JP2010181389A - Liquid level measuring device - Google Patents
Liquid level measuring device Download PDFInfo
- Publication number
- JP2010181389A JP2010181389A JP2009047068A JP2009047068A JP2010181389A JP 2010181389 A JP2010181389 A JP 2010181389A JP 2009047068 A JP2009047068 A JP 2009047068A JP 2009047068 A JP2009047068 A JP 2009047068A JP 2010181389 A JP2010181389 A JP 2010181389A
- Authority
- JP
- Japan
- Prior art keywords
- liquid level
- pressure
- pressurized gas
- speed
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
本発明は、液面レベル測定の対象である液中に先端部を浸漬させる検出管と該検出管の先端から加圧気体を漏出させるべく検出管に接続される加圧気体供給源と、検出管内の圧力を検出するように検出管に接続された圧力センサとを備え、圧力センサの検出値を演算処理することにより液面レベルの測定、制御や警報発生などを行う液面レベル測定装置に関するものである。 The present invention relates to a detection tube in which a tip is immersed in a liquid whose liquid level is to be measured, a pressurized gas supply source connected to the detection tube to leak pressurized gas from the tip of the detection tube, and a detection The present invention relates to a liquid level measuring apparatus that includes a pressure sensor connected to a detection pipe so as to detect the pressure in the pipe, and performs measurement processing, control, alarm generation, etc. by calculating the detection value of the pressure sensor. Is.
公報特開2007−78413号(特許文献1)で開示されている気圧式液面検出装置において加圧気体を供給するために一定周期毎に加圧気体供給源が所定時間駆動するとともに、前記加圧気体供給源が停止してから圧力変動による影響がなくなるまでの一定時間経過後、前記検出管内の圧力値を基準値として記憶し、この前記基準値に対して所定の幅を超えて変動した場合にも、前記加圧気体供給源が駆動する制御手段を備えていることが記述されている。
加圧気体供給式の液面レベル測定装置において、加圧気体が供給停止している状態で液面が上昇または下降する場面において、圧力変化速度に応じた制御や警報信号を出すことや、自動車などで普及している燃費などの表示同様、灯油の場合にも燃料が無くなるまでの残時間などの付加情報を得ることができれば便利である。In a pressurized gas supply type liquid level measurement device, in the scene where the liquid level rises or falls while the supply of pressurized gas is stopped, a control or alarm signal corresponding to the pressure change rate is issued, or an automobile Like kerosene, it is convenient if additional information such as the remaining time until the fuel runs out can be obtained.
検出管内の圧力値を検出して基準値として記憶するタイミングを、加圧気体供給源が駆動を停止し、圧力変動による影響がなくなるまでの一定時間経過後とした場合は測定する液体の深さや検出管の長さにより圧力変動による影響がなくなるまでの時間が変わる為一定時間と言えどもその都度変更する必要がある。
測定する液体の深さ、検出管の長さなどが設置場所によって異なってもその時間をその都度変更しなくて良い方法が求められる。When the pressure value in the detection tube is detected and stored as a reference value after a certain period of time until the pressurized gas supply source stops driving and there is no effect of pressure fluctuation, the depth of the liquid to be measured Since the time until the influence of the pressure fluctuation disappears changes depending on the length of the detection tube, it is necessary to change each time even if it is a fixed time.
Even if the depth of the liquid to be measured, the length of the detection tube, and the like differ depending on the installation location, a method is required in which the time does not need to be changed each time.
灯油などの盗難の場合における急激な液面下降時の圧力変化、また、河川や海面の急激な液面上昇時などにおいては、液面の圧力変化速度を検出して警報を出すことは時代の要請である。In the case of theft such as kerosene, the pressure change at the time of a sudden drop in the liquid level, and at the time of a sudden rise in the level of the river or the sea level, it is the time of the day to detect the pressure change rate of the liquid level and issue an alarm It is a request.
深井戸の水面までの距離は、一般的に電極のついたメジャーなどを実際に井戸に吊り下ろして測るが、距離が長いと出し入れが大変である。そこで気泡式の液面レベル測定装置の検出管を深井戸に据付けた後でも、また既設の検出管の長さが不明の場合においても、その長さを自動的に計測できれば便利である。The distance to the water surface of a deep well is generally measured by actually hanging a measure with an electrode on the well. However, if the distance is long, it is difficult to take in and out. Therefore, it is convenient if the length of the existing detection tube can be automatically measured even after the detection tube of the bubble type liquid level measuring device is installed in the deep well or when the length of the existing detection tube is unknown.
加圧気体が供給停止している状態において、気温が低下して来るとは検出管内の体積が収縮し実際の液面レベルより圧力センサの検出する圧力値は低くなるため液位低下と誤認し加圧気体の供給回数が多くなる。気温低下の影響による圧力減少分を補い実際の液面レベルに近い補正圧力値を出力できれば供給回数を少なくすることができ加圧気体供給源である加圧気体供給源の寿命を延ばすことができる。When the supply of pressurized gas is stopped, if the temperature decreases, the volume in the detector tube contracts and the pressure value detected by the pressure sensor is lower than the actual liquid level, which is mistaken as a drop in liquid level. Increased number of times of supply of pressurized gas. If the corrected pressure value close to the actual liquid level can be output by compensating for the pressure decrease due to the temperature drop, the number of times of supply can be reduced and the life of the pressurized gas supply source that is a pressurized gas supply source can be extended. .
以下の説明では圧力の単位を[mH20]としている。その場合、測定対象の液体が灯油など比重1.0でない場合は測定圧力をその比重で割ればその液体の液面レベルが求められる為、測定対象の液体を比重1.0の水としている。
加圧気体供給式の液面レベル測定装置において、液面レベル測定の対象である液中に先端部を浸漬させる検出管と、加圧気体を供給するための加圧気体供給源、検出管内の気圧を測定するための圧力センサ、検出管先端から液面までの深さを液面レベルとして表示する表示部、圧力補正をするための温度センサ、演算処理をするためのマイクロコンピュータを備えた制御ユニットからなり、In the following description, the unit of pressure is [mH20]. In this case, when the liquid to be measured is not specific gravity 1.0 such as kerosene, the liquid level of the liquid can be obtained by dividing the measurement pressure by the specific gravity. Therefore, the liquid to be measured is water having a specific gravity of 1.0.
In a pressurized gas supply type liquid level measuring device, a detection tube for immersing the tip in a liquid whose liquid level is to be measured, a pressurized gas supply source for supplying pressurized gas, Control equipped with a pressure sensor for measuring atmospheric pressure, a display unit that displays the depth from the tip of the detection tube to the liquid level as a liquid level, a temperature sensor for pressure correction, and a microcomputer for calculation processing Consisting of units
請求項1記載の発明は、マイクロコンピュータによる演算処理により、時間経過する中で温度センサと圧力センサの検出値を表した図3を参照にして
図4から、加圧気体供給源から加圧気体が供給され供給停止後に液面変動が少なくなったときに得られる液面レベルの正確な測定値圧力値(P0)と、第1の所定時間(T1)間隔毎に圧力値(P2)を得るようにした場合、前記(P0)を基準にした傾き= 速度(Sa1)は、絶対値をとり
Sa1=|P2−P0|/T1
となり、(Sa1)が、予め設定した第1の所定速度(S1)より大きくなったと判断される場合には加圧気体が供給されるようにし、
加圧気体が供給されてから、図5を参照して、時間が経過している中で第1の所定時間(T1)間隔で得られる液面レベルの圧力差(Pv)の変化速度(Sv)=Pv/T1を得て、前記の変化速度(Sv)を第1の所定回数(na)加算し、回数(na)で割ることで得た平均速度(Sa2)が第2の所定速度(S2)より小さくなったと判断される場合には加圧気体が停止されるようにし
図6を参照して、前記の変化速度(Sv)を第2の所定回数(nb)を加算し、回数(nb)で割ることで得た平均速度(Sa3)が、第3の所定速度(S3)より小さくなったと判断される場合に正確な液面レベル測定値(P0)として得られ、同時に温度センサが検出する温度を基準温度(Tp1)として記憶させるようにさせ、再び最初から前記平均速度を常に更新させていくようにする。The invention according to
When (Sa1) is determined to be larger than the first predetermined speed (S1) set in advance, the pressurized gas is supplied,
With reference to FIG. 5, since the pressurized gas is supplied, the change rate (Sv) of the pressure difference (Pv) of the liquid level obtained at the first predetermined time (T1) interval as time elapses. ) = Pv / T1, and the average speed (Sa2) obtained by adding the change speed (Sv) to the first predetermined number of times (na) and dividing by the number of times (na) is the second predetermined speed ( S2) When it is determined that the pressure has become smaller, the pressurized gas is stopped. Referring to FIG. 6, the change rate (Sv) is added to the second predetermined number (nb), and the number of times ( When the average speed (Sa3) obtained by dividing by nb) is determined to be smaller than the third predetermined speed (S3), it is obtained as an accurate liquid level measurement (P0), and at the same time, the temperature sensor The detected temperature is memorized as the reference temperature (Tp1), and again from the beginning Keep the average speed constantly updated.
請求項2記載の発明は、前記の変化速度(Sv)を第3の所定回数(nc)分加算し、回数(nc)で割ることで得た平均速度(Sa4)が、急激な変化速度である第4の所定速度(S4)より大きくなったと判断される場合に警報信号やそれに付随する制御信号を出すようにする。According to the second aspect of the present invention, the average speed (Sa4) obtained by adding the change speed (Sv) by the third predetermined number (nc) and dividing by the number (nc) is a rapid change speed. When it is determined that the speed has become higher than a certain fourth predetermined speed (S4), an alarm signal and a control signal associated therewith are output.
請求項3記載の発明は、前期検出管の先端部が液体に浸漬されている状態で、前期検出管の先端部から最も離れている測定装置に隣接する圧力センサが検出する圧力値をもとに、まず、請求項1により得られた前記正確な液面レベル測定値(P0)から加圧気体が供給開始される直前までの圧力センサが検出する圧力差を(X1)とし、次に、加圧気体供給後に得られる新たな前記正確な液面レベル測定値(P0)との圧力差を(X2)とする。
検出管の長さによって生じる圧力差の比率(Y)を式(1)のようにとる。
Y=X1/X2・・・(1)
この比率(Y)から検出管の凡その長さ(L)は式(2)によって決まる。
但しここでは大気圧を10mH20とする。
L[m]=(Y−1)×10 [m]・・・(2)
式(1)、式(2)をプログラムソフトに組み込めば検出管の凡その長さを自動的に計測できる。なお以下に記述する式(3)乃至(10)より式(2)が求められる。The invention according to
The ratio (Y) of the pressure difference caused by the length of the detection tube is taken as in equation (1).
Y = X1 / X2 (1)
From this ratio (Y), the approximate length (L) of the detection tube is determined by equation (2).
However, the atmospheric pressure here is 10 mH20.
L [m] = (Y−1) × 10 [m] (2)
If the equations (1) and (2) are incorporated in the program software, the approximate length of the detection tube can be automatically measured. Equation (2) is obtained from equations (3) to (10) described below.
長さの単位は[m]、圧力の単位は[mH20],温度は℃、検出管の内径は同じものとして
図1を参照にして、以下のように変数を定義する。
P1:大気圧(大気圧は水の場合約10mに相当)
P2:圧力センサが検出する圧力値、前記(X1)
P3:検出管内の圧力
L:検出管の長さ
h:検出管先端から液面までの距離(液面レベル値)
a:検出管先端から液体が浸入している長さThe unit of length is [m], the unit of pressure is [mH20], the temperature is ° C., the inner diameter of the detection tube is the same, and the variables are defined as follows with reference to FIG.
P1: Atmospheric pressure (Atmospheric pressure is equivalent to about 10m for water)
P2: Pressure value detected by the pressure sensor, (X1)
P3: Pressure in the detection tube L: Length of the detection tube h: Distance from the tip of the detection tube to the liquid level (liquid level value)
a: Length of liquid entering from the tip of the detection tube
ゲージ圧型の圧力センサは、大気圧との差圧を出力することから、圧力値P2は式(3)となる。
P2=P3−P1・・・(3)
また、加圧気体が供給停止している状態で検出管先端から検出管内に液体がaだけ浸入したときの圧力平衡式は式(4)となる。
P1+h=P3+a・・・(4)
式(3)と式(4)より(5)式が得られる。
P2=h−a・・・(5)
一方、ボイルシャルルの法則から、P1×L=P3×(L−a)であることから
P1×L=(P1+P2)×(L−a)・・・(6)Since the gauge pressure type pressure sensor outputs a differential pressure with respect to the atmospheric pressure, the pressure value P2 is expressed by Equation (3).
P2 = P3-P1 (3)
Further, the pressure balance equation when the liquid intrudes into the detection tube from the tip of the detection tube in a state where the supply of the pressurized gas is stopped is the equation (4).
P1 + h = P3 + a (4)
Equation (5) is obtained from Equation (3) and Equation (4).
P2 = ha (5)
On the other hand, P1 × L = (P1 + P2) × (L−a) (6) because P1 × L = P3 × (L−a) from Boyle Charles ’law.
式(5)と式(6)からaを消去して式(7)となる
P1×L=(P1+P2)×(L−h+P2)・・・(7)
ところで、hは加圧気体を供給し気体が検出管の先端まで充満した時に計測される距離(圧力)であり、その時の圧力は前記のX2である。
よって、前記Yは
Y=h/P2・・・・(9)
よって、式(7)と式(8)を整理すると最終的に検出管の長さは式(10)により求めることができる。
L=(Y−1)×(P1+P2)・・・(10)
ここで、大気圧P1は約10mH20であるが、対象とする液面の対象深さhが10mに
比較して十分小さい時は(10)式は、
L=(Y−1)×10・・・(2)
とできる。P1 × L = (P1 + P2) × (L−h + P2) (7) where “a” is eliminated from the equations (5) and (6) to obtain the equation (7).
By the way, h is a distance (pressure) measured when pressurized gas is supplied and the gas is filled to the tip of the detection tube, and the pressure at that time is X2.
Therefore, Y is Y = h / P2 (9)
Therefore, when the equations (7) and (8) are arranged, the length of the detection tube can be finally obtained from the equation (10).
L = (Y−1) × (P1 + P2) (10)
Here, although the atmospheric pressure P1 is about 10 mH20, when the target depth h of the target liquid level is sufficiently small compared to 10 m, the equation (10) is
L = (Y−1) × 10 (2)
And can.
請求項4記載の発明は、制御ユニット(7)内にあるマイクロコンピュータにより予め所定の下降温度をTp3と設定しておき、加圧気体の供給が停止している状態で、温度下降時に検出管内の気体の体積が収縮し、検出管の先端から液体が浸入して実際の液面レベルより圧力センサが検出する圧力値が低く計測され、液面レベルの低下と誤認されることを回避する方法である。
まず、請求項1から前記正確な液面レベル(P0)を得たときに同時に前記温度センサが検出する基準温度をTp1として記憶しておき、そこから温度が徐々に
なる
ボイルシャルルの法則から体積は絶対温度に比例するので、絶対温度を273℃として、温度が下降したときの体積の減少率は式(12)となる
(T2+273)/(Tp1+273)・・・(12)
ここで検出管の内径は同じとしているので体積比は長さ比に相当すると考えることができ、請求項3から計測された検出管の長さ(L)=(Y−1)×10をもとに検出管内に浸入する液体部分の長さ(a)は式(13)になる
a=(Y−1)×10−(Y−1)×10×(Tp2+273)/(Tp1+273)・・・(13)
したがって、この値が液面レベル補正分の圧力値に相当することから、検出管内の圧力センサが検出する圧力値(P2)を加えて、実際の液面のレベルに近い補正圧力値(PL)は式(14)になる、
PL=P2+(Y−1)×10−(Y−1)×10(Tp2+273)/(Tp1+273)・・・(14)
ったときに加圧気体供給開始するようにすれば、加圧気体の供給量を少なくできる。
具体的には、式(11)と式(14)をプログラムソフトに組み込むことにより可能となる。According to a fourth aspect of the present invention, a predetermined temperature drop is set to Tp3 in advance by a microcomputer in the control unit (7), and the supply of pressurized gas is stopped. To avoid the fact that the pressure of the pressure sensor is detected to be lower than the actual liquid level and the liquid level is measured to be lower than the actual liquid level, and that the liquid volume of the gas contracts, and is mistakenly recognized as a drop in the liquid level. It is.
First, the reference temperature detected by the temperature sensor at the same time when the accurate liquid level (P0) is obtained from
Become
Since the volume is proportional to the absolute temperature according to Boyle-Charles' law, the absolute temperature is set to 273 ° C., and the volume decrease rate when the temperature is lowered is expressed by the equation (12) (T2 + 273) / (Tp1 + 273) (12) )
Here, since the inner diameter of the detection tube is the same, the volume ratio can be considered to correspond to the length ratio, and the length (L) = (Y−1) × 10 of the detection tube measured from
Therefore, since this value corresponds to the pressure value corresponding to the liquid level correction, the pressure value (P2) detected by the pressure sensor in the detection tube is added, and the corrected pressure value (PL) close to the actual liquid level. Becomes equation (14),
PL = P2 + (Y−1) × 10− (Y−1) × 10 (Tp2 + 273) / (Tp1 + 273) (14)
If the supply of pressurized gas is started at this time, the supply amount of pressurized gas can be reduced.
Specifically, it becomes possible by incorporating the equations (11) and (14) into the program software.
第1の特長を有する発明によれば、加圧気体供給停止している間でも圧力センサによって検出された圧力値を基に圧力変化速度を常に捉えるようにして液面レベル変化を監視しているので液面レベルが所定の圧力変化速度を上回れば加圧気体が供給でき、加圧気体の供給による圧力上昇時は短時間間隔で連続して上昇速度を監視しているため圧力ピーク時直前の緩やかな変化速度になった時点で的確に加圧気体供給停止ができ加圧気体の供給量を少なくできる。また、加圧気体供給停止後は短時間間隔で連続して圧力下降時の圧力変化速度を監視しているため検出管の太さや長さ、測定する液体の深さに影響されることなく常に正確な液面レベル(P0)が得られる。
また圧力変化速度、即ち液位変化速度が分かることにより、灯油の使いきりまでの時間
を表示したり、現在の消費速度をC02に換算して消費したりすることも出来る。According to the invention having the first feature, the liquid level change is monitored by constantly capturing the pressure change rate based on the pressure value detected by the pressure sensor even while the supply of the pressurized gas is stopped. Therefore, if the liquid level exceeds the predetermined pressure change rate, pressurized gas can be supplied, and when the pressure rises due to the supply of pressurized gas, the rising rate is continuously monitored at short intervals, so the pressure level is When the rate of change becomes moderate, the supply of pressurized gas can be stopped accurately and the supply amount of pressurized gas can be reduced. In addition, since the pressure change rate at the time of pressure drop is continuously monitored after a short time interval after the supply of pressurized gas is stopped, it is always unaffected by the thickness and length of the detection tube and the depth of the liquid to be measured. An accurate liquid level (P0) is obtained.
Further, by knowing the pressure change rate, that is, the liquid level change rate, it is possible to display the time until the kerosene has been used up or to convert the current consumption rate into C02.
第2の特徴を有する発明によれば、液面の急激な変化によって制御や警報を出すことができるので、たとえば、河川や海面の急激な上昇による警戒警報や灯油などの盗難によるタンク内の液面の急激な下降による盗難警報を出すことができる。According to the invention having the second feature, since control and warning can be issued by a rapid change in the liquid level, for example, a warning alarm due to a sudden rise in the river or the sea level or liquid in the tank due to theft of kerosene or the like A burglar alarm can be issued due to a sudden drop in the surface.
第3の特徴を有する発明によれば、検出管の先端が液体に浸漬していて検出管の内径が同じ条件ならば、計測時間は検出管の長さにより違うが、加圧気体が供給されて、加圧気体が停止してから液面レベル変化がほとんどなくなるときに得られる前記正確な液面レベル測定値(P0)と更新前の前記正確な液面レベル(P0)の間隔時間で温度変化の影響が少ない状態で検出管の長さを自動的に計測でき、深井戸に設置した検出管の長さが不明でも、後から地上に出ている検出管の長さを測定するだけで、地上面から深井戸の水面までの距離を把握できる。According to the invention having the third feature, if the tip of the detection tube is immersed in a liquid and the inner diameter of the detection tube is the same, the measurement time varies depending on the length of the detection tube, but pressurized gas is supplied. Then, the temperature is measured at an interval time between the accurate liquid level measurement value (P0) obtained when the liquid level change almost disappears after the pressurized gas is stopped and the accurate liquid level (P0) before update. The length of the detector tube can be automatically measured with little change, and even if the length of the detector tube installed in the deep well is unknown, it is only necessary to measure the length of the detector tube on the ground later The distance from the ground surface to the water surface of the deep well can be grasped.
第4の特徴を有する発明によれば、加圧気体供給停止状態の検出管内において温度下降時の検出管内の体積減少に対して実際の液面レベルに近い圧力値を補正表示または出力することで加圧気体の供給回数を大幅に減らすことができ食用油の残量を監視するときなどに加圧気体供給による食用油の酸化が起き難くする効果がある。According to the invention having the fourth feature, the pressure value close to the actual liquid level is corrected or displayed for the volume decrease in the detection tube when the temperature drops in the detection tube in the pressurized gas supply stop state. The number of times the pressurized gas is supplied can be greatly reduced, and when the remaining amount of edible oil is monitored, the edible oil is hardly oxidized by the pressurized gas supply.
1 液面レベルを測定するときの測定対象物(容器)
2 加圧気供給源(ポンプ)
3 検出管
3a 分岐弁
4 逆止弁
5 圧力センサ
6 制御盤
7 制御ユニット
8 表示器
9 警報機
10 温度センサ1 Measurement object (container) when measuring liquid level
2 Pressurized air supply source (pump)
3 Detection Tube
先ず図2において、液面レベル測定装置の対象物である容器(1)には液体物質が貯留されており、その容器内の液面レベル(h)を測定するために、検出管(3)の先端を容器(1)の底部(1a)に近接する位置まで挿入する。
一方、容器(1)の外には、加圧気体供給源である加圧気体供給源(2)が固定配置されており、この加圧気体供給源(2)が該加圧気体供給源(2)側への逆流を阻止する逆止弁(4)を介して前記検出管(3)に接続される。また前記逆止弁(4)よりも下流側で検出管(3)から分岐した分岐管(3a)には検出管(3)内の圧力を検出する前記圧力センサ(5)が前記検出管(3)の先端から最も離れた位置に接続される。
前記加圧気体供給源(2)の駆動はマイクロコンピュータから成る制御ユニット(7)で制御されるものであり、該制御ユニット(7)には前記圧力センサ(5)と表示器(8)および警報器(9)とともに接続されている。さらに前記検出管(3)の近くで気温変化が大きい場所に温度センサ(10)が固定配置されておりこれも該制御ユニット(7)に接続されている。
前記制御ユニット(7)はマイクロコンピュータによる演算処理と制御回路で構成されていて
請求項1記載の発明は、
図4から、加圧気体供給源から加圧気体が供給され供給停止後に液面変動が少なくなったときに得られる液面レベルの正確な測定値(P0)と、時間が経過するなかで第1の所定時間(T1)例えば1.0秒間隔で間歇的に得た圧力値(P2)が例えば1521mmH20で、常に前記正確な測定値(P0)例えば1500mmH20の圧力値を基準にした圧力値の傾き速度(Sa1)は、該速度の絶対値をとり
Sa1=|P2−P0|/T1から
|1500−1521|/1=21(mmH20/秒)
となり、間歇的な前期傾き速度(Sa1)が、予め設定した第1の所定速度(S1)例えば20mmH20/秒より大きくなったことで前記加圧気体供給源(2)が駆動するようにして
Sa1=|P2−P0|/T1、Sa1>S1ならば加圧気体供給源駆動
図5を参照にして、時間が経過している中で第1の所定時間(T1)例えば1.0秒の間隔の前後で得られる液面レベルの圧力差から生じる圧力センサが検出する圧力差(Pv)を基準とする1回分の変化速度(Sv)=Pv/T1を得て連続する前記1回分の変化速度(Sv)を第1の所定回数(na)例えば2回を加算し回数(na)2回で割ることで得た平均速度(Sa2)が例えば9.9mm/秒になった場合第2の所定速度(S2)例えば10mm/秒に設定しておいた場合はより小さくなったと判断され前記加圧気体供給源(2)が停止されるようにし
図6を参照にして、連続する前記1回分の変化速度(Sv)を第2の所定回数(nb)例えば4回加算し4回で割ることで得た平均速度(Sa3)が例えば0.9mm/秒になった場合第3の所定速度(S3)例えば1mm/秒に設定しておいた場合はより小さくなったと判断される場合に正確な液面レベル測定値(P0)例えば1.5mH20として得られ、
同時に温度センサが検出する温度を基準温度(Tp1)として記憶させるようにさせる。First, in FIG. 2, a liquid substance is stored in a container (1) which is an object of a liquid level measuring apparatus, and a detection tube (3) is used to measure the liquid level (h) in the container. Is inserted to a position close to the bottom (1a) of the container (1).
On the other hand, a pressurized gas supply source (2) which is a pressurized gas supply source is fixedly disposed outside the container (1), and the pressurized gas supply source (2) is connected to the pressurized gas supply source (2). 2) Connected to the detection tube (3) via a check valve (4) that prevents backflow to the side. The pressure sensor (5) for detecting the pressure in the detection pipe (3) is connected to the branch pipe (3a) branched from the detection pipe (3) downstream of the check valve (4). It is connected to the position farthest from the tip of 3).
The drive of the pressurized gas supply source (2) is controlled by a control unit (7) comprising a microcomputer, and the control unit (7) includes the pressure sensor (5), a display (8), and It is connected with the alarm (9). Further, a temperature sensor (10) is fixedly arranged near the detection tube (3) where the temperature change is large, and this is also connected to the control unit (7).
The control unit (7) is composed of a calculation processing by a microcomputer and a control circuit.
From FIG. 4, the accurate measurement value (P0) of the liquid level obtained when the pressurized gas is supplied from the pressurized gas supply source and the fluctuation in the liquid level decreases after the supply is stopped, The pressure value (P2) obtained intermittently at a predetermined time (T1) of, for example, 1.0 second is, for example, 1521 mmH20, and the pressure value is always based on the accurate measured value (P0) of, for example, 1500 mmH20 The inclination speed (Sa1) takes the absolute value of the speed and Sa1 = | P2-P0 | / T1 to | 1500-1521 | / 1 = 21 (mmH20 / sec)
Thus, the pressurized gas supply source (2) is driven so that the intermittent pre-tilt speed (Sa1) is greater than a preset first predetermined speed (S1), for example, 20 mmH20 / sec. = | P2-P0 | / T1, if Sa1> S1, the pressurized gas supply source is driven. Referring to FIG. 5, the first predetermined time (T1), e.g. The change rate for one time (Sv) = Pv / T1 based on the pressure difference (Pv) detected by the pressure sensor generated from the pressure difference at the liquid level obtained before and after the above is obtained. When the average speed (Sa2) obtained by adding (Sv) to the first predetermined number of times (na), for example, 2 and dividing by (times) 2 (na) is, for example, 9.9 mm / second, the second predetermined number When the speed (S2) is set to 10 mm / second, for example And the pressurized gas supply source (2) is stopped.
Referring to FIG. 6, the average speed (Sa3) obtained by adding the second predetermined number of times (nb), for example, four times and dividing by four times is obtained, for example, 0.9 mm. When the third predetermined speed (S3), for example, 1 mm / second is set, the accurate liquid level measurement value (P0), for example, 1.5 mH20 is determined. Obtained,
At the same time, the temperature detected by the temperature sensor is stored as the reference temperature (Tp1).
図7を参照にして、前記1回分の変化速度(Sv)を第1の所定回数(nc)例えば4回を加算した回数(nc)4回で割ることで得た平均速度(Sa4)が例えば2.1mm/秒なった場合を第3の所定回数(nc)加算した回数(nc)で割ることで得た平均速度が、急激な変化速度である第4の所定速度(S4)例えば2.0mm/秒より大きくなったと判断され保持された警報信号が送られ警報器(9)のブザーが鳴り続ける。
また、前記加圧気体供給源(2)が駆動中のときは、圧力が暴れるため警報器(9)のブザーが鳴らないように比較回路を遮断するなどして止めておく。Referring to FIG. 7, the average speed (Sa4) obtained by dividing the change speed (Sv) for one time by the first predetermined number (nc), for example, the number of times obtained by adding four times (nc) four times is, for example, The fourth predetermined speed (S4) in which the average speed obtained by dividing the case of 2.1 mm / second by the number of times (nc) obtained by adding the third predetermined number (nc) is an abrupt change speed. It is determined that the speed is higher than 0 mm / second, and the held alarm signal is sent, and the buzzer of the alarm device (9) continues to sound.
Further, when the pressurized gas supply source (2) is being driven, the pressure is violated, so that the buzzer of the alarm (9) is not turned off by shutting off the comparison circuit.
前記解決するための手段のところで求めた下の式(1)(2)を利用する。最終的に凡その検出管の長さ(L)が得られる
Y=X1/X2・・・(1)
L[m]=(Y−1)×10[m]・・・(2)
X1は、圧力センサが検出した圧力差で前記正確な液面レベル値から例えば6mm上昇して前記加圧気体供給源(2)が駆動したとする。これに対してX2は、前記加圧気体供給源(2)が駆動する前後の前記正確な液面レベル値の圧力差で例えば2mmだったとする。X1,X2は検出管の長さ分の影響による圧力差の比率で、その式(1)から比率Y=X2/X1を式(2)に代入して
L=(3−1)×10=20(m)となる
つまり、検出管の長さは前記加圧気体供給源(2)が駆動することによりX1,X2が得られ、自動的に計測された値が記憶され前記表示器(8)に表示することができるようになっている。The following formulas (1) and (2) obtained in the above means for solving are used. Finally, the approximate length (L) of the detection tube is obtained. Y = X1 / X2 (1)
L [m] = (Y-1) × 10 [m] (2)
X1 is a pressure difference detected by the pressure sensor and rises, for example, 6 mm from the accurate liquid level value, and the pressurized gas supply source (2) is driven. On the other hand, X2 is assumed to be 2 mm, for example, as a pressure difference between the accurate liquid level values before and after the pressurized gas supply source (2) is driven. X1 and X2 are pressure difference ratios due to the length of the detection tube. From the equation (1), the ratio Y = X2 / X1 is substituted into the equation (2), and L = (3-1) × 10 = That is, the length of the detection tube is obtained by driving the pressurized gas supply source (2) to obtain X1 and X2, and the automatically measured values are stored and the indicator (8 ) Can be displayed.
前記解決するための手段のところで得た式(11)と式(14)をもとに、前記正確な液面レベル測定値(P0)が得られた瞬間に記憶される前記基準温度(Tp1)が例えば20℃として温度が徐々に下がっていったときの温度(Tp2)が例
となる。
また、(Y−1)×10は検出管の長さを自動的に求める式で上記と同じ条件のまま引き継いだとすれば約20mである。
前記基準温度20℃から温度が2℃低下したときの圧力センサが検出した圧力値(PS)が例えば2.3mとすれば
式(14)に上で得られた(Y−1)×10=20、Tp2=18、P2=2.3を代入すると、実際の液面のレベルに近い補正圧力値(PL)は
PL=P2+(Y−1)×10−(Y−1)×10(Tp2+273)/(Tp1+273)・・(14)
PL=2.3+20−20×(18+273)/(20+273)
=2.44m
となる。
予め前記所定の下降補正温度(Tp3)℃を例えば2℃に設定すれば、前期下降
うにすればよい。
もし温度による圧力補正をしなかった場合には、2℃の温度低下で2.44−2.3=0.14mの圧力誤差を生じることになる。また、前記加圧気体供給源(2)が駆動するための第1の所定速度(S1)を例えば5mm/秒、つまり0.005m/秒に設定しておいた場合には
本来は0.14/0.005=28回前記加圧気体供給源(2)が駆動するが、温度による圧力補正をすることで駆動する回数が1回で済むことになる。The reference temperature (Tp1) stored at the moment when the accurate liquid level measurement value (P0) is obtained based on the equations (11) and (14) obtained at the means for solving the problem. For example, the temperature (Tp2) when the temperature is gradually lowered at 20 ° C., for example
It becomes.
Further, (Y-1) × 10 is an expression for automatically obtaining the length of the detection tube, and is about 20 m if the same conditions as described above are taken over.
If the pressure value (PS) detected by the pressure sensor when the temperature drops from the reference temperature of 20 ° C. by 2 ° C. is 2.3 m, for example, (Y−1) × 10 = Substituting 20, Tp2 = 18, and P2 = 2.3, the correction pressure value (PL) close to the actual liquid level is PL = P2 + (Y−1) × 10− (Y−1) × 10 (Tp2 + 273). ) / (Tp1 + 273) (14)
PL = 2.3 + 20−20 × (18 + 273) / (20 + 273)
= 2.44m
It becomes.
If the predetermined lowering correction temperature (Tp3) ° C. is set to 2 ° C. in advance, the previous lowering
Just do it.
If the pressure is not corrected by the temperature, a pressure error of 2.44−2.3 = 0.14 m is generated at a temperature drop of 2 ° C. When the first predetermined speed (S1) for driving the pressurized gas supply source (2) is set to, for example, 5 mm / second, that is, 0.005 m / second, it is originally 0.14. /0.005=28 times The pressurized gas supply source (2) is driven. However, the number of times of driving is only one by correcting the pressure by the temperature.
Claims (4)
制御ユニット(7)内にあるマイクロコンピュータにより予め第1の所定時間(T1)、第1の所定回数(na)、第2の所定回数(nb)、第3の所定回数(nc)、第1の所定速度(S1)、第2の所定速度(S2)、第3の所定速度(S3)の設定値を記憶させておき
加圧気体供給停止している状態において、液面レベルの変化速度を常に監視するための前記圧力センサ(5)が検出する圧力からマイクロコンピュータにより演算処理をして制御する液面レベル測定装置であり
加圧気体供給源から加圧気体が供給され供給停止後に液面変動が少なくなったときに得られる基準圧力値(P0)に対して、所定間隔(T1)で圧力値を得るようにして、常に基準圧力値と比較した所定間隔で得る圧力値の傾き速度(Sa1)を算出して、予め設定した第1の所定速度(S1)より大きくなったと判断される場合には加圧気体が供給されるようにし
次に、時間が経過している中で第1の所定時間(T1)を相互間にあけた前後の圧力差から基準となる1回分の圧力変化速度(Sv)を算出されるようにして、
前記1回分の圧力変化速度(Sv)を第1の所定回数(na)加算し、回数(na)で割ることで得た平均速度(Sa2)が第2の所定速度(S2)より小さくなったと判断される場合、つまり前記検出管(3)の先端から加圧気体が漏出して前記検出管(3)内の圧力変動が小さくなったときに加圧気体供給源(2)から加圧気体の供給が停止させるようにして
前記1回分の圧力変化速度(Sv)を第2の所定回数(nb)加算し、回数(nb)で割ることで得た平均速度(Sa3)が、僅かな変化速度である第3の所定速度(S3)より小さくなったと判断される場合、つまり圧力下降時に液面変化がほとんど無くなった時点において正確な液面レベル測定値(P0)として得られ、同時に温度センサが検出する温度を基準温度(Tp1)として記憶させるようにして、再び傾き速度(Sa1)を更新させていくことで液面レベルの変化の状態を常に監視しながら制御できることを特徴とする。A device for measuring a liquid level (h) of a liquid substance, the detection tube (3) having a tip immersed in a bottom (1a) in the liquid, which is an object (1) for measuring the liquid level; A pressurized gas supply source (2) and a check valve (4) connected to the detection pipe (3) to leak pressurized gas from the tip of the detection pipe (3); A pressure sensor (5) connected to the detection pipe (3) so as to detect pressure, and a display for displaying a liquid level and an alarm display based on the pressure value detected from the pressure sensor (5) In the device for measuring the liquid level (h) on the basis of the pressure value of the pressure sensor (5), the vessel (8) has a temperature sensor (10) attached outside the liquid level device.
A first predetermined time (T1), a first predetermined number of times (na), a second predetermined number of times (nb), a third predetermined number of times (nc), a first predetermined time (T1) by a microcomputer in the control unit (7). In the state where the set values of the predetermined speed (S1), the second predetermined speed (S2), and the third predetermined speed (S3) are stored and the supply of pressurized gas is stopped, the change speed of the liquid level is changed. It is a liquid level measuring device that performs control processing by a microcomputer from the pressure detected by the pressure sensor (5) for constant monitoring. The liquid level is supplied after a pressurized gas is supplied from a pressurized gas supply source and the supply is stopped. With respect to the reference pressure value (P0) obtained when the fluctuation is reduced, the pressure value is obtained at a predetermined interval (T1), and the inclination speed of the pressure value always obtained at a predetermined interval compared with the reference pressure value ( Sa1) When it is determined that the speed has become higher than the set first predetermined speed (S1), the pressurized gas is supplied, and then the first predetermined time (T1) is mutually passed while the time has passed. The pressure change rate (Sv) for one time serving as a reference is calculated from the pressure difference before and after the gap,
The average speed (Sa2) obtained by adding the first predetermined number of times (na) to the pressure change speed (Sv) for one time and dividing by the number of times (na) is smaller than the second predetermined speed (S2). When the determination is made, that is, when the pressurized gas leaks from the tip of the detection tube (3) and the pressure fluctuation in the detection tube (3) becomes small, the pressurized gas is supplied from the pressurized gas supply source (2). The average speed (Sa3) obtained by adding the second predetermined number of times (nb) and dividing by the number of times (nb) is slightly changed. When it is determined that the speed has become smaller than the third predetermined speed (S3), that is, when the liquid level change is almost eliminated at the time of the pressure drop, an accurate liquid level measurement value (P0) is obtained, and at the same time, the temperature sensor Is the reference temperature (Tp1 So as to be stored as characterized by their ability to constantly controlled while monitoring the state of change of the liquid level by going to update the tilt speed (Sa1) again.
請求項1と同様にして、前期1回分の速度(Sv)を前記第4の所定回数(nd)加算し、回数(nd)で割ることで得る平均速度(Sa4)が、急激な変化速度の基準となる第4の所定速度(S4)を上回ったと判断される場合、つまり液面の急激な変化が生じたときに制御や警報が出せることを特徴とする請求項1記載の液面レベル測定装置。The setting values of the fourth predetermined speed (S4) and the fourth predetermined number of times (nd) are stored in advance by the microcomputer in the control unit (7), and the speed for the previous period is the same as in claim 1. The average speed (Sa4) obtained by adding (Sv) to the fourth predetermined number of times (nd) and dividing by the number of times (nd) exceeds the fourth predetermined speed (S4) which is a reference for the rapid change speed. 2. The liquid level measuring apparatus according to claim 1, wherein control or an alarm can be issued when it is determined that the liquid level is abrupt, that is, when a sudden change in the liquid level occurs.
請求項1により前記正確な液面レベル測定値(P0)を得た直後から加圧気体供給源(2)から加圧気体が供給開始される直前までの間の圧力差を(X1)とし、このときに更新される前後の前記正確な液面レベル測定値に相当する(P0)の間の圧力差を(X2)とし、X2/X1をYとする。 Y=X2/X1
この比率(Y)から検出管のおおよその長さ(L)は次式によって決まる
L[m]=(Y−1)×10[m]
この式をプログラムソフトに組み込み自動的に検出管のおおよその長さが計測できることを特徴とする請求項1と請求項2記載の液面レベル測定装置。The length from the pressure sensor adjacent to or built in the liquid level device to the tip of the detection tube is based on the pressure value detected by the pressure sensor.
The pressure difference between immediately after obtaining the accurate liquid level measurement value (P0) according to claim 1 and immediately before the start of supply of pressurized gas from the pressurized gas supply source (2) is defined as (X1), A pressure difference between (P0) corresponding to the accurate liquid level measurement values before and after being updated at this time is defined as (X2), and X2 / X1 is defined as Y. Y = X2 / X1
From this ratio (Y), the approximate length (L) of the detection tube is determined by the following equation: L [m] = (Y−1) × 10 [m]
3. The liquid level measuring device according to claim 1, wherein the equation is incorporated in the program software and the approximate length of the detection tube can be automatically measured.
また、前記温度センサ(5)を気温変化の大きい検出管の近くに設置して、温度下降時に実際の液面レベルに近い補正圧力値を得るための変数は以下のようになり、すべて自動的に算出される値なので、絶対温度を273℃とすれば式(14)により補正圧力値(PL)が求まる
Tp2:温度センサの検出する温度下降時の温度
Tp1:請求項1から得られた基準温度
P2:圧力センサの検出する圧力値
(Y−1)×10:請求項4から得られた検出管の長さ(L)
PL=P2+(Y−1)×10−(Y−1)×10(Tp2+273)/(Tp1+273)・・(14)
式(14)をプログラムソフトに組み込み自動的に補正圧力値(PL)を得て、前
して上回った場合にのみ前記加圧気体供給源(2)から加圧気体を供給するようにすることで供給回数を大幅に減らすことができる請求項1と請求項2および請求項3記載の液面レベル測定装置。A predetermined decrease correction temperature (Tp3) is stored in advance by a microcomputer in the control unit (7), and the temperature sensor (5) is installed near a detection tube having a large air temperature change so that the actual temperature is decreased. The variables for obtaining the corrected pressure value close to the liquid level are as follows, and are all automatically calculated values. Therefore, when the absolute temperature is 273 ° C., the corrected pressure value (PL) is calculated by the equation (14). Obtained Tp2: Temperature Tp1 detected by the temperature sensor at the time of temperature drop 1: Reference temperature obtained from claim 1
P2: Pressure value detected by the pressure sensor (Y-1) × 10: Length of detection tube obtained from claim 4 (L)
PL = P2 + (Y−1) × 10− (Y−1) × 10 (Tp2 + 273) / (Tp1 + 273) (14)
Formula (14) is incorporated into the program software to automatically obtain the corrected pressure value (PL).
The number of times of supply can be greatly reduced by supplying the pressurized gas from the pressurized gas supply source (2) only when the pressure exceeds it. Liquid level measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009047068A JP2010181389A (en) | 2009-02-05 | 2009-02-05 | Liquid level measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009047068A JP2010181389A (en) | 2009-02-05 | 2009-02-05 | Liquid level measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010181389A true JP2010181389A (en) | 2010-08-19 |
Family
ID=42763030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009047068A Pending JP2010181389A (en) | 2009-02-05 | 2009-02-05 | Liquid level measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010181389A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103487107A (en) * | 2013-10-09 | 2014-01-01 | 深圳市科皓信息技术有限公司 | Bubble type level gauge |
JP2020173276A (en) * | 2020-07-20 | 2020-10-22 | ムサシノ機器株式会社 | Bubble-type liquid level indicator and water immersion detector |
JP2020173210A (en) * | 2019-04-12 | 2020-10-22 | ムサシノ機器株式会社 | Bubble-type liquid level indicator and water immersion detector |
CN113298669A (en) * | 2020-12-09 | 2021-08-24 | 中国石油天然气股份有限公司 | Method and device for determining pumping period of pumping well based on pressure recovery data |
RU2797157C1 (en) * | 2022-08-26 | 2023-05-31 | Открытое акционерное общество "Манотомь" (ОАО "Манотомь") | Method for measuring water level in a well |
-
2009
- 2009-02-05 JP JP2009047068A patent/JP2010181389A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103487107A (en) * | 2013-10-09 | 2014-01-01 | 深圳市科皓信息技术有限公司 | Bubble type level gauge |
JP2020173210A (en) * | 2019-04-12 | 2020-10-22 | ムサシノ機器株式会社 | Bubble-type liquid level indicator and water immersion detector |
JP2020173276A (en) * | 2020-07-20 | 2020-10-22 | ムサシノ機器株式会社 | Bubble-type liquid level indicator and water immersion detector |
JP7228909B2 (en) | 2020-07-20 | 2023-02-27 | ムサシノ機器株式会社 | Bubble type liquid level gauge and immersion detection device |
CN113298669A (en) * | 2020-12-09 | 2021-08-24 | 中国石油天然气股份有限公司 | Method and device for determining pumping period of pumping well based on pressure recovery data |
CN113298669B (en) * | 2020-12-09 | 2024-03-01 | 中国石油天然气股份有限公司 | Method and device for determining pumping period of pumping well based on pressure recovery data |
RU2797157C1 (en) * | 2022-08-26 | 2023-05-31 | Открытое акционерное общество "Манотомь" (ОАО "Манотомь") | Method for measuring water level in a well |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8956125B2 (en) | Method for determining pump flow rate | |
JP2010181389A (en) | Liquid level measuring device | |
JP2006242839A (en) | Device and method for indicating residual amount of fuel | |
CN105466521A (en) | Method for measuring liquid level of liquid in container | |
JP5066456B2 (en) | Fuel amount detection device | |
US20070261477A1 (en) | Apparatus for Detecting Leakage of Liquid in Tank | |
KR100753445B1 (en) | Apparatus and method for detecting of water level sensor error | |
JP2009083353A (en) | Concrete placing management method and concrete placing management system | |
JP4415030B2 (en) | Liquid storage tank leak detection system and leak detection method | |
US20210088371A1 (en) | Tank volume monitoring using sensed fluid pressure | |
JP5065761B2 (en) | Flow measuring device | |
JP3805011B2 (en) | Piping capacity estimation device and gas leak detection device | |
JP5559124B2 (en) | Gas diagnostic apparatus and gas diagnostic method | |
JP2006313079A (en) | Level measurement device | |
JP2614006B2 (en) | Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor | |
KR20080005637A (en) | The low water level sensing apparatus of submerged pump | |
JP3421959B2 (en) | Level measuring method and tunnel level measuring device | |
JP4944622B2 (en) | Flow velocity measurement system | |
EP3875835A1 (en) | Method and device for determining a filling level of a gas bottle | |
JP2000155042A (en) | Flow measuring method, device and electronic gas meter | |
WO2023169990A1 (en) | Method and system for leakage detection in a fluid system | |
JP2002168726A (en) | Method and device for detecting leakage from piping | |
JPH1061514A (en) | Fuel starving time alarm device and alarming method | |
AU2008229735B2 (en) | A method for determining pump flow rate | |
JP2001208594A (en) | Instrument installation level-measuring device and method |