JP2010183652A - Variable characteristic electric motor - Google Patents

Variable characteristic electric motor Download PDF

Info

Publication number
JP2010183652A
JP2010183652A JP2009022133A JP2009022133A JP2010183652A JP 2010183652 A JP2010183652 A JP 2010183652A JP 2009022133 A JP2009022133 A JP 2009022133A JP 2009022133 A JP2009022133 A JP 2009022133A JP 2010183652 A JP2010183652 A JP 2010183652A
Authority
JP
Japan
Prior art keywords
auxiliary
magnetic flux
field
armature
variable characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009022133A
Other languages
Japanese (ja)
Other versions
JP5446293B2 (en
Inventor
Tadayuki Hatsuda
匡之 初田
Sachiko Taguchi
幸子 田口
Yuichi Shibukawa
祐一 渋川
Takashi Kato
崇 加藤
Yuji Naruse
有二 成瀬
Atsushi Sugihara
淳 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009022133A priority Critical patent/JP5446293B2/en
Publication of JP2010183652A publication Critical patent/JP2010183652A/en
Application granted granted Critical
Publication of JP5446293B2 publication Critical patent/JP5446293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric motor that eliminates disadvantages in layout by improving motor torque when the characteristics of the electric motor change. <P>SOLUTION: When suppression of an induction voltage is not required due to the shift from high-speed rotation to low-speed rotation, auxiliary magnet rows 11, 12 are raised to the position (a). An auxiliary magnetic flux β1 decreases a magnetic resistance, and changes its direction to release the magnetic saturation. An auxiliary magnetic flux β2 changes its direction to be along the direction of the field magnetic flux α. The auxiliary magnetic flux β2 enhances the magnetic flux α to increase the output of the electric motor. Accordingly, in low-speed rotation, the magnetic resistance is low and the electric motor operates with a highly efficient and large output, and there is no disadvantage in layout. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電機子鉄心およびこれに巻き付けた電機子巻線より成る電機子と、界磁鉄心に極性の異なる永久磁石を交互に設けて成る界磁子とで構成され、これら電機子および界磁子間に閉路状に形成された界磁磁束により駆動される回転モータやリニヤモータなどの電動機に関し、特に動作特性を可変にした可変特性電動機に関するものである。   The present invention comprises an armature composed of an armature core and an armature winding wound around the armature core, and a field element formed by alternately providing permanent magnets having different polarities on a field core. The present invention relates to an electric motor such as a rotary motor or a linear motor driven by a field magnetic flux formed in a closed circuit between magnets, and more particularly to a variable characteristic electric motor having variable operating characteristics.

この種可変特性電動機としては従来、例えば特許文献1に記載のようなものが知られている。
この可変特性電動機は、高速回転時に顕著となる誘起電圧を低減させるため、高速回転時に磁路を磁性材プレートにより短絡させて上記の界磁磁束を低減させるようになし、これにより、高回転時の誘起電圧を抑制し得るようにしたものである。
As this type of variable characteristic motor, there has been conventionally known a motor described in Patent Document 1, for example.
This variable characteristic motor reduces the field magnetic flux by short-circuiting the magnetic path with the magnetic material plate at high speed rotation in order to reduce the induced voltage that becomes noticeable at high speed rotation. The induced voltage can be suppressed.

特開2001−314053号公報JP 2001-314053 A

しかし、上記の磁気的な短絡を行うための磁性材プレートは、上記した界磁磁束の低減作用を行うだけで、モータトルクの増大に何ら寄与しないため、レイアウト的に不利になるという問題があった。   However, the magnetic material plate for performing the magnetic short circuit described above is disadvantageous in terms of layout because it only reduces the field magnetic flux as described above and does not contribute to an increase in motor torque. It was.

本発明は、電動機の特性を変化させるとき、併せてモータトルクを向上させ得るような可変特性電動機を提案し、
これにより上記従来のレイアウトに関する不利を解消し得るようになすことを目的とする。
The present invention proposes a variable characteristic motor that can improve the motor torque when changing the characteristics of the motor,
Accordingly, an object of the present invention is to eliminate the disadvantages related to the conventional layout.

この目的のため、本発明による可変特性電動機は、請求項1に記載のごとく、
電機子鉄心およびこれに巻き付けた電機子巻線より成る電機子と、界磁鉄心に極性の異なる永久磁石を交互に設けて成る界磁子とで構成され、これら電機子および界磁子間に閉路状に形成された界磁磁束により駆動される電動機において、
前記電機子および界磁子との共働により少なくとも2個の閉路状補助磁束を発生する補助磁石を設け、
これら補助磁束のうち、一の補助磁束が磁気抵抗を低下させて磁気飽和を緩和すると共に他の補助磁束が前記界磁磁束に対し順方向のものとなるような第1状態と、前記一の補助磁束が磁気抵抗を増大させて磁気飽和し易くすると共に前記他の補助磁束が前記界磁磁束に対し逆方向のものとなるような第2状態との間で、前記補助磁石を変位させ得るよう構成したことを特徴とするものである。
For this purpose, the variable characteristic motor according to the invention is as described in claim 1,
An armature composed of an armature core and an armature winding wound around the armature core, and a field element formed by alternately providing permanent magnets having different polarities on the field core, and between these armature and the field element In an electric motor driven by a field magnetic flux formed in a closed loop shape,
Provided with an auxiliary magnet that generates at least two closed auxiliary magnetic fluxes in cooperation with the armature and the field element,
Of these auxiliary magnetic fluxes, one auxiliary magnetic flux reduces the magnetic resistance and relaxes magnetic saturation, and the other auxiliary magnetic flux is in a forward direction with respect to the field magnetic flux, The auxiliary magnet can displace the auxiliary magnet between the second state in which the auxiliary magnetic flux increases the magnetic resistance to facilitate magnetic saturation and the other auxiliary magnetic flux is in a direction opposite to the field magnetic flux. It is characterized by having comprised as follows.

かかる本発明の可変特性電動機によれば、
高速駆動から低速駆動への移行で誘起電圧の抑制が不要となって、そのための特性変更用に補助磁石を第2状態から第1状態へ状態変化させるとき、
前記他の補助磁束が界磁磁束に対し逆方向から順方向へと切り替わることで、界磁磁束を補助磁束分だけ増大させることとなり、
かかる界磁磁束の増大で電動機の出力を増大させ得て、電動機がレイアウト的に不利になることがなく、前記した従来の電動機が抱えていた問題を解消することができる。
According to the variable characteristic motor of the present invention,
When the auxiliary magnet is changed from the second state to the first state for the purpose of changing the characteristics, there is no need to suppress the induced voltage in the transition from high speed driving to low speed driving.
By switching the other auxiliary magnetic flux from the reverse direction to the forward direction with respect to the field magnetic flux, the field magnetic flux is increased by the auxiliary magnetic flux,
The increase in the field magnetic flux can increase the output of the electric motor, and the electric motor is not disadvantageous in terms of layout, and the problems of the conventional electric motor described above can be solved.

本発明の第1実施例になる可変特性電動機を示す斜視図である。1 is a perspective view showing a variable characteristic motor according to a first embodiment of the present invention. 同実施例になる可変特性電動機の低回転時における状態を示し、 (a)は、その電機子を除去して示す平面図、 (b)は、その縦断正面図である。The state at the time of low rotation of the variable characteristic electric motor which becomes the same Example is shown, (a) is a top view which removes the armature, (b) is the vertical front view. 同実施例になる可変特性電動機の高回転時における状態を示し、 (a)は、その電機子を除去して示す平面図、 (b)は、その縦断正面図である。The state at the time of high rotation of the variable characteristic electric motor which becomes the same Example is shown, (a) is a top view which removes the armature, (b) is the vertical front view. 同実施例になる可変特性電動機の低回転時における磁束の説明図である。It is explanatory drawing of the magnetic flux at the time of the low rotation of the variable characteristic electric motor which becomes the Example. 同実施例になる可変特性電動機の高回転時における磁束の説明図である。It is explanatory drawing of the magnetic flux at the time of the high rotation of the variable characteristic electric motor which becomes the Example. 図1〜3の可変特性電動機における主磁石列および補助磁石列の配列状態に係わる変形例を示す縦断正面図である。FIG. 5 is a longitudinal sectional front view showing a modified example related to the arrangement state of the main magnet row and the auxiliary magnet row in the variable characteristic electric motor of FIGS. 主磁石列および補助磁石列の配列状態と、それによって得られる界磁磁束の大きさとの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the arrangement state of a main magnet row | line | column and an auxiliary magnet row | line | column, and the magnitude | size of the field magnetic flux obtained by it. 本発明の第2実施例になる可変特性電動機の縦断正面図である。FIG. 6 is a longitudinal front view of a variable characteristic motor according to a second embodiment of the present invention. 回転電動機として構成した本発明の第3実施例になる可変特性電動機の縦断正面図である。FIG. 6 is a longitudinal front view of a variable characteristic motor according to a third embodiment of the present invention configured as a rotary motor. 回転電動機として構成した本発明の第4実施例になる可変特性電動機の要部縦断側面図である。FIG. 9 is a longitudinal sectional side view of a main part of a variable characteristic motor according to a fourth embodiment of the present invention configured as a rotary motor. 同実施例になる可変特性電動機の要部斜視図である。It is a principal part perspective view of the variable characteristic electric motor which becomes the Example. 回転電動機として構成した本発明の第5実施例になる可変特性電動機の要部斜視図である。FIG. 10 is a perspective view of a main part of a variable characteristic motor according to a fifth embodiment of the present invention configured as a rotary motor. 回転電動機として構成した本発明の第6実施例になる可変特性電動機の要部斜視図である。FIG. 10 is a perspective view of a main part of a variable characteristic motor according to a sixth embodiment of the present invention configured as a rotary motor. 本発明の第7実施例になる可変特性電動機を示し、 (a)は、その低回転時における状態を示す縦断正面図、 (b)は、その高回転時における状態を示す縦断正面図である。FIG. 7 shows a variable characteristic motor according to a seventh embodiment of the present invention, wherein (a) is a longitudinal front view showing a state at the time of low rotation, and (b) is a longitudinal front view showing a state at the time of high rotation. . 図14に示した可変特性電動機の変形例を示し、 (a)は、その低回転時における状態を示す縦断正面図、 (b)は、その高回転時における状態を示す縦断正面図である。FIGS. 14A and 14B show a modification of the variable characteristic electric motor shown in FIG. 14. FIG. 14A is a longitudinal front view showing the state at a low rotation, and FIG. 14B is a longitudinal front view showing the state at a high rotation.

以下、本発明の実施の形態を、図示の実施例に基づき詳細に説明する。
<第1実施例の構成>
図1は、リニアモータまたは回転電機として構成可能な本発明の第1実施例になる可変特性電動機の斜視図で、図2,3はそれぞれ、図1の可変特性電動機の低回転時における状態および高回転時における状態を示す。
図1に示すように、本実施例の可変特性電動機を固定の電機子1および可動の界磁子2で構成する。
Hereinafter, embodiments of the present invention will be described in detail based on the illustrated examples.
<Configuration of the first embodiment>
FIG. 1 is a perspective view of a variable characteristic motor according to a first embodiment of the present invention that can be configured as a linear motor or a rotating electric machine. FIGS. 2 and 3 are respectively a state of the variable characteristic motor of FIG. The state at the time of high rotation is shown.
As shown in FIG. 1, the variable characteristic motor of this embodiment is composed of a fixed armature 1 and a movable field element 2.

電機子1は、図2(b)および図3(b)に示すコ字状の電機子鉄心3を図1のごとく電動機駆動方向に配列して固設し、各電機子鉄心3に電機子巻線4を巻き付けて構成する。
界磁子2は、二列1組の永久磁石列5,6を具え、これら永久磁石列5,6をそれぞれ図2(a)および図3(a)に示すごとく、N極の主磁石5a,6aとS極の主磁石5b,6bとの交互配列により構成する。
この交互配列に際しては、N極の主磁石5aとS極の主磁石6bとが相互に向かい合い、S極の主磁石5b とN極の主磁石6aとが相互に向かい合うよう配列する。
The armature 1 is formed by arranging the U-shaped armature cores 3 shown in FIGS. 2 (b) and 3 (b) in the direction of driving the motor as shown in FIG. The winding 4 is wound around.
The field element 2 includes a pair of permanent magnet rows 5 and 6, and the permanent magnet rows 5 and 6 are respectively arranged as shown in FIGS. 2 (a) and 3 (a). , 6a and S pole main magnets 5b, 6b.
In this alternate arrangement, the N-pole main magnet 5a and the S-pole main magnet 6b face each other, and the S-pole main magnet 5b and the N-pole main magnet 6a face each other.

主磁石5a,5bの交互配列方向、および主磁石6a,6bの交互配列方向はそれぞれ、コ字状電機子鉄心3の配列方向に同じとする。
図2(b)および図3(b)に示すごとく、主磁石5a,5bの交互配列になる永久磁石列5は、コ字状電機子鉄心3の一方の脚部列に所定のエアギャップを持たせて対向配置し、界磁鉄心7に取着する。
また同じく図2(b)および図3(b)に示すように、主磁石6a,6bの交互配列になる永久磁石列6は、コ字状電機子鉄心3の他方の脚部列に所定のエアギャップを持たせて対向配置し、界磁鉄心8に取着する。
The alternate arrangement direction of the main magnets 5a and 5b and the alternate arrangement direction of the main magnets 6a and 6b are the same as the arrangement direction of the U-shaped armature cores 3, respectively.
As shown in FIGS. 2 (b) and 3 (b), the permanent magnet row 5 in which the main magnets 5a and 5b are alternately arranged has a predetermined air gap in one leg row of the U-shaped armature core 3. Hold it oppositely and attach it to the field core 7.
Similarly, as shown in FIG. 2 (b) and FIG. 3 (b), the permanent magnet row 6 in which the main magnets 6a and 6b are alternately arranged has a predetermined length on the other leg row of the U-shaped armature core 3. The air gaps are arranged opposite to each other and attached to the field core 8.

図2(a),(b)および図3(a),(b)に示すごとく、上記の配置としたことで永久磁石列5,6間に生じた隙間に補助磁石列11,12を設ける。
補助磁石列11は、図2(a)および図3(a)に示すごとく、N極の永久磁石11aとS極の永久磁石11bとの交互配列により構成する。
補助磁石列12も、同じく図2(a)および図3(a)に示すごとく、N極の永久磁石12aとS極の永久磁石12bとの交互配列により構成する。
As shown in FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) and 3 (b), the auxiliary magnet rows 11 and 12 are provided in the gap formed between the permanent magnet rows 5 and 6 by the above arrangement. .
As shown in FIGS. 2 (a) and 3 (a), the auxiliary magnet row 11 is constituted by an alternating arrangement of N-pole permanent magnets 11a and S-pole permanent magnets 11b.
Similarly, as shown in FIGS. 2 (a) and 3 (a), the auxiliary magnet row 12 is also composed of an alternating arrangement of N-pole permanent magnets 12a and S-pole permanent magnets 12b.

補助磁石11a,11b,12a,12bはそれぞれ、主磁石11a,11b,12a,12bと同方向に配列して、共通な鉄心ロッド13に取着する。
この鉄心ロッド13は、補助磁石列11,12を伴い永久磁石列5,6間の隙間内で、永久磁石列5,6に対し相対的にストローク可能とし、
図2(a)に示す低回転用の第1位置(第1状態)と、図3(a)に示す高回転用の第2位置(第2状態)との間で位置切り替え(状態変化)されるものとする。
The auxiliary magnets 11a, 11b, 12a, and 12b are arranged in the same direction as the main magnets 11a, 11b, 12a, and 12b, respectively, and are attached to the common iron core rod 13.
This iron rod 13 is capable of stroke relative to the permanent magnet rows 5 and 6 in the gap between the permanent magnet rows 5 and 6 with the auxiliary magnet rows 11 and 12,
Position switching (state change) between the first position (first state) for low rotation shown in FIG. 2 (a) and the second position (second state) for high rotation shown in FIG. 3 (a) Shall be.

なお、図2(a)に示す低回転用の第1位置(第1状態)では、N極の補助磁石11a,12aがN極の主磁石5a,6aに対向すると共に、S極の補助磁石11b,12bがS極の主磁石5b,6bに対向するものとし、
図3(a)に示す高回転用の第2位置(第2状態)では、N極の補助磁石11a,12aがS極の主磁石5b,6bに対向すると共に、S極の補助磁石11b,12bがN極の主磁石5a,6aに対向するものとする。
In the first position (first state) for low rotation shown in FIG. 2 (a), the N pole auxiliary magnets 11a and 12a face the N pole main magnets 5a and 6a, and the S pole auxiliary magnets. 11b and 12b are opposite to the S pole main magnets 5b and 6b,
In the second position (second state) for high rotation shown in FIG. 3 (a), the N-pole auxiliary magnets 11a, 12a face the S-pole main magnets 5b, 6b, and the S-pole auxiliary magnets 11b, It is assumed that 12b faces the N-pole main magnets 5a and 6a.

<第1実施例の作用>
上記した第1実施例になる可変特性電動機の作用を以下に説明する。
本実施例においては、電機子1の巻線3への通電により、電機子1および界磁子2間に図2(b)、図3(b)および図4,5に示すごとく閉路状の界磁磁束αが発生し、これにより界磁子2が駆動される。
<Operation of the first embodiment>
The operation of the variable characteristic motor according to the first embodiment will be described below.
In this embodiment, the energization of the winding 3 of the armature 1 causes a closed circuit between the armature 1 and the field element 2 as shown in FIG. 2 (b), FIG. 3 (b) and FIGS. A field magnetic flux α is generated, which drives the field element 2.

ところで高回転時は、誘起電圧が大きくなって電動機の効率が低下することから、この誘起電圧が低減された特性で電動機を動作させる必要があり、
他方で低回転時は誘起電圧が大きくならないことから、この誘起電圧を低減させる必要がなくて、磁気抵抗の小さな特性で電動機を動作させるのが良い。
By the way, at high speed, the induced voltage increases and the efficiency of the motor decreases, so it is necessary to operate the motor with the characteristic that the induced voltage is reduced.
On the other hand, since the induced voltage does not increase at low speed, it is not necessary to reduce the induced voltage, and it is preferable to operate the motor with a small magnetic resistance.

よって、低回転時は補助磁石列11,12を図2(a)に示す低回転用の第1位置(第1状態)にし、N極の補助磁石11a,12aがN極の主磁石5a,6aに対向すると共に、S極の補助磁石11b,12bがS極の主磁石5b,6bに対向するようになす。
これにより補助磁石列11,12は、電機子1および界磁子2との共働により、図2(b)および図4に示すごとく2個の閉路状補助磁束β1,β2を発生する。
Therefore, at the time of low rotation, the auxiliary magnet rows 11 and 12 are set to the first position (first state) for low rotation shown in FIG. 2 (a), and the N pole auxiliary magnets 11a and 12a are set to the N pole main magnets 5a, The S-pole auxiliary magnets 11b and 12b are opposed to the S-pole main magnets 5b and 6b.
As a result, the auxiliary magnet arrays 11 and 12 generate two closed auxiliary magnetic fluxes β1 and β2 as shown in FIGS. 2B and 4 due to the cooperation with the armature 1 and the field element 2.

これら補助磁束β1,β2のうち、一方の補助磁束β1は磁気抵抗を低下させて磁気飽和を緩和し、他方の補助磁束β2は図2(b)および図4に示すように、上記界磁磁束αに対し順方向のものとなり、図4に示すごとく界磁磁束αを強めて電動機の出力を増大させることができる。
以上により低回転時は、磁気抵抗が小さく、効率の良い大きな出力で電動機を動作させることができ、電動機がレイアウト的に不利になることがなく、前記した従来の電動機が抱えていた問題を解消することができる。
Of these auxiliary magnetic fluxes β1 and β2, one auxiliary magnetic flux β1 lowers the magnetic resistance and relaxes magnetic saturation, and the other auxiliary magnetic flux β2 is the above-mentioned field magnetic flux as shown in FIG. 2 (b) and FIG. As shown in FIG. 4, the field magnetic flux α can be increased to increase the output of the electric motor.
As described above, at low speeds, the motor can be operated with a large output with low magnetic resistance and high efficiency, and the motor does not have a layout disadvantage, eliminating the problems of the conventional motors described above. can do.

高回転時は補助磁石列11,12を図3(a)に示す高回転用の第2位置(第2状態)にし、N極の補助磁石11a,12aがS極の主磁石5b,6bに対向すると共に、S極の補助磁石11b,12bがN極の主磁石5a,6aに対向するようになす。
これにより補助磁石列11,12は、電機子1および界磁子2との共働により、図3(b)および図5に示すごとく2個の閉路状補助磁束β3,β4を発生する。
At the time of high rotation, the auxiliary magnet rows 11 and 12 are set to the second position (second state) for high rotation shown in FIG. 3 (a), and the N-pole auxiliary magnets 11a and 12a are changed to the S-pole main magnets 5b and 6b. The S-pole auxiliary magnets 11b and 12b are opposed to the N-pole main magnets 5a and 6a.
As a result, the auxiliary magnet arrays 11 and 12 generate two closed auxiliary magnetic fluxes β3 and β4 as shown in FIGS. 3B and 5 by the cooperation of the armature 1 and the field element 2.

これら補助磁束β3,β4のうち、一方の補助磁束β3は磁気抵抗を増大させて磁気飽和し易くし、他方の補助磁束β4は図5に示すごとく界磁磁束αに対し逆方向のものとなって界磁磁束αを弱め、電動機の出力を低下させることができる。
以上により高回転時は、磁気抵抗の大きな低出力特性で電動機を動作させることとなり、当該高回転時に大きくなる誘起電圧を抑制して、電動機の効率が低下するのを回避することができる。
Of these auxiliary magnetic fluxes β3 and β4, one auxiliary magnetic flux β3 increases the magnetic resistance to facilitate magnetic saturation, and the other auxiliary magnetic flux β4 has a direction opposite to the field magnetic flux α as shown in FIG. Thus, the field magnetic flux α can be weakened and the output of the motor can be reduced.
As described above, the motor is operated with a low output characteristic with a large magnetic resistance at the time of high rotation, and the induced voltage that increases at the time of the high rotation can be suppressed to prevent the efficiency of the motor from being lowered.

<界磁子の変形例>
ここで、上記した可変特性電動機における界磁子2の変形例について、図6を参照しつつ以下に詳述するに、
界磁子鉄心7,8に対する主磁石列5,6の配置は、主磁石列5,6を界磁子鉄心7,8から露出することのないよう界磁子鉄心7,8内に埋め込む型式の埋め込み配置とし、
鉄心ロッド13に対する補助磁石列11,12の配置は、補助磁石列11,12が鉄心ロッド13から露出するよう鉄心ロッド13に対し取着する表面配置とする。
<Modification of field element>
Here, a modification of the field element 2 in the variable characteristic motor described above will be described in detail below with reference to FIG.
The arrangement of the main magnet arrays 5 and 6 with respect to the field cores 7 and 8 is a type in which the main magnet arrays 5 and 6 are embedded in the field cores 7 and 8 so as not to be exposed from the field cores 7 and 8. Embedded placement,
The arrangement of the auxiliary magnet arrays 11 and 12 with respect to the iron core rod 13 is a surface arrangement that attaches to the iron core rod 13 so that the auxiliary magnet arrays 11 and 12 are exposed from the iron core rod 13.

かように、主磁石列5,6を界磁子鉄心7,8に埋め込み配置し、補助磁石列11,12を鉄心ロッド13に表面配置した理由は以下の通りである。
図7において、A1は、主磁石列5,6を同図の直下に図示するごとく界磁子鉄心7,8に表面配置し、補助磁石列11,12を設けなかった(低回転時と高回転時とで特性を可変にしなかった)場合における界磁磁束の大きさΨを示す。
Thus, the reason why the main magnet arrays 5 and 6 are embedded in the field element cores 7 and 8 and the auxiliary magnet arrays 11 and 12 are disposed on the core rod 13 is as follows.
In FIG. 7, A1 has the main magnet arrays 5 and 6 placed on the surface of the field cores 7 and 8 as shown in the figure directly below, and the auxiliary magnet arrays 11 and 12 are not provided (at low rotation and high speed). The magnitude Ψ of the field magnetic flux in the case where the characteristics are not variable at the time of rotation.

またB1,B2はそれぞれ、主磁石列5,6を同図の直下に図示するごとく界磁子鉄心7,8に表面配置し、補助磁石列11,12も同図の直下に図示するごとく鉄心ロッド13に表面配置した場合において、低回転させる時の界磁磁束の大きさΨ、および高回転させる時の界磁磁束の大きさΨを示す。   B1 and B2 respectively have the main magnet arrays 5 and 6 arranged on the surface of the field cores 7 and 8 as shown directly below the figure, and the auxiliary magnet arrays 11 and 12 are also cores as shown directly below the figure. In the case where the surface of the rod 13 is arranged, the magnitude Ψ of the field magnetic flux when the rotation is low and the magnitude Ψ of the field magnetic flux when the rotation is high are shown.

更にB3,B4はそれぞれ、主磁石列5,6を同図の直下に図示するごとく界磁子鉄心7,8に埋設配置し、補助磁石列11,12も同図の直下に図示するごとく鉄心ロッド13に埋設配置した場合において、低回転させる時の界磁磁束の大きさΨ、および高回転させる時の界磁磁束の大きさΨを示す。   Further, B3 and B4 are respectively embedded with the main magnet rows 5 and 6 embedded in the field cores 7 and 8 as shown directly below the figure, and the auxiliary magnet rows 11 and 12 are also cores as shown directly below the figure. In the case where the rod 13 is embedded in the rod 13, the magnitude Ψ of the field magnetic flux when the rotation is low and the magnitude Ψ of the field magnetic flux when the rotation is high are shown.

そしてB5,B6はそれぞれ、主磁石列5,6を同図の直下に図示するごとく界磁子鉄心7,8に埋設配置し、補助磁石列11,12を同図の直下に図示するごとく鉄心ロッド13に表面配置した場合において、低回転させる時の界磁磁束の大きさΨ、および高回転させる時の界磁磁束の大きさΨを示す。   B5 and B6 are respectively arranged such that the main magnet arrays 5 and 6 are embedded in the field cores 7 and 8 as shown in the figure, and the auxiliary magnet arrays 11 and 12 are arranged in the core as shown in the figure. In the case where the surface of the rod 13 is arranged, the magnitude Ψ of the field magnetic flux when the rotation is low and the magnitude Ψ of the field magnetic flux when the rotation is high are shown.

B1〜B6の比較から明らかなように、B5,B6の性能が得られる、主磁石列5,6の埋設配置と、補助磁石列11,12の表面配置との組み合わせによれば、A1性能からの界磁磁束増加代が最も大きく、また低回転時と高回転時との間における特性変化代も最大になって、前記した作用効果を最も顕著に奏し得る。   As is clear from the comparison between B1 and B6, according to the combination of the embedded arrangement of the main magnet arrays 5 and 6 and the surface arrangement of the auxiliary magnet arrays 11 and 12, which can obtain the performance of B5 and B6, the performance of A1 The field magnetic flux increase allowance is the largest, and the characteristic change allowance between the low rotation speed and the high rotation speed is also maximized, so that the above-described effects can be exhibited most remarkably.

この観点から第1実施例においては、図6につき前述した通り、界磁子鉄心7,8に対する主磁石列5,6の配置は、主磁石列5,6を界磁子鉄心7,8から露出することのないよう界磁子鉄心7,8内に埋め込む型式の埋め込み配置とし、
鉄心ロッド13に対する補助磁石列11,12の配置は、補助磁石列11,12が鉄心ロッド13から露出するよう鉄心ロッド13に対し取着する表面配置とするのがよい。
From this point of view, in the first embodiment, as described above with reference to FIG. 6, the arrangement of the main magnet arrays 5 and 6 with respect to the field cores 7 and 8 is such that the main magnet arrays 5 and 6 are separated from the field cores 7 and 8. The embedded arrangement of the type embedded in the field cores 7 and 8 so as not to be exposed,
The arrangement of the auxiliary magnet arrays 11 and 12 with respect to the iron core rod 13 is preferably a surface arrangement that attaches to the iron core rod 13 so that the auxiliary magnet arrays 11 and 12 are exposed from the iron core rod 13.

<第2実施例>
図8は、本発明の第2実施例を示し、本実施例では補助磁石11,12の一部を、界磁子2の鉄心により鍔状の梁で係止する。
かかる補助磁石11,12の一部係止によれば、補助磁石11,12が飛散するのを防止することができる。
<Second embodiment>
FIG. 8 shows a second embodiment of the present invention. In this embodiment, a part of the auxiliary magnets 11 and 12 is locked by a bowl-shaped beam by the iron core of the field element 2.
Such partial locking of the auxiliary magnets 11 and 12 can prevent the auxiliary magnets 11 and 12 from scattering.

<第3実施例>
図9は、本発明の第3実施例になる可変特性電動機を示し、本実施例はこの可変特性電動機を可変特性回転電機として構成したものである。
このため、電機子1を円筒状のステータとして構成し、界磁子2を円形のロータとして構成し、円形ロータ(界磁子)2を円筒ステータ(電機子)1内に同心に配置して、この円筒ステータ(電機子)1内に回転自在に支持する。
なおこの場合、主磁石列5,6による磁路は回転軸線に直角な面内に形成される。
<Third embodiment>
FIG. 9 shows a variable characteristic motor according to a third embodiment of the present invention. In this embodiment, the variable characteristic motor is configured as a variable characteristic rotating electric machine.
Therefore, the armature 1 is configured as a cylindrical stator, the field element 2 is configured as a circular rotor, and the circular rotor (field element) 2 is concentrically disposed in the cylindrical stator (armature) 1. The cylindrical stator (armature) 1 is rotatably supported.
In this case, the magnetic path by the main magnet arrays 5 and 6 is formed in a plane perpendicular to the rotation axis.

<第4実施例>
図10および図11は、本発明の第4実施例になる可変特性電動機を示し、本実施例もこの可変特性電動機を可変特性回転電機として構成したものである。
ただし電機子1は、電機子鉄心3を図11に明示するごとく円周方向に配列し、これら電機子鉄心3に電機子巻線4を巻き付けた、円筒状ステータとして構成する。
<Fourth embodiment>
FIGS. 10 and 11 show a variable characteristic motor according to a fourth embodiment of the present invention. In this embodiment, the variable characteristic motor is configured as a variable characteristic rotating electric machine.
However, the armature 1 is configured as a cylindrical stator in which the armature cores 3 are arranged in the circumferential direction as clearly shown in FIG. 11 and the armature windings 4 are wound around the armature cores 3.

界磁子2は図11に示すように円形のロータとして構成するが、図10に示すごとく主磁石列5,6を軸線方向に並置し、これら主磁石列5,6間に補助磁石列11,12を円周方向相対変位可能に介在させた構成とする。
かかる円形ロータ(界磁子)2を図10に示すとおり、円筒ステータ(電機子)1内に同心に配置して、この円筒ステータ(電機子)1内に回転自在に支持する。
なおこの場合、主磁石列5,6による磁路は回転軸線を含む面内に形成される。
The field element 2 is configured as a circular rotor as shown in FIG. 11, but as shown in FIG. 10, the main magnet rows 5 and 6 are juxtaposed in the axial direction, and the auxiliary magnet row 11 is interposed between the main magnet rows 5 and 6. , 12 are arranged so as to be capable of relative displacement in the circumferential direction.
As shown in FIG. 10, the circular rotor (field element) 2 is disposed concentrically in a cylindrical stator (armature) 1 and is rotatably supported in the cylindrical stator (armature) 1.
In this case, the magnetic path by the main magnet arrays 5 and 6 is formed in a plane including the rotation axis.

<第5実施例>
図12は、本発明の第5実施例になる可変特性電動機を示し、本実施例においては、基本的に図10,11の第4実施例と同様な構成とするが、
界磁子2の主磁石列5,6を成す永久磁石5a,5b間、および6a,6b間に(図12では、永久磁石6a,6bのみが見えている)、磁路を遮断する隙間21を設定する。
なおこの隙間21に、非磁性部材を設けてもよい。
<Fifth embodiment>
FIG. 12 shows a variable characteristic motor according to a fifth embodiment of the present invention. In this embodiment, the configuration is basically the same as that of the fourth embodiment of FIGS.
A gap 21 between the permanent magnets 5a and 5b forming the main magnet arrays 5 and 6 of the field element 2 and between the permanent magnets 5a and 6b (only the permanent magnets 6a and 6b are visible in FIG. 12) for blocking the magnetic path Set.
A nonmagnetic member may be provided in the gap 21.

かかる本実施例の構成によれば、永久磁石5a,5b間、および6a,6b間の磁束漏れを低減して、磁束効率を高めることができる。   According to the configuration of the present embodiment, magnetic flux leakage can be reduced by reducing magnetic flux leakage between the permanent magnets 5a and 5b and between the magnetic magnets 6a and 6b.

<第6実施例>
図13は、本発明の第6実施例になる可変特性電動機を示し、本実施例においては、基本的に図12の第5実施例と同様な構成とするが、
主磁石列5,6間に補助磁石列11,12を円周方向相対変位可能に介在させ、この補助磁石列11,12の位置を低回転時と高回転時とで切り替えることで、前記した実施例と同様な作用効果が得られるようにする。
<Sixth embodiment>
FIG. 13 shows a variable characteristic motor according to a sixth embodiment of the present invention. In this embodiment, the configuration is basically the same as that of the fifth embodiment of FIG.
As described above, the auxiliary magnet rows 11 and 12 are interposed between the main magnet rows 5 and 6 so as to be relatively displaceable in the circumferential direction, and the positions of the auxiliary magnet rows 11 and 12 are switched between a low rotation time and a high rotation time. The same effect as the embodiment is obtained.

<第7実施例>
図14は、本発明の第7実施例になる可変特性電動機を示し、本実施例においては、基本的に図1〜3の第1実施例と同様に構成するが、
界磁子2の主磁石列5,6間に設ける補助磁石列を、第1実施例のように永久磁石列11,12で構成する代わりに、電磁石31で構成する。
<Seventh embodiment>
FIG. 14 shows a variable characteristic motor according to a seventh embodiment of the present invention, and in this embodiment, the configuration is basically the same as that of the first embodiment of FIGS.
The auxiliary magnet row provided between the main magnet rows 5 and 6 of the field element 2 is constituted by the electromagnet 31 instead of the permanent magnet rows 11 and 12 as in the first embodiment.

かかる構成によれば、図14(a)の低回転時と同図(b)の高回転時とで電磁石31に流れる電流の方向を逆転させることにより前記第1状態および第2状態間での状態変化を行わせることができ、前記したと同様な特性変更作用が得られる。
従って、電磁石31を変位させる必要がなく、これを主磁石列5,6に一体化させることができて、構成の簡易化を図ることができる。
According to such a configuration, the direction of the current flowing through the electromagnet 31 is reversed between the first state and the second state at the time of low rotation in FIG. 14 (a) and at the time of high rotation in FIG. 14 (b). The state can be changed, and the same characteristic changing action as described above can be obtained.
Therefore, it is not necessary to displace the electromagnet 31, and it can be integrated with the main magnet arrays 5 and 6, and the configuration can be simplified.

なおこの場合、図15に示すごとく電磁石31の中心を空洞32とするのが良い。
かかる空心電磁石31によれば、図15(a)の低回転時と同図(b)の高回転時とで電磁石31に流れる電流の方向を逆転させることにより得られる上記の特性変更作用を一層確実なものとなし得る。
In this case, the center of the electromagnet 31 is preferably a cavity 32 as shown in FIG.
According to the air electromagnet 31, the above characteristic changing action obtained by reversing the direction of the current flowing through the electromagnet 31 at the time of low rotation in FIG. 15 (a) and at the time of high rotation in FIG. It can be done with certainty.

1 電機子
2 界磁子
3 電機子鉄心
4 電機子巻線
5,6 主磁石列
5a,6a N極永久磁石
5b,6b S極永久磁石
7,8 界磁鉄心
11,12 補助磁石列
11a,12a N極永久磁石
11b,12b S極永久磁石
13 鉄心ロッド
21 空隙
31 電磁石
32 空洞
1 Armature
2 field element
3 Armature core
4 Armature winding
5,6 Main magnet row
5a, 6a N pole permanent magnet
5b, 6b S pole permanent magnet
7,8 Field core
11,12 Auxiliary magnet row
11a, 12a N pole permanent magnet
11b, 12b S pole permanent magnet
13 Iron rod
21 Air gap
31 Electromagnet
32 cavity

Claims (3)

電機子鉄心およびこれに巻き付けた電機子巻線より成る電機子と、界磁鉄心に極性の異なる永久磁石を交互に設けて成る界磁子とで構成され、これら電機子および界磁子間に閉路状に形成された界磁磁束により駆動される電動機において、
前記電機子および界磁子との共働により少なくとも2個の閉路状補助磁束を発生する補助磁石を設け、
これら補助磁束のうち、一の補助磁束が磁気抵抗を低下させて磁気飽和を緩和すると共に他の補助磁束が前記界磁磁束に対し順方向のものとなるような第1状態と、前記一の補助磁束が磁気抵抗を増大させて磁気飽和し易くすると共に前記他の補助磁束が前記界磁磁束に対し逆方向のものとなるような第2状態との間で、前記補助磁石を状態変化させるよう構成したことを特徴とする可変特性電動機。
An armature composed of an armature core and an armature winding wound around the armature core, and a field element formed by alternately providing permanent magnets having different polarities on the field core, and between these armature and the field element In an electric motor driven by a field magnetic flux formed in a closed loop shape,
Provided with an auxiliary magnet that generates at least two closed auxiliary magnetic fluxes in cooperation with the armature and the field element,
Of these auxiliary magnetic fluxes, one auxiliary magnetic flux reduces the magnetic resistance and relaxes magnetic saturation, and the other auxiliary magnetic flux is in a forward direction with respect to the field magnetic flux, Auxiliary magnetic flux increases the magnetic resistance to facilitate magnetic saturation, and changes the state of the auxiliary magnet between the second state in which the other auxiliary magnetic flux is in a direction opposite to the field magnetic flux. A variable characteristic motor characterized by being configured as described above.
請求項1に記載の可変特性電動機において、
前記界磁子上の主磁石を二列1組とし、前記補助磁石も二列1組とし、これら補助磁石列を一体的に主磁石列間で変位させて、前記第1状態または第2状態を得るよう構成したことを特徴とする可変特性電動機。
In the variable characteristic motor according to claim 1,
The main magnets on the field element are set in two rows and one set, and the auxiliary magnets are also set in two rows, and the auxiliary magnet rows are integrally displaced between the main magnet rows in the first state or the second state. A variable characteristic motor configured to obtain
請求項2に記載の可変特性電動機において、
前記主磁石は、前記界磁子鉄心に埋め込み配置し、前記補助磁石は表面配置したものであることを特徴とする可変特性電動機。
In the variable characteristic motor according to claim 2,
The variable characteristic electric motor according to claim 1, wherein the main magnet is embedded in the field element core and the auxiliary magnet is disposed on the surface.
JP2009022133A 2009-02-03 2009-02-03 Variable characteristic motor Active JP5446293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022133A JP5446293B2 (en) 2009-02-03 2009-02-03 Variable characteristic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022133A JP5446293B2 (en) 2009-02-03 2009-02-03 Variable characteristic motor

Publications (2)

Publication Number Publication Date
JP2010183652A true JP2010183652A (en) 2010-08-19
JP5446293B2 JP5446293B2 (en) 2014-03-19

Family

ID=42764733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022133A Active JP5446293B2 (en) 2009-02-03 2009-02-03 Variable characteristic motor

Country Status (1)

Country Link
JP (1) JP5446293B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214478A (en) * 1995-01-31 1996-08-20 Toshiba Corp Permanent-magnet field type dynamo electric machine
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2008141861A (en) * 2006-12-01 2008-06-19 Honda Motor Co Ltd Axial gap type motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214478A (en) * 1995-01-31 1996-08-20 Toshiba Corp Permanent-magnet field type dynamo electric machine
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2008141861A (en) * 2006-12-01 2008-06-19 Honda Motor Co Ltd Axial gap type motor

Also Published As

Publication number Publication date
JP5446293B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5421396B2 (en) Electric motor having an iron core having primary teeth and secondary teeth
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP2007252184A (en) Rotary electric machine
JP5605164B2 (en) Permanent magnet type synchronous motor and method for operating permanent magnet type synchronous motor
JP2012130223A (en) Synchronous motor
JP7076188B2 (en) Variable magnetic force motor
JP6668844B2 (en) Rotating electric machine
JP2013150538A (en) Dynamo-electric machine
US20110163618A1 (en) Rotating Electrical Machine
JP2009509488A5 (en)
JP2017063597A (en) Rotary electric machine
JP5446476B2 (en) Rotor of an embedded magnet type synchronous motor
KR20090067057A (en) Brushless motor
JP2007060828A (en) Field coil, electric motor, and its drive method
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP6083307B2 (en) Rotating machine
JP5446292B2 (en) Variable characteristic motor
JP6083640B2 (en) Permanent magnet embedded motor
JP2005253265A (en) Permanent magnet synchronous motor and method for adjusting field magnetic flux thereof
JP5446293B2 (en) Variable characteristic motor
JP2006340507A (en) Stator of rotary electric machine
JP4680230B2 (en) 2-phase simultaneous excitation brushless DC motor
JP6201405B2 (en) Rotating electric machine
JP2022119042A (en) linear motor
JP2010200482A (en) Hybrid excitation ipm motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150