JP2010181272A - Radar signal processing apparatus and target determination method of the same - Google Patents

Radar signal processing apparatus and target determination method of the same Download PDF

Info

Publication number
JP2010181272A
JP2010181272A JP2009025036A JP2009025036A JP2010181272A JP 2010181272 A JP2010181272 A JP 2010181272A JP 2009025036 A JP2009025036 A JP 2009025036A JP 2009025036 A JP2009025036 A JP 2009025036A JP 2010181272 A JP2010181272 A JP 2010181272A
Authority
JP
Japan
Prior art keywords
target
track
signal processing
detection
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009025036A
Other languages
Japanese (ja)
Other versions
JP5398288B2 (en
Inventor
Kenji Shinoda
賢司 篠田
Hiroyuki Hachisu
裕之 蜂須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009025036A priority Critical patent/JP5398288B2/en
Publication of JP2010181272A publication Critical patent/JP2010181272A/en
Application granted granted Critical
Publication of JP5398288B2 publication Critical patent/JP5398288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To identify targets and to specify the distance to and speed of the targets even under a low S/N environment. <P>SOLUTION: Reflected waves from targets 11 are captured by an antenna 1 and received by a receiver 2. Received signals are converted into digital signals at an A/D converter 3 and signal-processed at a target detector 4 to determine temporary data of target tracks. The target detector 4 performs Fourier transform on signals converted into digital signals, captures them of the amount of a plurality of times, extracts tracks estimated as of targets by a method such as the Hough transform and a TBD algorithm, and takes them as target track temporary data. The target track temporary data is a distance data string and a speed data string for each observation and transmitted to a target determination processor 5. The target determination processor 5 determines tracks of targets on the basis of the target track temporary data obtained for each observation, and when a single target is determined, the tracks of targets are taken as track information of the target to obtain true target track data. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、目標の距離や方向を求める飛翔体搭載用のレーダ信号処理装置とその目標判定方法に関する。   The present invention relates to a flying object mounted radar signal processing apparatus for obtaining a target distance and direction and a target determination method thereof.

レーダ信号処理装置にあっては、目標検出の手法として、受信した信号をフーリエ変換し、予め設定したしきい値を超えたものを目標と判定する方法、目標と判定された受信信号から和信号、差信号を求めてモノパルス測角処理により目標方向を求める方法が一般的である。   In the radar signal processing device, as a target detection method, the received signal is Fourier-transformed and a signal exceeding a preset threshold value is determined as a target, and a sum signal is obtained from the received signal determined as the target. Generally, a method of obtaining a difference signal and obtaining a target direction by monopulse angle measurement processing.

ところが、飛翔体搭載用のレーダ信号処理装置において、飛翔中の低S/N環境下においては、目標成分がしきい値を超えないことが多いため、目標の検出が極めて困難な状況となる。しきい値自体を下げてしまうと、目標以外の誤検出が増えてしまう。地上レーダでは、静止目標であれば観測時間を延ばすことでS/Nを改善することができるが、飛翔体搭載用レーダでは、目標との距離変化が起きるため、その効果が得られない。   However, in a radar signal processing apparatus mounted on a flying object, a target component often does not exceed a threshold value in a low S / N environment during flight, so that it becomes extremely difficult to detect a target. If the threshold value itself is lowered, false detections other than the target increase. In the case of a terrestrial radar, the S / N can be improved by extending the observation time if it is a stationary target. However, in the case of a radar mounted on a flying object, a change in distance from the target occurs, so that the effect cannot be obtained.

この問題を解決する手段として、観測を複数回繰り返し、ハフ変換(例えば、特許文献1参照)やTBD(Track Before Detect)アルゴリズム(例えば、非特許文献1参照)を用いて距離や速度の変化に対応する方法が提案されている。これらの方法により、従来とほぼ同じハードウェア規模で目標を検出し、距離を求めることができる。   As means for solving this problem, observation is repeated a plurality of times, and changes in distance and speed are performed using a Hough transform (see, for example, Patent Document 1) or a TBD (Track Before Detect) algorithm (see, for example, Non-Patent Document 1). Corresponding methods have been proposed. By these methods, the target can be detected and the distance can be obtained with almost the same hardware scale as that of the prior art.

しかし、これらの方法でも複数の航跡が検出されたり、同時刻で複数の目標候補点があがったりするなど、検出結果が収束せず目標を特定できないケースが見られる。また、これらの方法では目標がアンテナのビーム走査方向付近にいることしか分からず、目標を追随するための角度情報としては精度が不十分である。   However, even with these methods, there are cases in which a plurality of wakes are detected or a plurality of target candidate points are raised at the same time, so that the detection result does not converge and the target cannot be specified. In addition, these methods only know that the target is in the vicinity of the beam scanning direction of the antenna, and the accuracy is insufficient as angle information for following the target.

特開2004−340691号公報JP 2004-340691 A

Y. Boers, “Multitarget particle filter track before detect application”, IEE proc.- Radar Sonar Navig., Vol. 151, No. 6, Dec. 2004。Y. Boers, “Multitarget particle filter track before detect application”, IEE proc.- Radar Sonar Navig., Vol. 151, No. 6, Dec. 2004.

上記のように従来の飛翔体搭載用のレーダ信号処理装置にあっては、低S/N環境下で目標成分がしきい値を超えないため、目標検出が困難であった。   As described above, in the conventional radar signal processing apparatus mounted on a flying object, target detection is difficult because the target component does not exceed the threshold value in a low S / N environment.

本発明の目的は、上記の問題を解決し、低S/N環境下においても目標を識別し距離や速度を特定することができ、方向(角度)についても低S/N環境により増加した誤差を抑え、精度よく目標方向を求めることができ、飛翔体の追随性能を向上させることのできるレーダ信号処理装置とその目標判定方法を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems, identify a target even in a low S / N environment, specify a distance and a speed, and increase the error in direction (angle) due to the low S / N environment. It is an object of the present invention to provide a radar signal processing apparatus and a target determination method thereof that can suppress the noise and can accurately obtain the target direction and improve the tracking performance of the flying object.

上記目的を達成するために本発明は、飛翔体に搭載される目標検出用のレーダ信号処理装置において、前記目標で反射されたレーダ反射波を受信するアンテナと、反射波を検波する受信部と、前記受信部の検波信号から前記目標の仮検出を複数回行ってそれぞれの航跡を求める目標検出部と、前記仮検出された目標の複数の航跡結果を比較して真の目標の判定を行う目標判定部と、前記目標判定部で求められた真の目標について前記受信部の検波出力から目標方向を求める測角処理部とを具備する構成とする。   In order to achieve the above object, the present invention provides a radar signal processing apparatus for target detection mounted on a flying object, an antenna for receiving a radar reflected wave reflected by the target, and a receiving unit for detecting the reflected wave. The target detection unit that performs provisional detection of the target a plurality of times from the detection signal of the reception unit and obtains each track, and compares the plurality of track results of the temporarily detected target to determine the true target A target determination unit and an angle measurement processing unit that determines a target direction from the detection output of the reception unit for the true target determined by the target determination unit are provided.

また、本発明は、飛翔体に搭載される目標検出用のレーダ信号処理装置に用いられ、前記目標で反射されたレーダ反射波を受信し、その反射波を検波し、その検波信号から前記目標の仮検出を複数回行ってそれぞれの航跡を求め、前記仮検出された目標の複数の航跡結果を比較して真の目標の判定を行う目標判定方法において、前記仮検出された各目標航跡結果について距離成分と速度成分に分け、それぞれの最大値と最小値との差が距離幅、速度幅より小さい回数をカウントし、カウント回数が一定回数以上となるとき、単一の目標航跡と判定し、その航跡の目標を真の目標と判定する構成とする。   Further, the present invention is used in a radar signal processing apparatus for target detection mounted on a flying object, receives a radar reflected wave reflected by the target, detects the reflected wave, and detects the target from the detected signal. In the target determination method for determining a true target by performing a plurality of tentative detections of each time to obtain respective wakes and comparing a plurality of wake results of the tentatively detected targets, each tentatively detected target track result Is divided into distance component and speed component, and the difference between the maximum value and minimum value is counted less than the distance width and speed width, and when the number of count exceeds a certain number, it is judged as a single target track. The wake target is determined to be a true target.

以上のように構成したことにより、本発明によれば、低S/N環境下においても目標を識別し距離や速度を特定することができ、方向(角度)についても低S/N環境により増加した誤差を抑え、精度よく目標方向を求めることができ、飛翔体の追随性能を向上させることのできるレーダ信号処理装置とその目標判定方法を提供することができる。   With the above configuration, according to the present invention, it is possible to identify a target and specify a distance and speed even in a low S / N environment, and the direction (angle) is also increased in a low S / N environment. Therefore, it is possible to provide a radar signal processing apparatus and a target determination method that can suppress the error and can accurately obtain the target direction and improve the tracking performance of the flying object.

本発明の一実施形態として、飛翔体に搭載されるレーダ信号処理装置の構成を示すブロック図。The block diagram which shows the structure of the radar signal processing apparatus mounted in a flying body as one Embodiment of this invention. 図1に示す目標判定処理器のより具体的な処理の流れを示すフローチャート。The flowchart which shows the flow of a more concrete process of the target determination processor shown in FIG. 図2に示す処理手順を説明するための目標航跡仮データの分布例を示す図。The figure which shows the example of distribution of the target track temporary data for demonstrating the process sequence shown in FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施形態として、飛翔体に搭載されるレーダ信号処理装置の構成を示すブロック図である。このレーダ信号処理装置は、目標11からの電波(図示しない送信系から送出された送信パルスの反射波)を受信するアンテナ1と、反射波を検波する受信器2と、検波信号をデジタル信号に変換するA/D(アナログ/デジタル)変換器3と、検波信号から目標の検出を行って航跡を求める目標検出部4と、目標検出結果から目標の判定を行う目標判定処理器5と、目標方向を求める測角処理器6とから構成される。   FIG. 1 is a block diagram showing a configuration of a radar signal processing apparatus mounted on a flying object as one embodiment of the present invention. This radar signal processing apparatus includes an antenna 1 that receives a radio wave from a target 11 (a reflected wave of a transmission pulse transmitted from a transmission system (not shown)), a receiver 2 that detects the reflected wave, and a detection signal as a digital signal. An A / D (analog / digital) converter 3 for conversion, a target detector 4 for detecting a target by detecting a target from a detection signal, a target determination processor 5 for determining a target from the target detection result, a target An angle measuring processor 6 for obtaining a direction is used.

上記目標検出部4の処理としては、例えばTBDアルゴリズムを用いることができる。また、測角処理器6は、目標判定処理器5の結果から測角に必要なデジタル信号をA/D変換器3から取り込んで目標方向を求める処理を行う。   As the processing of the target detection unit 4, for example, a TBD algorithm can be used. Further, the angle measurement processor 6 performs processing for obtaining a target direction by taking in a digital signal necessary for angle measurement from the result of the target determination processor 5 from the A / D converter 3.

すなわち、上記構成によるレーダ信号処理装置では、目標11からの反射波はアンテナ1から取り込まれ、受信器2で受信される。受信された信号はA/D変換器3でデジタル信号に変換された後、目標検出器4で信号処理されて、目標航跡の仮データが求められる。   That is, in the radar signal processing device having the above configuration, the reflected wave from the target 11 is taken in from the antenna 1 and received by the receiver 2. The received signal is converted into a digital signal by the A / D converter 3 and then subjected to signal processing by the target detector 4 to obtain temporary data of the target track.

具体的には、上記目標検出器4では、デジタル信号に変換された信号をフーリエ変換し、複数回分取り込んで、ハフ変換やTBD(Track Before Detect)アルゴリズムなどの方法によって目標と思われる航跡を抽出し、これを目標航跡仮データとする。この目標航跡仮データは、観測毎の距離のデータ列および速度のデータ列であり、目標判定処理器5に送られる。   Specifically, the target detector 4 performs Fourier transform on the signal converted into a digital signal, takes in a plurality of times, and extracts a wake that seems to be a target by a method such as a Hough transform or a TBD (Track Before Detect) algorithm. This is used as the target track temporary data. This temporary target track data is a distance data string and a speed data string for each observation, and is sent to the target determination processor 5.

この目標判定処理器5は、観測毎に得られる目標航跡仮データから目標の航跡を判定し、単一の目標と判定されたときはこの目標の航跡情報とすることで、真の目標航跡データを求める。   The target determination processor 5 determines the target track from the target track temporary data obtained for each observation, and when the target track is determined to be a single target, the target track data is obtained as true target track data. Ask for.

図2は上記目標判定処理器5のより具体的な処理の流れを示すフローチャート、図3はその処理を説明するための目標航跡仮データの分布例を示す図である。図2において、ステップS1にて、目標航跡仮データを取り込む。図3に示すように、目標航跡仮データは複数存在し、その個数をXとする。各目標航跡仮データは複数回(ここではT回)の観測によるデータ列で、データ数はT個となる。   FIG. 2 is a flowchart showing a more specific processing flow of the target determination processor 5, and FIG. 3 is a diagram showing an example of distribution of target track provisional data for explaining the processing. In FIG. 2, target wake temporary data is captured in step S1. As shown in FIG. 3, there are a plurality of target wake temporary data, and the number thereof is X. Each target track tentative data is a data string obtained by observing a plurality of times (here, T times), and the number of data is T.

目標航跡仮データにおいて、距離をR’とすると、以下のように書き表せる。データr’の値は距離を示す。
’={r’(1,1),r’(1,2),…,r’(1,T)}
’={r’(2,1),r’(2,2),…,r’(2,T)}
: :
’={r’(X,1),r’(X,2),…,r’(X,T)}
次に、ステップS2にて、T回目の観測から直近のA回分のデータを取り出し、距離比較データDとする。この場合、距離比較データは以下のように書き表せる。
R1={r’(1,T),r’(2,T),…,r’(X,T)}
R2={r’(1,T-1),r’(2,T-1),…,r’(X,T-1)}
: :
RA={r’(1,T-(A-1)),r’(2,T-(A-1)),…,r’(X,T-(A-1))}
続いて、ステップS3にて、比較データDR1〜DRAそれぞれについて、要素の最大値と最小値を求める。次に、ステップS4にて、最大値と最小値の差を求め、それが距離幅Bより小さいか否かを判断する。小さい場合には、その回では一致とし、ステップS5にて、一致回数にカウントする。ステップS6にて、これをD〜Dについて全て行う。
In the target tentative temporary data, when the distance is R ′, it can be expressed as follows. The value of the data r ′ indicates the distance.
R 1 '= {r' (1,1), r '(1,2), ..., r' (1, T)}
R 2 '= {r' (2,1), r '(2,2), ..., r' (2, T)}
::
R X '= {r' (X, 1), r '(X, 2), ..., r' (X, T)}
Next, in step S2, removed most recent A batch of data from the T-th observation, the distance comparison data D R. In this case, the distance comparison data can be expressed as follows.
D R1 = {r ′ (1, T), r ′ (2, T),..., R ′ (X, T)}
D R2 = {r ′ (1, T−1), r ′ (2, T−1),..., R ′ (X, T−1)}
::
D RA = {r ′ (1, T− (A−1)), r ′ (2, T− (A−1)),..., R ′ (X, T− (A−1))}
Subsequently, in step S3, the maximum value and the minimum value of the elements are obtained for each of the comparison data D R1 to D RA . Next, in step S4, determines the difference between the maximum value and the minimum value, it is determined whether it is the distance the width B or R smaller. If it is smaller, the match is made at that time, and the number of matches is counted in step S5. In step S6, this is all performed for D 1 to D A.

同様の処理を速度についても行う。すなわち、目標航跡仮データにおいて、速度をV’とすると、以下のように書き表せる。データv’の値は速度を示す。
’={v’(1,1),v’(1,2),…,v’(1,T)}
’={v’(2,1),r’(2,2),…,v’(2,T)}
: :
’={v’(X,1),v’(X,2),…,v’(X,T)}
次に、ステップS12にて、T回目の観測から直近のA回分のデータを取り出し、速度比較データDとする。この場合、速度比較データは以下のように書き表せる。
V1={v’(1,T),v’(2,T),…,v’(X,T)}
V2={v’(1,T-1),v’(2,T-1),…,v’(X,T-1)}
: :
VA={v’(1,T-(A-1)),v’(2,T-(A-1)),…,v’(X,T-(A-1))}
続いて、ステップS13にて、速度比較データDV1〜DVAそれぞれについて、要素の最大値と最小値を求め、ステップS14にて、最大値と最小値の差を求め、それが距離幅Bより小さければ、その回では一致とし、ステップS15にて一致回数をカウントする。ステップS16にて、これをDV1〜DVAについて全て行う。
Similar processing is performed for speed. That is, in the target track temporary data, when the speed is V ′, it can be expressed as follows. The value of data v ′ indicates speed.
V 1 '= {v' (1,1), v '(1,2), ..., v' (1, T)}
V 2 '= {v' (2,1), r '(2,2), ..., v' (2, T)}
::
V X '= {v' (X, 1), v '(X, 2), ..., v' (X, T)}
Next, in step S12, it retrieves the most recent A batch of data from the T-th observation, and the speed comparison data D V. In this case, the speed comparison data can be written as follows.
D V1 = {v ′ (1, T), v ′ (2, T),..., V ′ (X, T)}
D V2 = {v ′ (1, T−1), v ′ (2, T−1),..., V ′ (X, T−1)}
::
D VA = {v ′ (1, T- (A-1)), v ′ (2, T- (A-1)),..., V ′ (X, T- (A-1))}
Subsequently, in step S13, the maximum value and the minimum value of the elements are obtained for each of the speed comparison data D V1 to D VA , and in step S14, the difference between the maximum value and the minimum value is obtained, which is the distance width B V If it is smaller, the match is made at that time, and the number of matches is counted in step S15. In step S16, this is all performed for D V1 to D VA .

ステップS7にて、DR1〜DRAの一致回数がC回以上かつDV1〜DVAの一致回数がC回以上であれば、ステップS8にて、X個の目標航跡仮データは単一の航跡と判定し、これらより目標航跡データを求める。 At step S7, D R1 if ~D match count of the matching count is C R or more times and D V1 ~D VA of RA is equal to or greater than C V times at step S8, X number of target track temporary data Single It is determined that there is one track, and the target track data is obtained from these.

目標航跡データにおいて、距離をR、速度をVとすると、以下のように書き表せる。データrの値は距離、vの値は速度を示す。
R={r(1),r(2),…,r(T)}
V={v(1),v(2),…,v(T)}
rは以下の式にて求める。
r(1)=Σr’(x,1)/X
r(2)=Σr’(x,2)/X

r(T)=Σr’(x,T)/X
vは以下の式にて求める。
In the target track data, if the distance is R and the speed is V, it can be written as follows. The value of data r indicates distance, and the value of v indicates speed.
R = {r (1), r (2), ..., r (T)}
V = {v (1), v (2), ..., v (T)}
r is obtained by the following equation.
r (1) = Σr ′ (x, 1) / X
r (2) = Σr '(x, 2) / X
:
r (T) = Σr ′ (x, T) / X
v is obtained by the following equation.

v(1)=Σv’(x,1)/X
v(2)=Σv’(x,2)/X

v(T)=Σv’(x,T)/X
測角処理器6では、目標航跡データから目標からの反射波が含まれる部分のデジタル信号をA/D変換器3より抽出し、測角処理を行う。
v (1) = Σv '(x, 1) / X
v (2) = Σv '(x, 2) / X
:
v (T) = Σv ′ (x, T) / X
The angle measurement processor 6 extracts the digital signal of the portion including the reflected wave from the target from the target track data from the A / D converter 3 and performs angle measurement processing.

上記測角処理器6では以下の処理を行う。まず、デジタル信号を複数回観測する毎に和信号、差信号を求めて、モノパルス測角処理により目標方向を求める。次に、観測毎の測角結果から平滑化の処理を行い、その結果を目標方向結果とする。   The angle measuring processor 6 performs the following processing. First, every time a digital signal is observed a plurality of times, a sum signal and a difference signal are obtained, and a target direction is obtained by monopulse angle measurement processing. Next, smoothing processing is performed from the angle measurement result for each observation, and the result is used as the target direction result.

平滑化の処理としては、例えば最小二乗法やカルマンフィルタを用いることができ、また目標の方向が複数回の観測の間に大きく変化しないという仮定ができるときは、観測毎の測角結果の平均を求めることで置き換えることも可能である。   As the smoothing process, for example, the least square method or Kalman filter can be used, and when it can be assumed that the direction of the target does not change greatly between multiple observations, the average of the angle measurement results for each observation is calculated. It is possible to replace it by seeking.

上記構成によるレーダ信号処理装置によれば、低S/N環境下において目標を識別し距離や速度を特定できるほか、方向(角度)についても低S/N環境により増加した誤差を抑え、精度よく目標方向求めることができるようになり、これによって飛翔体の追随性能を向上させることができる。   According to the radar signal processing apparatus having the above-described configuration, a target can be identified and a distance and a speed can be specified in a low S / N environment, and errors (directions) increased due to the low S / N environment can be suppressed with high accuracy. The target direction can be obtained, and thereby the follow-up performance of the flying object can be improved.

尚、上記実施形態において、図2のステップS7では「DR1〜DRAの一致回数がC回以上かつDV1〜DVAの一致回数がC回以上」の場合を判定するようにしたが、距離、速度のいずれか一方でもよいことから、「DR1〜DRAの一致回数がC回以上またはDV1〜DVAの一致回数がC回以上」の場合を判定するようにしてもよい。 In the above embodiment, "the number of matches of D R1 to D RA match count of C R times or more and D V1 to D VA is C or V times" Step S7, in FIG. 2 was set to determine if the but the distance, since it may be one of speed, so as to determine the case of the "D R1 to D matches the number of RA is more than C R times or D V1 to D VA match count is more than C V times" May be.

その他、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   In addition, the embodiments may be appropriately combined as much as possible, and in that case, the combined effect can be obtained. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be obtained as an invention.

1…アンテナ、2…受信器、3…A/D変換器、4…目標検出部、5…目標判定処理器、6…測角処理器。   DESCRIPTION OF SYMBOLS 1 ... Antenna, 2 ... Receiver, 3 ... A / D converter, 4 ... Target detection part, 5 ... Target determination processor, 6 ... Angular measurement processor.

Claims (4)

飛翔体に搭載される目標検出用のレーダ信号処理装置において、
前記目標で反射されたレーダ反射波を受信するアンテナと、
反射波を検波する受信部と、
前記受信部の検波信号から前記目標の仮検出を複数回行ってそれぞれの航跡を求める目標検出部と、
前記仮検出された目標の複数の航跡結果を比較して真の目標の判定を行う目標判定部と、
前記目標判定部で求められた真の目標について前記受信部の検波出力から目標方向を求める測角処理部と
を具備することを特徴とするレーダ信号処理装置。
In a radar signal processing device for target detection mounted on a flying object,
An antenna for receiving a radar reflected wave reflected by the target;
A receiver for detecting reflected waves;
A target detection unit for obtaining each wake by performing provisional detection of the target multiple times from the detection signal of the reception unit;
A target determination unit that compares a plurality of wake results of the temporarily detected target to determine a true target;
A radar signal processing apparatus, comprising: an angle measurement processing unit that obtains a target direction from a detection output of the reception unit for a true target obtained by the target determination unit.
前記目標検出部は、前記受信部の検波信号を複数回分取り込んでハフ変換またはTBD(Track Before Detect)アルゴリズムにより前記目標の仮検出とそれぞれの航跡を求めることを特徴とする請求項1記載のレーダ信号処理装置。 2. The radar according to claim 1, wherein the target detection unit acquires the detection signal of the reception unit a plurality of times and obtains the temporary detection of the target and each track by a Hough transform or a TBD (Track Before Detect) algorithm. Signal processing device. 前記目標判定部は、前記目標検出部で仮検出された各目標航跡結果について距離成分と速度成分に分け、それぞれの最大値と最小値との差が距離幅、速度幅より小さい回数をカウントし、前記距離成分と速度成分の少なくともいずれ一方のカウント回数が一定回数以上となるとき、単一の目標航跡と判定し、その航跡の目標を真の目標と判定することを特徴とする請求項1記載のレーダ信号処理装置。 The target determination unit divides each target track result temporarily detected by the target detection unit into a distance component and a speed component, and counts the number of times that the difference between the maximum value and the minimum value is smaller than the distance width and the speed width. 2. When the number of counts of at least one of the distance component and the speed component exceeds a certain number, it is determined as a single target track, and the target of the track is determined as a true target. The radar signal processing apparatus described. 飛翔体に搭載される目標検出用のレーダ信号処理装置に用いられ、
前記目標で反射されたレーダ反射波を受信し、その反射波を検波し、その検波信号から前記目標の仮検出を複数回行ってそれぞれの航跡を求め、前記仮検出された目標の複数の航跡結果を比較して真の目標の判定を行う目標判定方法において、
前記仮検出された各目標航跡結果について距離成分と速度成分に分け、
それぞれの最大値と最小値との差が距離幅、速度幅より小さい回数をカウントし、
前記距離成分と速度成分の少なくともいずれ一方のカウント回数が一定回数以上となるとき、単一の目標航跡と判定し、その航跡の目標を真の目標と判定することを特徴とするレーダ信号処理装置の目標判定方法。
Used in radar signal processing equipment for target detection mounted on flying objects,
The radar reflected wave reflected by the target is received, the reflected wave is detected, the target is detected a plurality of times from the detected signal to obtain each track, and a plurality of tracks of the temporarily detected target are detected. In the target determination method that determines the true target by comparing the results,
Dividing into a distance component and a speed component for each temporarily detected target track result,
Count the number of times the difference between the maximum and minimum values is smaller than the distance width and speed width,
A radar signal processing device, wherein when at least one of the distance component and the speed component is counted more than a certain number, it is determined as a single target track, and the target of the track is determined as a true target. Target judgment method.
JP2009025036A 2009-02-05 2009-02-05 Radar signal processing apparatus and target judgment method thereof Expired - Fee Related JP5398288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025036A JP5398288B2 (en) 2009-02-05 2009-02-05 Radar signal processing apparatus and target judgment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025036A JP5398288B2 (en) 2009-02-05 2009-02-05 Radar signal processing apparatus and target judgment method thereof

Publications (2)

Publication Number Publication Date
JP2010181272A true JP2010181272A (en) 2010-08-19
JP5398288B2 JP5398288B2 (en) 2014-01-29

Family

ID=42762926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025036A Expired - Fee Related JP5398288B2 (en) 2009-02-05 2009-02-05 Radar signal processing apparatus and target judgment method thereof

Country Status (1)

Country Link
JP (1) JP5398288B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276475A (en) * 2009-05-28 2010-12-09 Toshiba Corp Target tracking apparatus and target tracking method
KR101244762B1 (en) 2011-03-11 2013-03-18 국방과학연구소 Track association method based on Hough Transform and detecting method using the same
CN103777187A (en) * 2014-01-15 2014-05-07 杭州电子科技大学 Weak target track-before-detect method based on traversal random Hough conversion
CN104931951A (en) * 2015-06-25 2015-09-23 中国船舶重工集团公司第七二四研究所 Detection method based on Hough transform domain clutter map for small target in heavy clutter region
CN108254756A (en) * 2017-12-13 2018-07-06 北京空间机电研究所 A kind of satellite-bone laser radar no-coherence cumulating detection method based on projection convolution
US10054668B2 (en) 2015-02-26 2018-08-21 Src, Inc. Probabilistic signal, detection, and track processing architecture and system
CN109557532A (en) * 2018-10-18 2019-04-02 西安电子科技大学 Tracking, Radar Targets'Detection system before detection based on three-dimensional Hough transformation
CN110376579A (en) * 2019-07-22 2019-10-25 西安电子工程研究所 A kind of preceding tracking of maneuvering target Dynamic Programming detection
CN110687512A (en) * 2019-07-02 2020-01-14 中国航空工业集团公司雷华电子技术研究所 Multi-machine heterogeneous radar cooperative TBD processing method based on probability matrix
CN110988833A (en) * 2019-11-21 2020-04-10 河海大学 Weak target detection and tracking method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340514A (en) * 2017-07-10 2017-11-10 中国人民解放军海军航空工程学院 Hypersonic weak signal target RAE HT TBD integration detection methods in three dimensions
CN109669180B (en) * 2018-12-14 2020-09-15 河海大学 Continuous wave radar unmanned aerial vehicle detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875437A (en) * 1994-09-02 1996-03-22 Mitsubishi Electric Corp Device and method for judgment of the same target
JP2000180536A (en) * 1998-12-11 2000-06-30 Mitsubishi Electric Corp Measuring method for target's range/speed and radar device
JP2006266929A (en) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp Radar apparatus
JP2009002794A (en) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp Apparatus and method for wake integration and program
JP2009069020A (en) * 2007-09-13 2009-04-02 Toshiba Corp Radar device
JP2010151637A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Target tracking device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875437A (en) * 1994-09-02 1996-03-22 Mitsubishi Electric Corp Device and method for judgment of the same target
JP2000180536A (en) * 1998-12-11 2000-06-30 Mitsubishi Electric Corp Measuring method for target's range/speed and radar device
JP2006266929A (en) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp Radar apparatus
JP2009002794A (en) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp Apparatus and method for wake integration and program
JP2009069020A (en) * 2007-09-13 2009-04-02 Toshiba Corp Radar device
JP2010151637A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Target tracking device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276475A (en) * 2009-05-28 2010-12-09 Toshiba Corp Target tracking apparatus and target tracking method
KR101244762B1 (en) 2011-03-11 2013-03-18 국방과학연구소 Track association method based on Hough Transform and detecting method using the same
CN103777187A (en) * 2014-01-15 2014-05-07 杭州电子科技大学 Weak target track-before-detect method based on traversal random Hough conversion
US10054668B2 (en) 2015-02-26 2018-08-21 Src, Inc. Probabilistic signal, detection, and track processing architecture and system
CN104931951A (en) * 2015-06-25 2015-09-23 中国船舶重工集团公司第七二四研究所 Detection method based on Hough transform domain clutter map for small target in heavy clutter region
CN108254756A (en) * 2017-12-13 2018-07-06 北京空间机电研究所 A kind of satellite-bone laser radar no-coherence cumulating detection method based on projection convolution
CN109557532A (en) * 2018-10-18 2019-04-02 西安电子科技大学 Tracking, Radar Targets'Detection system before detection based on three-dimensional Hough transformation
CN109557532B (en) * 2018-10-18 2023-05-09 西安电子科技大学 Tracking method before detection based on three-dimensional Hough transform and radar target detection system
CN110687512A (en) * 2019-07-02 2020-01-14 中国航空工业集团公司雷华电子技术研究所 Multi-machine heterogeneous radar cooperative TBD processing method based on probability matrix
CN110376579A (en) * 2019-07-22 2019-10-25 西安电子工程研究所 A kind of preceding tracking of maneuvering target Dynamic Programming detection
CN110376579B (en) * 2019-07-22 2023-04-18 西安电子工程研究所 Dynamic programming track-before-detect method for maneuvering target
CN110988833A (en) * 2019-11-21 2020-04-10 河海大学 Weak target detection and tracking method

Also Published As

Publication number Publication date
JP5398288B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5398288B2 (en) Radar signal processing apparatus and target judgment method thereof
CN108490410B (en) Two-coordinate radar sea target joint detection and tracking method
US20140022110A1 (en) Radar device
JP5985372B2 (en) Target detection apparatus and target detection method
CN107576959B (en) High repetition frequency radar target tracking method before detection based on area mapping deblurring
Wei et al. A tbd algorithm based on improved randomized hough transform for dim target detection
JP5390264B2 (en) Target tracking device and target tracking method
JP2017156219A (en) Tracking device, tracking method, and program
CN112130142B (en) Method and system for extracting micro Doppler features of complex moving target
JP5422355B2 (en) Target detection apparatus and target detection method
JP2018205175A (en) Radar device and radar signal processing method thereof
JP6523790B2 (en) Target detection device
CN110837079A (en) Target detection method and device based on radar
JP2018021784A (en) Radar interference wave remover, radar target detector, radar interference wave removing program, and radar interference wave removing method
CN105652256B (en) A kind of high-frequency ground wave radar TBD methods based on polarization information
JP5355322B2 (en) Interference wave detection apparatus, radar apparatus, and interference wave detection method
KR101770742B1 (en) Apparatus and method for detecting target with suppressing clutter false target
CN112698267A (en) Interference source test positioning method
CN108828584B (en) Multi-frequency target tracking-before-detection method based on track folding factor ambiguity resolution
CN108107410B (en) Abnormal radar joint judgment target detection method
KR101468560B1 (en) A method of detecting outlier pulses of radar signal based on mahalanobis distance
CN113608190B (en) Sea surface target detection method and system based on three characteristics of singular space
JP2004219300A (en) Target-tracking system
Ge et al. Multi-radar hybrid detection algorithm based on information entropy
JP3209333B2 (en) Target detection method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R151 Written notification of patent or utility model registration

Ref document number: 5398288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees