JP2010180933A - Movement converting device - Google Patents

Movement converting device Download PDF

Info

Publication number
JP2010180933A
JP2010180933A JP2009023945A JP2009023945A JP2010180933A JP 2010180933 A JP2010180933 A JP 2010180933A JP 2009023945 A JP2009023945 A JP 2009023945A JP 2009023945 A JP2009023945 A JP 2009023945A JP 2010180933 A JP2010180933 A JP 2010180933A
Authority
JP
Japan
Prior art keywords
motion conversion
conversion device
motion
coupling body
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023945A
Other languages
Japanese (ja)
Other versions
JP5257986B2 (en
Inventor
Nami Yonemura
菜美 米村
Kazuro Sakurai
和朗 櫻井
Ivan Godlel
イヴァン ゴドレール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2009023945A priority Critical patent/JP5257986B2/en
Publication of JP2010180933A publication Critical patent/JP2010180933A/en
Application granted granted Critical
Publication of JP5257986B2 publication Critical patent/JP5257986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a movement converting device for converting a torque in a rotation driving section, which is suitable for an actuator used for robot joint actuation, forcepts actuation for operation, and artificial limb or leg, into a tension, and ensuring long life and excellent durability without breaking a connected body transmitting a torque of the rotation driving section in an early stage. <P>SOLUTION: A movement converting device 1, which is equipped with a plurality of flexible connected bodies 2 formed by highly strong fibers, a connected body fixing section 3 in which one end of each connected body 2 is fixed separately, and a rotation driving section 5 applying a torsion to the connected body 2 by fixing the other end of each connected body 2 to an output shaft 4, wherein each highly strong fiber includes polyolefine oriented in fiber axial direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転駆動部のトルクを引張力に変換する運動変換装置に関するものである。   The present invention relates to a motion conversion device that converts torque of a rotational drive unit into tensile force.

ロボットの関節駆動用、手術用鉗子駆動用、義手や義足等に用いられるアクチュエータにあっては、小さな駆動源で大きな力を出力できるものが望まれている。近年、このようなアクチュエータに好適な運動変換装置が開発されている(特許文献1)。
以下、図面を参照しながら、(特許文献1)に開示された技術について簡単に説明する。
An actuator that can output a large force with a small driving source is desired for an actuator used for driving a robot joint, driving a surgical forceps, a prosthetic hand, a prosthetic leg, or the like. In recent years, a motion conversion device suitable for such an actuator has been developed (Patent Document 1).
The technique disclosed in (Patent Document 1) will be briefly described below with reference to the drawings.

図1は(特許文献1)に記載された運動変換装置の構成図である。
図中、1は(特許文献1)に記載された運動変換装置、2は炭素繊維,ケブラー(登録商標),ザイロン(登録商標),ナイロン等の高強度繊維で形成された可撓性を有する複数(2本)の連結体、3は各々の連結体2の一端が離隔して固定され少なくとも後述する出力軸4の軸心を中心とする方向に回転しないように拘束された連結体固定部、4は各々の連結体2の他端が固定された出力軸、5は出力軸4の軸心を中心として回転駆動させ出力軸4に固定された連結体2に捩りを加えるモータ等の回転駆動部、6は連結体固定部3を回転駆動部5から離間する方向に付勢する弾性体である。
以上のように構成された運動変換装置1は、回転駆動部5を駆動させ軸心を中心として出力軸4を回転させて連結体2に捩りを加えることにより、連結体固定部3を出力軸4の軸方向に沿って変位させることができる。
なお、図1に示す運動変換装置の変形例として、連結体固定部3を出力軸4の軸方向に沿って変位しないように拘束し、回転駆動部5を出力軸4の軸方向に沿って移動可能となるように配設する場合もある。この場合、弾性体6の配設位置を回転駆動部5側に替えて、回転駆動部5を連結体固定部3から離間する方向に付勢するようにする。これにより、回転駆動部5を駆動させて連結体2に捩りを加えることにより、回転駆動部5を出力軸4の軸方向に沿って変位させることができる。
以上のように(特許文献1)に開示された運動変換装置は、出力軸を中心とする回転運動を、出力軸の方向に沿う運動に、高い減速比と力増幅比で高い効率下に変換できる装置である。
FIG. 1 is a configuration diagram of a motion conversion device described in (Patent Document 1).
In the figure, 1 is a motion conversion device described in (Patent Document 1), 2 has flexibility formed of high-strength fibers such as carbon fiber, Kevlar (registered trademark), Zylon (registered trademark), nylon, etc. A plurality of (two) connecting members 3 are connected to each other and fixed at one end of the connecting members 2 so as not to rotate in a direction at least about the axis of the output shaft 4 described later. Reference numeral 4 denotes an output shaft to which the other end of each connecting body 2 is fixed. Reference numeral 5 denotes a rotation of a motor or the like that rotationally drives the shaft center of the output shaft 4 to twist the connecting body 2 fixed to the output shaft 4. The driving unit 6 is an elastic body that urges the connecting body fixing unit 3 in a direction away from the rotation driving unit 5.
The motion conversion device 1 configured as described above drives the rotation drive unit 5 to rotate the output shaft 4 around the axis to twist the connection body 2, thereby connecting the connection body fixing unit 3 to the output shaft. 4 can be displaced along the axial direction.
As a modification of the motion conversion device shown in FIG. 1, the connecting body fixing unit 3 is restrained so as not to be displaced along the axial direction of the output shaft 4, and the rotation driving unit 5 is aligned along the axial direction of the output shaft 4. In some cases, it may be arranged to be movable. In this case, the arrangement position of the elastic body 6 is changed to the rotation drive unit 5 side, and the rotation drive unit 5 is urged in a direction away from the coupling body fixing unit 3. Thereby, the rotational drive part 5 can be displaced along the axial direction of the output shaft 4 by driving the rotational drive part 5 and adding a twist to the coupling body 2.
As described above, the motion conversion device disclosed in (Patent Document 1) converts rotational motion around the output shaft into motion along the direction of the output shaft with high reduction ratio and force amplification ratio with high efficiency. It is a device that can.

特開2008−89175号公報JP 2008-89175 A

上記の運動変換装置をロボットの関節駆動用、手術用鉗子駆動用、義手や義足等に用いられるアクチュエータに適用するには、運動変換装置に高い耐久性が要求される。運動変換装置の耐久性を左右するのは、連結体固定部と出力軸とに連結された連結体の耐久性である。回転駆動部のトルクを引張力に変換する効率を高めるため、連結体はできるだけ細い線や条が使われるのに加え、捩りが加えられることにより、連結体には引張り,曲げ,捩り,圧縮,摩擦,衝撃等の複雑な力が複合的に繰り返し加わり、劣化が加速されるからである。
本発明者らが、(特許文献1)に記載された炭素繊維,ケブラー(登録商標),ザイロン(登録商標),ナイロン等の高強度繊維を連結体として用いた運動変換装置を検討したところ、連結体に捩りを繰り返し加えることにより、連結体が比較的早期に破断してしまうことが判明した。
In order to apply the above-described motion conversion device to an actuator used for driving a robot joint, driving a surgical forceps, an artificial hand, a prosthetic leg or the like, the motion conversion device needs to have high durability. What determines the durability of the motion conversion device is the durability of the connection body connected to the connection body fixing portion and the output shaft. In order to increase the efficiency of converting the torque of the rotary drive unit into tensile force, the connecting body is made of as thin wires and strips as possible, and the torsion is applied to the connecting body, so that the connecting body is pulled, bent, twisted, compressed, This is because complicated forces such as friction and impact are repeatedly applied in a complex manner to accelerate deterioration.
When the present inventors examined a motion conversion device using high-strength fibers such as carbon fiber, Kevlar (registered trademark), Zylon (registered trademark), and nylon described in (Patent Document 1), It has been found that by repeatedly applying twist to the coupling body, the coupling body breaks relatively early.

本発明は上記従来の課題を解決するもので、連結体が高強度を有し長寿命で耐久性に優れる運動変換装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a motion conversion device in which a coupling body has high strength, long life, and excellent durability.

上記従来の課題を解決するために本発明の運動変換装置は、以下の構成を有している。
本発明の請求項1に記載の運動変換装置は、高強度繊維で形成された複数本の可撓性を有する連結体と、各々の前記連結体の一端が離隔して固定された連結体固定部と、各々の前記連結体の他端が出力軸に固定され前記連結体に捩りを加える回転駆動部と、を備えた運動変換装置であって、前記高強度繊維が、繊維軸方向に配向したポリオレフィンを含有する構成を有している。
この構成により、以下のような作用が得られる。
(1)本発明者らは、連結体に、ポリオレフィンが繊維軸方向に配向した高強度繊維を用いることにより、連結体に捩り運動を繰り返し加えた場合の耐久性が、飛躍的に向上することを見出した。具体的には、ケブラー(登録商標)、炭素繊維、ナイロン等の高強度繊維を用いた場合と比較して、破断に至るまでの繰り返し捩りサイクル数が2.2倍以上も長くなることがわかった。
(2)ポリオレフィンは密度が小さいため、運動変換装置の軽量化に寄与する。この高強度繊維を用いることにより、連結体が早期に破断することなく長寿命で耐久性に優れる運動変換装置を実現できる。
In order to solve the above conventional problems, the motion conversion device of the present invention has the following configuration.
According to a first aspect of the present invention, there is provided a motion converting apparatus comprising: a plurality of flexible connecting bodies formed of high-strength fibers; and a connecting body fixing in which one end of each of the connecting bodies is fixed apart. And a rotation drive unit that fixes the other end of each connecting body to an output shaft and twists the connecting body, wherein the high-strength fibers are oriented in the fiber axis direction. The composition contains the polyolefin.
With this configuration, the following effects can be obtained.
(1) The present inventors use a high-strength fiber in which polyolefin is oriented in the fiber axis direction for the connection body, so that the durability when a twisting motion is repeatedly applied to the connection body is dramatically improved. I found. Specifically, it can be seen that the number of repeated torsion cycles until breakage is 2.2 times or more longer than when high strength fibers such as Kevlar (registered trademark), carbon fiber, and nylon are used. It was.
(2) Since polyolefin has a low density, it contributes to weight reduction of the motion conversion device. By using this high-strength fiber, it is possible to realize a motion conversion device having a long life and excellent durability without breaking the connected body at an early stage.

ここで、ポリオレフィンが繊維軸方向に配向した高強度繊維としては、ポリエチレン,ポリプロピレン等のポリオレフィンを延伸(超延伸)した繊維を挙げることができる。なお、本発明における繊維軸とは、糸の繊維方向(長さ方向)のことをいう。
繊維が破断するメカニズムとして、分子鎖間の滑り、及び分子鎖切断が考えられる。ポリ−p−フェニレンテレフタルアミド,ポリ−p−ベンズアミド等のアラミド系高分子(ケブラー(登録商標)等)、ポリアリレート系高分子は、分子間水素結合のため分子間力が強く、分子鎖間の滑りが起こり難いが、構造が複雑なため、分子鎖の切断が起こり易い。一方、ポリオレフィンは、分子間水素結合がみられず分子間力が弱いため、分子量が小さいと、張力下で分子間鎖の滑りが起こり、繊維が破断し易い。
しかし、ポリオレフィンの分子量を上げ分子鎖を長くすれば、個々の分子鎖間に作用する力が大きくなり、分子間滑りは抑制され、分子鎖が切断するまで繊維の破断が生じなくなる。このため、分子量の大きなポリオレフィンを繊維軸方向に配向させることによって、高強度の繊維が得られる。このようなポリオレフィンとして、分子量(数平均)が10万以上好ましくは100万以上のものが用いられる。
Here, examples of the high-strength fibers in which the polyolefin is oriented in the fiber axis direction include fibers obtained by stretching (super-stretching) polyolefins such as polyethylene and polypropylene. In addition, the fiber axis in this invention means the fiber direction (length direction) of a thread | yarn.
As a mechanism for breaking the fiber, slippage between molecular chains and molecular chain breakage are considered. Aramid polymers (such as Kevlar (registered trademark)) such as poly-p-phenylene terephthalamide and poly-p-benzamide, and polyarylate polymers have strong intermolecular forces due to intermolecular hydrogen bonding, and the intermolecular chain However, since the structure is complicated, the molecular chain is likely to be broken. On the other hand, polyolefin has no intermolecular hydrogen bond and weak intermolecular force. Therefore, if the molecular weight is small, the intermolecular chain slips under tension and the fiber is easily broken.
However, if the molecular weight of the polyolefin is increased and the molecular chain is lengthened, the force acting between the individual molecular chains is increased, the intermolecular slip is suppressed, and the fiber is not broken until the molecular chain is broken. For this reason, a high-strength fiber can be obtained by orienting polyolefin having a large molecular weight in the fiber axis direction. As such polyolefin, those having a molecular weight (number average) of 100,000 or more, preferably 1,000,000 or more are used.

高強度繊維は、糸、紐等により用いることができる。糸としては、モノフィラメント糸、マルチフィラメント糸のいずれも用いることができる。繊維の種類にもよるが、二種類以上の高強度繊維を組み合わせても良い。   High-strength fibers can be used with yarns, strings and the like. As the yarn, either a monofilament yarn or a multifilament yarn can be used. Depending on the type of fiber, two or more types of high-strength fibers may be combined.

本発明の請求項2に記載の発明は、請求項1に記載の運動変換装置であって、前記ポリオレフィンが、超高分子量ポリエチレンである構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)ポリオレフィンの屈曲性高分子を延伸した超高分子量ポリエチレン繊維は、耐磨耗性や耐衝撃性に優れ耐久性に優れた運動変換装置を実現できる。
Invention of Claim 2 of this invention is a motion converter of Claim 1, Comprising: The said polyolefin has the structure which is ultra high molecular weight polyethylene.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) The ultrahigh molecular weight polyethylene fiber obtained by stretching a flexible polymer of polyolefin can realize a motion converter excellent in wear resistance and impact resistance and excellent in durability.

ここで、超高分子量ポリエチレン繊維としては、ゲル紡糸法、溶融延伸配向法、固相押出延伸法等の種々の方法により製造することができる。いずれの製造方法であっても、屈曲性高分子が延伸されていれば、特に制限なく用いることができる。具体的には、東洋紡績株式会社製のダイニーマ(登録商標)を挙げることができる。   Here, the ultra-high molecular weight polyethylene fiber can be produced by various methods such as a gel spinning method, a melt stretch orientation method, and a solid phase extrusion stretch method. Any production method can be used without particular limitation as long as the flexible polymer is stretched. Specific examples include Dyneema (registered trademark) manufactured by Toyobo Co., Ltd.

本発明の請求項3に記載の発明は、請求項1又は2に記載の運動変換装置であって、前記連結体の表面に、潤滑層が形成された構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)連結体の表面に潤滑層が形成されることにより、曲げ,圧縮,摩擦,衝撃等による力が高強度繊維に局部的に加わるのを防ぎ、負荷が集中するのを抑制し、摩擦熱の発生を抑え、繊維表面の削れ等による高強度繊維の損傷を防止して、連結体をさらに長寿命化できる。
The invention according to claim 3 of the present invention is the motion conversion device according to claim 1 or 2, and has a configuration in which a lubricating layer is formed on a surface of the coupling body.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) By forming a lubrication layer on the surface of the connected body, it is possible to prevent the force due to bending, compression, friction, impact, etc. from being applied locally to the high-strength fiber, to suppress the concentration of load, and to Generation of heat is suppressed, damage to high-strength fibers due to fiber surface scraping or the like can be prevented, and the life of the connected body can be further extended.

ここで、潤滑層としては、鉱物油,パラフィン、ポリエチレンオキシド,ポリプロピレンオキシド,ポリブチレンオキシド,それらの共重合ポリエーテル、脂肪酸,脂肪酸エステル又は金属塩、高級アルコール及びそのエステル、動植物油脂、アルキルベンゼン,ポリアルキルジフェニル等の合成油脂状物、ポリオルガノシロキサン等のシリコーンオイル類、フッ化エチレン重合体,フッ化エチレン共重合体等のフッ素化合物等を含有した潤滑剤を、連結体に塗布して形成することができる。
潤滑剤は、潤滑剤を付着させたローラ等に連結体を接触させる方法や、スプレー,ディップ等の種々の方法により、連結体に塗布することができる。潤滑剤は、少なくとも連結体が捩れて絡み合う部分に塗布されていれば良い。
Here, the lubricating layer includes mineral oil, paraffin, polyethylene oxide, polypropylene oxide, polybutylene oxide, copolymerized polyethers thereof, fatty acids, fatty acid esters or metal salts, higher alcohols and esters thereof, animal and vegetable oils, alkylbenzenes, poly Formed by applying a lubricant containing synthetic oils and fats such as alkyldiphenyl, silicone oils such as polyorganosiloxane, and fluorine compounds such as fluorinated ethylene polymers and fluorinated ethylene copolymers to the connector. be able to.
The lubricant can be applied to the coupling body by a method in which the coupling body is brought into contact with a roller or the like to which the lubricant is attached, or by various methods such as spraying or dipping. The lubricant may be applied at least to a portion where the coupling body is twisted and entangled.

本発明の請求項4に記載の発明は、請求項3に記載の運動変換装置であって、前記潤滑層が、一般式Cn2n+2で表される鎖式飽和炭化水素(但し、n=14〜46好ましくは 16〜28)を含有した構成を有している。
この構成により、請求項3で得られる作用に加え、以下のような作用が得られる。
(1)潤滑層がCn2n+2で表される鎖式飽和炭化水素(但し、n=14〜46)を含有することにより、潤滑性に優れるとともに、高強度繊維との親和性に優れ、剥離し難く耐久性に優れる。
The invention according to claim 4 of the present invention is the motion conversion device according to claim 3, wherein the lubricating layer is a chain saturated hydrocarbon represented by the general formula C n H 2n + 2 (however, n = 14 to 46, preferably 16 to 28).
With this configuration, in addition to the operation obtained in the third aspect, the following operation can be obtained.
(1) The lubricating layer contains a chain saturated hydrocarbon represented by C n H 2n + 2 (where n = 14 to 46), so that it has excellent lubricity and compatibility with high-strength fibers. Excellent, difficult to peel and excellent in durability.

ここで、Cn2n+2で表される鎖式飽和炭化水素について、nが16より小さくなるにつれ鎖式飽和炭化水素の揮発性が高くなり潤滑性能を保持できなくなる傾向がみられ、nが28より大きくなるにつれ、炭化水素が結晶化し潤滑効果が低下するとともに、高強度繊維との親和性が乏しくなり剥離し易くなる傾向がみられる。特に、nが14より小さくなるか46より大きくなると、これらの傾向が著しくなるため、いずれも好ましくない。 Here, with regard to the chain saturated hydrocarbon represented by C n H 2n + 2 , as n becomes smaller than 16, the volatility of the chain saturated hydrocarbon tends to increase and the lubricating performance tends not to be maintained. As it becomes larger than 28, hydrocarbons crystallize and the lubrication effect decreases, and the affinity with high-strength fibers tends to be poor and peeling tends to occur. In particular, when n is smaller than 14 or larger than 46, these tendencies become remarkable, so that neither is preferable.

以上のように、本発明の運動変換装置によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)連結体が高強度で、かつ早期に破断することなく、長寿命で耐久性に優れた運動変換装置を提供できる。
As described above, according to the motion conversion device of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) It is possible to provide a motion conversion device that has a long life and excellent durability without causing the connected body to have high strength and break early.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)運動変換装置の軽量化に寄与し、さらに耐磨耗性や耐衝撃性に優れ耐久性に優れた運動変換装置を提供できる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) It is possible to provide a motion conversion device that contributes to weight reduction of the motion conversion device, and further has excellent wear resistance and impact resistance and excellent durability.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)曲げ,圧縮,摩擦,衝撃等による力が高強度繊維に局部的に加わるのを防ぎ、負荷が集中するのを抑制し、摩擦熱の発生を抑え、繊維表面の削れ等による高強度繊維の損傷を防止して、連結体をさらに長寿命化でき、耐久性に著しく優れた運動変換装置を提供できる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) High strength due to cutting of fiber surface, etc., by preventing the force due to bending, compression, friction, impact, etc. from being applied locally to the high strength fiber, suppressing the concentration of load, suppressing the generation of frictional heat It is possible to provide a motion conversion device that can prevent damage to the fibers, extend the life of the coupled body, and is extremely excellent in durability.

請求項4に記載の発明によれば、請求項3の効果に加え、
(1)潤滑性に優れるとともに高強度繊維との親和性に優れ、潤滑層が連結体から剥離し難く、潤滑効果を長期間持続できるため、耐久性に優れた運動変換装置を提供できる。
According to invention of Claim 4, in addition to the effect of Claim 3,
(1) It is excellent in lubricity and excellent in affinity with high-strength fibers, the lubricating layer is difficult to peel off from the connected body, and the lubricating effect can be maintained for a long period of time, so that it is possible to provide a motion conversion device with excellent durability.

運動変換装置の構成図Configuration diagram of motion converter 捩れ運動により破断したサイクル数を示す図Diagram showing the number of cycles broken by torsional motion 実施例1における連結体(超高分子量ポリエチレン製)の試験130000サイクル後のSEMによる表面Surface of SEM after 130,000 cycles of test of linked body (made of ultra high molecular weight polyethylene) in Example 1 比較例2における連結体(ポリ−p−フェニレンベンゾビスオキサゾール製)の試験50000サイクル後のSEMによる表面Surface by SEM after 50,000 cycles of test of the linked body (made of poly-p-phenylenebenzobisoxazole) in Comparative Example 2 実験例1〜9の運動変換装置を用いて連結体に捩り運動を繰り返し加える捩りサイクル試験において、連結体が破断したサイクル数を示す図The figure which shows the cycle number which the connection body fractured | ruptured in the torsion cycle test which adds a twist motion to a connection body repeatedly using the motion converter of Experimental Examples 1-9.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実験に用いた運動変換装置と捩り運動サイクル試験の条件)
種々の高強度繊維で作成した連結体の耐久性を評価する実験を行なった。実験は、図1において説明した運動変換装置を用いて、連結体に捩りを連結体が破断するまで繰り返し加えるものである。実験に用いた運動変換装置の仕様は、以下のとおりである。
連結体の数:2本、連結体固定部に固定された2本の連結体の距離:約3cm、停止時(連結体に捩りを加えていない時)の連結体固定部と出力軸との距離:約5.8cm、連結体固定部と出力軸とを繋ぐ連結体1本の長さ:約6cm。
また、運動変換装置によって連結体に与えられる一回の捩り運動の条件は、以下のとおりである。
回転駆動部による出力軸の回転速度:2000rpm(最大値)、1サイクルあたりの時間:約3秒、連結体固定部の移動方向と逆向きに加えた負荷:1.5N。
捩り運動サイクル試験は、運動変換装置の回転駆動部が、一回の捩り運動において出力軸を右回転させたら、次は出力軸を左回転させるという具合に、右回転と左回転を交互に行い、連結体固定部を直線的に往復運動させる。運動変換装置はこれを繰り返し行い、連結体が破断するまで、連結体に捩りを繰り返し加える。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Conditions for motion converter and torsional motion cycle test)
An experiment was conducted to evaluate the durability of a joined body made of various high-strength fibers. In the experiment, twisting is repeatedly applied to the connecting body until the connecting body breaks using the motion conversion device described in FIG. The specifications of the motion converter used in the experiment are as follows.
Number of connected bodies: 2; distance between the two connected bodies fixed to the connected body fixing part: about 3 cm; between the connected body fixing part and the output shaft when stopped (when no twist is applied to the connected body) Distance: about 5.8 cm, length of one connecting body connecting the connecting body fixing portion and the output shaft: about 6 cm.
Moreover, the conditions of one torsional motion given to a coupling body by a motion converter are as follows.
The rotational speed of the output shaft by the rotation drive unit: 2000 rpm (maximum value), the time per cycle: about 3 seconds, the load applied in the direction opposite to the moving direction of the coupling body fixing unit: 1.5 N.
In the torsional motion cycle test, the rotation drive unit of the motion converter rotates the output shaft to the right in one torsional motion, and then rotates the output shaft to the left, and so on. Then, the connecting body fixing part is reciprocated linearly. The motion converter repeats this, and repeatedly applies twist to the connection body until the connection body breaks.

(実施例1)
実施例1の運動変換装置は、超高分子量ポリエチレン繊維(東洋紡績株式会社製、商品名:ダイニーマ(登録商標)ミシン糸#8、繊度:1000dtex)を連結体とした。なお、このミシン糸は、300デニールの繊維3本の撚糸である。
Example 1
The motion conversion device of Example 1 was formed by connecting ultrahigh molecular weight polyethylene fibers (manufactured by Toyobo Co., Ltd., trade name: Dyneema (registered trademark) sewing thread # 8, fineness: 1000 dtex). This sewing thread is a twisted thread of three 300 denier fibers.

(比較例1)
炭素繊維(三菱レイヨン株式会社製、商品名:PYROFIL)を連結体とした以外は、実施例1と同様にして、比較例1の運動変換装置を得た。
(比較例2)
ポリ−p−フェニレンベンゾビスオキサゾール製繊維(東洋紡績株式会社製、商品名:ザイロン(登録商標)ミシン糸#8、繊度:1110dtex)を連結体とした以外は、実施例1と同様にして、比較例2の運動変換装置を得た。なお、このミシン糸は、555dtexの繊維2本の撚糸である。
(比較例3)
ポリ−p−フェニレンテレフタルアミド製繊維(東レ・デュポン株式会社製、商品名:ケブラー(登録商標)ミシン糸#5、繊度:1333dtex)を連結体とした以外は、実施例1と同様にして、比較例3の運動変換装置を得た。なお、このミシン糸は、400デニールの繊維3本の撚糸である。
(比較例4)
ナイロン繊維(東レインターナショナル株式会社製、銀鱗3号50m 3.0号、直径285μm)を連結体とした以外は、実施例1と同様にして、比較例4の運動変換装置を得た。
(比較例5)
アモルファス金属繊維(ユニチカ株式会社製、商品名:ボルファ(登録商標)DE10、直径20μm)を100本束ねて連結体とした以外は、実施例1と同様にして、比較例5の運動変換装置を得た。
(比較例6)
金属繊維(タングステンワイヤー、日本タングステン株式会社製、直径20μm)を100本束ねて連結体とした以外は、実施例1と同様にして、比較例6の運動変換装置を得た。
(比較例7)
金属繊維(SUS304ステンレスワイヤー、直径280μm)を連結体とした以外は、実施例1と同様にして、比較例7の運動変換装置を得た。
(比較例8)
フッ素系樹脂繊維(東レインターナショナル株式会社製、トヨフロン スーパーL EXCELLENT 50m 3.0号、直径285μm)を連結体とした以外は、実施例1と同様にして、比較例8の運動変換装置を得た。
(Comparative Example 1)
A motion conversion device of Comparative Example 1 was obtained in the same manner as in Example 1 except that carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd., trade name: PYROFIL) was used.
(Comparative Example 2)
Except that a poly-p-phenylenebenzobisoxazole fiber (Toyobo Co., Ltd., trade name: Zylon (registered trademark) sewing thread # 8, fineness: 1110 dtex) was used in the same manner as in Example 1, A motion conversion device of Comparative Example 2 was obtained. The sewing yarn is a twisted yarn of two 555 dtex fibers.
(Comparative Example 3)
Except for using a poly-p-phenylene terephthalamide fiber (manufactured by Toray DuPont, trade name: Kevlar (registered trademark) sewing thread # 5, fineness: 1333 dtex) in the same manner as in Example 1, A motion conversion device of Comparative Example 3 was obtained. This sewing thread is a twisted thread of three 400 denier fibers.
(Comparative Example 4)
A motion conversion device of Comparative Example 4 was obtained in the same manner as in Example 1 except that nylon fibers (manufactured by Toray International Co., Ltd., silver scale No. 3 50 m 3.0, diameter 285 μm) were used as a connected body.
(Comparative Example 5)
Except for bundling 100 amorphous metal fibers (manufactured by Unitika Ltd., trade name: Volfa (registered trademark) DE10, diameter 20 μm) to form a connected body, the motion conversion device of Comparative Example 5 was used in the same manner as in Example 1. Obtained.
(Comparative Example 6)
A motion conversion device of Comparative Example 6 was obtained in the same manner as in Example 1 except that 100 metal fibers (tungsten wire, manufactured by Nippon Tungsten Co., Ltd., diameter 20 μm) were bundled to form a connected body.
(Comparative Example 7)
A motion conversion device of Comparative Example 7 was obtained in the same manner as in Example 1 except that a metal fiber (SUS304 stainless steel wire, diameter 280 μm) was used as the connector.
(Comparative Example 8)
A motion conversion device of Comparative Example 8 was obtained in the same manner as in Example 1 except that a fluorine resin fiber (Toyoflon Super L EXCELLENT 50m 3.0, diameter 285 μm) was used as a connector.

図2は実施例及び比較例の運動変換装置を用いて連結体に上記の捩り運動を繰り返し加える捩りサイクル試験結果である。なお、図2に示した数値は、連結体が破断した捩り運動回数(サイクル数)である。   FIG. 2 shows the results of a torsion cycle test in which the above-described torsional motion is repeatedly applied to the connected body using the motion conversion devices of the example and the comparative example. In addition, the numerical value shown in FIG. 2 is the number of torsional movements (cycle number) at which the coupling body is broken.

図2から明らかなように、実施例1の運動変換装置の連結体は141100サイクルまで破断しなかったのに対し、比較例2の運動変換装置の連結体は、その約45%の64000サイクルで破断し、比較例1,3〜8の運動変換装置の連結体は、実施例1の約3%以下で破断した。
特に、比較例1の連結体(炭素繊維製)は、弾性率では実施例1の連結体を上回るが、わずか8サイクルで破断した。これは、弾性率が高くなると延性が低下し、捩れ変形による破断歪みが小さくなり、折損し易くなったためであると推察している。
As is apparent from FIG. 2, the connection body of the motion conversion device of Example 1 did not break until 141100 cycles, whereas the connection body of the motion conversion device of Comparative Example 2 was about 45% of the connection body at 64000 cycles. The connection body of the motion conversion device of Comparative Examples 1, 3 to 8 was broken at about 3% or less of Example 1.
In particular, the connection body of Comparative Example 1 (made of carbon fiber) exceeded the connection body of Example 1 in terms of elastic modulus, but broke in only 8 cycles. It is presumed that this is because the ductility decreased as the elastic modulus increased, the fracture strain due to torsional deformation decreased, and breakage easily occurred.

次に、捩りサイクル試験を行った連結体の表面状態を調べた。図3は、実施例1における連結体(超高分子量ポリエチレン製)の試験130000サイクル後のSEMによる表面であり、図4は、比較例2における連結体(ポリ−p−フェニレンベンゾビスオキサゾール製)の試験50000サイクル後のSEMによる表面である。なお、図3及び4は、倍率の異なる写真を上下に並べたものであり、下の写真の倍率は、上の写真の倍率の2倍である。
図3及び図4を観察すると、比較例2における連結体は、試験開始直後から繊維が摩擦によってフィブリル化し破断するのに対し、実施例1の連結体は、130000サイクル後も、繊維がフィブリル化することなく、押し潰されて破断していることがわかる。比較例2の連結体はポリ−p−フェニレンベンゾビスオキサゾール(ヘテロ環含有芳香族高分子)で形成されているが、実施例1の連結体は数平均分子量が約400万のポリオレフィンを超延伸して形成されているので、分子間滑りが抑制されてフィブリル化が生じ難く、分子鎖も切断され難いものと推察される。このため、ポリオレフィンを超延伸した高強度繊維は、捩り運動を繰り返し加えた場合の耐久性が優れているものと推察される。
Next, the surface state of the connected body subjected to the torsion cycle test was examined. FIG. 3 is a surface by SEM after 130000 cycles of the coupling body (made of ultrahigh molecular weight polyethylene) in Example 1, and FIG. 4 is the coupling body in Comparative Example 2 (made of poly-p-phenylenebenzobisoxazole). It is the surface by SEM after 50000 cycles of the test. In FIGS. 3 and 4, photographs with different magnifications are arranged one above the other. The magnification of the lower photograph is twice that of the upper photograph.
When observing FIGS. 3 and 4, the connection body in Comparative Example 2 fibrillated and ruptured by friction immediately after the start of the test, whereas the connection body of Example 1 fibrillated after 130,000 cycles. It turns out that it is crushed and fractured. The linking body of Comparative Example 2 is formed of poly-p-phenylene benzobisoxazole (heterocyclic-containing aromatic polymer), but the linking body of Example 1 is an ultra-stretched polyolefin having a number average molecular weight of about 4 million. Therefore, it is presumed that intermolecular slip is suppressed and fibrillation hardly occurs, and the molecular chain is not easily cleaved. For this reason, it is surmised that the high-strength fiber obtained by ultra-stretching polyolefin is excellent in durability when a twisting motion is repeatedly applied.

次に、上記の捩りサイクル試験において、実施例1の連結体にベアリング用グリス、シリコーンオイル等の潤滑剤を塗布したり、ベアリング用グリス、シリコーンオイル等の潤滑剤を塗布し、さらにテフロン(登録商標)粉末を付着させたりして、連結体の表面に潤滑層を形成すると、破断に至るサイクル数が2倍以上に向上する場合のあることがわかった。
以下、実施例1の運動変換装置の連結体の表面に付着した油分をヘキサンで除去した実験例1の運動変換装置、実験例1の運動変換装置の連結体に潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素を塗布して、潤滑層を設けた実験例2〜9の運動変換装置を作成し、同様の捩りサイクル試験を行った結果を説明する。
Next, in the above-described torsion cycle test, a lubricant such as bearing grease and silicone oil is applied to the coupling body of Example 1, or a lubricant such as bearing grease and silicone oil is applied. It has been found that when a lubricating layer is formed on the surface of the coupling body by attaching (trademark) powder or the like, the number of cycles leading to breakage may be improved more than twice.
Hereinafter, the general formula C n H is used as a lubricant for the motion conversion device of Experimental Example 1 in which the oil component adhering to the surface of the connection body of the motion conversion device of Example 1 is removed with hexane, and the connection body of the motion conversion device of Experimental Example 1. The results of performing the same torsional cycle test by applying the chain-type saturated hydrocarbon represented by 2n + 2 to create motion conversion devices of Experimental Examples 2 to 9 provided with a lubricating layer will be described.

(実験例1)
実施例1と同様の運動変換装置の連結体(超高分子量ポリエチレン繊維(東洋紡績株式会社製、商品名:ダイニーマ(登録商標)ミシン糸#8))の表面に付着した油分をヘキサンで除去することにより、実験例1の運動変換装置を得た。
(実験例2)
実験例1の運動変換装置の連結体に、潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=12)を塗布することにより、実験例2の運動変換装置を得た。なお、潤滑剤の塗布量は約0.1g/mとした。
(実験例3)
潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=14)を塗布した以外は、実験例2と同様にして、実験例3の運動変換装置を得た。なお、潤滑剤の塗布量は約0.1g/mとした。
(実験例4)
潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=16)を塗布した以外は、実験例2と同様にして、実験例4の運動変換装置を得た。なお、潤滑剤の塗布量は約0.1g/mとした。
(実験例5)
潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=20)を塗布した以外は、実験例2と同様にして、実験例5の運動変換装置を得た。なお、潤滑剤の塗布量は約0.01g/mとした。
(実験例6)
潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=24)を塗布した以外は、実験例2と同様にして、実験例6の運動変換装置を得た。なお、潤滑剤の塗布量は約0.01g/mとした。
(実験例7)
潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=28)を塗布した以外は、実験例2と同様にして、実験例7の運動変換装置を得た。なお、潤滑剤の塗布量は約0.01g/mとした。
(実験例8)
潤滑剤として一般式Cn2n+2で表される鎖式飽和炭化水素(n=36)を塗布した以外は、実験例2と同様にして、実験例8の運動変換装置を得た。なお、潤滑剤の塗布量は約0.01g/mとした。
(実験例9)
一般式Cn2n+2で表されるn=18〜46の鎖式飽和炭化水素が混合された潤滑剤を塗布した以外は、実験例2と同様にして、実験例9の運動変換装置を得た。なお、潤滑剤の塗布量は約0.01g/mとした。
(Experimental example 1)
The oil adhering to the surface of the connected body of the motion conversion device (ultra high molecular weight polyethylene fiber (manufactured by Toyobo Co., Ltd., trade name: Dyneema (registered trademark) sewing machine thread # 8)) similar to Example 1 is removed with hexane. Thus, the motion conversion device of Experimental Example 1 was obtained.
(Experimental example 2)
By applying a chain saturated hydrocarbon (n = 12) represented by the general formula C n H 2n + 2 as a lubricant to the connected body of the motion conversion device of Experimental Example 1, the motion conversion device of Experimental Example 2 Got. The amount of lubricant applied was about 0.1 g / m.
(Experimental example 3)
A motion conversion device of Experimental Example 3 was obtained in the same manner as Experimental Example 2 except that a chain saturated hydrocarbon (n = 14) represented by the general formula C n H 2n + 2 was applied as a lubricant. The amount of lubricant applied was about 0.1 g / m.
(Experimental example 4)
A motion conversion device of Experimental Example 4 was obtained in the same manner as Experimental Example 2, except that a chain saturated hydrocarbon (n = 16) represented by the general formula C n H 2n + 2 was applied as a lubricant. The amount of lubricant applied was about 0.1 g / m.
(Experimental example 5)
A motion converter of Experimental Example 5 was obtained in the same manner as Experimental Example 2, except that a chain saturated hydrocarbon (n = 20) represented by the general formula C n H 2n + 2 was applied as a lubricant. The amount of lubricant applied was about 0.01 g / m.
(Experimental example 6)
A motion conversion device of Experimental Example 6 was obtained in the same manner as Experimental Example 2 except that a chain saturated hydrocarbon (n = 24) represented by the general formula C n H 2n + 2 was applied as a lubricant. The amount of lubricant applied was about 0.01 g / m.
(Experimental example 7)
A motion conversion device of Experimental Example 7 was obtained in the same manner as Experimental Example 2, except that a chain saturated hydrocarbon (n = 28) represented by the general formula C n H 2n + 2 was applied as a lubricant. The amount of lubricant applied was about 0.01 g / m.
(Experimental example 8)
A motion conversion device of Experimental Example 8 was obtained in the same manner as Experimental Example 2, except that a chain saturated hydrocarbon (n = 36) represented by the general formula C n H 2n + 2 was applied as a lubricant. The amount of lubricant applied was about 0.01 g / m.
(Experimental example 9)
The motion conversion device of Experimental Example 9 is the same as Experimental Example 2 except that a lubricant mixed with a chain saturated hydrocarbon of n = 18 to 46 represented by the general formula C n H 2n + 2 is applied. Got. The amount of lubricant applied was about 0.01 g / m.

図5は実験例1〜9の運動変換装置を用いて連結体に捩り運動を繰り返し加える捩りサイクル試験において、連結体が破断したサイクル数を示す図である。なお、この捩りサイクル試験では、連結体固定部の移動方向と逆向きに加える負荷を10Nとした。   FIG. 5 is a diagram showing the number of cycles in which the coupling body is broken in a torsional cycle test in which torsional motion is repeatedly applied to the coupling body using the motion conversion devices of Experimental Examples 1 to 9. In this torsion cycle test, the load applied in the direction opposite to the moving direction of the connecting body fixing portion was 10N.

図5から明らかなように、n=12の鎖式飽和炭化水素(Cn2n+2)を塗布して潤滑層を形成した実験例2の運動変換装置の連結体は、潤滑層を形成していない実験例1の運動変換装置の連結体よりも短期間で破断した。
しかし、n=14,16,20,24,28,36の鎖式飽和炭化水素(Cn2n+2)を塗布して潤滑層を形成した実験例3〜8の運動変換装置の連結体は、本試験条件の下で、潤滑層を形成していない実験例1の運動変換装置の連結体より高寿命化できることが明らかとなった。
特に、n=16,20,24,28の鎖式飽和炭化水素(Cn2n+2)を塗布して潤滑層を形成した実験例4〜7の運動変換装置の連結体は、本試験条件の下で、潤滑層を形成していない実験例1の運動変換装置の連結体の、2倍乃至はそれ以上に高寿命化できることが明らかとなった。また、n=18〜46の鎖式飽和炭化水素(Cn2n+2)を塗布して潤滑層を形成した実験例9の運動変換装置の連結体も、本試験条件の下で、潤滑層を形成していない実験例1の運動変換装置の連結体の2倍以上に高寿命化できることが明らかとなった。
以上の実施例によれば、連結体の表面に潤滑層が形成されることにより、特にn=14〜46、より好ましくはn=16〜18の鎖式飽和炭化水素(Cn2n+2)による潤滑層が形成されることにより、連結体をさらに長寿命化できることが明らかとなった。潤滑層により、曲げ,圧縮,摩擦,衝撃等による力が高強度繊維に局部的に加わるのを防ぎ、負荷が集中するのを抑制するとともに摩擦熱の発生を抑え、繊維が押し潰されるのを防止して長寿命化できるものと推察される。
As is apparent from FIG. 5, the coupled body of the motion conversion device of Experimental Example 2 in which the lubrication layer is formed by applying chain saturated hydrocarbon (C n H 2n + 2 ) of n = 12 forms the lubrication layer. It broke in a shorter period than the connection body of the motion conversion device of Experimental Example 1 that was not performed.
However, the connection body of the motion conversion devices of Experimental Examples 3 to 8 in which a lubrication layer is formed by applying chain saturated hydrocarbons (C n H 2n + 2 ) of n = 14, 16, 20, 24, 28, and 36. It has been clarified that, under this test condition, the service life can be increased compared to the connection body of the motion conversion device of Experimental Example 1 in which the lubricating layer is not formed.
In particular, the connection of the motion conversion devices of Experimental Examples 4 to 7 in which a lubrication layer was formed by applying chain saturated hydrocarbons (C n H 2n + 2 ) of n = 16, 20, 24, 28 was tested in this test. Under the conditions, it became clear that the life of the coupling body of the motion conversion device of Experimental Example 1 in which the lubricating layer was not formed can be increased to twice or more. In addition, the connection body of the motion conversion device of Experimental Example 9 in which a lubrication layer is formed by applying chain saturated hydrocarbon (C n H 2n + 2 ) of n = 18 to 46 is also lubricated under the test conditions. It has been clarified that the lifetime can be increased to more than twice that of the connection body of the motion conversion device of Experimental Example 1 in which no layer is formed.
According to the above embodiment, a lubrication layer is formed on the surface of the coupling body, and in particular, n = 14 to 46, more preferably n = 16 to 18 chain saturated hydrocarbon (C n H 2n + 2 It has been clarified that the lifetime of the coupling body can be further extended by forming the lubricating layer. The lubrication layer prevents bending, compression, friction, impact, and other forces from being applied locally to the high-strength fiber, which suppresses the concentration of load and suppresses the generation of frictional heat and prevents the fiber from being crushed. It is presumed that it can be prevented and the service life can be extended.

本発明は、ロボットの関節駆動用、手術用鉗子駆動用、義手や義足等に用いられるアクチュエータに好適な回転駆動部のトルクを引張力に変換する運動変換装置に関し、連結体が早期に破断することなく長寿命で耐久性に優れた運動変換装置を提供できる。   The present invention relates to a motion conversion device that converts torque of a rotary drive unit suitable for an actuator used for robot joint driving, surgical forceps driving, an artificial hand, a prosthetic leg, and the like, and the coupling body breaks early. It is possible to provide a motion conversion device having a long life and excellent durability.

1 運動変換装置
2 連結体
3 連結体固定部
4 出力軸
5 回転駆動部
6 弾性体
DESCRIPTION OF SYMBOLS 1 Motion converter 2 Connection body 3 Connection body fixing | fixed part 4 Output shaft 5 Rotation drive part 6 Elastic body

Claims (4)

高強度繊維で形成された複数本の可撓性を有する連結体と、各々の前記連結体の一端が離隔して固定された連結体固定部と、各々の前記連結体の他端が出力軸に固定され前記連結体に捩りを加える回転駆動部と、を備えた運動変換装置であって、
前記高強度繊維が、繊維軸方向に配向したポリオレフィンを含有していることを特徴とする運動変換装置。
A plurality of flexible coupling bodies formed of high-strength fibers, a coupling body fixing portion in which one end of each coupling body is fixed at a distance, and the other end of each coupling body is an output shaft A rotation drive unit that is fixed to the connection body and applies a twist to the coupling body,
The motion conversion device, wherein the high-strength fibers contain polyolefin oriented in the fiber axis direction.
前記ポリオレフィンが、超高分子量ポリエチレンであることを特徴とする請求項1に記載の運動変換装置。   The motion conversion device according to claim 1, wherein the polyolefin is ultra high molecular weight polyethylene. 前記連結体の表面に、潤滑層が形成されていることを特徴とする請求項1又は2に記載の運動変換装置。   The motion conversion device according to claim 1, wherein a lubricating layer is formed on a surface of the coupling body. 前記潤滑層が、一般式Cn2n+2で表される鎖式飽和炭化水素(但し、n=14〜46)を含有していることを特徴とする請求項3に記載の運動変換装置。
The lubricating layer, general formula C n H 2n + 2 represented by chain saturated hydrocarbon (where, n = 14 to 46) motion conversion apparatus according to claim 3, characterized by containing the .
JP2009023945A 2009-02-04 2009-02-04 Torsional motion converter Expired - Fee Related JP5257986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023945A JP5257986B2 (en) 2009-02-04 2009-02-04 Torsional motion converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023945A JP5257986B2 (en) 2009-02-04 2009-02-04 Torsional motion converter

Publications (2)

Publication Number Publication Date
JP2010180933A true JP2010180933A (en) 2010-08-19
JP5257986B2 JP5257986B2 (en) 2013-08-07

Family

ID=42762638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023945A Expired - Fee Related JP5257986B2 (en) 2009-02-04 2009-02-04 Torsional motion converter

Country Status (1)

Country Link
JP (1) JP5257986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702007B1 (en) * 2014-02-24 2015-04-15 ツイスト・ドライブ・テクノロジーズ株式会社 Optical device drive device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260060A (en) * 1988-04-06 1989-10-17 Mitsui Petrochem Ind Ltd Ultrahigh-molecular-weight polyolefin fiber and production thereof
JPH1058007A (en) * 1996-08-21 1998-03-03 Fuji Photo Film Co Ltd Manufacture of lithium metal foil or lithium alloy foil
JP2002339179A (en) * 2001-05-16 2002-11-27 Yotsuami:Kk Yarn having low elongation
JP2008089175A (en) * 2006-09-05 2008-04-17 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Motion converting device
JP2008266843A (en) * 2007-04-23 2008-11-06 Ygk:Kk Polyolefin yarn and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260060A (en) * 1988-04-06 1989-10-17 Mitsui Petrochem Ind Ltd Ultrahigh-molecular-weight polyolefin fiber and production thereof
JPH1058007A (en) * 1996-08-21 1998-03-03 Fuji Photo Film Co Ltd Manufacture of lithium metal foil or lithium alloy foil
JP2002339179A (en) * 2001-05-16 2002-11-27 Yotsuami:Kk Yarn having low elongation
JP2008089175A (en) * 2006-09-05 2008-04-17 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Motion converting device
JP2008266843A (en) * 2007-04-23 2008-11-06 Ygk:Kk Polyolefin yarn and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702007B1 (en) * 2014-02-24 2015-04-15 ツイスト・ドライブ・テクノロジーズ株式会社 Optical device drive device

Also Published As

Publication number Publication date
JP5257986B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
KR101890172B1 (en) Actuation cable having multiple friction characteristics
CN101198734B (en) Braided rope construction
CN101321907B (en) Rope containing high-performance polyethylene fibres
JP2013249556A (en) Hybrid core rope
US20060182962A1 (en) Fluoropolymer fiber composite bundle
CA2614029C (en) Surgical repair product based on uhmwpe filaments
US8881521B2 (en) Cable protection system and method of reducing an initial stress on a cable
BR112012005994A2 (en) &#34;cvt belt&#34;
CN101040771A (en) Medical instrument having an engagement mechanism
KR20110107321A (en) Surgical instruments with sheathed tendons
JP7429645B2 (en) Small diameter, high strength, low elongation, creep and wear resistant braided structure
JP5257986B2 (en) Torsional motion converter
EP2518208A2 (en) Abrasion resistant cords and ropes
CN211325577U (en) Steel wire transmission mechanism
JP4750354B2 (en) Driven support or traction means and method of manufacturing the same
KR20220027270A (en) Helically toothed belt power transmitting device
KR102618903B1 (en) low slip splice
JP4084245B2 (en) Medical treatment instrument using an operation wire rope
US11396931B2 (en) Twisted string transmission
US20060027247A1 (en) Transgenic spider silk floss
CN216427824U (en) Steel wire rope composite structure rope core
JP7291673B2 (en) V-ribbed belt and its manufacturing method
JP5454891B2 (en) Fiber rope
FR3115453A1 (en) Implantable device for the repair of at least one tendon or ligament
JP2001120491A (en) Endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees