JP2010180441A - Gas diffusion electrode, method for producing the same and electrolyzing method using the same - Google Patents

Gas diffusion electrode, method for producing the same and electrolyzing method using the same Download PDF

Info

Publication number
JP2010180441A
JP2010180441A JP2009023574A JP2009023574A JP2010180441A JP 2010180441 A JP2010180441 A JP 2010180441A JP 2009023574 A JP2009023574 A JP 2009023574A JP 2009023574 A JP2009023574 A JP 2009023574A JP 2010180441 A JP2010180441 A JP 2010180441A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
silver
conductive carrier
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009023574A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirokura
義法 白倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009023574A priority Critical patent/JP2010180441A/en
Publication of JP2010180441A publication Critical patent/JP2010180441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas diffusion electrode which is low in oxygen reduction pressure in the electrolyzing application of water or an aqueous alkali metal chloride solution, to provide a method for producing the gas diffusion electrode, and to provide an electrolyzing method using the gas diffusion electrode. <P>SOLUTION: The blending ratio between a silver catalyst and a conductive carrier is optimized, and the porosity in the electrode is increased. Concretely, in a gas diffusion electrode C using a conductive base material, a silver catalyst, a conductive carrier and a fluorine-containing resin, the gas diffusion electrode C in which the weight ratio of the silver catalyst/(the silver catalyst+the conductive carrier) lies in the range of 0.1 to 0.5, the porosity of the ones with the pore diameter of 0.01 to 10 μm is ≥60%, and also, the secondary particle size of silver particles on the surface of the conductive carrier is ≤1 μm is obtained, after contacting with a conductive carrier dispersion liquid containing a surfactant and a reducing substance and a water solution silver solution, by adding a fluorine-containing resin thereto, subjecting them to dispersing, mixing, solid-liquid separation, drying and pulverization so as to be powder, and molding the powder onto the conductive base material, and performing firing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用するガス拡散電極およびその製造方法並びにこれを用いた電気分解方法に関するものである。   The present invention relates to a gas diffusion electrode used for electrolysis of water or electrolysis of an aqueous solution of alkali metal chloride such as salt, a method for producing the same, and an electrolysis method using the same.

水又はアルカリ金属塩化物水溶液電解工業は電力多消費型産業であり、省エネルギー化のために様々な技術開発が行われている。水又はアルカリ金属塩化物水溶液電解方法は、通常、陰極反応が水素発生反応であるイオン交換膜法が用いられる。一方、イオン交換膜法に比べ省エネルギー化が期待されている電解方法として、陰極反応に酸素還元反応を用いたガス拡散型電解法があるが、ガス拡散電極の酸素還元過電圧が非常に高いことから、省エネルギー化には不十分なものである。   The water or alkali metal chloride aqueous solution electrolysis industry is a power intensive industry, and various technological developments have been made to save energy. As the water or alkali metal chloride aqueous solution electrolysis method, an ion exchange membrane method in which the cathode reaction is a hydrogen generation reaction is usually used. On the other hand, as an electrolysis method that is expected to save energy compared to the ion exchange membrane method, there is a gas diffusion electrolysis method using an oxygen reduction reaction for the cathode reaction, but the oxygen reduction overvoltage of the gas diffusion electrode is very high. It is insufficient for energy saving.

電解電圧の構成要素は、主に理論電解電圧、液抵抗、隔膜抵抗、陽極過電圧、陰極過電圧からなり、省エネルギー化は電解電圧を低減することである。特に、過電圧の低減に関しては、電極の触媒材料や電極表面のモルフォロジーに左右されることから、その改良についてこれまで多くの研究開発が行われてきた。例えば、陽極過電圧の低減に盛んな研究開発が行われてきた結果、陽極過電圧が低く、耐久性に優れた寸法安定性電極[例えば、ペルメレック電極社製のDSE電極(登録商標)]が完成し、既に食塩電解工業を初め広い分野で利用されている。   The components of the electrolysis voltage mainly consist of a theoretical electrolysis voltage, a liquid resistance, a diaphragm resistance, an anode overvoltage, and a cathode overvoltage, and energy saving is to reduce the electrolysis voltage. In particular, the reduction in overvoltage depends on the electrode catalyst material and the electrode surface morphology, and so much research and development has been conducted on its improvement. For example, as a result of extensive research and development for reducing anode overvoltage, a dimensionally stable electrode [for example, DSE electrode (registered trademark) manufactured by Permerek Electrode Co., Ltd.] having low anode overvoltage and excellent durability has been completed. It is already used in a wide range of fields including the salt electrolysis industry.

一方、陰極過電圧、即ちガス拡散電極の酸素還元過電圧の低減に関してもこれまで多くの提案がなされている。   On the other hand, many proposals have been made regarding the reduction of the cathode overvoltage, that is, the oxygen reduction overvoltage of the gas diffusion electrode.

ガス拡散電極の構造は、ガス拡散層と反応層からなる積層構造であり、内部に強度付与、給電を目的とした集電体が埋め込まれ、電極反応は、電極背面のガス拡散層より酸素ガスを供給し、電極前面の反応層内部の電極触媒上で酸素ガス、水、電子が反応し水酸化物イオンへと還元される。   The structure of the gas diffusion electrode is a laminated structure composed of a gas diffusion layer and a reaction layer, and a current collector for emphasizing and supplying electric power is embedded inside, and the electrode reaction is carried out by oxygen gas from the gas diffusion layer on the back of the electrode. Then, oxygen gas, water, and electrons react on the electrode catalyst inside the reaction layer on the front surface of the electrode to be reduced to hydroxide ions.

ガス拡散電極の酸素還元過電圧について、過電圧の低減は一般的には、電極触媒活性の向上と、触媒の微細高分散化による反応効率の向上、ガス拡散性の向上が有効と考えられる。電極触媒は、白金、銀が高活性触媒として挙げられるが、安価な銀が好適に用いられ、銀触媒、或いは希土類元素を添加したガス拡散電極が開示されている(例えば特許文献1および特許文献2参照)。   Regarding the oxygen reduction overvoltage of the gas diffusion electrode, it is generally considered effective to reduce the overvoltage by improving the electrocatalytic activity, improving the reaction efficiency by making the catalyst fine and highly dispersed, and improving the gas diffusibility. Examples of the electrode catalyst include platinum and silver as highly active catalysts. However, inexpensive silver is preferably used, and a silver catalyst or a gas diffusion electrode to which a rare earth element is added is disclosed (for example, Patent Document 1 and Patent Document). 2).

また、白金、銀以外にもペロブスカイト型酸化物を触媒に用いたガス拡散電極も開示されている(例えば特許文献3参照)が、低過電圧性能である反面、逆ミセル法を用いた製造方法は高コストなため工業プロセスとして現実的とはいえない。   In addition to platinum and silver, a gas diffusion electrode using a perovskite type oxide as a catalyst is also disclosed (see, for example, Patent Document 3). On the other hand, a manufacturing method using the reverse micelle method is low overvoltage performance. Due to the high cost, it is not practical as an industrial process.

さらに、これらガス拡散電極に用いる触媒の分散状態について、通常、触媒の一次粒子径がサブミクロンの微粒子を用いられるが、実際には、これら微粒子はミクロオーダーに凝集した二次凝集体である。従って、電極製造において原料混合、分散処理によって、二次凝集体を一次粒子レベルまで分散させることは困難であり、結果として、ガス拡散電極内部の触媒粒子は分散性が低いことから反応効率が悪いなどの問題を有していた。   Furthermore, fine particles having a primary particle diameter of the sub-micron of the catalyst are usually used for the dispersion state of the catalyst used in the gas diffusion electrode, but actually, these fine particles are secondary aggregates aggregated on the micro order. Therefore, it is difficult to disperse secondary aggregates to the primary particle level by mixing and dispersing raw materials in electrode production. As a result, the reaction efficiency of the catalyst particles inside the gas diffusion electrode is low because of low dispersibility. Had problems such as.

一方、ガス拡散電極のガス拡散性について、電極成型手段としてホットプレスを用い、高温、高圧力で成型されることから、内部の空隙が小さく、ガス拡散性が十分なものではなかった。   On the other hand, regarding the gas diffusibility of the gas diffusion electrode, a hot press was used as an electrode molding means and molding was performed at a high temperature and a high pressure. Therefore, the internal gap was small and the gas diffusibility was not sufficient.

以上の通り、水又はアルカリ金属塩化物水溶液電解工業の電力消費量を削減する目的で、従来から様々なガス拡散電極が提案されてきたが、高活性触媒の高分散化と高ガス拡散性を兼ね備えたガス拡散電極は得られていなかった。   As described above, various gas diffusion electrodes have been proposed for the purpose of reducing the power consumption of the water or alkali metal chloride aqueous solution electrolysis industry, but high dispersion and high gas diffusibility of highly active catalysts have been proposed. A combined gas diffusion electrode has not been obtained.

特開平9−41181号公報JP-A-9-41181 特開2007−70645公報JP 2007-70645 A 特開2003−288905公報JP 2003-288905 A

本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で使用可能な、酸素還元過電圧が十分に低いガス拡散電極、該ガス拡散電極の製造方法、並びに、該ガス拡散電極を陰極に用いた電解方法を提供し、水又はアルカリ金属塩化物水溶液電解工業等の電力消費量を削減することにある。   An object of the present invention is to provide a gas diffusion electrode having a sufficiently low oxygen reduction overvoltage that can be used in water or alkali metal chloride aqueous solution electrolysis industry, a method for producing the gas diffusion electrode, and the gas diffusion electrode as a cathode. It is to reduce the power consumption of water or alkali metal chloride aqueous solution electrolysis industry.

本発明者らは、上記課題を解決するため鋭意検討した結果、銀触媒と導電性担体の配合比適正化と電極の空隙率増加、及び、銀触媒高分散化、具体的には、導電性基材、銀触媒、導電性担体、フッ素系樹脂を用いたガス拡散電極において、銀触媒/(銀触媒+導電性担体)の重量比が0.1〜0.5の範囲であり、細孔直径0.01〜10μmの空隙率が60%以上であり、且つ、導電性担体上の銀粒子の二次粒子径が1μm以下と高分散であるガス拡散電極が優れた酸素還元過電圧性能を示すことを見出した。   As a result of intensive studies to solve the above problems, the present inventors have optimized the mixing ratio of the silver catalyst and the conductive carrier, increased the porosity of the electrode, and highly dispersed the silver catalyst. In a gas diffusion electrode using a base material, a silver catalyst, a conductive carrier, and a fluororesin, the weight ratio of silver catalyst / (silver catalyst + conductive carrier) is in the range of 0.1 to 0.5, and pores A gas diffusion electrode having a high dispersion of a silver particle on a conductive support with a porosity of 60% or more having a diameter of 0.01 to 10 μm and a secondary particle diameter of 1 μm or less exhibits excellent oxygen reduction overvoltage performance. I found out.

さらに、本発明のガス拡散電極は、界面活性剤、還元性物質を含む導電性担体分散液と水溶性銀溶液を接触した後、フッ素系樹脂を添加し、分散、混合、固液分離、乾燥、粉砕した粉末を、導電性基材上に成型し、焼成することにより上記ガス拡散電極が得られることを見出し、上記ガス拡散電極が、水又はアルカリ金属塩化物水溶液中で陰極として用いた場合、酸素還元過電圧が極めて低いことも見出し、本発明を完成するに至った。以下、本発明を詳細に説明する。   Furthermore, the gas diffusion electrode of the present invention is obtained by bringing a conductive carrier dispersion containing a surfactant and a reducing substance into contact with a water-soluble silver solution, and then adding a fluororesin, and dispersing, mixing, solid-liquid separation, and drying. When the pulverized powder is molded on a conductive substrate and baked, the gas diffusion electrode is obtained, and the gas diffusion electrode is used as a cathode in water or an aqueous alkali metal chloride solution. The present inventors have also found that the oxygen reduction overvoltage is extremely low and have completed the present invention. Hereinafter, the present invention will be described in detail.

本発明のガス拡散電極は、導電性基材、銀触媒、導電性担体及びフッ素系樹脂を用いたガス拡散電極において、銀触媒/(銀触媒+導電性担体)の重量比が0.1〜0.5であり、細孔直径0.01〜10μmの空隙率が60%以上であり、且つ、導電性担体表面の銀粒子の二次粒子径が1μm以下である。   The gas diffusion electrode of the present invention is a gas diffusion electrode using a conductive substrate, a silver catalyst, a conductive carrier and a fluorine resin, and the weight ratio of silver catalyst / (silver catalyst + conductive carrier) is 0.1 to 0.1. 0.5, the porosity of the pore diameter of 0.01 to 10 μm is 60% or more, and the secondary particle diameter of the silver particles on the surface of the conductive support is 1 μm or less.

その様なガス拡散電極は、例えば、界面活性剤、還元性物質を含む導電性担体分散液と水溶性銀溶液を接触した後、フッ素系樹脂を添加し、分散、混合、固液分離、乾燥、粉砕した粉末を、導電性基材上に成型し、焼成することによって製造することができ、そのガス拡散電極を水又はアルカリ金属塩化物水溶液の電気分解に使用すると、酸素還元過電圧が低い優れた性能を示す。   For example, such a gas diffusion electrode is obtained by bringing a conductive carrier dispersion containing a surfactant and a reducing substance into contact with a water-soluble silver solution, and then adding a fluororesin and dispersing, mixing, solid-liquid separation, and drying. The pulverized powder can be produced by molding on a conductive substrate and firing, and when the gas diffusion electrode is used for electrolysis of water or an aqueous alkali metal chloride solution, the oxygen reduction overvoltage is excellent. Performance.

本発明のガス拡散電極の銀触媒と導電性担体の配合比について、銀触媒/(銀触媒+導電性担体)の重量比が0.1〜0.5の範囲が好ましい。配合比が0.1よりも小さい場合、細孔形成する導電性担体の比率が高くなり空隙率は増加するが、銀触媒量自体が不足し、逆に0.5を超える場合、細孔形成する導電性担体量の不足、或いは湿式還元により析出した銀粒子による導電性担体間の細孔閉塞など空隙率が減少するため、何れの場合も酸素還元過電圧の低下が不十分となる。なお、以下で示すガス拡散電極の製造において、この原料配合比は電極製造後の電極組成にも実質的に維持される。   Regarding the compounding ratio of the silver catalyst and the conductive carrier of the gas diffusion electrode of the present invention, the weight ratio of silver catalyst / (silver catalyst + conductive carrier) is preferably in the range of 0.1 to 0.5. When the blending ratio is less than 0.1, the ratio of the conductive carrier that forms pores increases and the porosity increases, but the silver catalyst amount itself is insufficient, and conversely, when it exceeds 0.5, pore formation occurs. In any case, the reduction of the oxygen reduction overvoltage becomes insufficient because the porosity decreases, such as a lack of the amount of the conductive carrier to be carried out, or pore clogging between the conductive carriers due to silver particles precipitated by wet reduction. In the production of the gas diffusion electrode described below, this raw material blending ratio is substantially maintained in the electrode composition after the production of the electrode.

ガス拡散電極内部の空隙の役割は、反応物質である酸素ガスの供給、拡散性を高めることが、酸素還元反応の効率化に重要である。   The role of the voids in the gas diffusion electrode is to increase the supply of oxygen gas, which is a reactant, and the diffusibility, so as to improve the efficiency of the oxygen reduction reaction.

ガス拡散電極の細孔径について、通常、酸素ガスの平均自由工程が約0.1μmであることから、0.1μm以下の細孔径では酸素分子は細孔壁への衝突頻度の高い状態、所謂、Knudsen拡散支配となり、酸素ガスの拡散性は低下するため好ましくない。逆に細孔径が大きくなるとガスの拡散性は向上するが、細孔直径が10μmを超えると、電極内部への水の浸透による細孔閉塞、所謂、フラッディングが起こりやすくなるため好ましくない。   Regarding the pore diameter of the gas diffusion electrode, since the mean free path of oxygen gas is usually about 0.1 μm, when the pore diameter is 0.1 μm or less, oxygen molecules have a high frequency of collision with the pore walls, so-called Knudsen diffusion is dominant, and the diffusibility of oxygen gas is lowered. Conversely, when the pore diameter is increased, the gas diffusibility is improved. However, when the pore diameter exceeds 10 μm, pore clogging due to water permeation into the electrode, so-called flooding, is liable to occur.

従って、細孔直径が0.01〜10μmの細孔が多い程、酸素ガスの拡散がより良く進行する為に好ましく、この細孔が多くなると、必然的にその空隙率が大きくなる。   Therefore, the larger the number of pores having a pore diameter of 0.01 to 10 μm, the better because oxygen gas diffusion proceeds better. The larger the number of pores, the larger the porosity.

そのガス拡散電極の空隙率について、本発明のガス拡散電極の空隙率は、細孔直径0.01〜10μmで60%以上が必須である。その理由は、60%未満の場合、反応消費量に対して空隙中酸素量が不足するため、結果的に、電極内部の酸素不足を引き起こすため、酸素還元過電圧の低下が不十分となるからである。   As for the porosity of the gas diffusion electrode, the porosity of the gas diffusion electrode of the present invention must be 60% or more with a pore diameter of 0.01 to 10 μm. The reason for this is that when the amount is less than 60%, the amount of oxygen in the gap is insufficient with respect to the reaction consumption, resulting in insufficient oxygen inside the electrode, resulting in insufficient reduction of the oxygen reduction overvoltage. is there.

本発明のガス拡散電極内部の銀粒子の分散状態について、導電性担体上の銀粒子の二次粒子径が1μm以下であることが必須である。電極内部において銀粒子の二次粒子径が1μm以上の場合、酸素ガスとの実効反応表面積が減少するため酸素ガス−銀触媒との反応効率の低下するため、酸素還元過電圧の低下が不十分となる。   About the dispersion state of the silver particle inside the gas diffusion electrode of this invention, it is essential that the secondary particle diameter of the silver particle on an electroconductive support | carrier is 1 micrometer or less. When the secondary particle diameter of the silver particles is 1 μm or more inside the electrode, the effective reaction surface area with oxygen gas is reduced, so that the reaction efficiency with the oxygen gas-silver catalyst is lowered. Become.

本発明のガス拡散電極は、例えば、銀触媒、導電性担体、フッ素系樹脂を、界面活性剤水溶液に分散、混合、固液分離、乾燥、粉砕した粉末を、導電性基材上に成型し、焼成するによって得られるが、電極の空隙率が60%以上であるガス拡散電極を得ることが出来ればどの様な製造方法でもよい。   The gas diffusion electrode of the present invention is obtained by, for example, molding a powder obtained by dispersing, mixing, solid-liquid separation, drying, and pulverizing a silver catalyst, a conductive carrier, and a fluororesin in an aqueous surfactant solution onto a conductive substrate. Any manufacturing method may be used as long as a gas diffusion electrode having a porosity of 60% or more can be obtained.

以下、本発明が提供する、導電性基材、銀触媒、導電性担体およびフッ素系樹脂を用いたガス拡散電極において、銀触媒/(銀触媒+導電性担体)重量比が0.1〜0.5の範囲であり、電極の空隙率が60%以上であり、導電性担体上の銀粒子の二次粒子径が1μm以下であるガス拡散電極を製造する具体的方法を説明する。   Hereinafter, in the gas diffusion electrode using the conductive substrate, the silver catalyst, the conductive carrier, and the fluorine resin provided by the present invention, the silver catalyst / (silver catalyst + conductive carrier) weight ratio is 0.1 to 0. A specific method for producing a gas diffusion electrode that is in the range of 0.5, the porosity of the electrode is 60% or more, and the secondary particle diameter of the silver particles on the conductive support is 1 μm or less will be described.

本発明で用いる導電性基材は、例えばニッケル、鉄、銅、チタンやステンレス合金鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。導電性基材の形状は、特に限定されるものではなく、一般に電解槽の電極に合せた形状でよく、例えば平板、曲板等が使用可能である。   Examples of the conductive substrate used in the present invention include nickel, iron, copper, titanium, and stainless steel alloy, and nickel having excellent corrosion resistance against an alkaline solution is particularly preferable. The shape of the conductive substrate is not particularly limited, and may generally be a shape that matches the electrode of the electrolytic cell. For example, a flat plate, a curved plate, or the like can be used.

また、本発明で用いる導電性基材は、多孔板が好ましく、例えば、エキスパンドメタル、パンチメタル、網等が使用できる。   In addition, the conductive substrate used in the present invention is preferably a perforated plate, and for example, expanded metal, punch metal, and net can be used.

本発明の界面活性剤は、各原料が均一に分散できれば良く、エーテル型、エステル型、エーテルエステル型、アルコールエトキシレートなどが挙げられ、例えば、非イオン性界面活性剤であるトリトンX−100を用いた水溶液に分散させれば良い。加えて、超音波分散処理を行えば、効率よく分散することができる。   The surfactant of the present invention only needs to be able to uniformly disperse each raw material, and examples thereof include ether type, ester type, ether ester type, alcohol ethoxylate, etc. For example, Triton X-100 which is a nonionic surfactant is used. What is necessary is just to disperse | distribute to the used aqueous solution. In addition, if an ultrasonic dispersion process is performed, it can disperse | distribute efficiently.

本発明の導電性担体は、導電性、細孔形成に加え電極内部への水の浸透による細孔閉塞、所謂、フラッディングを防ぐため、疎水性を兼ね備えた材料、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイトなどの疎水性カーボンが例示できる。   The conductive carrier of the present invention is a material having hydrophobicity in order to prevent electrical conductivity, pore formation and pore clogging due to water penetration into the electrode, so-called flooding, such as acetylene black, ketjen black And hydrophobic carbon such as carbon black and graphite.

本発明の還元性物質は、水溶性銀溶液中の銀イオンを金属銀に還元可能な物質であれば良く、水素、ヒドラジン、水素化ホウ素類、糖類、アスコルビン酸、ホルマリン、酒石酸などが例示できる。   The reducing substance of the present invention may be any substance that can reduce silver ions in a water-soluble silver solution to metallic silver, and examples thereof include hydrogen, hydrazine, borohydrides, saccharides, ascorbic acid, formalin, and tartaric acid. .

次いで、界面活性剤、還元性物質を含む導電性担体分散液について、界面活性剤の濃度は分散処理が可能な最小量が好ましく、2〜10重量%が例示でき、還元性物質の量については、水溶性銀溶液中の銀イオンを還元できる当量以上であれば良く、反応率を加味すると1.5倍当量程度が好ましい。また、導電性担体の濃度は、10重量%を超える高濃度になると、分散液は撹拌不可となることがあるため、好ましくは濃度10重量%以下、さらに好ましくは5重量%以下とすれば良い。   Next, for the conductive carrier dispersion containing the surfactant and the reducing substance, the concentration of the surfactant is preferably the minimum amount that can be dispersed, and can be exemplified by 2 to 10% by weight. It is sufficient that the amount of the silver ion in the water-soluble silver solution is equal to or more than that which can be reduced. Further, when the concentration of the conductive carrier is higher than 10% by weight, the dispersion may not be stirred, so the concentration is preferably 10% by weight or less, more preferably 5% by weight or less. .

本発明の水溶性銀溶液は、水溶性銀塩、例えば硝酸銀、酢酸銀、硫酸銀、塩化銀、炭酸銀などが例示でき、これらは、水溶液中で銀イオンとして存在するが、アンモニア水溶液を添加し、銀アンモニウムイオンなどの錯イオンとして存在させても良い。   Examples of the water-soluble silver solution of the present invention include water-soluble silver salts such as silver nitrate, silver acetate, silver sulfate, silver chloride, and silver carbonate. These are present as silver ions in an aqueous solution, but an aqueous ammonia solution is added. In addition, they may be present as complex ions such as silver ammonium ions.

本発明の導電性担体分散液と水溶性銀溶液との接触方法は、撹拌下において水溶性銀溶液に導電性担体分散液を添加、或いは導電性担体分散液へ水溶性銀溶液を添加する方法を用いることができ、水溶性銀溶液中の銀イオンと還元性物質の接触により、銀イオンが還元され、析出した金属銀は導電性担体上に担持させることができる。   The method of contacting the conductive carrier dispersion of the present invention with the water-soluble silver solution is a method of adding the conductive carrier dispersion to the water-soluble silver solution under stirring or adding the water-soluble silver solution to the conductive carrier dispersion. The silver ions are reduced by the contact between the silver ions in the water-soluble silver solution and the reducing substance, and the precipitated metallic silver can be supported on the conductive carrier.

次に、フッ素系樹脂を添加するが、フッ素系樹脂は、銀、導電性担体を結着させるバインダー機能とフラッディング防止のため撥水能を有する。用いるフッ素系樹脂は、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン共重合体(FEP)、(PFE)などの粉末あるいは分散液(ディスパージョン)を用いることができ、その添加量はバインダー機能とフラッディング防止のため撥水能が付与できれば良く、例えば、フッ素樹脂/導電性担体の重量比で0.2〜2程度が好ましい。   Next, a fluorine-based resin is added. The fluorine-based resin has a binder function for binding silver and a conductive carrier and has a water repellency for preventing flooding. As the fluororesin used, for example, a powder or dispersion (dispersion) of polytetrafluoroethylene (PTFE), tetrafluoroethylene copolymer (FEP), (PFE), etc. can be used, and the amount added is a binder. It is sufficient if water repellency can be imparted to prevent the function and flooding. For example, the weight ratio of fluororesin / conductive carrier is preferably about 0.2 to 2.

この様にして原料混合した後、濾過、界面活性剤の洗浄を行い、ガス拡散電極原料粉末を回収する。濾過、洗浄は効率よく行うため、アルコールを用いて予め粒子を凝集させる。使用するアルコールは、特に限定されずエタノール、メタノール、ブタノールなどが挙げられ、汎用的にはエタノールが用いれば良い。 濾過、洗浄物は、乾燥し、粉砕ミキサーやミルを用いて微粉化することによって、ガス拡散電極原料粉末として得られる。   After the raw materials are mixed in this manner, filtration and cleaning of the surfactant are performed to recover the gas diffusion electrode raw material powder. In order to perform filtration and washing efficiently, particles are aggregated in advance using alcohol. The alcohol to be used is not particularly limited, and examples thereof include ethanol, methanol, butanol and the like, and ethanol may be used for general purposes. The filtered and washed product is dried and then pulverized using a pulverizing mixer or mill to obtain a gas diffusion electrode raw material powder.

次ぎに、ガス拡散原料粉末を用いてガス拡散電極を作製する。作製方法は、導電性基材上にガス拡散原料粉末を成型するが、その方法は、金型を用いたプレス法、成型と同時に加熱を行うホットプレス、混練した原料粉末をロール成型機で成型する方法などが挙げられるが、得られるガス拡散電極の細孔直径0.01〜10μmの空隙率が60%以上になれば特に限定されるものではない。   Next, a gas diffusion electrode is produced using the gas diffusion raw material powder. The production method is to mold the gas diffusion raw material powder on the conductive substrate. The method is a press method using a mold, a hot press that heats simultaneously with the molding, and the kneaded raw material powder is molded with a roll molding machine. However, there is no particular limitation as long as the porosity of the obtained gas diffusion electrode having a pore diameter of 0.01 to 10 μm is 60% or more.

次ぎに成型された成型物は、強度向上、残存界面活性剤分解を目的とした焼成を行う。焼成温度は、フッ素系樹脂の融点が250℃付近、また、界面活性剤の分解温度が約220℃であることから、焼成温度は200℃〜350℃の範囲が好ましく、焼成時間は5分〜20分程度行うことが好ましい。   Next, the molded product is fired for the purpose of improving the strength and decomposing the remaining surfactant. The firing temperature is such that the melting point of the fluororesin is around 250 ° C. and the decomposition temperature of the surfactant is about 220 ° C. Therefore, the firing temperature is preferably in the range of 200 ° C. to 350 ° C., and the firing time is from 5 minutes to It is preferable to carry out for about 20 minutes.

この様にして得られる本発明のガス拡散電極は、水又は食塩などのアルカリ金属塩化物水溶液の電気分解用途において酸素還元電極として用いると、低酸素過電圧が得られ、本発明が提供するガス拡散電極を用いることで電気分解の所要エネルギーを容易に低減可能となる。   The gas diffusion electrode of the present invention obtained in this way can be used as an oxygen reduction electrode in the electrolysis of an aqueous solution of alkali metal chloride such as water or sodium chloride, and a low oxygen overvoltage can be obtained. By using the electrode, the energy required for electrolysis can be easily reduced.

本発明のガス拡散電極は酸素還元過電圧が低く、水又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用すると、所要エネルギーを大幅に削減可能である。   The gas diffusion electrode of the present invention has a low oxygen reduction overvoltage, and when used for electrolysis of an aqueous solution of alkali metal chloride such as water or salt, the required energy can be greatly reduced.

酸素還元過電圧の測定で用いたテフロン(登録商標)製リングセル構造を示す。The ring cell structure made from Teflon (trademark) used by the measurement of oxygen reduction overvoltage is shown.

以下、本発明の実施例を示すが、本発明はこれらの実施例により何等限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

尚、各評価は下記に示す方法で実施した。   In addition, each evaluation was implemented by the method shown below.

(酸素還元過電圧評価セル)
作製したガス拡散電極を切り出し、図1に示すようなセルに取り付けて評価した。測定セルは、テフロン(登録商標)製リングセル構造であり、ガス拡散電極をO−リングにより気密性を保ちながら、酸素ガス供給管を通して電極背面へ供給し、排ガスを外部へ排出させ、電流は白金線−白金メッシュを介して供給する構造である。
(Oxygen reduction overvoltage evaluation cell)
The produced gas diffusion electrode was cut out and attached to a cell as shown in FIG. 1 for evaluation. The measurement cell has a ring cell structure made of Teflon (registered trademark), and the gas diffusion electrode is supplied to the back surface of the electrode through the oxygen gas supply pipe while keeping the gas tightness by the O-ring. It is a structure supplied through a platinum wire-platinum mesh.

(酸素還元過電圧評価)
酸素還元過電圧評価は、純酸素ガスを100ml/minの速度で供給し、電解液は32wt%水酸化ナトリウム水溶液の電解液(容量約1L)を用いて、対極に白金板、温度90℃、電流密度6kA/m条件で電解し、カレントインタラプター法により測定した。
(Oxygen reduction overvoltage evaluation)
In the oxygen reduction overvoltage evaluation, pure oxygen gas was supplied at a rate of 100 ml / min, and the electrolyte was a 32 wt% sodium hydroxide aqueous solution (capacity: about 1 L), a platinum plate as a counter electrode, temperature 90 ° C., current Electrolysis was performed under conditions of a density of 6 kA / m 2 and measurement was performed by a current interrupter method.

(細孔容積評価)
細孔構造は、水銀圧入法を用いた水銀ポロシメーター(島津製作所製:オートポア9510)により0.003μm〜400μmの細孔容積を測定し、0.01〜10μmの細孔容積の割合を空隙率として求めた。
(Pore volume evaluation)
The pore structure was measured by measuring a pore volume of 0.003 μm to 400 μm using a mercury porosimeter (manufactured by Shimadzu Corporation: Autopore 9510) using a mercury intrusion method, and the ratio of the pore volume of 0.01 to 10 μm was used as the porosity. Asked.

(二次粒子径)
作製したガス拡散電極の断面を走査型電子顕微鏡(日本電子データム社製、JSM−6390型、倍率:2000、10000倍)による二次電子反射像から測定し、銀粒子100個の粒子径を無作為に測定し単純平均値とした。
(Secondary particle size)
The cross section of the produced gas diffusion electrode was measured from a secondary electron reflection image by a scanning electron microscope (JEOL Datum Co., Ltd., JSM-6390 type, magnification: 20000, 10000 times), and the particle diameter of 100 silver particles was measured. A simple average value was measured for the purpose.

実施例1
導電性担体としてアセチレンブラック(Cabot製:CX−72R)3gを2重量%に調整した非イオン系界面活性剤(トリトンX−100)水溶液200mlに添加し、超音波分散を約10分間行い、98%ヒドラジン水溶液を3ml添加した。
Example 1
As an electroconductive carrier, 3 g of acetylene black (manufactured by Cabot: CX-72R) was added to 200 ml of an aqueous solution of a nonionic surfactant (Triton X-100) adjusted to 2% by weight, and ultrasonic dispersion was performed for about 10 minutes. 3 ml of an aqueous solution of% hydrazine was added.

次いで、この導電性担体分散液を撹拌しながら硝酸銀水溶液(0.14モル/L−100ml)を5ml/分の速度で添加し、添加後30分撹拌し、導電性担体表面へ金属銀微粒子を析出させた。この銀触媒/(銀触媒+導電性担体)の重量比は0.33であった。   Next, an aqueous silver nitrate solution (0.14 mol / L-100 ml) is added at a rate of 5 ml / min while stirring the conductive carrier dispersion, and the mixture is stirred for 30 minutes to add metal silver fine particles to the surface of the conductive carrier. Precipitated. The weight ratio of silver catalyst / (silver catalyst + conductive support) was 0.33.

次いで、PTFEディスパージョン(三井デュポンフロロケミカル製:31J)を1.25g添加し撹拌した後、エタノールを添加し凝集させ、吸引濾過、洗浄、乾燥を行い、乾燥粉末をミキサー粉砕し、銀−導電性担体−フッ素系樹脂粉末を作製した。   Next, 1.25 g of PTFE dispersion (Mitsui DuPont Fluorochemicals: 31J) was added and stirred, then ethanol was added to agglomerate, suction filtration, washing and drying were performed, and the dried powder was pulverized with a mixer, and silver-conductive A conductive carrier-fluorine resin powder was prepared.

次いで、金型を用いて銀製エキスパンドメッシュ(3×3cm)を敷き、解砕粉末2gを9.8×10Pa(100kg/cm)の成型圧で成型した。 Next, a silver expanded mesh (3 × 3 cm) was laid using a mold, and 2 g of the crushed powder was molded at a molding pressure of 9.8 × 10 6 Pa (100 kg / cm 2 ).

成型体を、箱型マッフル炉(アドバンテック東洋製 型式KM−600、内容積27L)内で300℃、15分間、空気流通下で焼成し、本発明のガス拡散電極を作製した。   The molded body was fired in a box-type muffle furnace (model KM-600 manufactured by Advantech Toyo Co., Ltd., internal volume 27 L) at 300 ° C. for 15 minutes under an air flow to produce a gas diffusion electrode of the present invention.

次いで、ガス拡散電極の酸素還元過電圧、細孔容積の測定結果を表1に示し、一連のガス拡散電極の作製、評価を2回実施した。   Next, measurement results of the oxygen reduction overvoltage and pore volume of the gas diffusion electrode are shown in Table 1, and a series of gas diffusion electrodes were prepared and evaluated twice.

実施例2
導電性担体と銀粉末の割合を変化させた以外は実施例1と同様の操作で実施した。上記の方法で評価した結果を表1に示し、一連のガス拡散電極の作製、評価を2回実施した。
Example 2
The same operation as in Example 1 was carried out except that the ratio between the conductive carrier and the silver powder was changed. The results evaluated by the above method are shown in Table 1, and a series of gas diffusion electrodes were prepared and evaluated twice.

Figure 2010180441
比較例1
導電性担体と銀粉末の割合を変化させた以外は、実施例1と同様の操作で実施した。上記の方法で評価した結果を表2に示した。
Figure 2010180441
Comparative Example 1
The same operation as in Example 1 was performed except that the ratio of the conductive carrier and the silver powder was changed. The results of evaluation by the above method are shown in Table 2.

比較例2
導電性担体としてアセチレンブラック(Cabot製:CX−72R)3gと銀粉末(福田金属箔工業製:AgC−H)1.5gを、2重量%に調整した非イオン系界面活性剤(トリトンX−100)水溶液200mlに添加し、超音波分散を約10分間いった。Ag/(Ag+C)重量比は0.33である。
次いで、PTFEディスパージョン(三井デュポンフロロケミカル製:31J)を1.25g添加し撹拌した後、エタノールを添加し凝集させ、吸引濾過、洗浄、乾燥を行い、乾燥粉末をミキサー粉砕した以外は、実施例1と同様の操作で実施した。上記の方法で評価した結果を表2に示した。
Comparative Example 2
Nonionic surfactant (Triton X-) in which 3 g of acetylene black (manufactured by Cabot: CX-72R) and 1.5 g of silver powder (manufactured by Fukuda Metal Foil Industry: AgC-H) were adjusted to 2% by weight as conductive carriers. 100) The solution was added to 200 ml of an aqueous solution and subjected to ultrasonic dispersion for about 10 minutes. The Ag / (Ag + C) weight ratio is 0.33.
Next, 1.25 g of PTFE dispersion (Mitsui DuPont Fluorochemicals: 31J) was added and stirred, then ethanol was added to agglomerate, suction filtration, washing and drying were performed, and the dry powder was pulverized with a mixer. The same operation as in Example 1 was performed. The results of evaluation by the above method are shown in Table 2.

比較例3〜7
導電性担体と銀粉末の割合を変化させた以外は、比較例2と同様の操作で実施した。上記の方法で評価した結果を表2に示した。
Comparative Examples 3-7
The same operation as in Comparative Example 2 was performed except that the ratio of the conductive carrier and the silver powder was changed. The results of evaluation by the above method are shown in Table 2.

比較例8
電極成型方法に、380℃、4.9×10Pa(50kg/m)の圧力で1分間ホップレスした以外は実施例1と同様の操作で実施した。上記の方法で評価した結果を表2に示した。
Comparative Example 8
The same operation as in Example 1 was performed except that the electrode molding method was hopless at 380 ° C. and a pressure of 4.9 × 10 2 Pa (50 kg / m 2 ) for 1 minute. The results of evaluation by the above method are shown in Table 2.

Figure 2010180441
実施例1〜2の結果より、本発明が提供するガス拡散電極は酸素還元過電圧が低い、優れた特性を有することが明らかである。
Figure 2010180441
From the results of Examples 1 and 2, it is clear that the gas diffusion electrode provided by the present invention has excellent characteristics with low oxygen reduction overvoltage.

一方、比較例1〜8の結果との比較により、本発明のガス拡散電極の様に、銀触媒/(銀触媒+導電性担体)重量比が0.1〜0.5の範囲であり、細孔直径0.01〜10μmの空隙率が60%以上であって、且つ、導電性担体表面の銀粒子の二次粒子径が1μm以下でないと、本発明の効果を得ることが出来ないことが明らかである。   On the other hand, by comparison with the results of Comparative Examples 1 to 8, as in the gas diffusion electrode of the present invention, the silver catalyst / (silver catalyst + conductive support) weight ratio is in the range of 0.1 to 0.5, The effect of the present invention cannot be obtained unless the porosity of the pore diameter of 0.01 to 10 μm is 60% or more and the secondary particle diameter of the silver particles on the surface of the conductive support is 1 μm or less. Is clear.

A:白金線
B:酸素ガス供給管
C:ガス拡散電極
D:O−リング
E:白金メッシュ
A: Platinum wire B: Oxygen gas supply pipe C: Gas diffusion electrode D: O-ring E: Platinum mesh

Claims (3)

導電性基材、銀触媒、導電性担体及びフッ素系樹脂を用いたガス拡散電極において、銀触媒/(銀触媒+導電性担体)の重量比が0.1〜0.5であり、細孔直径0.01〜10μmの空隙率が60%以上であり、且つ、導電性担体表面の銀粒子の二次粒子径が1μm以下である、ガス拡散電極。 In a gas diffusion electrode using a conductive base material, a silver catalyst, a conductive carrier and a fluororesin, the weight ratio of silver catalyst / (silver catalyst + conductive carrier) is 0.1 to 0.5, and pores A gas diffusion electrode in which a porosity of 0.01 to 10 μm in diameter is 60% or more, and a secondary particle diameter of silver particles on the surface of the conductive support is 1 μm or less. 界面活性剤および還元性物質を含む導電性担体分散液と水溶性銀溶液とを接触した後、フッ素系樹脂を添加し、分散、混合、固液分離、乾燥、粉砕した粉末を、導電性基材上に成型し、焼成する、請求項1記載のガス拡散電極の製造方法。 After contacting the conductive carrier dispersion containing the surfactant and the reducing substance with the water-soluble silver solution, the fluororesin is added, and the dispersed, mixed, solid-liquid separated, dried and pulverized powder is added to the conductive group. The method for producing a gas diffusion electrode according to claim 1, wherein the gas diffusion electrode is molded and fired on a material. 請求項1記載のガス拡散電極を用いる、水又はアルカリ金属塩化物水溶液の電気分解方法。 A method for electrolyzing water or an aqueous alkali metal chloride solution using the gas diffusion electrode according to claim 1.
JP2009023574A 2009-02-04 2009-02-04 Gas diffusion electrode, method for producing the same and electrolyzing method using the same Pending JP2010180441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023574A JP2010180441A (en) 2009-02-04 2009-02-04 Gas diffusion electrode, method for producing the same and electrolyzing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023574A JP2010180441A (en) 2009-02-04 2009-02-04 Gas diffusion electrode, method for producing the same and electrolyzing method using the same

Publications (1)

Publication Number Publication Date
JP2010180441A true JP2010180441A (en) 2010-08-19

Family

ID=42762176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023574A Pending JP2010180441A (en) 2009-02-04 2009-02-04 Gas diffusion electrode, method for producing the same and electrolyzing method using the same

Country Status (1)

Country Link
JP (1) JP2010180441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527495A (en) * 2012-08-03 2015-09-17 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De Larecherche Scientifique Composite electrodes for water electrolysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497600A (en) * 1978-01-20 1979-08-01 Asahi Glass Co Ltd Cathode for electrolysis of alkali chlorides
JP2004055382A (en) * 2002-07-22 2004-02-19 Sony Corp Catalyst electrode and its manufacturing method as well as electrochemical device and its manufacturing method
JP2006095353A (en) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd Electrolytic oxidation treatment method for photograph waste liquid
WO2007055229A1 (en) * 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497600A (en) * 1978-01-20 1979-08-01 Asahi Glass Co Ltd Cathode for electrolysis of alkali chlorides
JP2004055382A (en) * 2002-07-22 2004-02-19 Sony Corp Catalyst electrode and its manufacturing method as well as electrochemical device and its manufacturing method
JP2006095353A (en) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd Electrolytic oxidation treatment method for photograph waste liquid
WO2007055229A1 (en) * 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527495A (en) * 2012-08-03 2015-09-17 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De Larecherche Scientifique Composite electrodes for water electrolysis

Similar Documents

Publication Publication Date Title
Hu et al. Multifunctional carbon‐based metal‐free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution
KR101399172B1 (en) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide
TWI424093B (en) Oxygen gas diffusion cathode for sodium chloride electrolysis
Zheng et al. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction
Hacker et al. Carbon nanofiber-based active layers for fuel cell cathodes–preparation and characterization
Guo et al. Room temperature-formed iron-doped nickel hydroxide on nickel foam as a 3D electrode for low polarized and high-current-density oxygen evolution
JP2007242433A (en) Electrode catalyst for electrochemical reaction, manufacturing method of the same, and electrochemical electrode having the same
US7857953B2 (en) Oxygen-reducing gas diffusion cathode and method of sodium chloride electrolysis
KR20120010158A (en) Oxygen-consuming electrode
JP6128709B2 (en) Gas diffusion electrode and preparation method thereof
KR101584725B1 (en) Alkaline anion exchange membrane water electrolyzer using Ni electrodeposited hydrophilic porous carbon material and method for preparing the same
WO2009001992A1 (en) Process for preparing of a catalyst solution for fuel cell and a membrane electrode assembly using the same
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
CN113718269B (en) Electrocatalytic material and preparation method and application thereof
Zhang et al. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production
JP5932791B2 (en) Oxygen consuming electrode and method for producing the same
CN115228474B (en) Metal colloid catalyst for oxygen evolution reaction under alkaline condition and preparation method and application thereof
US9118082B2 (en) Oxygen-consuming electrode and process for the production thereof
JP2007087827A (en) Electrode catalyst and its manufacturing method
US9163318B2 (en) Oxygen-consuming electrode and process for production thereof
JP2010180441A (en) Gas diffusion electrode, method for producing the same and electrolyzing method using the same
JP2010180440A (en) Gas diffusion electrode, method for producing the same and electrolyzing method using the same
Aarimuthu et al. Enhanced membraneless fuel cells by electrooxidation of ethylene glycol with a nanostructured cobalt metal catalyst
Kordek-Khalil et al. Nanocomposite use in MFCs: a state of the art review
JP2007119817A (en) Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105