JP2010183701A - Voltage monitor control method by voltage monitor control system of distribution system - Google Patents

Voltage monitor control method by voltage monitor control system of distribution system Download PDF

Info

Publication number
JP2010183701A
JP2010183701A JP2009023857A JP2009023857A JP2010183701A JP 2010183701 A JP2010183701 A JP 2010183701A JP 2009023857 A JP2009023857 A JP 2009023857A JP 2009023857 A JP2009023857 A JP 2009023857A JP 2010183701 A JP2010183701 A JP 2010183701A
Authority
JP
Japan
Prior art keywords
voltage
distributed power
power source
control
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023857A
Other languages
Japanese (ja)
Other versions
JP5302700B2 (en
Inventor
Toshio Nomura
俊夫 野村
Seishi Tange
誠視 丹下
Takao Tsuji
隆男 辻
Tadahiro Aida
忠弘 合田
Takuhei Hashiguchi
卓平 橋口
Noriyuki Sato
典幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Electric Corp
Yokohama National University NUC
Original Assignee
Kyushu University NUC
Mitsubishi Electric Corp
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Electric Corp, Yokohama National University NUC filed Critical Kyushu University NUC
Priority to JP2009023857A priority Critical patent/JP5302700B2/en
Publication of JP2010183701A publication Critical patent/JP2010183701A/en
Application granted granted Critical
Publication of JP5302700B2 publication Critical patent/JP5302700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage control method for efficiently performing voltage control by giving high incentive to an owner of a distributed power supply with high control sensitivity since a cooperation cost of voltage control is evaluated in accordance with a voltage improvement degree in monitor control of a distributed system to which many distributed power supplies are connected. <P>SOLUTION: A method evaluates an effect given to the system of the distributed power supply. An amount is collected as system link charge. A voltage is efficiently improved by power factor control by optimizing calculation. Incentive is given in accordance with a contribution degree to voltage improvement. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、複数の分散型電源が連系した配電系統の電圧監視制御システムによる電圧監視制御方法に関するものである。   The present invention relates to a voltage monitoring control method by a voltage monitoring control system of a distribution system in which a plurality of distributed power sources are interconnected.

分散型電源が大量に連系した配電系統では、逆潮流の増加に伴う電圧上昇の発生が懸念されている。従来の配電系では、自動電圧調整器(SVR:Step Voltage Regulator)や無効電力補償装置(SVC:Static Var Compensator)等の電圧制御設備を用いて電圧分布が適正化されてきた。   In a power distribution system in which a large number of distributed power sources are connected, there is a concern that a voltage increase may occur due to an increase in reverse power flow. In the conventional power distribution system, the voltage distribution has been optimized using voltage control equipment such as an automatic voltage regulator (SVR) and a reactive power compensator (SVC: Static Var Compensator).

しかし、分散型電源の導入に起因する過電圧の発生は、分散型電源の導入箇所や導入量に大きく依存するため、事前に電圧調整用設備の導入箇所を決定する事は困難である。   However, since the occurrence of overvoltage due to the introduction of the distributed power supply greatly depends on the introduction location and the introduction amount of the distributed power supply, it is difficult to determine the introduction location of the voltage adjustment equipment in advance.

一方、インバータを用いて連系する分散型電源は、力率を制御することで無効電力の供給および吸収が可能であるため、電圧制御への貢献が可能である。したがって、分散型電源が面的に広がって配置されている場合、分散型電源の力率制御機能の活用により、追加的な設備投資を行なうことなく面的な電圧制御が可能となりうる。   On the other hand, a distributed power source that is connected using an inverter can supply and absorb reactive power by controlling the power factor, and thus can contribute to voltage control. Therefore, when the distributed power source is arranged so as to be spread across the surface, the surface voltage control can be performed without additional capital investment by utilizing the power factor control function of the distributed power source.

特開2004−274812号公報(段落[0054]、図1)JP 2004-274812 A (paragraph [0054], FIG. 1)

文献1では、無効電力制御による電圧品質維持への協力として、制御の回数または制御した無効電力の積算値に対して対価を支払うとともに、無効電力制御により出力制限した有効電力の電力量に対しても対価を支払うことが開示されている。   In the literature 1, as cooperation for maintaining the voltage quality by reactive power control, compensation is paid for the number of times of control or the integrated value of the controlled reactive power, and for the amount of active power output limited by reactive power control. Is also disclosed to pay consideration.

文献1の方法によれば、制御感度の小さい分散型電源が多くの無効電力を出力する可能性がある。したがって、系統全体も無効電力の発生量が多くなり、系統の電力ロスを増大させるという問題が発生する可能性がある。   According to the method of Literature 1, there is a possibility that a distributed power source with low control sensitivity outputs a large amount of reactive power. Therefore, the amount of reactive power generated in the entire system also increases, and there is a possibility that the problem of increasing the power loss of the system may occur.

さらに、制御感度の小さい分散型電源が多くの無効電力を発生させるため、電圧改善への貢献度が低い分散型電源がより多くの対価を得るという不公平が発生する。   Furthermore, since a distributed power source with low control sensitivity generates a large amount of reactive power, an unfairness arises in that a distributed power source with a low contribution to voltage improvement gets more consideration.

また、電圧品質維持への協力費用を系統運用者側が全て負担することになるため、電圧調整に要した費用は電気料金として計上され、全ての需要家から回収されるようになることが懸念される。   In addition, since the system operator bears all the cooperation costs for maintaining the voltage quality, there is a concern that the costs required for voltage adjustment will be recorded as electricity charges and will be recovered from all consumers. The

この発明は、上述の課題を解決するためになされたもので、効率の良い制御を行うとともに、分散型電源所有者、分散型電源を所有しない需要家ともに利益を向上させ、ひいては各分散型電源からの有効電力出力を最大化することが可能な配電系統の電圧監視制御システムによる電圧監視制御方法を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and performs efficient control and improves profits for both distributed power supply owners and consumers who do not have distributed power supplies. It is an object of the present invention to provide a voltage monitoring control method using a voltage monitoring control system for a distribution system capable of maximizing the active power output from the power distribution system.

この発明に係る配電系統の電圧監視制御システムによる電圧監視制御方法は、無効電力の出力を制御可能な分散型電源が連系した配電系統の電圧監視制御システムによる電圧監視制御方法であって、分散型電源の運転状態と配電系統状態のデータをオンラインで収集し配電系統電圧の監視・制御を行い、系統電圧が適正範囲を逸脱した場合に前記分散型電源の無効電力の出力制御により系統電圧の適正範囲逸脱を防止する配電系統の電圧監視制御システムによる電圧監視制御方法において、シミュレーションにより前記分散型電源の無効電力出力の制御量を決定する際、各分散型電源の有効電力出力をほぼ同量ずつ順番に増加し、系統電圧のいずれか一箇所が適正範囲の上限に達した時の各分散型電源の出力を基準出力とし、前記基準出力の状態で各分散型電源の無効電力出力を個別に制御して系統電圧のいずれか一箇所が適正範囲の上限に達した時の当該分散型電源の有効電力をP‘maxとし、当該分散型電源の最大有効電力出力Pmaxとの差分(Pmax−P‘max)に当該時間帯における売電単価を乗じた金額を当該分散型電源の系統連系料金として計算するとともに、最適化計算により各分散型電源の無効電力総和がミニマムの状態で系統電圧が適正範囲内になるよう各分散型電源の無効電力制御量を決定した場合の各分散型電源の有効電力出力をPoptとし、当該分散型電源の最大有効電力出力Pmaxとの差分(Pmax−Popt)に当該時間帯における売電単価を乗じた金額を当該分散型電源の機会損失費用として計算し、さらに系統連系料金総額から機会損失費用総額を引いた残りの金額を各分散型電源の電圧改善への貢献度に応じて電圧制御報奨金として計算するようにし、各分散型電源の無効電力制御量を決定するとともに、前記分散型電源の系統連系料金および機会損失補填料、電圧制御報奨金を計算するものである。   A voltage monitoring control method by a voltage monitoring control system for a distribution system according to the present invention is a voltage monitoring control method by a voltage monitoring control system for a distribution system in which distributed power sources capable of controlling reactive power output are interconnected. Collects data on the operating status and distribution system status of the type power supply to monitor and control the distribution system voltage.When the system voltage deviates from the appropriate range, the output of the system power is controlled by the reactive power output control of the distributed power source. In the voltage monitoring control method by the voltage monitoring control system of the distribution system that prevents deviation from the proper range, when determining the control amount of the reactive power output of the distributed power source by simulation, the active power output of each distributed power source is almost the same amount The output of each distributed power supply when any one of the system voltages reaches the upper limit of the appropriate range is used as a reference output. In this state, the reactive power output of each distributed power supply is individually controlled, and the active power of the distributed power supply when any one of the system voltages reaches the upper limit of the appropriate range is defined as P′max, and the distributed power supply An amount obtained by multiplying the difference (Pmax−P′max) from the maximum active power output Pmax by the power selling unit price in the time period is calculated as the grid connection fee of the distributed power source, and each distributed type is calculated by optimization calculation. When the reactive power control amount of each distributed power source is determined so that the system voltage is within an appropriate range with the total reactive power of the power source being in the minimum range, the active power output of each distributed power source is set as Popt. An amount obtained by multiplying the difference (Pmax−Popt) from the maximum active power output Pmax by the unit price of power sold in the time period is calculated as an opportunity loss cost of the distributed power source, and further, from the total grid connection fee The remaining amount minus the total loss cost is calculated as a voltage control reward according to the contribution to the voltage improvement of each distributed power source, the reactive power control amount of each distributed power source is determined, and It calculates the grid connection fee, opportunity loss compensation fee, and voltage control incentives for the type power supply.

よって、最適化計算により電圧改善のために制御する無効電力を系統全体で最小化することにより、効率の良い制御を行うとともに、各分散型電源からの有効電力出力を最大化することが可能な配電系統の電圧監視制御システムによる電圧監視制御方法を提供し、さらに、電圧監視制御システムにより、分散型電源所所有者から系統への影響度合いに応じて系統連系料金を計算し、系統連系料金を制御量に応じて機会損失補填費用として計算するとともに、電圧改善への貢献度に応じた電圧制御報奨金として計算することにより電圧監視制御への協力を得やすくし、ひいては各分散型電源からの有効電力出力を最大化すること可能とするものである。   Therefore, it is possible to perform efficient control and minimize the active power output from each distributed power source by minimizing reactive power controlled for voltage improvement by optimization calculation in the entire system. Provides a voltage monitoring and control method using the voltage monitoring and control system of the distribution system. Furthermore, the voltage monitoring and control system calculates the grid connection fee according to the degree of influence on the grid from the owner of the distributed power station. By calculating the charge as the opportunity loss compensation cost according to the control amount, and calculating it as a voltage control reward according to the contribution to voltage improvement, it becomes easier to obtain cooperation for voltage monitoring and control. It is possible to maximize the active power output from.

この発明に係る配電系統の電圧監視制御システムによる電圧監視制御方法は、シミュレーションにより分散型電源の無効電力出力の制御量を決定する際、系統電圧のいずれか一箇所が適正範囲の上限に達まで各分散型電源の有効電力出力をほぼ同量ずつ順番に増加し、その後各分散型電源が個別に無効電力を制御しながら系統内の電圧が適性範囲内で出力可能な最大有効電力P‘maxを求め、有効電力出力の最大値Pmaxとの差分(Pmax−P’max)に応じた料金を系統連系料金として計算するようにしているため、各分散型電源所有者が系統への影響度合いに応じて系統連系料金を負担することになり、各分散型電源所有者間の公平性が保たれ、分散型電源の導入を促進し、しかも電圧監視制御への協力を得やすくし、ひいては各分散型電源からの有効電力出力を最大化することを可能とするという効果がある。   In the voltage monitoring control method by the voltage monitoring control system of the distribution system according to the present invention, when the control amount of the reactive power output of the distributed power source is determined by simulation, any one part of the system voltage reaches the upper limit of the appropriate range. The active power output of each distributed power supply is increased by approximately the same amount in order, and then the maximum active power P′max that the voltage in the system can be output within the appropriate range while each distributed power supply individually controls the reactive power. Since the charge according to the difference (Pmax−P′max) from the maximum value Pmax of the active power output is calculated as the grid connection charge, each distributed power owner has an influence degree on the grid. Depending on the system, the grid connection fee will be borne, the fairness among the owners of distributed power sources will be maintained, the introduction of distributed power sources will be promoted, and cooperation for voltage monitoring and control will be easily obtained, and eventually There is an effect that makes it possible to maximize the active power output from the distributed power supply.

また、無効電力制御によって有効電力が減少した分散型電源所有者に対して機会損失補填費用を支払うとともに、各分散型電源の電圧改善への貢献度を評価し対価を払うようにしたことで、貢献度の高い分散型電源にインセンティブを与えることによって、各分散型電源の電圧改善への協力を得やすくなるという効果がある。   In addition to paying opportunity loss compensation costs to distributed power supply owners whose active power has been reduced by reactive power control, we evaluated the contribution to voltage improvement of each distributed power supply and paid for it, By giving incentives to highly distributed power sources, it is easier to obtain cooperation for improving the voltage of each distributed power source.

さらに、系統連系した分散型電源の所有者から系統連系料金を徴収し、徴収した系統連系料金の中で系統の電圧改善に要した費用を支払うようにすることにより、分散型電源を所有しない一般の需要家の負担がなくなるという効果がある。   In addition, by collecting the grid connection fee from the owner of the grid-connected distributed power source, and by paying the cost required for improving the system voltage in the collected grid connection fee, This has the effect of eliminating the burden on ordinary consumers who do not own it.

この発明の実施の形態1を示す図で、配電系統の電圧監視制御を行うフローチャートである。It is a figure which shows Embodiment 1 of this invention, and is a flowchart which performs voltage monitoring control of a distribution system. この発明の実施の形態1を示す図で、システム構成の一例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows an example of a system configuration | structure. この発明の実施の形態1を示す図で、系統連系料金の一例を示す説明図である。It is a figure which shows Embodiment 1 of this invention, and is explanatory drawing which shows an example of a grid connection charge. この発明の実施の形態1を示す図で、機会損失補填費用の一例を示す説明図である。It is a figure which shows Embodiment 1 of this invention, and is explanatory drawing which shows an example of opportunity loss compensation expense. この発明の実施の形態1を示す図で、電圧制御報奨金の一例を示す説明図である。It is a figure which shows Embodiment 1 of this invention, and is explanatory drawing which shows an example of a voltage control reward. この発明の実施の形態1を示す図で、分散型電源の回収費用の一例を示す説明図である。It is a figure which shows Embodiment 1 of this invention, and is explanatory drawing which shows an example of the collection | recovery cost of a distributed power supply.

実施の形態1.
図1は、この発明の電圧監視制御方法の実行フローの事例を示すフローチャート図であり、以下、実行フローをフロー順に説明する。
Embodiment 1 FIG.
FIG. 1 is a flowchart showing an example of an execution flow of the voltage monitoring control method of the present invention. The execution flow will be described below in the order of flow.

計測データ読み込み処理機能による計測データ読み込み処理(ステップST1)で定周期で計測収集され、システムに保存されている計測データを読み込み、電圧分布計算機能による電圧分布計算(ステップST2)で潮流計算等のシミュレーションを実施し、各ノードの電圧を求める。   Measurement data read processing by the measurement data read processing function (step ST1), measurement data collected at regular intervals and stored in the system is read, and voltage distribution calculation by the voltage distribution calculation function (step ST2) A simulation is performed to determine the voltage at each node.

電圧逸脱判定処理機能による電圧逸脱判定処理(ステップST3)では前記電圧が適正範囲内かどうかを判定し、適正範囲を逸脱している場合は以下の処理を行い、適正範囲を逸脱していない場合は処理を終了する。   In the voltage departure determination process (step ST3) by the voltage departure determination processing function, it is determined whether or not the voltage is within the proper range. If the voltage is out of the proper range, the following processing is performed. Ends the process.

系統連系影響度評価機能による系統連系影響度評価(ステップST4)では、各分散型電源が力率1.0の最大出力で運転している場合の系統への影響度を評価し、系統連系料金を計算する。   In the grid interconnection impact assessment (step ST4) by the grid interconnection impact assessment function, the impact on the grid when each distributed power source is operating at the maximum output with a power factor of 1.0 is evaluated. Calculate interconnection charges.

最適制御量計算機能による最適制御量計算(ステップST5)は、最適化計算により系統の無効電力が最小の状態で系統の各ノードの電圧が適正範囲内になるように分散型電源の無効電力出力を決定する。   The optimal control amount calculation by the optimal control amount calculation function (step ST5) is a reactive power output of the distributed power source so that the voltage of each node of the system is within an appropriate range in a state where the reactive power of the system is minimum by the optimization calculation. To decide.

有効電力低減量計算機能による有効電力低減量計算(ステップST6)では、分散型電源の無効電力出力に伴う有効電力の出力低減量を計算し、機会損失補償費用を計算する。   In the active power reduction amount calculation by the active power reduction amount calculation function (step ST6), the output reduction amount of the active power accompanying the reactive power output of the distributed power source is calculated, and the opportunity loss compensation cost is calculated.

電圧改善貢献度評価機能による電圧改善貢献度評価(ステップST7)では、各分散型電源の電圧改善への貢献度を計算した上で、電圧制御報奨金を計算する。   In the voltage improvement contribution evaluation by the voltage improvement contribution evaluation function (step ST7), the contribution to the voltage improvement of each distributed power source is calculated, and then the voltage control reward is calculated.

電圧制御出力機能での電圧制御出力(ステップST8)は、最適制御量計算(ステップST5)で求めた無効電力制御量を対象の分散型電源に対し出力する。   The voltage control output (step ST8) in the voltage control output function outputs the reactive power control amount obtained by the optimum control amount calculation (step ST5) to the target distributed power source.

図2は、この発明の配電系統の電圧監視制御方法を実行するためのシステム構成図であり、以下、図2によりシステムの構成および機能を説明する。   FIG. 2 is a system configuration diagram for executing the voltage monitoring control method for the distribution system according to the present invention. Hereinafter, the configuration and functions of the system will be described with reference to FIG.

図2において、高圧配電線21に設置された開閉器22の入切状態および配電系統の電圧、電流データが子局23、通信回線24、通信親局25を介して電圧監視制御装置26に伝送される。   In FIG. 2, the on / off state of the switch 22 installed in the high-voltage distribution line 21 and the voltage and current data of the distribution system are transmitted to the voltage monitoring control device 26 via the slave station 23, the communication line 24, and the communication master station 25. Is done.

分散型電源30の運転状態が子局23、通信回線24、通信親局25を介して電圧監視制御装置26に伝送される。   The operating state of the distributed power supply 30 is transmitted to the voltage monitoring control device 26 via the slave station 23, the communication line 24, and the communication master station 25.

分散型電源30に対する制御指令は、電圧監視制御装置26、通信親局25、通信回線24、子局23のルートで伝送される。   A control command for the distributed power supply 30 is transmitted through the route of the voltage monitoring control device 26, the communication master station 25, the communication line 24, and the slave station 23.

次に図2のシステムの動作について説明する。   Next, the operation of the system of FIG. 2 will be described.

電圧監視制御装置26は、分散型電源30の運転状態、開閉器22の入切状態および配電系統の電圧、電流データを子局23、通信回線24、通信親局25を介して定周期で収集し、配電系統の電圧監視制御を行う。   The voltage monitoring control device 26 collects the operation state of the distributed power source 30, the on / off state of the switch 22, and the voltage and current data of the distribution system at regular intervals via the slave station 23, the communication line 24, and the communication master station 25. Then, voltage monitoring control of the distribution system is performed.

電圧監視制御装置26は、収集したデータを基に、図1のフローチャートに従って処理し、配電系統の電圧が適正範囲を逸脱していると判定される場合は、電圧を改善するための無効電力制御量を求め、制御対象となる分散型電源に対し、制御指令を出力する。   The voltage monitoring control device 26 performs processing according to the flow chart of FIG. 1 based on the collected data, and when it is determined that the voltage of the distribution system is out of the proper range, reactive power control for improving the voltage. The amount is calculated and a control command is output to the distributed power source to be controlled.

電圧改善のための制御を行う場合、制御量の計算と同時に、系統連系料金、機会損失補填費用、電圧制御報奨金を制御に要する費用として計算し、計算結果を蓄積する。   When performing control for voltage improvement, simultaneously with calculation of the control amount, the grid connection fee, opportunity loss compensation cost, and voltage control reward are calculated as costs required for control, and the calculation results are accumulated.

まず、以下の手順で分散型電源iの系統への影響度合いを評価し、系統連系料金を計算する。   First, the degree of influence of the distributed power source i on the grid is evaluated by the following procedure, and the grid interconnection charge is calculated.

(1)各分散型電源の出力を微少量ずつ増加し、ノードN1〜N6のいずれかが適正電圧を
逸脱する場合の分散型電源の出力(基準出力)を求める。(図3(B)参照)
(2)上記(1)の状態から、分散型電源iが個別に力率を制御した場合に、適正電圧
範囲内で出力可能な有効電力(P‘max,i)を求める。(図3(C)参照)
(3)分散型電源iは、上記P‘max,i以上の有効電力を出力すると系統へ悪影響を与え
るため、分散型電源の最大出力Pmax,iと上記P‘max,iの差分を系統に影響を与
える有効電力とする。
(4)分散型電源の最大出力Pmax,iと上記P‘max,iの差分Ploss1,iに、その時間帯
での余剰電力買取価格Cpを乗じた金額を系統連系料金SCFiとして計算する。
以下の式を参照。
Ploss1,i=Pmax,i − P‘max,I
SCFi=Ploss1,i × Cp
(1) Increase the output of each distributed power supply by a small amount, and obtain the output (reference output) of the distributed power supply when any of the nodes N1 to N6 deviates from the appropriate voltage. (See Fig. 3 (B))
(2) From the state of (1) above, find the effective power (P'max, i) that can be output within the appropriate voltage range when the distributed power source i individually controls the power factor. (Refer to FIG. 3C)
(3) Since the distributed power source i has an adverse effect on the system when the active power exceeding P′max, i is output, the difference between the maximum output Pmax, i of the distributed power source and the P′max, i is Active power that affects
(4) The amount obtained by multiplying the difference Ploss1, i between the maximum output Pmax, i of the distributed power source and the above P'max, i by the surplus power purchase price Cp in that time zone is calculated as the grid interconnection charge SCFi.
See formula below.
Ploss1, i = Pmax, i−P'max, I
SCFi = Ploss1, i × Cp

次に、最適制御量計算4で、各分散型電源の無効電力出力を決定する。
分散型電源の集中制御により、系統電圧を適正範囲に維持するための力率制御を行う。
分散型電源の無効電力出力をミニマムとする最適化計算により、各分散型電源の有効電力出力Popt、無効電力出力Qoptを決定する。
最適化計算は、以下のアルゴリズムで行なう。
[目的関数]
Mini ΣQgi
[制約条件]
(潮流方程式)
Pgi−Pli−ViΣVk{Gik cos(θi−θk)+Bik sin(θi−θk)}=0
Qgi−Qli−ViΣVk{Gik sin(θi−θk)+Bik cos(θi−θk)}=0
なお、i=1、2、3、・・・n
(分散型電源無効電力出力の上下限制約)
Qgi_min ≦ Qgi ≦ Qgi_max
(ノード電圧の上下限制約)
Vmin ≦ Vi ≦ Vmax
(分散型電源の力率制約)
√(P+Q)=S
ここで、
m:分散型電源台数
n:ノード総数
Pgi、Qgi:分散型電源iの有効・無効電力出力
Pli、Qli:負荷iの有効・無効電力出力
Vi、θi :母線iの電圧、位相
Gik、Bik:母線i−k間のコンダクタンス、サセプタンス
Qgi_min、Qgi_max:分散電源iの無効電力出力上下限値
Vmin、Vmax:ノード電圧の上下限値
Next, in the optimum control amount calculation 4, the reactive power output of each distributed power source is determined.
Power factor control is performed to maintain the system voltage within an appropriate range by centralized control of the distributed power supply.
The active power output Popt and the reactive power output Qopt of each distributed power source are determined by optimization calculation using the reactive power output of the distributed power source as a minimum.
The optimization calculation is performed by the following algorithm.
[Objective function]
Mini ΣQgi 2
[Restrictions]
(Tidal current equation)
Pgi−Pli−ViΣVk {Gik cos (θi−θk) + Bik sin (θi−θk)} = 0
Qgi−Qli−ViΣVk {Gik sin (θi−θk) + Bik cos (θi−θk)} = 0
I = 1, 2, 3,... N
(Upper and lower limits of distributed power supply reactive power output)
Qgi_min ≤ Qgi ≤ Qgi_max
(Node voltage upper and lower limit constraints)
Vmin ≤ Vi ≤ Vmax
(Power factor constraint of distributed power supply)
√ (P 2 + Q 2 ) = S
here,
m: number of distributed power supplies n: total number of nodes Pgi, Qgi: active / reactive power output of distributed power supply i Pli, Qli: active / reactive power output of load i
Vi, θi: voltage of bus i, phase Gik, Bik: conductance between buses i and k, susceptance Qgi_min, Qgi_max: upper and lower limits of reactive power output of distributed power source i
Vmin, Vmax: Upper and lower limits of node voltage

次に、有効電力減少分計算6で、最適制御量計算で求められた分散型電源iの有効電力出力Popt,iから、無効電力制御により分散型電源iの有効電力が減少した分Ploss2,iを求め、Ploss2,iにその時間帯の余剰電力買取価格を乗じた分を機会損失補填料金OLCiとする。
以下の式を参照。
Ploss2,i=Pmax,i−Popt,i
OLCi=Ploss2,i × Cp
ここで、
Ploss2,i:制御実施による分散型電源iの有効電力減少分
Pmax,i:分散型電源iの有効電力出力の最大値
Popt,i:最適化計算による分散型電源iの有効電力出力
OLCi:分散型電源iの機会損失補填費用
図4では、分散型電源G5とG6の力率制御により、系統電圧が適正範囲内に改善され、分散型電源G5,G6が機械損失補填費用を得る例を示している。
Next, in the active power decrease calculation 6, Ploss2, i is the amount by which the active power of the distributed power source i is reduced by the reactive power control from the active power output Popt, i of the distributed power source i obtained by the optimal control amount calculation. And Ploss2, i multiplied by the surplus power purchase price for that time period is used as the opportunity loss compensation fee OLCI.
See formula below.
Ploss2, i = Pmax, i-Popt, i
OLCI = Ploss2, i × Cp
here,
Ploss2, i: Effective power decrease of distributed power source i by control execution Pmax, i: Maximum value of active power output of distributed power source i Popt, i: Active power output of distributed power source i by optimization calculation OLCI: Distributed FIG. 4 shows an example in which the system voltage is improved within an appropriate range by the power factor control of the distributed power sources G5 and G6, and the distributed power sources G5 and G6 obtain the mechanical loss compensation cost. ing.

次に、電圧改善貢献度評価7でノードの電圧改善度および各ノードの電圧改善への各分散型電源の貢献度を計算した上で、電圧制御報奨金の算出を行う。
まず、ノードiの電圧改善度VCRiを以下で計算する。
各分散型電源が力率1.0で最大出力で運転している場合のノードiの電圧をVi、電圧の適正範囲上限をVuとし、VCRiを以下とする。
VCRi=(Vi−Vu)/Σ(Vj−Vu)
j=1〜N
図5の例では、ノード6の改善度VCR6は以下となる。
VCR6=(V6−Vu)/{(V2−Vu)+(V3−Vu)+(V4−Vu)
+(V5−Vu)+(V6−Vu)}
Next, after calculating the node voltage improvement degree and the contribution degree of each distributed power source to the voltage improvement of each node in the voltage improvement contribution evaluation 7, the voltage control reward is calculated.
First, the voltage improvement degree VCRi of the node i is calculated as follows.
When each distributed power source is operating at a power factor of 1.0 and maximum output, the voltage at node i is Vi, the upper limit of the appropriate voltage range is Vu, and VCRi is as follows.
VCRi = (Vi−Vu) / Σ (Vj−Vu)
j = 1 to N
In the example of FIG. 5, the improvement level VCR6 of the node 6 is as follows.
VCR6 = (V6-Vu) / {(V2-Vu) + (V3-Vu) + (V4-Vu)
+ (V5−Vu) + (V6−Vu)}

次に、分散型電源iのノードjの電圧改善に対する貢献度VCi,jを以下で計算する。
VCi,j=Vi,j/ΣVi,k
ここで、
k=1〜N
Vi,j:分散型電源Iの有効電力、無効電力制御によるノードjの変化量
図の5の例ではノード6に対する電源6の貢献度VC6,6は以下となる。
VC6,6=V6,6/(V6,6+V5,6)
また、ノード6に対する電源5の貢献度VC5,6は以下となる。
VC5,6=V5,6/(V6,6+V5,6)
Next, the degree of contribution VCi, j for the voltage improvement of the node j of the distributed power source i is calculated as follows.
VCi, j = Vi, j / ΣVi, k
here,
k = 1 to N
Vi, j: Change amount of node j due to active power and reactive power control of distributed power source I In the example of FIG.
VC6,6 = V6,6 / (V6,6 + V5,6)
Further, the contribution level VC5,6 of the power supply 5 to the node 6 is as follows.
VC5,6 = V5,6 / (V6,6 + V5,6)

以上の計算をもとに、分散型電源jの電圧制御報奨金VCRjを以下とする。
電源jの電圧報奨金=(系統連系料金総和―機会損失料金総和)×{Σノードiの
電圧改善度×ノードiに対する電源jの貢献度}
=(Σ(SCFi−OLCi))×ΣVCRi×VCj,i
なお、i=1〜N
図6に分散型電源G1〜G6が回収する費用の例を示している。
放射状の配電系統では、末端ほど制御感度が高くなるため、系統末端付近に連系する分散型電源に多くの制御指令が出力されやすくなる。
このため、制御感度の高い分散型電源所有者は制御協力のインセンティブを得ろ機会が多くなり、制御協力への参加を誘発する働きとなるとともに、効率よく制御を行うことが可能となる。
Based on the above calculation, the voltage control reward VCRj of the distributed power source j is set as follows.
Voltage reward for power supply j = (total grid connection charge-total opportunity loss charge) x {Σ of node i
Voltage improvement × contribution of power supply j to node i}
= (Σ (SCFi−OLCI)) × ΣVCRI × VCj, i
I = 1 to N
FIG. 6 shows an example of costs recovered by the distributed power sources G1 to G6.
In the radial power distribution system, the control sensitivity becomes higher at the end, so that many control commands are likely to be output to the distributed power supply connected to the vicinity of the end of the system.
For this reason, distributed power supply owners with high control sensitivity have more opportunities to obtain incentives for control cooperation, and they can induce participation in control cooperation and can perform control efficiently.

この発明の実施の形態1は、前述のように、無効電力の出力を制御可能な分散型電源が連系した配電系統の電圧監視制御システムによる電圧監視制御方法であって、分散型電源の運転状態と配電系統状態のデータをオンラインで収集し配電系統電圧の監視・制御を行い、系統電圧が適正範囲を逸脱した場合に前記分散型電源の無効電力の出力制御により系統電圧の適正範囲逸脱を防止する配電系統の電圧監視制御システムによる電圧監視制御方法において、シミュレーションにより分散型電源の無効電力出力の制御量を決定する際、各分散型電源の有効電力出力を微小同量ずつ順番に増加し、系統電圧のいずれか一箇所が適正範囲の上限に達した時の各分散型電源の出力を基準出力とし、前記基準出力の状態で各分散型電源の無効電力出力を個別に制御して系統電圧のいずれか一箇所が適正範囲の上限に達した時の当該分散型電源の有効電力をP‘maxとし、当該分散型電源の最大有効電力出力Pmaxとの差分(Pmax−P‘max)に当該時間帯における売電単価を乗じた金額を当該分散型電源の系統連系料金として計算するとともに、最適化計算により各分散型電源の無効電力総和がミニマムの状態で系統電圧が適正範囲内になるよう各分散型電源の無効電力制御量を決定した場合の各分散型電源の有効電力出力をPoptとし、当該分散型電源の最大有効電力出力Pmaxとの差分(Pmax−Popt)に当該時間帯における売電単価を乗じた金額を当該分散型電源の機会損失費用として計算し、さらに系統連系料金総額から機会損失費用総額を引いた残りの金額を各分散型電源の電圧改善への貢献度に応じて電圧制御報奨金として計算するようにし、各分散型電源の無効電力制御量を決定するとともに、分散型電源の系統連系料金および機会損失補填料、電圧制御報奨金を計算するようにしたことを特徴とする配電系統の電圧監視制御システムによる電圧監視制御方法である。   As described above, Embodiment 1 of the present invention is a voltage monitoring control method by a voltage monitoring control system for a distribution system in which distributed power sources capable of controlling reactive power output are interconnected. Status and distribution system status data is collected online to monitor and control the distribution system voltage, and when the system voltage deviates from the appropriate range, the output of the reactive power of the distributed power source controls the deviation of the system voltage from the proper range. In the voltage monitoring control method by the voltage monitoring control system of the distribution system to prevent, when determining the control amount of the reactive power output of the distributed power source by simulation, the active power output of each distributed power source is increased by a minute amount in order. The output of each distributed power source when any one of the system voltages reaches the upper limit of the appropriate range is used as a reference output, and the reactive power output of each distributed power source is set in the state of the reference output. Separately, the active power of the distributed power source when any one of the system voltages reaches the upper limit of the appropriate range is defined as P′max, and the difference (Pmax−) from the maximum active power output Pmax of the distributed power source P'max) is multiplied by the unit price of electricity sold in the time period as the grid connection fee for the distributed power source, and the system voltage with the total reactive power of each distributed power source minimized by optimization calculation The effective power output of each distributed power source when the reactive power control amount of each distributed power source is determined to be within an appropriate range is set as Popt, and the difference (Pmax−Popt) from the maximum active power output Pmax of the distributed power source ) Multiplied by the unit price of electricity sold during the time period as the opportunity loss cost of the distributed power source, and the remaining amount obtained by subtracting the total opportunity loss cost from the total grid connection fee It is calculated as a voltage control reward according to the contribution to the voltage improvement of the distributed power supply, and the reactive power control amount of each distributed power supply is determined, and the grid connection fee and opportunity loss compensation fee for the distributed power supply A voltage monitoring control method by a voltage monitoring control system of a distribution system, characterized in that a voltage control reward is calculated.

また、この発明の実施の形態1は、分散型電源が大量に連系した配電系統の監視制御において、電圧制御の協力費用を電圧改善度に応じて評価するようにしたことで、制御感度の高い分散型電源の所有者に対して高いインセンティブを与えることにより、電圧制御を効率よく実施することができる電圧制御方法を提供するものであり、分散型電源の系統に与える影響を評価し、系統連系料金として徴収するとともに、最適化計算による力率制御で効率よく電圧改善を行なうとともに、電圧改善への貢献度に応じてインセンティブを与えるようにしたものである。   Further, in the first embodiment of the present invention, in the monitoring control of a distribution system in which a large number of distributed power sources are connected, the cooperation cost of voltage control is evaluated according to the degree of voltage improvement. By providing a high incentive to the owner of a highly distributed power supply, we provide a voltage control method that enables efficient voltage control, and evaluates the impact on the distributed power supply system. In addition to collecting as an interconnection fee, the power factor is controlled efficiently by power factor control by optimization calculation, and incentives are given according to the contribution to voltage improvement.

このように、この発明の実施の形態1の電圧監視制御システムによる電圧監視制御方法においては、制御量に応じて機会補填費用を与えるとともに、電圧改善への貢献度に応じて電圧制御褒章金を与えるようにしたものである。したがって、制御感度の高い分散型電源所有者の制御協力を得やすくなり、効率よく制御ができるようになるという効果がある。   As described above, in the voltage monitoring control method by the voltage monitoring control system according to the first embodiment of the present invention, the opportunity compensation cost is given according to the control amount, and the voltage control reward is given according to the contribution to the voltage improvement. It is something to give. Therefore, it is easy to obtain control cooperation of a distributed power source owner with high control sensitivity, and there is an effect that control can be performed efficiently.

また、シミュレーションにより分散型電源の無効電力出力の制御量を決定する際、系統電圧のいずれか一箇所が適正範囲の上限に達まで各分散型電源の有効電力出力を微小同量ずつ順番に増加し、その後各分散型電源が個別に無効電力を制御しながら系統内の電圧が適性範囲内で出力可能な最大有効電力P‘maxを求め、有効電力出力の最大値Pmaxとの差分(Pmax−P’max)に応じた料金を系統連系料金として計算するようにしているため、各分散型電源所有者が系統への影響度合いに応じて系統連系料金を負担することになり、各分散型電源所有者間の公平性が保たれ、分散型電源の導入を促進し、しかも電圧監視制御への協力を得やすくし、ひいては各分散型電源からの有効電力出力を最大化することを可能とするという効果がある。   In addition, when determining the control amount of the reactive power output of the distributed power source through simulation, the active power output of each distributed power source is increased by the same amount in order until one of the system voltages reaches the upper limit of the appropriate range. Then, the maximum active power P′max that can be output within the appropriate range of the voltage in the system is obtained while each distributed power source individually controls the reactive power, and the difference (Pmax−) from the maximum value Pmax of the active power output is obtained. P′max) is calculated as a grid connection charge, and each distributed power owner bears the grid connection charge according to the degree of influence on the grid. It is possible to maintain fairness among owners of distributed power sources, promote the introduction of distributed power sources, facilitate cooperation in voltage monitoring control, and maximize the effective power output from each distributed power source. To say There is a result.

また、無効電力制御によって有効電力が減少した分散型電源所有者に対して機会損失補填費用を支払うとともに、各分散型電源の電圧改善への貢献度を評価し対価を払うようにしたことで、貢献度の高い分散型電源にインセンティブを与えることによって、各分散型電源の電圧改善への協力を得やすくなるという効果がある。   In addition to paying opportunity loss compensation costs to distributed power supply owners whose active power has been reduced by reactive power control, we evaluated the contribution to voltage improvement of each distributed power supply and paid for it, By giving incentives to highly distributed power sources, it is easier to obtain cooperation for improving the voltage of each distributed power source.

さらに、系統連系した分散型電源の所有者から系統連系料金を徴収し、徴収した系統連系料金の中で系統の電圧改善に要した費用を支払うようにすることにより、分散型電源を所有しない一般の需要家の負担がなくなるという効果がある。   In addition, by collecting the grid connection fee from the owner of the grid-connected distributed power source, and by paying the cost required for improving the system voltage in the collected grid connection fee, This has the effect of eliminating the burden on ordinary consumers who do not own it.

また、分散型電源の導入を促進し、地球温暖化対策に寄与することが期待できる。   In addition, it can be expected to promote the introduction of distributed power sources and contribute to global warming countermeasures.

1 計測データ読み込み処理、
2 電圧分布計算処理、
3 電圧逸脱判定処理、
4 系統連系影響度評価処理、
5 最適制御量計算処理、
6 有効電力出力低減量計算処理、
7 電圧改善度評価処理、
8 電圧制御出力処理、
21 21高圧配電線、
22 22開閉器、
23 23通信用子局、
24 24通信回線、
25 25通信親局、
26 26電圧監視制御装置、
30 30分散型電源。
1 Measurement data reading process,
2 Voltage distribution calculation processing,
3 Voltage deviation judgment processing,
4 Grid connection impact assessment process,
5 Optimal control amount calculation processing,
6 Active power output reduction calculation processing,
7 Voltage improvement degree evaluation process,
8 Voltage control output processing,
21 21 High voltage distribution line,
22 22 Switch,
23 23 Slave station for communication,
24 24 communication lines,
25 25 Communication master station,
26 26 voltage monitoring and control device,
30 30 Distributed power supply.

Claims (1)

無効電力の出力を制御可能な分散型電源が連系した配電系統の電圧監視制御システムによる電圧監視制御方法であって、分散型電源の運転状態と配電系統状態のデータをオンラインで収集し配電系統電圧の監視・制御を行い、系統電圧が適正範囲を逸脱した場合に前記分散型電源の無効電力の出力制御により系統電圧の適正範囲逸脱を防止する配電系統の電圧監視制御システムによる電圧監視制御方法において、
シミュレーションにより前記分散型電源の無効電力出力の制御量を決定する際、各分散型電源の有効電力出力をほぼ同量ずつ順番に増加し、系統電圧のいずれか一箇所が適正範囲の上限に達した時の各分散型電源の出力を基準出力とし、前記基準出力の状態で各分散型電源の無効電力出力を個別に制御して系統電圧のいずれか一箇所が適正範囲の上限に達した時の当該分散型電源の有効電力をP‘maxとし、当該分散型電源の最大有効電力出力Pmaxとの差分(Pmax−P‘max)に当該時間帯における売電単価を乗じた金額を当該分散型電源の系統連系料金として計算するとともに、最適化計算により各分散型電源の無効電力総和がミニマムの状態で系統電圧が適正範囲内になるよう各分散型電源の無効電力制御量を決定した場合の各分散型電源の有効電力出力をPoptとし、当該分散型電源の最大有効電力出力Pmaxとの差分(Pmax−Popt)に当該時間帯における売電単価を乗じた金額を当該分散型電源の機会損失費用として計算し、さらに系統連系料金総額から機会損失費用総額を引いた残りの金額を各分散型電源の電圧改善への貢献度に応じて電圧制御報奨金として計算するようにし、各分散型電源の無効電力制御量を決定するとともに、前記分散型電源の系統連系料金および機会損失補填料、電圧制御報奨金を計算するようにしたことを特徴とする配電系統の電圧監視制御システムによる電圧監視制御方法。
A voltage monitoring control method by a voltage monitoring control system of a distribution system connected to a distributed power source capable of controlling the output of reactive power, collecting data on the operating state and distribution system status of the distributed power source online Voltage monitoring and control method by voltage monitoring control system of distribution system that monitors and controls voltage and prevents deviation of system voltage from proper range by output control of reactive power of distributed power source when system voltage deviates from proper range In
When determining the control amount of reactive power output of the distributed power source by simulation, the active power output of each distributed power source is increased in order by almost the same amount, and one of the system voltages reaches the upper limit of the appropriate range. When the output of each distributed power source is used as the reference output, and the reactive power output of each distributed power source is individually controlled in the state of the reference output, and one of the system voltages reaches the upper limit of the appropriate range An amount of power obtained by multiplying a difference (Pmax−P′max) from the maximum active power output Pmax of the distributed power source by the power selling unit price in the time period is defined as P′max. When calculating the power system interconnection fee and determining the reactive power control amount of each distributed power source so that the system voltage is within the appropriate range with the total reactive power sum of each distributed power source being at the minimum by optimization calculation of An opportunity loss cost of the distributed power source is calculated by multiplying the difference (Pmax-Popt) from the maximum active power output Pmax of the distributed power source by the power selling unit price in the time zone with the active power output of the distributed power source as Popt. In addition, the remaining amount obtained by subtracting the total opportunity loss cost from the total grid connection fee is calculated as a voltage control reward according to the contribution to the voltage improvement of each distributed power source. The reactive power control amount is determined, and the grid monitoring fee, opportunity loss compensation fee, and voltage control reward for the distributed power source are calculated. Control method.
JP2009023857A 2009-02-04 2009-02-04 Voltage monitoring control method by voltage monitoring control system of distribution system Expired - Fee Related JP5302700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023857A JP5302700B2 (en) 2009-02-04 2009-02-04 Voltage monitoring control method by voltage monitoring control system of distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023857A JP5302700B2 (en) 2009-02-04 2009-02-04 Voltage monitoring control method by voltage monitoring control system of distribution system

Publications (2)

Publication Number Publication Date
JP2010183701A true JP2010183701A (en) 2010-08-19
JP5302700B2 JP5302700B2 (en) 2013-10-02

Family

ID=42764777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023857A Expired - Fee Related JP5302700B2 (en) 2009-02-04 2009-02-04 Voltage monitoring control method by voltage monitoring control system of distribution system

Country Status (1)

Country Link
JP (1) JP5302700B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130638A (en) * 2009-12-21 2011-06-30 Hitachi Ltd Power generation system using natural energy
JP2012249487A (en) * 2011-05-31 2012-12-13 Hitachi Ltd Control system and control method for power distribution system
CN103280812A (en) * 2013-04-27 2013-09-04 国家电网公司 Reactive voltage optimal control method for wind power plant cluster
CN103532149A (en) * 2013-09-30 2014-01-22 广西电网公司河池供电局 Multi-side voltage reactive coordination optimization control method for high-voltage distribution network transformer substation
CN103915847A (en) * 2014-04-11 2014-07-09 云南电力调度控制中心 Relaxation reactive voltage optimizing system based on province-district coordination and working method thereof
JP2017005912A (en) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 Power management system, power management method, and program
US9600003B2 (en) 2012-03-21 2017-03-21 Mitsubishi Electric Corporation Power-distribution-system voltage control system
KR101842191B1 (en) 2017-10-26 2018-03-26 주식회사 텔다 Power conversion appratus
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device
US10250038B2 (en) 2014-12-19 2019-04-02 Mitsubishi Electric Corporation Central voltage control device and measuring device
CN109586305A (en) * 2018-12-12 2019-04-05 国网山西省电力公司大同供电公司 A kind of power distribution network operation control strategy based on flexible multimode switch
WO2021082682A1 (en) * 2019-10-29 2021-05-06 国网浙江省电力有限公司舟山供电公司 Method for formulating reactive compensation service value by using local area coordination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707724B (en) * 2019-11-26 2021-08-03 江苏方天电力技术有限公司 Power distribution network reactive support capability assessment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232736A (en) * 1999-02-12 2000-08-22 Tdk Corp Linked distributed power generation system
JP2004274812A (en) * 2003-03-05 2004-09-30 Hitachi Ltd Method for supporting to maintain power quality in distribution system and system
JP2007288877A (en) * 2006-04-14 2007-11-01 Hitachi Ltd Power quality maintenance supporting method and system for power distribution system in linkage with a plurality of decentralized power sources
JP2008141860A (en) * 2006-12-01 2008-06-19 Chugoku Electric Power Co Inc:The Electric bill calculation system
JP2009153333A (en) * 2007-12-21 2009-07-09 Tokyo Gas Co Ltd Distributed power supply system and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232736A (en) * 1999-02-12 2000-08-22 Tdk Corp Linked distributed power generation system
JP2004274812A (en) * 2003-03-05 2004-09-30 Hitachi Ltd Method for supporting to maintain power quality in distribution system and system
JP2007288877A (en) * 2006-04-14 2007-11-01 Hitachi Ltd Power quality maintenance supporting method and system for power distribution system in linkage with a plurality of decentralized power sources
JP2008141860A (en) * 2006-12-01 2008-06-19 Chugoku Electric Power Co Inc:The Electric bill calculation system
JP2009153333A (en) * 2007-12-21 2009-07-09 Tokyo Gas Co Ltd Distributed power supply system and its control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130638A (en) * 2009-12-21 2011-06-30 Hitachi Ltd Power generation system using natural energy
JP2012249487A (en) * 2011-05-31 2012-12-13 Hitachi Ltd Control system and control method for power distribution system
US9600003B2 (en) 2012-03-21 2017-03-21 Mitsubishi Electric Corporation Power-distribution-system voltage control system
CN103280812A (en) * 2013-04-27 2013-09-04 国家电网公司 Reactive voltage optimal control method for wind power plant cluster
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device
CN103532149A (en) * 2013-09-30 2014-01-22 广西电网公司河池供电局 Multi-side voltage reactive coordination optimization control method for high-voltage distribution network transformer substation
CN103915847A (en) * 2014-04-11 2014-07-09 云南电力调度控制中心 Relaxation reactive voltage optimizing system based on province-district coordination and working method thereof
US10250038B2 (en) 2014-12-19 2019-04-02 Mitsubishi Electric Corporation Central voltage control device and measuring device
JP2017005912A (en) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 Power management system, power management method, and program
KR101842191B1 (en) 2017-10-26 2018-03-26 주식회사 텔다 Power conversion appratus
CN109586305A (en) * 2018-12-12 2019-04-05 国网山西省电力公司大同供电公司 A kind of power distribution network operation control strategy based on flexible multimode switch
WO2021082682A1 (en) * 2019-10-29 2021-05-06 国网浙江省电力有限公司舟山供电公司 Method for formulating reactive compensation service value by using local area coordination

Also Published As

Publication number Publication date
JP5302700B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5302700B2 (en) Voltage monitoring control method by voltage monitoring control system of distribution system
Hernández et al. Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve
Mashhour et al. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model
Hu et al. Agent-based coordinated operation strategy for active distribution network with distributed energy resources
Athari et al. Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller
JP5807201B2 (en) Power control device
EP3247016B1 (en) Electrical power management device
Dicorato et al. Planning and operating combined wind-storage system in electricity market
EP2485189B1 (en) Energy management system and power feed control device
JP5095495B2 (en) Electric power system and control method thereof
Gupta et al. Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers
Banshwar et al. Market-based participation of energy storage scheme to support renewable energy sources for the procurement of energy and spinning reserve
EP3032489B1 (en) Power adjustment device, power adjustment method, and program
JP5998046B2 (en) Power suppression control system and power suppression control method
JP2019213364A (en) Storage battery management device, storage battery management method and storage battery management program
JP2006280154A (en) Dispersion power control system
JP5793572B2 (en) Peak cut control device
JP2013169068A (en) Power control system
US9935461B2 (en) Consumer apparatus operation management system and method
JP2017224208A (en) Storage battery control system, method and program
JP2013169069A (en) Charge discharge system
JP6835666B2 (en) Adjustment method, control device, power adjustment system and program
Khajeh et al. Flexibility potential of a smart home to provide TSO-DSO-level services
JP6862656B2 (en) Electric power transaction support device, electric power transaction support method and program
KR20160046895A (en) Charge/discharge control device, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees