剤、滑剤、しゃく解剤(素練り促進剤)、着色剤、硬化剤、発泡剤、分散剤、溶剤等の他に、綿、ナイロン、ポリエステル、ビニロン、ガラス、カーボンなどの各種繊維類等を混合しても良い。   If necessary for the above rubber materials, vulcanizing agents, vulcanization accelerators, crosslinking agents, anti-aging agents, antioxidants, plasticizers, foaming agents, flame retardants, tackifiers, lubricants, peptizers (elementary) In addition to kneading accelerators, colorants, curing agents, foaming agents, dispersants, solvents, and the like, various fibers such as cotton, nylon, polyester, vinylon, glass, and carbon may be mixed.

潜熱蓄熱材を内包するマイクロカプセルは、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(同62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(同62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(同62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法を用いて製造することができる。   The microcapsules enclosing the latent heat storage material include an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. 62-1452), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (JP 62-45680), A method of forming a thermoplastic resin on the surface of the heat storage material particles in the liquid (JP-A-62-149334), a method of polymerizing and coating the monomer on the surface of the heat storage material particles (JP-A-62-2225241), interfacial polycondensation It can be produced by a method described in a process for producing a polyamide-coated microcapsule by reaction (Japanese Patent Laid-Open No. 2-258052).

マイクロカプセル皮膜としては、界面重合法、インサイチュー法等の手法で得られるポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられる。本発明の蓄熱材ゴム材料に適用するためには、耐熱性が必要であり、下記で説明する潜熱量再現率Aをより高くするためには、熱硬化性樹脂皮膜を有するマイクロカプセルが好ましく、特に、インサイチュー法による尿素ホルマリン樹脂、メラミンホルマリン樹脂皮膜を用いたマイクロカプセルが好ましい。   As microcapsule film, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, aminoplast resin obtained by techniques such as interfacial polymerization method and in situ method, and coacervation of gelatin and carboxymethylcellulose or gum arabic Synthetic or natural resins using the method are used. In order to apply the heat storage material rubber material of the present invention, heat resistance is necessary, and in order to further increase the latent heat amount reproduction rate A described below, a microcapsule having a thermosetting resin film is preferable, In particular, a microcapsule using a urea formalin resin or a melamine formalin resin film by an in situ method is preferable.

潜熱蓄熱材は、使用用途等に応じて適宜選択される。例えば、機械機器や電気・電子機器等の用途で60℃以上に温度上昇することを抑制するのであれば、55〜65℃程度に融点・凝固点を持つ潜熱蓄熱材が選択される。潜熱蓄熱材としては、パラフィン類や、無機共晶物及び無機系水和物、ドコサン酸等の脂肪酸類、ベンゼン等の芳香族炭化水素化合物、オクタデカン酸メチル等のエステル化合物、ベヘニルアルコール、ポリエチレングリコール等のアルコール類等の化合物が挙げられ、化学的、物理的に安定なものが用いられる。また、融点の異なる潜熱蓄熱材を2種以上混合しても良いし、必要に応じ過冷却防止剤、比重調整剤、劣化防止剤等を添加することができる。   The latent heat storage material is appropriately selected according to the intended use. For example, a latent heat storage material having a melting point / freezing point of about 55 to 65 ° C. is selected if the temperature rise to 60 ° C. or higher is suppressed in applications such as mechanical equipment and electrical / electronic equipment. Examples of latent heat storage materials include paraffins, inorganic eutectics and inorganic hydrates, fatty acids such as docosanoic acid, aromatic hydrocarbon compounds such as benzene, ester compounds such as methyl octadecanoate, behenyl alcohol, polyethylene glycol, etc. Compounds such as alcohols are used, and chemically and physically stable compounds are used. Moreover, you may mix 2 or more types of latent heat storage materials from which melting | fusing point differs, and if necessary, a supercooling inhibitor, a specific gravity regulator, a deterioration inhibitor, etc. can be added.

本発明に係る潜熱蓄熱材を内包するマイクロカプセルの平均粒子径は、物理的圧力による破壊を防止するために10μm以下、特に好ましくは5μm以下が好ましい。マイクロカプセルの平均粒子径は、乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(撹拌回転数、時間等)等を適宜調節して所望の平均粒子径に設定する。この平均粒子径を超えると、マイクロカプセルが外圧で容易に壊れ易くなったり、潜熱蓄熱材の比重が分散媒のそれと大きく差がある場合などに浮遊したり沈降したりし易くなるので好ましくない。   The average particle diameter of the microcapsules enclosing the latent heat storage material according to the present invention is preferably 10 μm or less, particularly preferably 5 μm or less, in order to prevent destruction due to physical pressure. The average particle size of the microcapsules is the type and concentration of the emulsifier, the temperature of the emulsified liquid during emulsification, the emulsification ratio (volume ratio of the water phase to the oil phase), the operation of the atomizer called emulsifier, disperser, etc. Conditions (such as the number of rotations of stirring, time, etc.) are adjusted as appropriate to set the desired average particle size. Exceeding this average particle diameter is not preferable because the microcapsules are easily broken by an external pressure, and are liable to float or settle when the specific gravity of the latent heat storage material is significantly different from that of the dispersion medium.

なお、本発明での平均粒子径は体積平均粒子径をいう。体積平均粒子径とはマイクロカプセル粒子の体積換算値の平均粒子径を表わすものであり、原理的には一定体積の粒子を小さいものから順に篩分けし、その50%体積に当たる粒子が分別された時点での粒子径を意味する。体積平均粒子径の測定は顕微鏡観察等による実測でも測定可能であるが、市販の電気的、光学的粒子径測定装置を用いることにより自動的に測定可能であり、後述する実施例における分散液の体積平均粒子径は、米国ベックマンコールター社製粒度測定装置コールターマルチサイザーII型を用いて測定したものである。   In addition, the average particle diameter in this invention says a volume average particle diameter. The volume average particle diameter represents the average particle diameter of the microcapsule particles in terms of volume, and in principle, particles of a certain volume are sieved in order from the smallest, and the particles corresponding to 50% of the volume are separated. It means the particle size at the time. The volume average particle size can be measured by actual measurement by microscopic observation or the like, but can be automatically measured by using a commercially available electrical or optical particle size measuring device, and the dispersion liquid in the examples described later can be measured. The volume average particle diameter is measured using a particle size measuring device Coulter Multisizer II type manufactured by Beckman Coulter, USA.

一般的に潜熱蓄熱材を内包するマイクロカプセルは分散液状態で得られるが、ゴム材料との練り込みや加熱工程の容易さを考慮し、脱水または乾燥を施して、マイクロカプセルを固形物、粉体、顆粒状にしたものが使い易い。なお、マイクロカプセルの粉体の平均粒子径は、レーザー回折式粒度分布測定装置を用いて体積平均粒子径を測定する。マイクロカプセルの固形物や顆粒状にしたものの平均粒子径は、ノギス等の測定器具で測定した長さ径の平均値で表わす。   In general, microcapsules containing a latent heat storage material are obtained in a dispersion state. However, considering the ease of kneading with a rubber material and the heating process, the microcapsules are subjected to dehydration or drying, and the microcapsules are converted into solids, powders. Easy to use body and granule. The average particle size of the microcapsule powder is measured by using a laser diffraction particle size distribution measuring device. The average particle diameter of the solid or granulated microcapsule is represented by the average value of the length diameter measured with a measuring instrument such as calipers.

本発明における熱サイクル試験は、熱衝撃試験機内に蓄熱性ゴム材料をセットし、−10℃、10分間保持及び130℃、10分間保持することを1サイクルとした熱サイクル条件にて、蓄熱性ゴム材料に組み込んだ蓄熱材を内包するマイクロカプセル内部の蓄熱材を、複数サイクル融解と凝固させるものである。そして本熱サイクル試験前後における蓄熱性ゴム材料中の蓄熱性ゴム材料の潜熱量(融解または凝固熱量)を示差走査熱量計(装置名:DSC7、米国PerkinElmer社製)を用いて測定し、試験前に対する500サイクル試験後の潜熱量の比を百分率で示した潜熱量再現率Aが80%以上であると、マイクロカプセル内包物である潜熱蓄熱材の漏出が少なく、ゴム材料の劣化及び形状変化が少なくなる。潜熱量再現率Aは90%以上であることがより好ましい。熱サイクル試験後における蓄熱性ゴム材料の潜熱蓄熱材漏出やゴム材料の劣化及び変形は、目視で確認する。   In the thermal cycle test of the present invention, a heat storage rubber material is set in a thermal shock tester, and heat storage is performed under the heat cycle condition where -10 ° C, 10 minutes holding and 130 ° C, 10 minutes holding is one cycle. The heat storage material inside the microcapsule containing the heat storage material incorporated in the rubber material is melted and solidified for a plurality of cycles. Then, the latent heat amount (melting or coagulation heat amount) of the heat storage rubber material in the heat storage rubber material before and after the heat cycle test was measured using a differential scanning calorimeter (device name: DSC7, manufactured by PerkinElmer, USA) before the test. When the latent heat reproducibility A showing the ratio of the latent heat amount after 500 cycle tests to 80% or more is 80% or more, there is little leakage of the latent heat storage material that is the inclusion of microcapsules, and the deterioration and shape change of the rubber material Less. The latent heat reproduction rate A is more preferably 90% or more. The leakage of the latent heat storage material of the heat storage rubber material after the thermal cycle test and the deterioration and deformation of the rubber material are visually confirmed.

本発明において、蓄熱性ゴム材料についての潜熱蓄熱材を内包するマイクロカプセルに対する蓄熱性ゴム材料の潜熱量再現率B(%)は、潜熱蓄熱材を内包するマイクロカプセルとマイクロカプセルを含有してなる蓄熱性ゴム材料との質量当たりの潜熱量(融解または凝固熱量)を、示差走査熱量計(装置名:DSC7、米国PerkinElmer社製)を用いて測定し、数1の計算式で求める。   In the present invention, the latent heat reproducibility B (%) of the heat storage rubber material with respect to the microcapsules containing the latent heat storage material for the heat storage rubber material includes the microcapsules and microcapsules containing the latent heat storage material. The amount of latent heat (melting or coagulation heat amount) per mass with the heat storage rubber material is measured using a differential scanning calorimeter (device name: DSC7, manufactured by PerkinElmer, USA), and determined by the formula 1 below.

Figure 2010184981
Figure 2010184981

潜熱蓄熱材を内包するマイクロカプセルの潜熱量に対する蓄熱性ゴム材料中の蓄熱成分の潜熱量再現率Bが90%以上であると、さらに、マイクロカプセル内包物である潜熱蓄熱材の漏出が少なく、ゴム材料の劣化や形状変化が少なくなる。   When the latent heat reproducibility B of the heat storage component in the heat storage rubber material with respect to the amount of latent heat of the microcapsule enclosing the latent heat storage material is 90% or more, the leakage of the latent heat storage material that is the microcapsule inclusion is small, Deterioration and shape change of rubber material are reduced.

本発明の蓄熱性ゴム材料は、1.潜熱蓄熱材を内包するマイクロカプセルの調製工程、2.ゴム材料とマイクロカプセルを混合して成型する工程、3.成型品にゴム弾性を与えて物理的強度を高めるために、加熱・架橋(加硫)する工程によって製造することができる。さらに、得られた蓄熱性ゴム材料は、必要に応じて、所望の形状や大きさに切って使用することができる。これらの工程はゴム材料の性質に大きく影響を及ぼすので使用目的に合わせて使用素材と製法が選択される。   The heat storage rubber material of the present invention includes: 1. a process for preparing a microcapsule containing a latent heat storage material; 2. Mixing and molding a rubber material and microcapsules; In order to give rubber elasticity to a molded product to increase physical strength, it can be manufactured by a process of heating and crosslinking (vulcanization). Furthermore, the obtained heat storage rubber material can be used by cutting into a desired shape and size as required. Since these processes greatly affect the properties of the rubber material, the material used and the production method are selected according to the purpose of use.

工程2において、潜熱蓄熱材を内包するマイクロカプセルとゴム材料の混合には、バンバリーミキサーやニーダー等、一般的に使われているミキサー、混練機等の混合装置が使用できる。   In step 2, a mixing device such as a commonly used mixer or kneader, such as a Banbury mixer or a kneader, can be used for mixing the microcapsules enclosing the latent heat storage material and the rubber material.

潜熱蓄熱材を内包するマイクロカプセルとゴム材料との混合時間は、混合装置や混合具合によって適宜選択されるが、潜熱量再現率Aをより高くするためには、混合時間は20分以内が好ましく、6分以内がより好ましい。   The mixing time of the microcapsules enclosing the latent heat storage material and the rubber material is appropriately selected depending on the mixing apparatus and the mixing condition, but in order to further increase the latent heat reproduction rate A, the mixing time is preferably within 20 minutes. Within 6 minutes is more preferable.

混合時の圧力は、混合装置や混合具合を考慮してマイクロカプセルへのダメージが小さくなるように適宜選択される。   The pressure at the time of mixing is appropriately selected so that damage to the microcapsules is reduced in consideration of the mixing device and the mixing condition.

潜熱蓄熱材を内包するマイクロカプセルとゴム材料の混合物は、型枠や成型機を使用して成型され、加熱・架橋(加硫)する工程がなされる。加熱・架橋(加硫)する工程の温度は、ゴム材料の種類や架橋剤、加硫剤の添加の有無、添加剤の種類によっても異なるが、例えば、硫黄を添加して加硫する場合は、40〜200℃が好ましい。潜熱量再現率Aをより高くするためには、160℃以下に設定することが好ましい。また、潜熱量再現率Aをより高くするための加熱・架橋(加硫)工程の時間は10分以内が好ましく、5分以内がより好ましい。   The mixture of the microcapsules enclosing the latent heat storage material and the rubber material is molded using a mold or a molding machine, and subjected to a heating and crosslinking (vulcanization) process. The temperature of the heating / crosslinking (vulcanization) process varies depending on the type of rubber material, the crosslinking agent, whether or not a vulcanizing agent is added, and the type of additive. For example, when sulfur is added and vulcanized 40 to 200 ° C is preferable. In order to further increase the latent heat reproduction rate A, it is preferable to set the temperature to 160 ° C. or lower. Further, the heating / crosslinking (vulcanization) process time for increasing the latent heat amount reproduction rate A is preferably within 10 minutes, and more preferably within 5 minutes.

潜熱蓄熱材を内包するマイクロカプセルとゴム材料に溶剤を添加して練り込む場合には、加熱・架橋(加硫)工程を行う前に、必要に応じて溶剤をとばすために乾燥を行う。この溶剤乾燥には、真空乾燥機、防爆型乾燥機等の溶剤乾燥に適した装置を使用する。   When adding and kneading a solvent to the microcapsules enclosing the latent heat storage material and the rubber material, drying is performed as necessary to skip the solvent before performing the heating / crosslinking (vulcanization) step. For this solvent drying, an apparatus suitable for solvent drying such as a vacuum dryer or an explosion-proof dryer is used.

本発明の蓄熱性ゴム材料中に占めるマイクロカプセル含有比率は10〜90質量%の範囲が好ましく、30〜70質量%の範囲がより好ましい。90質量%を超えると、ゴム弾性と強度が乏しくなることがあり、10質量%未満になると、蓄熱性能が乏しくなることがある。   The microcapsule content ratio in the heat storage rubber material of the present invention is preferably in the range of 10 to 90% by mass, and more preferably in the range of 30 to 70% by mass. When it exceeds 90% by mass, rubber elasticity and strength may be poor, and when it is less than 10% by mass, heat storage performance may be poor.

以下、本発明の実施例について説明するが、本発明の蓄熱性ゴム材料はこれらの例のみに限定されずに適用できる。また、実施例において、特にことわりのない百分率、部数は質量基準である。   Examples of the present invention will be described below, but the heat storage rubber material of the present invention can be applied without being limited only to these examples. Further, in the examples, percentages and parts without particular notice are based on mass.

実施例1
メラミン粉末12質量部に37質量%ホルムアルデヒド水溶液15.4質量部と水40質量部を加え、pHを8に調整した後、70℃まで加熱してメラミン−ホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10質量%スチレン−無水マレイン酸共重合体のナトリウム塩水溶液100質量部を70℃に加温した中に、潜熱蓄熱材として、70℃に加温したステアリン酸ステアリル(商品名:エキセパールSS、花王(株)製、融点56〜66℃)80質量部を激しく撹拌しながら添加し、平均粒子径が3.0μmになるまで乳化を行い、乳化液を得た。得られた乳化液に、上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加して70℃で2時間撹拌を施した後、pHを9まで上げて水を添加して乾燥固形分濃度40%の潜熱蓄熱材を内包したマイクロカプセル分散液1を得た。
Example 1
After adding 15.4 parts by mass of a 37% by mass aqueous formaldehyde solution and 40 parts by mass of water to 12 parts by mass of melamine powder, the pH was adjusted to 8, followed by heating to 70 ° C. to obtain an aqueous melamine-formaldehyde condensate aqueous solution. Stearyl stearate heated to 70 ° C. as a latent heat storage material while 100 parts by mass of sodium salt aqueous solution of 10% by mass styrene-maleic anhydride copolymer adjusted to pH 4.5 was heated to 70 ° C. (Product name: EXCEPARL SS, manufactured by Kao Corporation, melting point: 56 to 66 ° C.) 80 parts by mass were added with vigorous stirring, and emulsification was performed until the average particle size became 3.0 μm to obtain an emulsion. After adding the total amount of the above melamine-formaldehyde initial condensate aqueous solution to the obtained emulsion and stirring at 70 ° C. for 2 hours, the pH was raised to 9 and water was added to form a latent heat with a dry solid content concentration of 40%. A microcapsule dispersion 1 containing a heat storage material was obtained.

このマイクロカプセル分散液1をスプレードライヤーで水分含有率3質量%以下まで乾燥し、平均粒子径50μmのマイクロカプセル粉体1を得た。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度160℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは92%、潜熱量再現率Bは91%であった。   This microcapsule dispersion 1 was dried with a spray dryer to a moisture content of 3% by mass or less to obtain a microcapsule powder 1 having an average particle size of 50 μm. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes with a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Co., Ltd.) was added, and kneaded for 3 minutes in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 160 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 92%, and the latent heat amount reproduction rate B was 91%.

なお、潜熱量再現率Aは、蓄熱性ゴム材料(5cm×5cm)を熱衝撃試験機(装置名:小型冷熱衝撃装置TSE−11、エスペック(株)製)内にセットし、−10℃、10分間保持、130℃、10分間保持することを1サイクルとした熱サイクル条件にて、500サイクル運転し、示差走査熱量計(装置名:DSC7、米国PerkinElmer社製)でその前後の潜熱量を測定して求めた。   In addition, the latent heat amount reproduction rate A is set at −10 ° C. by setting a heat storage rubber material (5 cm × 5 cm) in a thermal shock tester (device name: small thermal shock device TSE-11, manufactured by Espec Corp.). Operate 500 cycles under the heat cycle condition where holding for 10 minutes, holding at 130 ° C. for 10 minutes is one cycle, and using a differential scanning calorimeter (device name: DSC7, manufactured by PerkinElmer, USA) Determined by measurement.

実施例2
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とイソプレンゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。加熱温度160℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは92%、潜熱量再現率Bは93%であった。
Example 2
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of isoprene rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Co., Ltd.) was added and kneaded for 3 minutes in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Press vulcanization was performed at a heating temperature of 160 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 92%, and the latent heat amount reproduction rate B was 93%.

実施例3
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とエチレンプロピレンジエンゴム(EPDM)原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度160℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは95%、潜熱量再現率Bは97%であった。
Example 3
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of this microcapsule powder, 100 parts by mass of ethylene propylene diene rubber (EPDM) raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes in a closed kneader, a vulcanization accelerator ( Product name: Noxeller NS, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (3 parts by mass) was added and kneaded in the same manner for 3 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 160 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to this heat storage rubber material, the latent heat amount reproduction rate A was 95%, and the latent heat amount reproduction rate B was 97%.

実施例4
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とブチルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度160℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは90%、潜熱量再現率Bは90%であった。
Example 4
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a butyl rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS, 3 parts by mass of Ouchi Shinsei Chemical Co., Ltd.) was added, and kneaded for 3 minutes in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 160 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to this heat storage rubber material, the latent heat amount reproduction rate A was 90%, and the latent heat amount reproduction rate B was 90%.

実施例5
pHを3.0に調整した5質量%のエチレン−無水マレイン酸共重合体のナトリウム塩水溶液125質量部に尿素7.5質量部を添加し、70℃に加温する。その中に潜熱蓄熱材として70℃に加温したステアリン酸ステアリル(商品名:エキセパールSS、花王(株)製、融点56〜66℃)80質量部を激しく撹拌しながら添加し、平均粒子径が3.0μmになるまで乳化を行い、乳化液を得た。この乳化液に37%ホルムアルデヒド水溶液19部と水25部を添加し、70℃で2時間加熱撹拌を施してカプセル化反応を行った後、この分散液のpHを9に調整し、水を添加して乾燥固形分濃度40%の潜熱蓄熱材を内包したマイクロカプセル分散液2を得た。
Example 5
7.5 parts by mass of urea is added to 125 parts by mass of an aqueous sodium salt solution of 5% by mass ethylene-maleic anhydride copolymer adjusted to pH 3.0, and heated to 70 ° C. 80 parts by mass of stearyl stearate (trade name: Exepal SS, manufactured by Kao Corporation, melting point 56-66 ° C.) heated to 70 ° C. as a latent heat storage material was added with vigorous stirring, and the average particle size was Emulsification was carried out to 3.0 μm to obtain an emulsion. To this emulsion, 19 parts of a 37% formaldehyde aqueous solution and 25 parts of water were added, followed by heating and stirring at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of the dispersion was adjusted to 9, and water was added. Thus, a microcapsule dispersion 2 containing a latent heat storage material having a dry solid content concentration of 40% was obtained.

このマイクロカプセル分散液2をスプレードライヤーで水分含有率3質量%以下まで乾燥し、平均粒子径50μmのマイクロカプセル粉体2を得た。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度160℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは91%、潜熱量再現率Bは92%であった。   This microcapsule dispersion 2 was dried with a spray dryer to a moisture content of 3% by mass or less to obtain a microcapsule powder 2 having an average particle size of 50 μm. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes with a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Co., Ltd.) was added, and kneaded for 3 minutes in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 160 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 91%, and the latent heat amount reproduction rate B was 92%.

実施例6
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体100質量部とポリオール(商品名:アクトコールMN−3050:三井化学ポリウレタン(株)製)100質量部、触媒としてオクチル酸錫1質量部を密閉式混練機で3分間混練りした後、トリレンジイソシアネート(トルエン−2,4−ジイソシアネート/トルエン−2,6−ジイソシアネート=80/20)50質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度90℃でプレス加熱5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは80%、潜熱量再現率Bは84%であった。
Example 6
The same microcapsule powder as in Example 1 was used. 100 parts by mass of the microcapsule powder and 100 parts by mass of polyol (trade name: Actol MN-3050: manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) and 1 part by mass of tin octylate as a catalyst are kneaded for 3 minutes in a closed kneader. Then, 50 parts by mass of tolylene diisocyanate (toluene-2,4-diisocyanate / toluene-2,6-diisocyanate = 80/20) was added and kneaded for 3 minutes in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Next, press heating was performed at a heating temperature of 90 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. About this heat storage rubber material, latent heat reproduction A was 80%, and latent heat reproduction B was 84%.

実施例7
潜熱蓄熱材として70℃に加温したステアリン酸ステアリル(商品名:エキセパールSS、花王(株)製、融点56〜66℃)34質量部に、メタクリル酸メチル6質量部とジビニルベンゼン0.1質量部を溶解した。次いで過酸化ベンゾイル0.2質量部を添加し、70℃に加温した部分ケン化ポリ酢酸ビニル0.5質量%水溶液中に入れ、激しく撹拌しながら平均粒子径が3.0μmになるまで乳化を行い、乳化液を得た。本乳化液を重合容器内に入れ、窒素雰囲気下で80℃、7時間重合反応を行った後、重合容器内を室温まで冷却し、水を添加して乾燥固形分濃度30%の潜熱蓄熱材を内包したマイクロカプセル分散液3を得た。
Example 7
As a latent heat storage material, stearyl stearate heated to 70 ° C. (trade name: Exepal SS, manufactured by Kao Corporation, melting point 56-66 ° C.) 34 parts by mass, methyl methacrylate 6 parts by mass and divinylbenzene 0.1 mass Part was dissolved. Next, 0.2 parts by mass of benzoyl peroxide was added, and the mixture was placed in a 0.5% by mass aqueous solution of partially saponified polyvinyl acetate heated to 70 ° C., and emulsified with vigorous stirring until the average particle size became 3.0 μm. To obtain an emulsion. The emulsion is placed in a polymerization vessel, subjected to a polymerization reaction at 80 ° C. for 7 hours in a nitrogen atmosphere, then the polymerization vessel is cooled to room temperature, water is added, and a latent heat storage material having a dry solid content concentration of 30% is added. To obtain a microcapsule dispersion 3.

このマイクロカプセル分散液3をスプレードライヤーで水分含有率3質量%以下まで乾燥し、平均粒子径50μmのマイクロカプセル粉体3を得た。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度150℃でプレス加硫3分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは80%、潜熱量再現率Bは85%であった。   The microcapsule dispersion 3 was dried with a spray dryer to a moisture content of 3% by mass or less to obtain a microcapsule powder 3 having an average particle size of 50 μm. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes with a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Co., Ltd.) was added, and kneaded for 3 minutes in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed for 3 minutes at a heating temperature of 150 ° C. to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 80%, and the latent heat amount reproduction rate B was 85%.

実施例8
マイクロカプセル粉体は実施例7と同じものを使用した。このマイクロカプセル粉体100質量部とポリオール(商品名:アクトコールMN−3050、三井化学ポリウレタン(株)製)100質量部、触媒としてオクチル酸錫1質量部を密閉式混練機で1分間混練りした後、トリレンジイソシアネート(トルエン−2,4−ジイソシアネート/トルエン−2,6−ジイソシアネート=80/20)50質量部を添加して、同様に1分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度90℃でプレス加熱3分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは80%、潜熱量再現率Bは90%であった。
Example 8
The same microcapsule powder as in Example 7 was used. 100 parts by mass of this microcapsule powder, 100 parts by mass of a polyol (trade name: Actol MN-3050, manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) and 1 part by mass of tin octylate as a catalyst are kneaded for 1 minute in a closed kneader. After that, 50 parts by mass of tolylene diisocyanate (toluene-2,4-diisocyanate / toluene-2,6-diisocyanate = 80/20) was added and kneaded in the same manner for 1 minute to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press heating was performed for 3 minutes at a heating temperature of 90 ° C. to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 80%, and the latent heat amount reproduction rate B was 90%.

実施例9
マイクロカプセル粉体を実施例5と同じものを使用すること以外は、実施例8と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは83%、潜熱量再現率Bは91%であった。
Example 9
A heat storage rubber material was obtained in the same manner as in Example 8, except that the same microcapsule powder as in Example 5 was used. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 83%, and the latent heat amount reproduction rate B was 91%.

実施例10
マイクロカプセル粉体は実施例7と同じものを使用した。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で1分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に1分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度150℃でプレス加硫1分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは80%、潜熱量再現率Bは91%であった。
Example 10
The same microcapsule powder as in Example 7 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 1 minute in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Co., Ltd.) were added and kneaded for 1 minute in the same manner to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed for 1 minute at a heating temperature of 150 ° C. to obtain a heat storage rubber material having a thickness of 1 mm. With respect to this heat storage rubber material, the latent heat amount reproduction rate A was 80%, and the latent heat amount reproduction rate B was 91%.

実施例11
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で10分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度160℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは89%、潜熱量再現率Bは90%であった。
Example 11
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene are kneaded for 10 minutes in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Industry Co., Ltd.) was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded product was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 160 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 89%, and the latent heat amount reproduction rate B was 90%.

実施例12
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で10分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度160℃でプレス加硫15分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは85%、潜熱量再現率Bは87%であった。
Example 12
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene are kneaded for 10 minutes in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Industry Co., Ltd.) was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Next, press vulcanization was carried out at a heating temperature of 160 ° C. for 15 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 85%, and the latent heat amount reproduction rate B was 87%.

実施例13
プレス加硫時の加熱温度を190℃に設定すること以外は実施例2と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは87%、潜熱量再現率Bは89%であった。
Example 13
A heat storage rubber material was obtained in the same manner as in Example 2 except that the heating temperature during press vulcanization was set to 190 ° C. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 87%, and the latent heat amount reproduction rate B was 89%.

実施例14
プレス加硫時の加熱時間を15分行うこと以外は実施例2と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは85%、潜熱量再現率Bは88%であった。
Example 14
A heat storage rubber material was obtained in the same manner as in Example 2 except that the heating time during press vulcanization was 15 minutes. With respect to this heat storage rubber material, the latent heat amount reproduction rate A was 85%, and the latent heat amount reproduction rate B was 88%.

実施例15
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とエチレンプロピレンジエンゴム(EPDM)原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で10分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度190℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは83%、潜熱量再現率Bは88%であった。
Example 15
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of this microcapsule powder, 100 parts by mass of ethylene propylene diene rubber (EPDM) raw material, 1 part by mass of powdered sulfur and 100 parts by mass of toluene were kneaded for 10 minutes in a closed kneader, a vulcanization accelerator ( Trade name: Noxeller NS, manufactured by Ouchi Shinsei Chemical Co., Ltd.) 3 parts by mass was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 190 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 83%, and the latent heat amount reproduction rate B was 88%.

実施例16
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体105質量部とエチレンプロピレンジエンゴム(EPDM)原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で3分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に3分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度190℃でプレス加硫15分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは87%、潜熱量再現率Bは87%であった。
Example 16
The same microcapsule powder as in Example 1 was used. After 105 parts by mass of this microcapsule powder, 100 parts by mass of ethylene propylene diene rubber (EPDM) raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene were kneaded for 3 minutes in a closed kneader, a vulcanization accelerator ( 3 parts by mass of a trade name: Noxeller NS, manufactured by Ouchi Shinsei Chemical Co., Ltd.) was added and kneaded in the same manner for 3 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Next, press vulcanization was carried out at a heating temperature of 190 ° C. for 15 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 87%, and the latent heat amount reproduction rate B was 87%.

実施例17
プレス加硫時の加熱温度を165℃に設定すること以外は実施例4と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは88%、潜熱量再現率Bは88%であった。
Example 17
A heat storage rubber material was obtained in the same manner as in Example 4 except that the heating temperature during press vulcanization was set to 165 ° C. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 88%, and the latent heat amount reproduction rate B was 88%.

実施例18
密閉式混練機での混練り時間をそれぞれ11分間行うこと以外は実施例4と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは88%、潜熱量再現率Bは89%であった。
Example 18
A heat storage rubber material was obtained in the same manner as in Example 4 except that the kneading time in the closed kneader was 11 minutes each. With respect to this heat storage rubber material, the latent heat amount reproduction rate A was 88%, and the latent heat amount reproduction rate B was 89%.

実施例19
プレス加硫時のプレス時間を11分間行うこと以外は実施例4と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは88%、潜熱量再現率Bは88%であった。
Example 19
A heat storage rubber material was obtained in the same manner as in Example 4 except that the press time during press vulcanization was 11 minutes. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 88%, and the latent heat amount reproduction rate B was 88%.

実施例20
プレス加硫時のプレス時間を10分間行うこと以外は実施例4と同じ方法で蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは88%、潜熱量再現率Bは90%であった
Example 20
A heat storage rubber material was obtained in the same manner as in Example 4 except that the press time during press vulcanization was 10 minutes. For this heat storage rubber material, the latent heat amount reproduction rate A was 88%, and the latent heat amount reproduction rate B was 90%.

比較例1
マイクロカプセル粉体は実施例1と同じものを使用した。このマイクロカプセル粉体100質量部とポリオール(商品名:アクトコールMN−3050、三井化学ポリウレタン(株)製)100質量部、触媒としてオクチル酸錫1質量部を密閉式混練機で10分間混練りした後、トリレンジイソシアネート(トルエン−2,4−ジイソシアネート/トルエン−2,6−ジイソシアネート=80/20)50質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度100℃でプレス加熱15分間を行い、厚さ1mmのウレタン蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは75%、潜熱量再現率Bは86%であった。
Comparative Example 1
The same microcapsule powder as in Example 1 was used. 100 parts by mass of the microcapsule powder, 100 parts by mass of a polyol (trade name: Actol MN-3050, manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) and 1 part by mass of tin octylate as a catalyst are kneaded for 10 minutes in a closed kneader. Then, 50 parts by mass of tolylene diisocyanate (toluene-2,4-diisocyanate / toluene-2,6-diisocyanate = 80/20) was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Next, press heating was performed at a heating temperature of 100 ° C. for 15 minutes to obtain a urethane heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 75%, and the latent heat amount reproduction rate B was 86%.

比較例2
マイクロカプセル粉体は実施例5と同じものを使用した。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で10分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度190℃でプレス加硫15分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは73%、潜熱量再現率Bは85%であった。
Comparative Example 2
The same microcapsule powder as in Example 5 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene are kneaded for 10 minutes in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Industry Co., Ltd.) was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Next, press vulcanization was carried out at a heating temperature of 190 ° C. for 15 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to the heat storage rubber material, the latent heat amount reproduction rate A was 73%, and the latent heat amount reproduction rate B was 85%.

比較例3
マイクロカプセル粉体は実施例7と同じものを使用した。このマイクロカプセル粉体105質量部とニトリルゴム原料100質量部、粉末硫黄1質量部、トルエン100質量部を、密閉式混練機で10分間混練りした後、加硫促進剤(商品名:ノクセラーNS、大内新興化学工業(株)製)3質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度190℃でプレス加硫5分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは77%、潜熱量再現率Bは85%であった。
Comparative Example 3
The same microcapsule powder as in Example 7 was used. After 105 parts by mass of the microcapsule powder, 100 parts by mass of a nitrile rubber raw material, 1 part by mass of powdered sulfur, and 100 parts by mass of toluene are kneaded for 10 minutes in a closed kneader, a vulcanization accelerator (trade name: Noxeller NS 3 parts by mass of Ouchi Shinsei Chemical Industry Co., Ltd.) was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press vulcanization was performed at a heating temperature of 190 ° C. for 5 minutes to obtain a heat storage rubber material having a thickness of 1 mm. With respect to this heat storage rubber material, the latent heat amount reproduction rate A was 77%, and the latent heat amount reproduction rate B was 85%.

比較例4
マイクロカプセル粉体は実施例7と同じものを使用した。このマイクロカプセル粉体100質量部とポリオール(商品名:アクトコールMN−3050:三井化学ポリウレタン(株)製)100質量部、触媒としてオクチル酸錫1質量部を密閉式混練機で10分間混練りした後、トリレンジイソシアネート(トルエン−2,4−ジイソシアネート/トルエン−2,6−ジイソシアネート=80/20)50質量部を添加して、同様に10分間混練りして混練り物を得た。得られた混練り物を20cm×20cmの型にセットし、真空乾燥機で60℃、12時間乾燥を行い、トルエンを完全に除去した。次いで加熱温度90℃でプレス加熱3分間を行い、厚さ1mmの蓄熱性ゴム材料を得た。本蓄熱性ゴム材料について、潜熱量再現率Aは78%、潜熱量再現率Bは90%であった。
Comparative Example 4
The same microcapsule powder as in Example 7 was used. 100 parts by mass of this microcapsule powder and 100 parts by mass of polyol (trade name: Actol MN-3050: manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) and 1 part by mass of tin octylate as a catalyst were kneaded for 10 minutes in a closed kneader. Then, 50 parts by mass of tolylene diisocyanate (toluene-2,4-diisocyanate / toluene-2,6-diisocyanate = 80/20) was added and kneaded in the same manner for 10 minutes to obtain a kneaded product. The obtained kneaded material was set in a 20 cm × 20 cm mold and dried in a vacuum dryer at 60 ° C. for 12 hours to completely remove toluene. Subsequently, press heating was performed for 3 minutes at a heating temperature of 90 ° C. to obtain a heat storage rubber material having a thickness of 1 mm. Regarding this heat storage rubber material, the latent heat amount reproduction rate A was 78%, and the latent heat amount reproduction rate B was 90%.

潜熱量再現率A、B及び熱サイクル試験後の蓄熱性ゴム材料の蓄熱材の漏出と形状変化等を目視にて確認した結果を表1に示す。表1の蓄熱材の漏出の項目において、漏出が無いものを◎印、極少量漏出するものを○印、少量漏出するものを△印、多量に漏出するものを×印で示した。また、蓄熱性ゴム材料の変形、劣化の項目において、変形や劣化が無いものを◎印、極少々あるものを○印、少々あるものを△印、大きくあるものを×印で示した。   Table 1 shows the results of visually confirming the latent heat reproduction ratios A and B and the leakage and shape change of the heat storage material of the heat storage rubber material after the heat cycle test. Of the items of leakage of heat storage materials in Table 1, those with no leakage are indicated with ◎, those with very little leakage are indicated with ○, those with little leakage are indicated with Δ, and those with large leakage are indicated with ×. In addition, in the items of deformation and deterioration of the heat storage rubber material, those without deformation or deterioration are indicated by ◎, those with a little are indicated by ○, those with a little are indicated by Δ, and those with a large are indicated by ×.

Figure 2010184981
Figure 2010184981

表1より、潜熱量再現率Aが80%以上である実施例の蓄熱性ゴム材料は、蓄熱材の漏出、形状変形等が無く良好であった。これに対し、潜熱量再現率Aが80%未満である比較例の蓄熱性ゴム材料は、蓄熱材の漏出や蓄熱性ゴム材料の変形や劣化が実施例よりも多く確認された。   From Table 1, the heat storage rubber material of the example whose latent heat amount reproduction rate A is 80% or more was good without leakage or shape deformation of the heat storage material. On the other hand, in the heat storage rubber material of the comparative example in which the latent heat reproduction rate A is less than 80%, leakage of the heat storage material and deformation and deterioration of the heat storage rubber material were confirmed more than in the examples.

Claims (4)

潜熱蓄熱材を内包するマイクロカプセルを含有してなる蓄熱性ゴム材料において、−10℃、10分間保持及び130℃、10分間保持を1サイクルとした熱サイクル試験にて、試験前の蓄熱性ゴム材料の潜熱量に対する500サイクル後の潜熱量再現率が80%以上であることを特徴とする蓄熱性ゴム材料。   In a heat storage rubber material containing a microcapsule containing a latent heat storage material, a heat storage rubber before the test in a heat cycle test in which one cycle is held at -10 ° C, 10 minutes and 130 ° C, 10 minutes. A regenerative rubber material characterized in that the latent heat reproducibility after 500 cycles with respect to the latent heat amount of the material is 80% or more. 潜熱蓄熱材を内包するマイクロカプセルの潜熱量に対する蓄熱性ゴム材料中の蓄熱成分の潜熱量再現率が90%以上である請求項1記載の蓄熱性ゴム材料。   The heat storage rubber material according to claim 1, wherein a latent heat amount reproduction rate of the heat storage component in the heat storage rubber material with respect to the amount of latent heat of the microcapsule enclosing the latent heat storage material is 90% or more. ゴム材料が、ニトリルゴム、イソプレンゴムまたはオレフィン系ゴムである請求項1記載の蓄熱性ゴム材料。   The heat storage rubber material according to claim 1, wherein the rubber material is nitrile rubber, isoprene rubber or olefin rubber. マイクロカプセルの皮膜を構成する樹脂が、尿素ホルマリン樹脂またはメラミンホルマリン樹脂である請求項1記載の蓄熱性ゴム材料。   The heat storage rubber material according to claim 1, wherein the resin constituting the film of the microcapsule is urea formalin resin or melamine formalin resin.
JP2009028967A 2009-02-10 2009-02-10 Heat storage rubber material Pending JP2010184981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028967A JP2010184981A (en) 2009-02-10 2009-02-10 Heat storage rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028967A JP2010184981A (en) 2009-02-10 2009-02-10 Heat storage rubber material

Publications (1)

Publication Number Publication Date
JP2010184981A true JP2010184981A (en) 2010-08-26

Family

ID=42765831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028967A Pending JP2010184981A (en) 2009-02-10 2009-02-10 Heat storage rubber material

Country Status (1)

Country Link
JP (1) JP2010184981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037534A (en) * 2012-07-25 2014-02-27 Hutchinson Sa Rubber composition containing at least one kind of epdm and phase change material, tube incorporating the same, and process for manufacturing the composition
WO2015087620A1 (en) 2013-12-11 2015-06-18 富士高分子工業株式会社 Heat-storage composition
WO2020174929A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Heat storage member, electronic device, heat storage member manufacturing method, and protective layer-forming composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037534A (en) * 2012-07-25 2014-02-27 Hutchinson Sa Rubber composition containing at least one kind of epdm and phase change material, tube incorporating the same, and process for manufacturing the composition
WO2015087620A1 (en) 2013-12-11 2015-06-18 富士高分子工業株式会社 Heat-storage composition
KR20160096539A (en) 2013-12-11 2016-08-16 후지고분시고오교오가부시끼가이샤 Heat-storage composition
US9745498B2 (en) 2013-12-11 2017-08-29 Fuji Polymer Industries Co., Ltd. Heat-storage composition
WO2020174929A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Heat storage member, electronic device, heat storage member manufacturing method, and protective layer-forming composition
CN113498381A (en) * 2019-02-28 2021-10-12 富士胶片株式会社 Heat storage member, electronic device, method for producing heat storage member, and composition for forming protective layer
JPWO2020174929A1 (en) * 2019-02-28 2021-12-16 富士フイルム株式会社 Heat storage member, electronic device, manufacturing method of heat storage member, composition for forming protective layer
JP7161027B2 (en) 2019-02-28 2022-10-25 富士フイルム株式会社 Heat storage member, electronic device, method for producing heat storage member, composition for forming protective layer

Similar Documents

Publication Publication Date Title
US10774192B2 (en) Hollow resin particles and application thereof
JP5438246B2 (en) Thermally expansible microspheres, production method and use thereof
US10023712B2 (en) Heat-expandable microspheres, process for producing the same and application thereof
JP5759194B2 (en) Thermally expandable microspheres, hollow microparticles, production method and use thereof
JP6034992B2 (en) Thermally expandable microspheres and their uses
JP2010235709A (en) Heat storage rubber material
JP5824171B2 (en) Method for producing thermally expandable microspheres
JP5943555B2 (en) Thermally expandable microspheres and their applications
JPWO2009050863A1 (en) Thermally expansible microspheres, production method and use thereof
JPWO2008142849A1 (en) Method for producing thermally expandable microsphere and its application
CN108699422A (en) Heat-expandable microsphere and application thereof
JP2010184981A (en) Heat storage rubber material
US10486128B2 (en) Heat-expandable microspheres and application thereof
JP2015129290A (en) Thermally expandable microsphere and use of the same
JP2010265421A (en) Microcapsule
JP6151983B2 (en) Thermally expansible microspheres, production method and use thereof
US20210385965A1 (en) Heat storage member, electronic device, manufacturing method of heat storage member, and composition for forming protective layer
US2713563A (en) Filled plastisol compositions and method of making same
JP2007131688A (en) Thermally expandable microcapsule
JP5577332B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP6361284B2 (en) Resin foam and method for producing the same
JP2004143404A (en) Polyolefin-based resin particle
JP2017113654A (en) Microsphere, thermally expandable resin composition containing the same, structural member, and molded body
US11959010B2 (en) Heat storage composition, heat storage member, electronic device, and manufacturing method of heat storage member
JP5731606B2 (en) Thermally expandable microcapsules