JP2010181362A - Device and method for decision of alkali-silica reactivity in aggregate - Google Patents

Device and method for decision of alkali-silica reactivity in aggregate Download PDF

Info

Publication number
JP2010181362A
JP2010181362A JP2009026977A JP2009026977A JP2010181362A JP 2010181362 A JP2010181362 A JP 2010181362A JP 2009026977 A JP2009026977 A JP 2009026977A JP 2009026977 A JP2009026977 A JP 2009026977A JP 2010181362 A JP2010181362 A JP 2010181362A
Authority
JP
Japan
Prior art keywords
aggregate
chamber
alkali
phosphoric acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009026977A
Other languages
Japanese (ja)
Inventor
Kazuo Sekino
一男 関野
Minoru Yoshimoto
稔 吉本
Hisamitsu Tsuyuki
尚光 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Taiheiyo Cement Corp
Original Assignee
Nihon University
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Taiheiyo Cement Corp filed Critical Nihon University
Priority to JP2009026977A priority Critical patent/JP2010181362A/en
Publication of JP2010181362A publication Critical patent/JP2010181362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decision device and method capable of reliably and quickly determining alkali-silica reactivity in an aggregate by an electrochemical method. <P>SOLUTION: The alkali-silica reactivity decision device includes an aggregate whose alkali-silica reactivity is unknown, a container for storing water or phosphoric acid aqueous solution, a diaphragm disposed so as to divide the container into two chambers, two electrodes arranged oppositely across the diaphragm, and a membrane potential measuring part electrically connected to each electrode. The aggregate is added into each of the two chambers so that each addition amount of the aggregate is different, relative to the volume of the water or the phosphoric acid aqueous solution in each of the two chambers storing the water or the phosphoric acid aqueous solution. When the membrane potential after elapse of a prescribed time is below 0 V, it is determined that the aggregate has high alkali-silica reactivity, and when the membrane potential is over 0 V, it is determined that the aggregate has low alkali-silica reactivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、骨材のアルカリシリカ反応性を判定するための装置及びその方法に関する。   The present invention relates to an apparatus and method for determining the alkali-silica reactivity of aggregates.

アルカリシリカ反応(アルカリ骨材反応)は、骨材中のシリカ(SiO)とコンクリートに含まれるアルカリとが反応することによって生じた生成物が吸水して膨張し、コンクリートにひび割れ等を生じさせる現象である。 Alkali-silica reaction (alkali-aggregate reaction) causes the product generated by the reaction between silica (SiO 2 ) in the aggregate and the alkali contained in the concrete to absorb water and expand, causing cracks and the like in the concrete. It is a phenomenon.

アルカリシリカ反応は、「コンクリートの癌」とも呼ばれるように、一度劣化が始まると抑止することが困難であり、やがてコンクリート構造物に重大なダメージを与えることになる。したがって、アルカリシリカ反応性を有する骨材を排除することが必要であり、骨材のアルカリシリカ反応性を評価するための試験方法が各種提案されている。   Alkali-silica reaction is difficult to suppress once deterioration begins, as is also called “concrete cancer”, and will eventually cause serious damage to concrete structures. Therefore, it is necessary to exclude the aggregate having alkali silica reactivity, and various test methods for evaluating the alkali silica reactivity of the aggregate have been proposed.

アルカリシリカ反応の特徴点が、(1)骨材中の特定の鉱物を原因とする点、(2)化学反応である点、(3)膨張してコンクリートを劣化させる点にあることから、骨材のアルカリシリカ反応性を評価する試験方法は、(1)鉱物学的観察試験、(2)化学法、(3)膨張変化試験の三つに大別される。   The features of the alkali-silica reaction are (1) the point caused by specific minerals in the aggregate, (2) the chemical reaction, and (3) the point of expansion and deterioration of concrete. Test methods for evaluating the alkali-silica reactivity of the material are roughly classified into (1) mineralogical observation test, (2) chemical method, and (3) expansion change test.

鉱物学的観察試験方法は、岩石を偏光顕微鏡等で直接観察し、反応性のあるシリカ質鉱物(オパール、カルセドニー、トリジマイト、クリストバライト、隠微晶質・非晶質シリカ、歪みのある石英、シリカ質の火山ガラス等)又は反応性のある炭酸塩鉱物(ドロマイト)が存在しているか否かを観察する手法であり、日本ではJCI−DD3がこれに相当し、有害鉱物に特化した試験方法になっている。   Mineralogical observation test method involves directly observing rocks with a polarizing microscope, etc., and reactive siliceous minerals (opal, chalcedony, tridymite, cristobalite, hidden microcrystalline / amorphous silica, strained quartz, silica Quality volcanic glass etc.) or a reactive carbonate mineral (dolomite) is observed. JCI-DD3 is equivalent to this in Japan, and it is a test method specialized for harmful minerals. It has become.

化学法は、骨材とアルカリとを反応させ、溶出するシリカ量(Sc:mmol/L)と消費されるアルカリ量(Rc:mmol/L)との関係が、Rc/Sc≧1である場合には、その骨材は無害(アルカリシリカ反応性が低い)であると判定する手法であり、ASTM−C289、JIS−A1145に代表される。化学法では、骨材をアルカリで溶解する反応を行うため、骨材粒度が結果に影響を及ぼすことを考慮し、粒径が150〜300μmとなるように粉砕された骨材が用いられる(非特許文献1参照)。また、骨材とアルカリとの反応が平衡に達する時間は100時間以上であるが、反応時間が結果に影響を及ぼすことを考慮し、反応時間は24時間±15分間に設定される(非特許文献1参照)。また、骨材から溶出するシリカ量は質量法、原子吸光光度法又は吸光光度法によって定量され、アルカリ消費量はフェノールフタレイン指示薬を用いて塩酸で滴定することにより測定される(非特許文献1参照)。   In the chemical method, when the aggregate and alkali are reacted and the amount of silica eluted (Sc: mmol / L) and the amount of alkali consumed (Rc: mmol / L) is Rc / Sc ≧ 1 Is a technique for determining that the aggregate is harmless (low alkali silica reactivity), and is represented by ASTM-C289 and JIS-A1145. In the chemical method, since the aggregate is dissolved in an alkali, the aggregate is pulverized so that the particle size is 150 to 300 μm in consideration of the influence of the aggregate particle size on the result (non-non-conductive). Patent Document 1). In addition, the time for the reaction between the aggregate and the alkali to reach equilibrium is 100 hours or more, but considering that the reaction time affects the result, the reaction time is set to 24 hours ± 15 minutes (non-patent) Reference 1). In addition, the amount of silica eluted from the aggregate is quantified by mass method, atomic absorption spectrophotometry or spectrophotometry, and the alkali consumption is measured by titration with hydrochloric acid using a phenolphthalein indicator (Non-patent Document 1). reference).

膨張変化試験法(モルタルバー法)は、砂サイズに粒度構成を調整した骨材試料でモルタルを成形し、その膨張量より反応性を判定する手法であり、ASTM−C227、JIS−A1146に代表される。膨張変化試験は、比較的安定した結果が得られるが、判定に少なくとも6月の期間が必要である。   The expansion change test method (mortar bar method) is a technique for forming a mortar with an aggregate sample in which the particle size composition is adjusted to the sand size, and determining the reactivity from the amount of expansion, and is represented by ASTM-C227 and JIS-A1146. Is done. The expansion change test gives relatively stable results, but requires a period of at least 6 months for determination.

上記三つの試験法のうち、結果が比較的短期間に得られる化学法が汎用されており、化学法において骨材から溶出するシリカ量を定量するためには、質量法、原子吸光光度法又は吸光光度法を用いる必要がある。   Of the above three test methods, chemical methods that can obtain results in a relatively short period of time are widely used. In order to quantify the amount of silica eluted from the aggregate in the chemical method, the mass method, atomic absorption photometry method or It is necessary to use absorptiometry.

しかしながら、質量法、原子吸光光度法又は吸光光度法により溶出シリカ量を定量するのは、作業が煩雑であり、特に原子吸光光度法又は吸光光度法においては、吸光度の測定に高度な技術が必要であるという問題がある。   However, quantifying the amount of silica eluted by mass spectrometry, atomic absorption spectrophotometry, or spectrophotometry is cumbersome, and particularly in atomic absorption spectrophotometry or spectrophotometry, advanced techniques are required to measure absorbance. There is a problem that.

そのため、骨材のアルカリシリカ反応性を迅速に、かつ簡易に判定することのできる新たな方法が望まれており、従来、電気化学的手法を用い、骨材のアルカリシリカ反応性を判定する方法が提案されている(非特許文献2参照)。   Therefore, a new method capable of quickly and easily determining the alkali-silica reactivity of the aggregate is desired. Conventionally, a method for determining the alkali-silica reactivity of the aggregate using an electrochemical method. Has been proposed (see Non-Patent Document 2).

日本工業規格 骨材のアルカリシリカ反応性試験方法(化学法) JIS−A1145:2001 日本規格協会発行Japanese Industrial Standard Aggregate Alkali Silica Reactivity Test Method (Chemical Method) JIS-A1145: 2001 Published by Japanese Standards Association 日本建築学会構造系論文集,「電気化学的立場から見た反応性骨材の迅速判定方法試案」,福田禮一郎・露木尚光・笠井芳夫著,第499号,第1頁〜第8頁,1997年Architectural Institute of Japan, “Proposed Proposal for Rapid Judgment of Reactive Aggregate from an Electrochemical Perspective”, Shinichiro Fukuda, Naomitsu Tsurugi, Yoshio Kasai, No. 499, pp. 1-8 1997

上記非特許文献2に記載の電気化学的手法を用いた骨材のアルカリシリカ反応性の判定方法は、トレーシングペーパー製の隔膜で仕切られた2つの水槽内に純水(蒸留水)を収容し、一方の水槽内にアルカリシリカ反応性が不明な骨材を添加して膜電位を測定し、当該膜電位の測定結果に基づいて骨材のアルカリシリカ反応性を判定するものであるが、かかる判定方法によっては、後述する試験例の試験結果においても明らかなように、骨材のアルカリシリカ反応性の判定が困難な場合があるという問題がある。   In the method for determining the alkali-silica reactivity of aggregate using the electrochemical method described in Non-Patent Document 2, pure water (distilled water) is contained in two water tanks partitioned by a tracing paper diaphragm. Then, adding the aggregate whose alkali silica reactivity is unknown in one water tank, measuring the membrane potential, and determining the alkali silica reactivity of the aggregate based on the measurement result of the membrane potential, Depending on the determination method, there is a problem that it may be difficult to determine the alkali-silica reactivity of the aggregate, as is apparent from the test results of the test examples described later.

上記課題に鑑みて、本発明は、電気化学的方法により骨材のアルカリシリカ反応性を確実に、かつ迅速に判定することのできる判定装置及び判定方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a determination apparatus and a determination method that can reliably and quickly determine the alkali-silica reactivity of an aggregate by an electrochemical method.

上記課題を解決するために、本発明は、アルカリシリカ反応性が不明な骨材と、水又はリン酸水溶液とが収容される容器と、前記容器内を第1室と第2室とに分割するようにして前記容器内に配設される、表面にカルボキシル基、水酸基、スルホン酸基又はパーフルオロスルホン酸基を有する親水性多孔質膜からなる隔膜と、前記隔膜を挟んで対峙させるようにして前記第1室及び第2室のそれぞれに配置される二つの電極と、前記電極のそれぞれに電気的に接続される膜電位測定部とを備え、前記水又はリン酸水溶液が収容された前記第1室及び第2室のそれぞれにおける前記水又はリン酸水溶液の容量に対する前記骨材の添加量が相違するように、前記第1室及び第2室のそれぞれに前記骨材を添加し、前記膜電位測定部により測定された膜電位が0V未満である場合に、前記骨材のアルカリシリカ反応性が高いと判定し、当該膜電位が0V以上である場合に、前記骨材のアルカリシリカ反応性が低いと判定することを特徴とする骨材のアルカリシリカ反応性判定装置を提供する(請求項1)。   In order to solve the above-described problems, the present invention divides an aggregate in which alkali-silica reactivity is unknown, water or a phosphoric acid aqueous solution, and the container into a first chamber and a second chamber. In this way, a diaphragm made of a hydrophilic porous membrane having a carboxyl group, a hydroxyl group, a sulfonic acid group or a perfluorosulfonic acid group on the surface, which is disposed in the container, and the diaphragm are opposed to each other. Two electrodes disposed in each of the first chamber and the second chamber, and a membrane potential measuring unit electrically connected to each of the electrodes, the water or phosphoric acid aqueous solution being contained The aggregate is added to each of the first chamber and the second chamber so that the amount of the aggregate added to the capacity of the water or phosphoric acid aqueous solution in each of the first chamber and the second chamber is different, and Measured by the membrane potential measurement unit When the membrane potential is less than 0 V, the aggregate is determined to have high alkali silica reactivity, and when the membrane potential is 0 V or more, the aggregate is determined to have low alkali silica reactivity. An aggregate-silica alkali-silica reactivity determination device is provided (claim 1).

上記発明(請求項1)によれば、容器内部を所定の隔膜により分割し、分割された各室における骨材の添加量(水又はリン酸水溶液の容量に対する添加量)を相違させて隔膜の膜電位を測定することで、当該膜電位の測定結果に基づいて、骨材のアルカリシリカ反応性を確実に、かつ迅速に判定することができる。   According to the above invention (invention 1), the inside of the container is divided by a predetermined diaphragm, and the amount of aggregate added in each divided chamber (addition amount with respect to the volume of water or phosphoric acid aqueous solution) is made different. By measuring the membrane potential, it is possible to reliably and quickly determine the alkali silica reactivity of the aggregate based on the measurement result of the membrane potential.

これは、以下のような作用に基づくものと考えられる。
一般に、骨材から溶出されるイオン(陽イオン、陰イオン)を含有する水溶液中の膜電位は、多種類イオンを含む電解質水溶液と同様に、下記式(1)により表される。
This is considered to be based on the following actions.
In general, the membrane potential in an aqueous solution containing ions (cations and anions) eluted from the aggregate is expressed by the following formula (1), similarly to the aqueous electrolyte solution containing many kinds of ions.

Figure 2010181362
Figure 2010181362

上記式(1)中、Δφは「拡散電位(膜電位)」を、Δφ及びΔφはそれぞれ「電解質水溶液1(膜の一方側に接する電解質水溶液,低添加量)側の膜電位」及び「電解質水溶液2(膜の他方側に接する電解質水溶液,高添加量)側の膜電位」を、Rは「気体定数(=8.3145(Jmol-1K-1))」を、Tは「絶対温度」を、Fは「ファラデー定数(=9.6485×104(Cmol-1))」を、C+1及びC+2はそれぞれ「電解質水溶液1に接している膜表面の陽イオン濃度」及び「電解質水溶液2に接している膜表面の陽イオン濃度」を、C−1及びC−2はそれぞれ「電解質水溶液1に接している膜表面の陰イオン濃度」及び「電解質水溶液2に接している膜表面の陰イオン濃度」を、P及びPはそれぞれ「イオンの透過係数又はイオンのモル移動度」を表す。 In the above formula (1), Δφ is the “diffusion potential (membrane potential)”, Δφ 1 and Δφ 2 are the “membrane potential on the electrolyte aqueous solution 1 (electrolyte aqueous solution in contact with one side of the membrane, low addition amount) side” and “Membrane potential of electrolyte aqueous solution 2 (electrolyte aqueous solution in contact with the other side of membrane, high addition amount) side”, R is “gas constant (= 8.3145 (Jmol −1 K −1 ))”, and T is “absolute temperature , F is the “Faraday constant (= 9.6485 × 10 4 (Cmol −1 ))”, C +1 and C +2 are “the cation concentration on the membrane surface in contact with the aqueous electrolyte solution 1” and “the aqueous electrolyte solution 2”, respectively. C- 1 and C- 2 are "anion concentration of the film surface in contact with the aqueous electrolyte solution 1" and "anion of the film surface in contact with the aqueous electrolyte solution 2," respectively. “Ion concentration”, P + and P are “ion permeability coefficient or molar mobility of ion”, respectively. Represents.

水又はリン酸水溶液中に骨材を浸漬させると、イオン(例えば、鉄イオン、マグネシウムイオン、アルミニウムイオン、カルシウムイオン、ナトリウムイオン、カリウムイオン等の陽イオン;ケイ酸イオン等の陰イオン)が水又はリン酸水溶液中に溶解するが、隔膜の表面にカルボキシル基、水酸基、スルホン酸基、パーフルオロスルホン酸基等を有することで、水又はリン酸水溶液の容量に対する骨材の添加量が多い方(電解質水溶液2)から少ない方(電解質水溶液1)へと陽イオンのみが移動する。   When the aggregate is immersed in water or an aqueous phosphoric acid solution, ions (for example, cations such as iron ions, magnesium ions, aluminum ions, calcium ions, sodium ions, and potassium ions; anions such as silicate ions) are water. Or it is soluble in phosphoric acid aqueous solution, but has a carboxyl group, hydroxyl group, sulfonic acid group, perfluorosulfonic acid group, etc. on the surface of the diaphragm, so that the amount of aggregate added to the capacity of water or phosphoric acid aqueous solution is large Only cations move from (electrolyte aqueous solution 2) to the smaller one (electrolyte aqueous solution 1).

この場合に、アルカリシリカ反応性の低い骨材のように、水又はリン酸水溶液中に溶解する陽イオン量が少ない場合、上記式(1)中、
ΣP+1+ΣP−1<ΣP+2+ΣP−2
又は、
ΣP−1<ΣP−2
となるため、隔膜の膜電位は、下記式(2)で表されるものと考えられる。
In this case, when the amount of cation dissolved in water or an aqueous phosphoric acid solution is small, such as an aggregate having low alkali silica reactivity, in the above formula (1),
ΣP + C +1 + ΣP - C -1 <ΣP + C +2 + ΣP - C -2
Or
ΣP C −1 <ΣP C −2
Therefore, the membrane potential of the diaphragm is considered to be represented by the following formula (2).

Figure 2010181362
Figure 2010181362

一方、アルカリシリカ反応性の高い骨材のように、水又はリン酸水溶液中に溶解する陽イオン量が多い場合であって、電解質水溶液2中に存在する骨材から溶出した陽イオンが、隔膜を通じて電解質水溶液1側に移動する際に当該隔膜に吸着された場合、上記式(1)中、
ΣP+1+ΣP−1>ΣP−2
となり、電解質水溶液2中に存在する骨材から溶出した陽イオンが、隔膜を通じて電解質水溶液1側に移動した場合、上記式(1)中、
ΣP+1+ΣP−1+ΣP+2>ΣP−2
となるため、隔膜の膜電位は、下記式(3)で表されるものと考えられる。
On the other hand, when the amount of cation dissolved in water or aqueous phosphoric acid solution is large, such as aggregate having high alkali silica reactivity, the cation eluted from the aggregate present in the electrolyte aqueous solution 2 is separated from the diaphragm. When adsorbed on the diaphragm when moving to the electrolyte aqueous solution 1 side through the above formula (1),
ΣP + C + 1 + ΣP - C- 1 > ΣP - C- 2
When the cation eluted from the aggregate present in the electrolyte aqueous solution 2 moves to the electrolyte aqueous solution 1 side through the diaphragm, in the above formula (1),
ΣP + C + 1 + ΣP C− 1 + ΣP + C + 2 > ΣP C− 2
Therefore, the membrane potential of the diaphragm is considered to be represented by the following formula (3).

Figure 2010181362
Figure 2010181362

したがって、上記発明(請求項1)によれば、膜電位の測定値を指標として、骨材のアルカリシリカ反応性を確実に、かつ迅速に判定することができる。   Therefore, according to the said invention (invention 1), the alkali-silica reactivity of an aggregate can be determined reliably and rapidly by using the measured value of the membrane potential as an index.

上記発明(請求項1)においては、前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量と前記第2室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量との比が、1:0.96〜0.99であるのが好ましい(請求項2)。   In the said invention (invention 1), the said aggregate with respect to the capacity | capacitance of the said water or phosphoric acid aqueous solution to the said 2nd chamber and the addition amount of the said aggregate with respect to the capacity | capacitance of the said water or phosphoric acid aqueous solution to the said 1st chamber It is preferable that the ratio with respect to the addition amount is 1: 0.96 to 0.99.

上記発明(請求項2)によれば、分割された二室のうちの第1室と第2室とにおける骨材の添加量が上記範囲内にあることで、骨材のアルカリシリカ反応性をより確実に、かつ迅速に判定することができる。   According to the said invention (invention 2), since the addition amount of the aggregate in the 1st chamber and the 2nd chamber of the divided | segmented two chambers exists in the said range, the alkali silica reactivity of an aggregate is made. The determination can be made more reliably and quickly.

上記発明(請求項2)においては、前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量が、0.015〜0.04g/mLであるのが好ましい(請求項3)。   In the said invention (invention 2), it is preferable that the addition amount of the said aggregate with respect to the capacity | capacitance of the said water or phosphoric acid aqueous solution to the said 1st chamber is 0.015-0.04g / mL (invention). 3).

上記発明(請求項1〜3)においては、前記リン酸水溶液の濃度が、15〜30μmol/Lであるのが好ましい(請求項4)。かかる発明(請求項4)によれば、リン酸水溶液の濃度を上記範囲内にすることで、骨材のアルカリシリカ反応性をより確実に、かつ迅速に判定することができる。   In the said invention (invention 1-3), it is preferable that the density | concentration of the said phosphoric acid aqueous solution is 15-30 micromol / L (invention 4). According to this invention (invention 4), by setting the concentration of the phosphoric acid aqueous solution within the above range, the alkali silica reactivity of the aggregate can be more reliably and promptly determined.

上記発明(請求項1〜4)においては、前記骨材の粒径が、75〜150μmであるのが好ましい(請求項5)。骨材の粒径が150μmを超えると、骨材の容器の各室への添加量によってはアルカリシリカ反応性を判定するのに時間がかかったり、正確な判定が困難になったりすることがあり、骨材の粒径が75μm未満になると、水又はリン酸水溶液中で凝集を起こしてしまい、骨材からの溶解イオン量のばらつきが生じ、正確な判定が困難になることがある。しかしながら、かかる発明(請求項5)によれば、骨材の粒径を75〜150μmとすることで、骨材のアルカリシリカ反応性を確実に、かつ迅速に判定することができる。   In the said invention (invention 1-4), it is preferable that the particle size of the said aggregate is 75-150 micrometers (invention 5). If the particle size of the aggregate exceeds 150 μm, it may take time to determine alkali-silica reactivity depending on the amount of aggregate added to each chamber of the container, and accurate determination may be difficult. When the particle size of the aggregate is less than 75 μm, aggregation occurs in water or an aqueous phosphoric acid solution, resulting in variations in the amount of dissolved ions from the aggregate, which may make accurate determination difficult. However, according to this invention (invention 5), by setting the particle size of the aggregate to 75 to 150 μm, it is possible to reliably and promptly determine the alkali silica reactivity of the aggregate.

また、本発明は、表面にカルボキシル基、水酸基、スルホン酸基又はパーフルオロスルホン酸基を有する親水性多孔質膜からなる隔膜を介して第1室及び第2室の二室に分割された容器の当該第1室及び第2室内に、アルカリシリカ反応性が不明の骨材と水又はリン酸水溶液とを、前記第1室及び第2室内における前記水又はリン酸水溶液の容量に対する前記骨材の添加量が相違するように添加し、前記骨材と水又はリン酸水溶液とを前記第1室及び第2室内にて接触させた状態で測定した前記隔膜の膜電位が0V未満である場合に、前記骨材のアルカリシリカ反応性が高いと判定し、当該膜電位が0V以上である場合に、前記骨材のアルカリシリカ反応性が低いと判定することを特徴とする骨材のアルカリシリカ反応性判定方法を提供する(請求項6)。   The present invention also provides a container divided into two chambers, a first chamber and a second chamber, through a diaphragm made of a hydrophilic porous membrane having a carboxyl group, a hydroxyl group, a sulfonic acid group or a perfluorosulfonic acid group on the surface. In the first chamber and the second chamber, an aggregate of which alkali silica reactivity is unknown and water or a phosphoric acid aqueous solution are used, and the aggregate with respect to the capacity of the water or the phosphoric acid aqueous solution in the first chamber and the second chamber. When the membrane potential of the diaphragm measured in a state where the aggregate and water or phosphoric acid aqueous solution are in contact with each other in the first chamber and the second chamber is less than 0 V In addition, it is determined that the aggregate has a high alkali silica reactivity, and when the membrane potential is 0 V or more, it is determined that the aggregate has a low alkali silica reactivity. Provide reactivity determination method Claim 6).

上記発明(請求項6)によれば、所定の隔膜にて分割された各室内への骨材の添加量が相違するように骨材と水又はリン酸水溶液とを添加し、骨材と水又はリン酸水溶液とを接触させた状態で隔膜の膜電位を測定することで、当該膜電位の測定結果に基づいて、骨材のアルカリシリカ反応性を確実、かつ迅速に判定することができる。   According to the above invention (invention 6), the aggregate and water or the phosphoric acid aqueous solution are added so that the amount of the aggregate added to each room divided by the predetermined diaphragm is different. Alternatively, by measuring the membrane potential of the diaphragm in contact with the phosphoric acid aqueous solution, the alkali-silica reactivity of the aggregate can be reliably and rapidly determined based on the measurement result of the membrane potential.

上記発明(請求項6)においては、前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量と前記第2室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量との比が1:0.96〜0.99となるように、前記第1室及び第2室のそれぞれに前記骨材と前記水又はリン酸水溶液とを添加するのが好ましい(請求項7)。   In the said invention (invention 6), the said aggregate with respect to the capacity | capacitance of the said water or phosphoric acid aqueous solution with respect to the capacity | capacitance of the said water or phosphoric acid aqueous solution to the said 1st chamber, and the capacity | capacitance of the said water or phosphoric acid aqueous solution to the said 2nd chamber It is preferable to add the aggregate and the water or the phosphoric acid aqueous solution to each of the first chamber and the second chamber so that the ratio to the addition amount is 1: 0.96 to 0.99 ( Claim 7).

上記発明(請求項7)によれば、骨材の添加量の比が上記範囲内であることで、骨材のアルカリシリカ反応性をより確実、かつ迅速に判定することができる。   According to the said invention (invention 7), since the ratio of the addition amount of aggregate is in the said range, the alkali silica reactivity of aggregate can be determined more reliably and rapidly.

上記発明(請求項7)においては、前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量が、0.015〜0.04g/mLであるのが好ましい(請求項8)。   In the said invention (invention 7), it is preferable that the addition amount of the said aggregate with respect to the capacity | capacitance of the said water or phosphoric acid aqueous solution to the said 1st chamber is 0.015-0.04 g / mL (invention). 8).

上記発明(請求項6〜8)においては、前記リン酸水溶液の濃度が、15〜30μmol/Lであるのが好ましく(請求項9)、上記発明(請求項6〜9)においては、前記骨材の粒径が、75〜150μmであるのが好ましい(請求項10)。   In the said invention (invention 6-8), it is preferable that the density | concentration of the said phosphoric acid aqueous solution is 15-30 micromol / L (invention 9), In the said invention (invention 6-9), it is said bone. It is preferable that the particle diameter of the material is 75 to 150 μm.

本発明によれば、電気化学的方法により骨材のアルカリシリカ反応性を確実に、かつ迅速に判定することのできる判定装置及び判定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the determination apparatus and determination method which can determine the alkali silica reactivity of an aggregate reliably and rapidly by an electrochemical method can be provided.

本発明の一実施形態に係る骨材のアルカリシリカ反応性判定装置を示す概略断面図である。It is a schematic sectional drawing which shows the alkali silica reactivity determination apparatus of the aggregate which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る骨材のアルカリシリカ反応性判定装置を図面に基づいて説明する。
図1は、本実施形態に係る骨材のアルカリシリカ反応性判定装置を示す概略構成断面図である。
Hereinafter, an aggregate alkali-silica reactivity determination device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view showing an aggregate alkali-silica reactivity determination device according to this embodiment.

図1に示すように、本実施形態に係る骨材のアルカリシリカ反応性判定装置1は、上部が開口する第1室21及び第2室22、並びに第1室21と第2室22とをそれらの下部において連結する連結部23を有する断面コの字状の容器2と、第1室21及び第2室22内のそれぞれに配置される電極3A,3Bと、2つの電極3A,3Bに電気的に接続された膜電位測定装置4とを備える。   As shown in FIG. 1, the aggregate alkali-silica reactivity determination device 1 according to the present embodiment includes a first chamber 21 and a second chamber 22 that are open at the top, and a first chamber 21 and a second chamber 22. A container 2 having a U-shaped cross section having a connecting portion 23 connected at the lower portion thereof, electrodes 3A and 3B disposed in the first chamber 21 and the second chamber 22, and two electrodes 3A and 3B, respectively. And an electrically connected membrane potential measuring device 4.

容器2の連結部23の上面部及び下面部のそれぞれには、第1室21及び第2室22の水平方向に延伸する凸条23A,23Bが設けられており、かかる凸条23A,23Bに隔膜5の両端辺が取り付けられていることで、容器2内が第1室21側と第2室22側との二室に分割されている。   Each of the upper surface portion and the lower surface portion of the connecting portion 23 of the container 2 is provided with protrusions 23A and 23B extending in the horizontal direction of the first chamber 21 and the second chamber 22, and the protrusions 23A and 23B are provided with the protrusions 23A and 23B. By attaching both ends of the diaphragm 5, the inside of the container 2 is divided into two chambers of the first chamber 21 side and the second chamber 22 side.

容器2の材料としては、特に限定されるものではないが、容器2内に収容される水又はリン酸水溶液中にその構成成分が溶出し得ないものであるのが好ましく、例えば、ガラスや、ポリエチレン、ポリプロピレン等のオレフィン系樹脂が挙げられる。   The material of the container 2 is not particularly limited, but it is preferable that the components cannot be eluted in water or phosphoric acid aqueous solution contained in the container 2, for example, glass, Examples thereof include olefin resins such as polyethylene and polypropylene.

隔膜5としては、例えば、表面にカルボキシル基、水酸基、スルホン酸基又はパーフルオロスルホン酸基を有する親水性多孔質膜を用いることができる。骨材のアルカリシリカ反応性に応じて水又はリン酸水溶液中に溶解するイオン濃度(陽イオン濃度及び陰イオン濃度)が変動し得る。そのため、これらの親水性多孔質膜を隔膜5として用いれば、水又はリン酸水溶液中に溶解した陽イオンの移動度、隔膜への吸着量等に応じて膜電位が変化し、この膜電位を測定することで骨材のアルカリシリカ反応性を確実に、かつ迅速に判定することができる。   As the diaphragm 5, for example, a hydrophilic porous membrane having a carboxyl group, a hydroxyl group, a sulfonic acid group, or a perfluorosulfonic acid group on the surface can be used. Depending on the alkali silica reactivity of the aggregate, the concentration of ions (cation concentration and anion concentration) dissolved in water or phosphoric acid aqueous solution may vary. Therefore, if these hydrophilic porous membranes are used as the diaphragm 5, the membrane potential changes according to the mobility of cations dissolved in water or phosphoric acid aqueous solution, the amount of adsorption to the diaphragm, etc. By measuring, the alkali-silica reactivity of the aggregate can be reliably and promptly determined.

上記隔膜5(親水性多孔質膜)としては、陽イオン交換膜を好適に用いることができるが、表面にカルボキシル基を有するトレーシングペーパーを用いてもよい。当該トレーシングペーパーを隔膜5(親水性多孔質膜)として用いる場合、後述する試験例から明らかなように、容器2の第1室21及び第2室22には、所定濃度のリン酸水溶液を収容する必要がある。これにより、トレーシングペーパー表面のカルボキシル基がリン酸化され、骨材のアルカリシリカ反応性を確実に判定可能となる。   As the diaphragm 5 (hydrophilic porous membrane), a cation exchange membrane can be suitably used, but tracing paper having a carboxyl group on the surface may be used. When the tracing paper is used as the diaphragm 5 (hydrophilic porous membrane), a phosphoric acid aqueous solution having a predetermined concentration is contained in the first chamber 21 and the second chamber 22 of the container 2 as is apparent from a test example described later. Need to be accommodated. Thereby, the carboxyl group of the tracing paper surface is phosphorylated, and the alkali silica reactivity of the aggregate can be reliably determined.

隔膜5の厚さは、カルボキシル基、水酸基、スルホン酸基又はパーフルオロスルホン酸基等の官能基導入量により適宜設定すればよいが、250μm以下であるのが好ましく、125〜250μmであるのがより好ましい。膜厚が250μmを超えると、水又はリン酸水溶液中の溶解イオンの移動が困難となるため、骨材のアルカリシリカ反応性を確実に判定するのが困難となるおそれがある。   The thickness of the diaphragm 5 may be appropriately set depending on the amount of functional group introduced such as carboxyl group, hydroxyl group, sulfonic acid group or perfluorosulfonic acid group, but is preferably 250 μm or less, and preferably 125 to 250 μm. More preferred. If the film thickness exceeds 250 μm, it is difficult to move dissolved ions in water or an aqueous phosphoric acid solution, and thus it may be difficult to reliably determine the alkali silica reactivity of the aggregate.

電極3A,3Bとしては、特に限定されるものではなく、例えば、白金線又は白金板等を用いればよい。また、膜電位測定装置4も、容器2の連結部23に設けられた隔膜5の膜電位を測定し得るものであれば特に限定されるものではなく、微小な電位変化を測定し得る高い入力抵抗(1011〜1014Ω)を有する電極電位測定装置、例えば、エレクトロ・メータ、ポテンションスタット等を用いることができる。 The electrodes 3A and 3B are not particularly limited. For example, a platinum wire or a platinum plate may be used. The membrane potential measuring device 4 is not particularly limited as long as it can measure the membrane potential of the diaphragm 5 provided in the connecting portion 23 of the container 2, and has a high input capable of measuring a minute potential change. An electrode potential measuring device having resistance (10 11 to 10 14 Ω), for example, an electrometer, a potentiostat or the like can be used.

このような構成を有する骨材のアルカリシリカ反応性判定装置1を用いて骨材のアルカリシリカ反応性を判定するためには、まず、第1室21及び第2室22に水又はリン酸水溶液Wを、特にリン酸水溶液を収容するのが好ましい。第1室21及び第2室22に収容されたリン酸水溶液は、電気伝導率の高い水溶液であるため、測定時の電位の変動が小さくなり、より正確に電位を測定でき、また、骨材添加前に、隔膜5(親水性多孔質膜)がリン酸水溶液に浸された状態になることで、隔膜5の表面がリン酸により修飾されて陽イオンの吸着性が向上するため、測定した電位によって骨材のアルカリシリカ反応性を判定することが可能となる。   In order to determine the alkali silica reactivity of the aggregate using the aggregate alkali silica reactivity determination apparatus 1 having such a configuration, first, water or a phosphoric acid aqueous solution is added to the first chamber 21 and the second chamber 22. It is preferable to contain W, particularly an aqueous phosphoric acid solution. Since the phosphoric acid aqueous solution accommodated in the first chamber 21 and the second chamber 22 is an aqueous solution having high electrical conductivity, the potential fluctuation at the time of measurement is reduced, and the potential can be measured more accurately. Before the addition, the membrane 5 (hydrophilic porous membrane) was immersed in a phosphoric acid aqueous solution, so that the surface of the membrane 5 was modified with phosphoric acid and the cation adsorption was improved. It becomes possible to determine the alkali-silica reactivity of the aggregate by the electric potential.

なお、第1室21及び第2室22に収容する水としては、電解質成分等が可能な限り除去されたものであるのが好ましく、具体的には、電気抵抗率(比抵抗)が0.1〜1×10Ω・cm程度のものであるのが好ましい。このような水としては、例えば、純水、蒸留水、精製水、イオン交換水等が挙げられる。 The water contained in the first chamber 21 and the second chamber 22 is preferably one from which electrolyte components and the like are removed as much as possible. Specifically, the electrical resistivity (specific resistance) is 0. 1 to 1 × is preferably of the order of 10 6 Ω · cm. Examples of such water include pure water, distilled water, purified water, and ion exchange water.

第1室21及び第2室22にリン酸水溶液を収容する場合、当該リン酸水溶液の濃度は10〜30μmol/Lであるのが好ましく、特に20〜25μmol/Lであるのが好ましい。リン酸水溶液の濃度が30μmol/Lを超えると、骨材から溶出した陽イオン(金属イオン)とリン酸イオン(PO 3−)とから不溶性塩が生成してしまうと考えられ、それにより、骨材のアルカリシリカ反応性の判定が困難になるおそれがある。 When the phosphoric acid aqueous solution is accommodated in the first chamber 21 and the second chamber 22, the concentration of the phosphoric acid aqueous solution is preferably 10 to 30 μmol / L, and particularly preferably 20 to 25 μmol / L. When the concentration of the phosphoric acid aqueous solution exceeds 30 μmol / L, it is considered that an insoluble salt is generated from the cation (metal ion) and phosphate ion (PO 4 3− ) eluted from the aggregate, It may be difficult to determine the alkali-silica reactivity of the aggregate.

第1室21及び第2室22に収容する水又はリン酸水溶液の温度は、20〜30℃であれば好ましく、特に20℃程度であるのが好ましい。なお、温度を30℃程度にする場合には、容器2をウォーターバス等の温水中に浸漬させて加温すればよい。   The temperature of the water or phosphoric acid aqueous solution accommodated in the first chamber 21 and the second chamber 22 is preferably 20 to 30 ° C, and particularly preferably about 20 ° C. In addition, what is necessary is just to immerse the container 2 in warm water, such as a water bath, and to heat when making temperature into about 30 degreeC.

第1室21及び第2室22に、水又はリン酸水溶液Wを収容するとともに、アルカリシリカ反応性が不明の骨材A(以下単に「骨材」という。)を添加する。これにより、当該骨材Aからの溶解イオン量に応じた膜電位の変化に基づいて、骨材Aのアルカリシリカ反応性を判定することができる。   While containing water or phosphoric acid aqueous solution W in the first chamber 21 and the second chamber 22, an aggregate A whose alkali silica reactivity is unknown (hereinafter simply referred to as “aggregate”) is added. Thereby, based on the change of the membrane potential according to the amount of dissolved ions from the aggregate A, the alkali silica reactivity of the aggregate A can be determined.

この場合において、第1室21に添加される水又はリン酸水溶液Wの容量に対する骨材Aの添加量(以下単に「骨材添加量」という場合がある。)と、第2室22に添加される水又はリン酸水溶液の容量に対する骨材添加量とが、相違するように第1室21及び第2室22のそれぞれに骨材Aを添加する。例えば、第1室21における骨材添加量よりも、第2室22における骨材添加量を少なくしてもよいし、その逆であってもよい。なお、本実施形態においては、第1室21における骨材添加量を、第2室22における骨材添加量よりも高くしている。   In this case, the amount of aggregate A added to the capacity of the water or phosphoric acid aqueous solution W added to the first chamber 21 (hereinafter sometimes simply referred to as “aggregate added amount”) and added to the second chamber 22. Aggregate A is added to each of the first chamber 21 and the second chamber 22 so that the amount of the aggregate added to the volume of the water or phosphoric acid aqueous solution is different. For example, the aggregate addition amount in the second chamber 22 may be less than the aggregate addition amount in the first chamber 21, or vice versa. In the present embodiment, the aggregate addition amount in the first chamber 21 is set higher than the aggregate addition amount in the second chamber 22.

具体的には、例えば、第1室21における骨材添加量と第2室22における骨材添加量との比が1:0.96〜0.99となるように、骨材Aを第1室21及び第2室22に添加するのが好ましく、特に1:0.96〜0.98となるように添加するのが好ましい。骨材添加量の比が上記範囲内であれば、骨材Aのアルカリシリカ反応性をより確実に、かつ迅速に判定することができる。   Specifically, for example, the aggregate A is set so that the ratio of the aggregate addition amount in the first chamber 21 and the aggregate addition amount in the second chamber 22 is 1: 0.96 to 0.99. It is preferable to add to the chamber 21 and the second chamber 22, and it is particularly preferable to add so as to be 1: 0.96 to 0.98. If the ratio of the aggregate addition amount is within the above range, the alkali silica reactivity of the aggregate A can be determined more reliably and quickly.

第1室21における骨材添加量は、0.015〜0.04g/mLであるのが好ましく、特に0.025〜0.037g/mLであるのが好ましい。骨材添加量が0.015g/mL未満であったり、骨材添加量が0.04g/mLを超えたりすると、骨材Aのアルカリシリカ反応性の判定が困難になるおそれがある。   The aggregate addition amount in the first chamber 21 is preferably 0.015 to 0.04 g / mL, and particularly preferably 0.025 to 0.037 g / mL. If the aggregate addition amount is less than 0.015 g / mL or the aggregate addition amount exceeds 0.04 g / mL, it may be difficult to determine the alkali silica reactivity of the aggregate A.

第1室21及び第2室22に添加される骨材Aの粒径(平均粒径)は、75〜300μmであるのが好ましく、75〜150μmであるのがさらに好ましい。骨材の粒径が75μm未満であると、微粉末が凝集してしまうことで、骨材からの溶解イオン量にバラツキが生じてしまい、骨材Aのアルカリシリカ反応性を判定するのが困難となるおそれがある。   The particle size (average particle size) of the aggregate A added to the first chamber 21 and the second chamber 22 is preferably 75 to 300 μm, and more preferably 75 to 150 μm. When the particle size of the aggregate is less than 75 μm, fine powder aggregates, resulting in variations in the amount of dissolved ions from the aggregate, making it difficult to determine the alkali silica reactivity of the aggregate A. There is a risk of becoming.

容器2の第1室21及び第2室22に骨材Aを添加し、水又はリン酸水溶液Wと骨材Aとを接触させてから所定時間経過した後の膜電位を、膜電位測定装置4により測定する。   The membrane potential is measured after a predetermined time has elapsed since the aggregate A is added to the first chamber 21 and the second chamber 22 of the container 2 and the water or phosphoric acid aqueous solution W and the aggregate A are brought into contact with each other. Measured according to 4.

膜電位の測定時間は、60分以内であればよく、好ましくは1〜30分、特に好ましくは1〜5分である。60分を超えて測定を継続しても、骨材Aのアルカリシリカ反応性の判定精度の向上が見込めず、不経済となるおそれがある。   The measurement time of the membrane potential may be within 60 minutes, preferably 1 to 30 minutes, particularly preferably 1 to 5 minutes. Even if the measurement is continued for more than 60 minutes, improvement in the determination accuracy of the alkali silica reactivity of the aggregate A cannot be expected, which may be uneconomical.

このようにして測定した膜電位が0V以上である場合には、骨材のアルカリシリカ反応性が低い、すなわち、当該骨材は「無害である」と判定することができる。一方、膜電位が0V未満である場合には、骨材のアルカリシリカ反応性が高い、すなわち、当該骨材は「無害でない」と判定することができる。   When the membrane potential measured in this way is 0 V or more, it can be determined that the aggregate is low in alkali silica reactivity, that is, the aggregate is “harmless”. On the other hand, when the membrane potential is less than 0 V, it can be determined that the aggregate has high alkali-silica reactivity, that is, the aggregate is not harmless.

本実施形態に係る骨材のアルカリシリカ反応性判定装置1によれば、隔膜によって分割されてなる(仕切られてなる)第1室21及び第2室22のそれぞれに、水又はリン酸水溶液Wと骨材Aとを、第1室21及び第2室22の骨材添加量が相違するようにして添加し、その状態で膜電位を測定することによって、60分以内、好ましくは1〜5分程度の短時間で、かつ確実に骨材Aのアルカリシリカ反応性を判定することができる。しかも、熟練した操作も必要なく、簡単な作業のみで骨材Aのアルカリシリカ反応性を判定することができる。   According to the aggregate alkali-silica reactivity determination apparatus 1 according to the present embodiment, water or a phosphoric acid aqueous solution W is provided in each of the first chamber 21 and the second chamber 22 that are divided (partitioned) by a diaphragm. And the aggregate A are added so that the aggregate addition amounts of the first chamber 21 and the second chamber 22 are different, and the membrane potential is measured in that state, within 60 minutes, preferably 1 to 5 The alkali silica reactivity of the aggregate A can be determined reliably in a short time of about a minute. In addition, skilled alkali operation is not required, and the alkali silica reactivity of the aggregate A can be determined only by simple work.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

〔化学法による骨材のアルカリシリカ反応性試験〕
複数の所定産地の骨材から無作為に抽出した複数の骨材を被験試料とし(骨材1〜7)、これらの骨材についてJIS−A1145(化学法)に基づいてアルカリシリカ反応性の試験をした。
結果を表1に示す。
[Aggregate alkali-silica reactivity test by chemical method]
A plurality of aggregates randomly extracted from a plurality of aggregates of a predetermined production area are used as test samples (aggregates 1 to 7), and these aggregates are tested for alkali silica reactivity based on JIS-A1145 (chemical method). Did.
The results are shown in Table 1.

Figure 2010181362
Figure 2010181362

上記化学法による試験の結果、骨材1〜4は「無害である」と判定され得る骨材であり、骨材5〜7は「無害でない」と判定され得る骨材であることが確認された。   As a result of the test by the above chemical method, it is confirmed that the aggregates 1 to 4 are aggregates that can be determined as “harmless”, and the aggregates 5 to 7 are aggregates that can be determined as “not harmless”. It was.

〔骨材のアルカリシリカ反応性判定試験1〕
図1に示す骨材のアルカリシリカ反応性判定装置1を作製し、骨材1及び骨材5について膜電位を測定した。溶媒として水又はリン酸水溶液(第1室21に97mL,第2室22に85mL収容)を用い、隔膜5としてパーフルオロスルホン酸膜(デュポン社製,商品名:ナフィオン,膜厚:125μm(D125),250μm(D250))を用い、電極3A,3Bとして白金電極を用い、膜電位測定装置4としてエレクトロ・メータ(北斗電工社製,製品名:エレクトロ・メータHE−106)を用いた。
結果を表2に示す。
[Aggregate alkali-silica reactivity determination test 1]
An aggregate alkali-silica reactivity determination apparatus 1 shown in FIG. 1 was prepared, and membrane potentials of the aggregate 1 and the aggregate 5 were measured. Water or a phosphoric acid aqueous solution (97 mL in the first chamber 21 and 85 mL in the second chamber 22) is used as a solvent, and a perfluorosulfonic acid membrane (manufactured by DuPont, trade name: Nafion, film thickness: 125 μm (D125) in the second chamber 22 is contained. ), 250 μm (D250)), platinum electrodes were used as the electrodes 3A and 3B, and an electrometer (product name: Electrometer HE-106, manufactured by Hokuto Denko Co., Ltd.) was used as the membrane potential measuring device 4.
The results are shown in Table 2.

Figure 2010181362
Figure 2010181362

表2に示すように、アルカリシリカ反応性判定装置の第1室及び第2室における骨材濃度(純水又はリン酸水溶液の容量に対する骨材の添加量)を相違させるとともに、隔膜として陽イオン交換膜を用いることで、骨材のアルカリシリカ反応性を確実に判定することが可能である。特に、高濃度の骨材濃度(表2における第1室の骨材濃度,H)に対する低濃度の骨材濃度(表2における第2室の骨材濃度,L)の比(L/H)が0.96〜0.98であれば、迅速かつ確実に骨材のアルカリシリカ反応性を判定可能であることが確認された。なお、当該比(L/H)が0.99であっても、第1室及び第2室にリン酸水溶液を収容することで、骨材のアルカリシリカ反応性を判定可能であると考えられる。   As shown in Table 2, the aggregate concentration in the first chamber and the second chamber of the alkali silica reactivity determination device (the amount of aggregate added relative to the volume of pure water or phosphoric acid aqueous solution) is made different, and a cation is used as a diaphragm. By using an exchange membrane, it is possible to reliably determine the alkali silica reactivity of the aggregate. In particular, the ratio (L / H) of the low concentration of aggregate (aggregate concentration in the second chamber, L in Table 2) to the high concentration aggregate (aggregate concentration in the first chamber, H in Table 2). Is 0.96 to 0.98, it was confirmed that the alkali-silica reactivity of the aggregate can be determined quickly and reliably. In addition, even if the ratio (L / H) is 0.99, it is considered that the alkali silica reactivity of the aggregate can be determined by containing the phosphoric acid aqueous solution in the first chamber and the second chamber. .

〔骨材のアルカリシリカ反応性試験2〕
上記骨材のアルカリシリカ反応性判定試験1において用いたアルカリシリカ反応性判定装置1にて、隔膜5としてパーフルオロスルホン酸膜に代えてトレーシングペーパー(オストリッチダイヤ社製,商品名:補強トレーシングペーパー、膜厚:60μm、単位面積質量:50g/m、平均孔径:28nm)を用い、骨材1及び骨材5について膜電位を測定した。
結果を表3に示す。
[Alkali-silica reactivity test 2]
In the alkali silica reactivity determination apparatus 1 used in the alkali silica reactivity determination test 1 of the above aggregate, a tracing paper (manufactured by Ostrich Diamond Co., Ltd., trade name: reinforced tracing) instead of the perfluorosulfonic acid film as the diaphragm 5 is used. Paper, film thickness: 60 μm, unit area mass: 50 g / m 2 , average pore diameter: 28 nm), membrane potential was measured for aggregate 1 and aggregate 5.
The results are shown in Table 3.

Figure 2010181362
Figure 2010181362

表3に示すように、骨材のアルカリシリカ反応性判定装置1の隔膜5としてトレーシングペーパーを用い、第1室21及び第2室22に純水を収容すると、骨材1及び骨材5のいずれも膜電位の測定結果が0V未満であり、骨材のアルカリシリカ反応性の正確な判定が困難であることが明らかである。しかしながら、隔膜5としてトレーシングペーパーを用いたとしても、第1室21及び第2室22に10〜30μmol/Lのリン酸水溶液を収容することで、骨材のアルカリシリカ反応性を判定し得ることが確認された。   As shown in Table 3, when tracing paper is used as the diaphragm 5 of the aggregate alkali-silica reactivity determination apparatus 1 and pure water is accommodated in the first chamber 21 and the second chamber 22, the aggregate 1 and the aggregate 5 are used. In any case, the measurement result of the membrane potential is less than 0 V, and it is clear that it is difficult to accurately determine the alkali silica reactivity of the aggregate. However, even if tracing paper is used as the diaphragm 5, the alkali silica reactivity of the aggregate can be determined by accommodating a 10-30 μmol / L phosphoric acid aqueous solution in the first chamber 21 and the second chamber 22. It was confirmed.

トレーシングペーパーは、リン酸水溶液に浸漬させることによって、トレーシングペーパーの表面のカルボキシル基がリン酸化され、骨材から溶解した金属イオン(陽イオン)の吸着能が向上すると考えられる。このときに、アルカリシリカ反応性の低い骨材のように、溶解陽イオン量が少ない場合には、測定される膜電位は、上記式(2)で表される。一方、アルカリシリカ反応性の高い骨材のように、溶解陽イオン量が多い場合には、測定される膜電位は、上記式(3)で表される。したがって、上記結果のように、骨材のアルカリシリカ反応性を判定することが可能になったものと考えられる。   By immersing the tracing paper in an aqueous phosphoric acid solution, it is considered that the carboxyl group on the surface of the tracing paper is phosphorylated and the adsorption ability of metal ions (cations) dissolved from the aggregate is improved. At this time, when the amount of dissolved cation is small as in the aggregate having low alkali silica reactivity, the measured membrane potential is expressed by the above formula (2). On the other hand, when the amount of dissolved cation is large, such as an aggregate having high alkali silica reactivity, the measured membrane potential is represented by the above formula (3). Therefore, it is considered that the alkali-silica reactivity of the aggregate can be determined as in the above result.

本発明に係る骨材のアルカリシリカ反応性判定装置は、アルカリシリカ反応性の不明な骨材における当該反応性の迅速、かつ確実な判定に有用である。   The aggregate-silica alkali-silica reactivity determination apparatus according to the present invention is useful for quick and reliable determination of the reactivity of aggregates whose alkali-silica reactivity is unknown.

1…骨材のアルカリシリカ反応性判定装置
2…容器
21…第1室
22…第2室
3A,3B…電極
4…膜電位測定装置
5…隔膜
DESCRIPTION OF SYMBOLS 1 ... Aggregate alkali silica reactivity determination apparatus 2 ... Container 21 ... 1st chamber 22 ... 2nd chamber 3A, 3B ... Electrode 4 ... Membrane potential measuring device 5 ... Diaphragm

Claims (10)

アルカリシリカ反応性が不明な骨材と、水又はリン酸水溶液とが収容される容器と、
前記容器内を第1室と第2室とに分割するようにして前記容器内に配設される、表面にカルボキシル基、水酸基、スルホン酸基又はパーフルオロスルホン酸基を有する親水性多孔質膜からなる隔膜と、
前記隔膜を挟んで対峙させるようにして前記第1室及び第2室のそれぞれに配置される二つの電極と、
前記電極のそれぞれに電気的に接続される膜電位測定部と
を備え、
前記水又はリン酸水溶液が収容された前記第1室及び第2室のそれぞれにおける前記水又はリン酸水溶液の容量に対する前記骨材の添加量が相違するように、前記第1室及び第2室のそれぞれに前記骨材を添加し、前記膜電位測定部により測定された膜電位が0V未満である場合に、前記骨材のアルカリシリカ反応性が高いと判定し、当該膜電位が0V以上である場合に、前記骨材のアルカリシリカ反応性が低いと判定することを特徴とする骨材のアルカリシリカ反応性判定装置。
A container in which an aggregate of which alkali silica reactivity is unknown and water or an aqueous phosphoric acid solution are contained;
A hydrophilic porous membrane having a carboxyl group, a hydroxyl group, a sulfonic acid group, or a perfluorosulfonic acid group on the surface disposed in the container so as to divide the container into a first chamber and a second chamber A diaphragm consisting of
Two electrodes disposed in each of the first chamber and the second chamber so as to face each other across the diaphragm;
A membrane potential measuring unit electrically connected to each of the electrodes,
The first chamber and the second chamber so that the amount of the aggregate added to the capacity of the water or the phosphoric acid aqueous solution in each of the first chamber and the second chamber containing the water or the phosphoric acid aqueous solution is different. When the aggregate is added to each of them, and the membrane potential measured by the membrane potential measuring unit is less than 0 V, it is determined that the alkali silica is highly reactive, and the membrane potential is 0 V or more. In some cases, the aggregate alkali-silica reactivity determination apparatus determines that the aggregate has low alkali-silica reactivity.
前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量と、前記第2室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量との比が、1:0.96〜0.99であることを特徴とする請求項1に記載の骨材のアルカリシリカ反応性判定装置。   The ratio of the amount of the aggregate added to the volume of the water or phosphoric acid aqueous solution to the first chamber and the amount of the aggregate added to the volume of the water or phosphoric acid aqueous solution to the second chamber is 1 It is 0.96-0.99, The alkali silica reactivity determination apparatus of the aggregate of Claim 1 characterized by the above-mentioned. 前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量が、0.015〜0.04g/mLであることを特徴とする請求項2に記載の骨材のアルカリシリカ反応性判定装置。   3. The aggregate alkali silica according to claim 2, wherein an amount of the aggregate added to the capacity of the water or phosphoric acid aqueous solution to the first chamber is 0.015 to 0.04 g / mL. Reactivity determination device. 前記リン酸水溶液の濃度が、15〜30μmol/Lであることを特徴とする請求項1〜3のいずれかに記載の骨材のアルカリシリカ反応性判定装置。   4. The aggregate alkali-silica reactivity determination apparatus according to claim 1, wherein the concentration of the phosphoric acid aqueous solution is 15 to 30 [mu] mol / L. 前記骨材の粒径が、75〜150μmであることを特徴とする請求項1〜4のいずれかに記載の骨材のアルカリシリカ反応性判定装置。   The aggregate silica-silica reactivity determination apparatus according to claim 1, wherein the aggregate has a particle size of 75 to 150 μm. 表面にカルボキシル基、水酸基、スルホン酸基又はパーフルオロスルホン酸基を有する親水性多孔質膜からなる隔膜を介して第1室及び第2室の二室に分割された容器の当該第1室及び第2室内に、アルカリシリカ反応性が不明の骨材と水又はリン酸水溶液とを、前記第1室及び第2室内における前記水又はリン酸水溶液の容量に対する前記骨材の添加量が相違するように添加し、
前記骨材と水又はリン酸水溶液とを前記第1室及び第2室内にて接触させた状態で測定した前記隔膜の膜電位が0V未満である場合に、前記骨材のアルカリシリカ反応性が高いと判定し、当該膜電位が0V以上である場合に、前記骨材のアルカリシリカ反応性が低いと判定することを特徴とする骨材のアルカリシリカ反応性判定方法。
The first chamber of the container divided into two chambers, a first chamber and a second chamber, through a diaphragm made of a hydrophilic porous membrane having a carboxyl group, a hydroxyl group, a sulfonic acid group or a perfluorosulfonic acid group on the surface; In the second chamber, the amount of addition of the aggregate with respect to the capacity of the water or phosphoric acid aqueous solution in the first chamber and the second chamber is different between the aggregate of which alkali silica reactivity is unknown and water or phosphoric acid aqueous solution. And add
When the membrane potential of the diaphragm measured with the aggregate and water or phosphoric acid aqueous solution in contact with each other in the first chamber and the second chamber is less than 0 V, the alkali silica reactivity of the aggregate is A method for determining an alkali-silica reactivity of an aggregate, characterized in that, when the membrane potential is determined to be high and the membrane potential is 0 V or higher, it is determined that the alkali-silica reactivity of the aggregate is low.
前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量と前記第2室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量との比が1:0.96〜0.99となるように、前記第1室及び第2室のそれぞれに前記骨材と前記水又はリン酸水溶液とを添加することを特徴とする請求項6に記載の骨材のアルカリシリカ反応性判定方法。   The ratio of the amount of the aggregate added to the volume of the water or phosphoric acid aqueous solution to the first chamber and the amount of the aggregate added to the volume of the water or phosphoric acid aqueous solution to the second chamber is 1: 0. The aggregate of claim 6, wherein the aggregate and the water or phosphoric acid aqueous solution are added to each of the first chamber and the second chamber so as to be .96 to 0.99. Alkali-silica reactivity determination method. 前記第1室への前記水又はリン酸水溶液の容量に対する前記骨材の添加量が、0.015〜0.04g/mLであることを特徴とする請求項7に記載の骨材のアルカリシリカ反応性判定方法。   The aggregate alkali silica according to claim 7, wherein the amount of the aggregate added to the capacity of the water or phosphoric acid aqueous solution to the first chamber is 0.015 to 0.04 g / mL. Reactivity determination method. 前記リン酸水溶液の濃度が、15〜30μmol/Lであることを特徴とする請求項6〜8のいずれかに記載の骨材のアルカリシリカ反応性判定方法。   The method for determining alkali silica reactivity of an aggregate according to any one of claims 6 to 8, wherein the concentration of the aqueous phosphoric acid solution is 15 to 30 µmol / L. 前記骨材の粒径が、75〜150μmであることを特徴とする請求項6〜9のいずれかに記載の骨材のアルカリシリカ反応性判定方法。   The method for determining alkali-silica reactivity of an aggregate according to any one of claims 6 to 9, wherein the aggregate has a particle size of 75 to 150 µm.
JP2009026977A 2009-02-09 2009-02-09 Device and method for decision of alkali-silica reactivity in aggregate Pending JP2010181362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026977A JP2010181362A (en) 2009-02-09 2009-02-09 Device and method for decision of alkali-silica reactivity in aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026977A JP2010181362A (en) 2009-02-09 2009-02-09 Device and method for decision of alkali-silica reactivity in aggregate

Publications (1)

Publication Number Publication Date
JP2010181362A true JP2010181362A (en) 2010-08-19

Family

ID=42763005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026977A Pending JP2010181362A (en) 2009-02-09 2009-02-09 Device and method for decision of alkali-silica reactivity in aggregate

Country Status (1)

Country Link
JP (1) JP2010181362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203104A (en) * 2010-03-25 2011-10-13 Taiheiyo Cement Corp Alkali-silica reactivity determination device of aggregate, and method of the same
CN107505357A (en) * 2017-08-07 2017-12-22 石家庄铁道大学 A kind of alkali-aggregate reaction Tachistoscope method and test device
WO2021036293A1 (en) * 2019-08-26 2021-03-04 中交二公局第三工程有限公司 Method for testing alkali reactivity of aggregate of concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138552A (en) * 1989-10-25 1991-06-12 Onoda Cement Co Ltd Early determination method for alkaline reactive aggregate
JPH09184835A (en) * 1995-10-30 1997-07-15 Kdk Corp Method for measuring high sensitivity substance
JP2002350397A (en) * 2001-03-23 2002-12-04 Fuji Photo Film Co Ltd Testing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138552A (en) * 1989-10-25 1991-06-12 Onoda Cement Co Ltd Early determination method for alkaline reactive aggregate
JPH09184835A (en) * 1995-10-30 1997-07-15 Kdk Corp Method for measuring high sensitivity substance
JP2002350397A (en) * 2001-03-23 2002-12-04 Fuji Photo Film Co Ltd Testing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203104A (en) * 2010-03-25 2011-10-13 Taiheiyo Cement Corp Alkali-silica reactivity determination device of aggregate, and method of the same
CN107505357A (en) * 2017-08-07 2017-12-22 石家庄铁道大学 A kind of alkali-aggregate reaction Tachistoscope method and test device
WO2021036293A1 (en) * 2019-08-26 2021-03-04 中交二公局第三工程有限公司 Method for testing alkali reactivity of aggregate of concrete

Similar Documents

Publication Publication Date Title
Lee et al. Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals
Liaki et al. Physico-chemical effects on clay due to electromigration using stainless steel electrodes
BR112020013645A2 (en) nanoporous selective sol-gel ceramic membrane, selective membrane structures and related methods
Mousavi et al. An analytical quality solid-state composite reference electrode
Agarwal et al. Neck-size distributions of through-pores in polymer membranes
JP2022535868A (en) ceramic cation exchange material
WO2020247472A1 (en) Ceramic anion exchange materials
Jin et al. Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete
Ermakova et al. Structural parameters of membranes from porous glass in aqueous solutions of electrolytes, containing singly-charged (Na+, K+) and triple-charged (Fe 3+) cations
JP2010181362A (en) Device and method for decision of alkali-silica reactivity in aggregate
Diviš et al. Characterization of sorption gels used for determination of mercury in aquatic environment by diffusive gradients in thin films technique
Babaahmadi et al. Development of an electro-chemical accelerated ageing method for leaching of calcium from cementitious materials
Villani et al. Characterizing the pore structure of carbonated natural wollastonite
Zhang et al. Degradation process of Ag/AgCl chloride-sensing electrode in cement extract with low chloride concentration
Chen et al. Studies on the meso-sized selectivity of a novel organic/inorganic hybrid mesoporous silica membrane
Jiřičková et al. Chloride binding in building materials
Arnold et al. Solution of the nonlinear Poisson–Boltzmann equation: Application to ionic diffusion in cementitious materials
CN111595763B (en) Simulation experiment method for influence of different magnesium ion concentrations on carbonate corrosion
Jiang et al. Ion-transfer voltammetric determination of folic acid at meso-liquid–liquid interface arrays
JP2011203104A (en) Alkali-silica reactivity determination device of aggregate, and method of the same
Wei et al. High-performance electrochemical sensing platform based on sodium alginate-derived 3D hierarchically porous carbon for simultaneous determination of dihydroxybenzene isomers
Safronova et al. Hybrid materials based on MF-4SK membranes and hydrated silica and zirconia with sulfonic acid-functionalized surface: transport properties and characteristics of DP-sensors in amino acid solutions with varying pH
Niu et al. Combination of microporous hollow carbon spheres and nafion for the individual metal-free stripping detection of Pb2+ and Cd2+
Kuznetsova et al. Effect of heat treatment of microporous glass on its structural and electrosurface characteristics
Yu et al. A ratiometric electrochemical sensor for lead ions based on bismuth film coated porous silicon nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130501