JP2010179767A - Road surface friction coefficient estimating device - Google Patents

Road surface friction coefficient estimating device Download PDF

Info

Publication number
JP2010179767A
JP2010179767A JP2009024927A JP2009024927A JP2010179767A JP 2010179767 A JP2010179767 A JP 2010179767A JP 2009024927 A JP2009024927 A JP 2009024927A JP 2009024927 A JP2009024927 A JP 2009024927A JP 2010179767 A JP2010179767 A JP 2010179767A
Authority
JP
Japan
Prior art keywords
longitudinal force
road surface
value
difference value
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009024927A
Other languages
Japanese (ja)
Other versions
JP5140015B2 (en
Inventor
Takeshi Yoneda
毅 米田
Masaru Kogure
勝 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2009024927A priority Critical patent/JP5140015B2/en
Publication of JP2010179767A publication Critical patent/JP2010179767A/en
Application granted granted Critical
Publication of JP5140015B2 publication Critical patent/JP5140015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To always estimate an accurate road surface μ with high responsiveness even in traveling an upward/downward slope. <P>SOLUTION: A road surface μ estimating device 10 computes an actual longitudinal force generated by a tire at each sampling time, as an actual longitudinal force Fmsve, computes a difference value between a present value and a past value of the actual longitudinal force Fmsve as an actual longitudinal force difference value ΔFmsve, computes an ideal longitudinal force generated by the tire based on a tire model including the road surface μ as a parameter at the same timing as the actual longitudinal force Fmsve, as an ideal longitudinal force Fmdve, computes a difference value between a present value and a past value of the ideal longitudinal force Fmdve as an ideal longitudinal force difference value ΔFmdve, and determines a value of the road surface μ by optimization computation to minimize the square sum of a deviation between the actual longitudinal force difference value ΔFmsve and the ideal longitudinal force difference value ΔFmdve at each sampling time at least. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タイヤ前後力を基に路面摩擦係数を推定する路面摩擦係数推定装置に関する。   The present invention relates to a road surface friction coefficient estimating device that estimates a road surface friction coefficient based on a tire longitudinal force.

近年、車両においてはトラクション制御、制動力制御、トルク配分制御等について様々な制御技術が提案され、実用化されている。これらの技術では、必要な制御量の演算、或いは、補正に路面摩擦係数(以下、路面μと略称)を用いるものも多く、その制御を確実に実行するためには、正確な路面μを推定する必要がある。   In recent years, various control techniques for traction control, braking force control, torque distribution control, and the like have been proposed and put into practical use in vehicles. Many of these technologies use the road surface friction coefficient (hereinafter abbreviated as road surface μ) for calculation or correction of the required control amount. In order to reliably execute the control, the accurate road surface μ is estimated. There is a need to.

例えば、特開2005−7972号公報(以下、特許文献1)では、車体速度を測定し、車体加速度を算出し、左右駆動輪のそれぞれの車輪速度と車体速度との差分によって、左右駆動輪のそれぞれのスリップ率を算出し、車体加速度に対するそれぞれのスリップ率の比率をスリップ比とし、これらスリップ比の勾配の大きさから左右駆動輪のそれぞれの路面μを推定する技術が開示されている。   For example, in Japanese Patent Application Laid-Open No. 2005-7972 (hereinafter referred to as Patent Document 1), the vehicle body speed is measured, the vehicle body acceleration is calculated, and the difference between the wheel speed and the vehicle body speed of each of the left and right drive wheels is determined. A technique is disclosed in which each slip ratio is calculated, the ratio of each slip ratio to the vehicle body acceleration is taken as a slip ratio, and the road surface μ of each of the left and right drive wheels is estimated from the magnitude of the slope of the slip ratio.

特開2005−7972号公報JP 2005-7972 A

しかしながら、上述の特許文献1に開示される技術のように、車体速度を測定し、スリップ率を算出して路面μを推定する技術では、必要なパラメータを精度良く検出して精度良く路面μを推定することが困難で、特に登降坂走行時には路面勾配による影響が含まれるために所望の精度の路面μを得ることが難しいという問題がある。また、路面μを精度良く求めようとするとレスポンス良く推定することができないという問題がある。   However, as in the technique disclosed in Patent Document 1 described above, in the technique of measuring the vehicle body speed, calculating the slip ratio, and estimating the road surface μ, the necessary parameter is accurately detected and the road surface μ is accurately determined. It is difficult to estimate, and there is a problem that it is difficult to obtain a road surface μ with a desired accuracy because the influence of the road surface gradient is included particularly when traveling on an uphill / downhill. In addition, there is a problem that if the road surface μ is obtained with high accuracy, it cannot be estimated with good response.

本発明は上記事情に鑑みてなされたもので、たとえ登降坂走行時であっても、常に精度の良い路面μをレスポンス良く推定することができる路面摩擦係数推定装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a road surface friction coefficient estimation device that can always accurately estimate a road surface μ with good response even when traveling on an uphill / downhill. .

本発明は、サンプリング時間毎にタイヤが発生している実際の前後力を実前後力として算出し、該実前後力の今回の値と過去の値との差分値を実前後力差分値として算出する実前後力差分値算出手段と、上記実前後力と同じタイミングで路面摩擦係数をパラメータとして含むタイヤモデルにより上記タイヤが発生する理想的な前後力を理想前後力として算出し、該理想前後力の今回の値と過去の値との差分値を理想前後力差分値として算出する理想前後力差分値算出手段と、少なくとも上記サンプリング時間毎の上記実前後力差分値と上記理想前後力差分値との偏差の二乗和が最小となるように上記路面摩擦係数の値を最適化計算により求める路面摩擦係数推定手段とを備えたことを特徴としている。   In the present invention, the actual longitudinal force generated by the tire at each sampling time is calculated as an actual longitudinal force, and a difference value between the current value of the actual longitudinal force and a past value is calculated as an actual longitudinal force difference value. The ideal longitudinal force generated by the tire is calculated as an ideal longitudinal force by a tire model including a road surface friction coefficient as a parameter at the same timing as the actual longitudinal force, Ideal front / rear force difference value calculating means for calculating a difference value between the current value and the past value as an ideal front / rear force difference value, and at least the actual front / rear force difference value and the ideal front / rear force difference value for each sampling time, Road surface friction coefficient estimating means for obtaining the value of the road surface friction coefficient by optimization calculation so that the sum of squares of the deviation is minimized.

本発明による路面摩擦係数推定装置によれば、たとえ登降坂走行時であっても、常に精度の良い路面μをレスポンス良く推定することが可能となる。   According to the road surface friction coefficient estimating apparatus according to the present invention, it is possible to always accurately estimate the road surface μ with good response even when traveling on an uphill / downhill.

本発明の実施の一形態に係る路面摩擦係数推定装置の機能ブロック図である。It is a functional block diagram of a road surface friction coefficient estimating device concerning one embodiment of the present invention. 本発明の実施の一形態に係る路面摩擦係数推定プログラムのフローチャートである。It is a flowchart of the road surface friction coefficient estimation program which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る図2から続くフローチャートである。3 is a flowchart continuing from FIG. 2 according to an embodiment of the present invention. 本発明の実施の一形態に係るタイヤのブラシモデルの説明図である。It is explanatory drawing of the brush model of the tire which concerns on one Embodiment of this invention. 本発明の実施の一形態に係るタイヤの接地面内に働く力の分布の説明図である。It is explanatory drawing of distribution of the force which acts in the contact surface of the tire which concerns on one Embodiment of this invention. 本発明の実施の一形態に係るスリップ率に対する前後力の特性を示す説明図である。It is explanatory drawing which shows the characteristic of the longitudinal force with respect to the slip ratio which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る推定前後力に応じて設定される重み係数の説明図である。It is explanatory drawing of the weighting coefficient set according to the estimated longitudinal force which concerns on one Embodiment of this invention.

以下、図面に基づいて本発明の実施の形態を説明する。
図1において、符号10は路面μを推定する路面μ推定装置を示し、前後加速度センサ11、エンジン回転数センサ12、エンジン制御部13、トランスミッション制御部14が接続されており、それぞれ前後加速度Ax、エンジン回転数Ne、エンジントルクTeg、主変速ギヤ比i、トルクコンバータのタービン回転数Ntが入力される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 10 denotes a road surface μ estimation device that estimates a road surface μ, and is connected to a longitudinal acceleration sensor 11, an engine speed sensor 12, an engine control unit 13, and a transmission control unit 14. The engine speed Ne, the engine torque Teg, the main transmission gear ratio i, and the turbine speed Nt of the torque converter are input.

路面μ推定装置10は、上述の各入力信号に基づき、後述する路面摩擦係数推定プログラムに従って、サンプリング時間毎にタイヤが発生している実際の前後力を実前後力Fmsveとして算出し、該実前後力Fmsveの今回の値と過去(本実施の形態では前回)の値との差分値を実前後力差分値ΔFmsveとして算出し、実前後力Fmsveと同じタイミングで路面μをパラメータとして含むタイヤモデルによりタイヤが発生する理想的な前後力を理想前後力Fmdveとして算出し、該理想前後力Fmdveの今回の値と過去(本実施の形態では前回)の値との差分値を理想前後力差分値ΔFmdveとして算出して、少なくともサンプリング時間毎の実前後力差分値ΔFmsveと理想前後力差分値ΔFmdveとの偏差の二乗和が最小となるように路面μの値を最適化計算により求めるように構成されている。   The road surface μ estimation device 10 calculates an actual longitudinal force generated by the tire at each sampling time as an actual longitudinal force Fmsve according to a road surface friction coefficient estimation program described later based on each input signal described above. The difference between the current value of the force Fmsve and the previous value (previous in the present embodiment) is calculated as an actual longitudinal force difference value ΔFmsve, and the tire model includes the road surface μ as a parameter at the same timing as the actual longitudinal force Fmsve. An ideal longitudinal force generated by the tire is calculated as an ideal longitudinal force Fmdve, and a difference value between the current value of the ideal longitudinal force Fmdve and a past value (previous in the present embodiment) is an ideal longitudinal force difference value ΔFmdve. And the value of the road surface μ is obtained by optimization calculation so that the sum of squares of the deviation between the actual longitudinal force difference value ΔFmsve and the ideal longitudinal force difference value ΔFmdve at least for each sampling time is minimized. Is constructed sea urchin.

すなわち、路面μ推定装置10は、図1に示すように、実前後力差分値演算部10a、推定前後力演算部10b、重み関数設定部10c、路面μ演算部10dから主要に構成されている。   That is, as shown in FIG. 1, the road surface μ estimation apparatus 10 is mainly composed of an actual front / rear force difference value calculation unit 10a, an estimated front / rear force calculation unit 10b, a weight function setting unit 10c, and a road surface μ calculation unit 10d. .

実前後力差分値演算部10aは、前後加速度センサ11から前後加速度Axが入力される。そして、例えば、以下の(1)式により、現在の実前後力Fmseを演算する。
Fmse=m・Ax …(1)
ここで、mは車両質量である。
The actual longitudinal force difference value calculation unit 10 a receives the longitudinal acceleration Ax from the longitudinal acceleration sensor 11. Then, for example, the current actual longitudinal force Fmse is calculated by the following equation (1).
Fmse = m · Ax (1)
Here, m is the vehicle mass.

更に、以下の(2)式により、現在の実前後力差分値ΔFmseを演算する。
ΔFmse=Fmse−Fmse[k-1] …(2)
Further, the current actual longitudinal force difference value ΔFmse is calculated by the following equation (2).
ΔFmse = Fmse−Fmse [k−1] (2)

また、実前後力差分値演算部10aは、現在の実前後力差分値ΔFmseを演算すると、過去に演算したサンプリング時間の異なる複数の実前後力差分値により、ベクトル量である実前後力差分値ΔFmsveを新たに設定する。本実施の形態では、実前後力差分値ΔFmsveの例として、新しくサンプリングされた順に、ΔFms[0]、ΔFms[1]、・・・、ΔFms[m]、・・・、ΔFms[18]、ΔFms[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2010179767
であり、新たに、実前後力差分値ΔFmseが算出されると、
Figure 2010179767
と更新される。上述のように算出される実前後力差分値ΔFmsveは路面μ演算部10dに出力される。このように、実前後力差分値演算部10aは、実前後力差分値算出手段として設けられている。 Further, when the actual front / rear force difference value calculation unit 10a calculates the current actual front / rear force difference value ΔFmse, the actual front / rear force difference value, which is a vector amount, is calculated from a plurality of actual front / rear force difference values having different sampling times. ΔFmsve is newly set. In the present embodiment, as an example of the actual front / rear force difference value ΔFmsve, ΔFms [0], ΔFms [1],..., ΔFms [m],. A description will be given of a configuration composed of a total of 20 components of ΔFms [19]. That is,
Figure 2010179767
When the actual longitudinal force difference value ΔFmse is newly calculated,
Figure 2010179767
And updated. The actual longitudinal force difference value ΔFmsve calculated as described above is output to the road surface μ calculation unit 10d. Thus, the actual longitudinal force difference value calculation unit 10a is provided as an actual longitudinal force difference value calculation unit.

推定前後力演算部10bは、エンジン回転数センサ12からエンジン回転数Neが入力され、エンジン制御部13からエンジントルクTegが入力され、トランスミッション制御部14から主変速ギヤ比i、トルクコンバータのタービン回転数Ntが入力される。そして、例えば、以下の(5)式により、現在のエンジンからタイヤに伝達される前後力(推定前後力)Fmeを演算する。
Fme=Teg・t・i・η・if/Rt …(5)
ここで、tはトルクコンバータのトルク比であり、予め設定されている、トルクコンバータの回転速度比e(=Nt/Ne)とトルクコンバータのトルク比とのマップを参照することにより求められる。また、ηは駆動系伝達効率、ifはファイナルギヤ比、Rtはタイヤ半径である。
The estimated longitudinal force calculation unit 10b receives the engine speed Ne from the engine speed sensor 12, receives the engine torque Teg from the engine control unit 13, receives the main transmission gear ratio i from the transmission control unit 14, and the turbine rotation of the torque converter. A number Nt is input. Then, for example, the longitudinal force (estimated longitudinal force) Fme transmitted from the current engine to the tire is calculated by the following equation (5).
Fme = Teg · t · i · η · if / Rt (5)
Here, t is a torque ratio of the torque converter, and is obtained by referring to a preset map of the rotational speed ratio e (= Nt / Ne) of the torque converter and the torque ratio of the torque converter. Also, η is drive system transmission efficiency, if is the final gear ratio, and Rt is the tire radius.

また、推定前後力演算部10bは、現在の推定前後力Fmeを演算すると、過去に演算したサンプリング時間の異なる複数の推定前後力により、ベクトル量である推定前後力Fmveを新たに設定する。本実施の形態では、推定前後力Fmveの例として、新しくサンプリングされた順に、Fm[0]、Fm[1]、・・・、Fm[m]、・・・、Fm[18]、Fm[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2010179767
であり、新たに、推定前後力Fmeが算出されると、
Figure 2010179767
と更新される。上述のように演算される現在の推定前後力Fmeは、重み関数設定部10c、路面μ演算部10dに出力され、推定前後力Fmveは路面μ演算部10dに出力される。 Further, when calculating the current estimated longitudinal force Fme, the estimated longitudinal force calculator 10b newly sets the estimated longitudinal force Fmve, which is a vector amount, based on a plurality of estimated longitudinal forces with different sampling times calculated in the past. In the present embodiment, as an example of the estimated longitudinal force Fmve, Fm [0], Fm [1], ..., Fm [m], ..., Fm [18], Fm [ 19], which is composed of a total of 20 components. That is,
Figure 2010179767
When the estimated longitudinal force Fme is newly calculated,
Figure 2010179767
And updated. The current estimated longitudinal force Fme calculated as described above is output to the weighting function setting unit 10c and the road surface μ calculating unit 10d, and the estimated longitudinal force Fmve is output to the road surface μ calculating unit 10d.

重み関数設定部10cは、推定前後力演算部10bからサンプリング時間毎の現在の推定前後力Fmeが入力される。そして、以下の(8)式に示すように、上述の実前後力差分値ΔFmsve、推定前後力Fmveのデータ数と同じ行数、列数を持つ正方行列である、第1の重み関数W1veを設定し、路面μ演算部10dに出力する。   The weight function setting unit 10c receives the current estimated longitudinal force Fme for each sampling time from the estimated longitudinal force calculation unit 10b. As shown in the following equation (8), the first weight function W1ve, which is a square matrix having the same number of rows and columns as the number of data of the actual longitudinal force difference value ΔFmsve and the estimated longitudinal force Fmve described above, Set and output to the road surface μ calculator 10d.

Figure 2010179767
ここで、第1の重み関数W1veを構成する各成分は、例えば、図7のマップを参照して設定される値であり、S/N比が悪く誤差が大きいと考えられる推定前後力の小さい領域、及び、明らかに誤った値であると考えられる推定前後力の大きな領域では0に設定されるようにして、そのサンプリング時間におけるデータが路面μの推定に影響を与えないようにする。尚、その他にも車速が小さい領域のデータを無効にする、車体すべり角が大きい場合のデータを無効にする(横力が大きいと精度が低下することを考慮)、又は、サンプリング時間の古いデータを無効にする等をこの第1の重み関数W1veの成分に含ませるようにしても良い。
Figure 2010179767
Here, each component constituting the first weighting function W1ve is, for example, a value set with reference to the map of FIG. 7, and the estimated front-rear force that is considered to have a poor S / N ratio and a large error is small. It is set to 0 in a region and a region having a large estimated longitudinal force that is considered to be an erroneous value so that data at the sampling time does not affect the estimation of the road surface μ. In addition, invalidate the data in the area where the vehicle speed is low, invalidate the data when the vehicle slip angle is large (considering that the accuracy decreases when the lateral force is large), or the data with the old sampling time May be included in the component of the first weighting function W1ve.

路面μ演算部10dは、実前後力差分値演算部10aから実前後力差分値Fmsveが入力され、推定前後力演算部10bから推定前後力Fmveが入力され、重み関数設定部10cから第1の重み関数W1veが入力される。   The road surface μ calculator 10d receives the actual longitudinal force difference value Fmsve from the actual longitudinal force difference calculator 10a, the estimated longitudinal force Fmve from the estimated longitudinal force calculator 10b, and the weight function setting unit 10c from the first. The weight function W1ve is input.

まず、本実施形態における路面μ推定の主要なロジックについて、図4のタイヤのブラシモデルで説明する。図4において、車体の前後方向をx軸として、時間Δtの間にO点(接地開始点)から入った接地点の進む距離、P点のx座標は、
x=u・Δt …(9)
である。ここで、uは車体速度である。
First, the main logic of the road surface μ estimation in this embodiment will be described with reference to the tire brush model of FIG. In FIG. 4, with the x axis as the longitudinal direction of the vehicle body, the distance traveled by the grounding point entered from point O (grounding start point) during time Δt, and the x coordinate of point P are
x = u · Δt (9)
It is. Here, u is a vehicle body speed.

また、O’点(接地開始点Oのトレッドベース上の点)から入ったP’点のx座標は、
x’=R0・ω・Δt …(10)
である。ここで、R0はタイヤの有効転がり半径、ωはタイヤ回転速度である。
In addition, the x coordinate of the point P ′ entered from the point O ′ (the point on the tread base of the contact start point O) is
x ′ = R0 · ω · Δt (10)
It is. Here, R0 is the effective rolling radius of the tire, and ω is the tire rotation speed.

従って、P点とP’点のx方向の相対変位、つまり、トレッドラバー変形は、以下の(11)式となる。   Accordingly, the relative displacement in the x direction between the point P and the point P ′, that is, the tread rubber deformation is expressed by the following equation (11).

x−x’=((u−R0・ω)/(R0・ω))・(R0・ω)・Δt
=s・x’ …(11)
但し、sは駆動時の縦方向のタイヤのすべり率で、
s=(u−R0・ω)/(R0・ω) …(12)
である。
xx ′ = ((u−R0 · ω) / (R0 · ω)) · (R0 · ω) · Δt
= S · x '(11)
Where s is the slip ratio of the tire in the longitudinal direction during driving,
s = (u−R0 · ω) / (R0 · ω) (12)
It is.

従って、P点に働く、単位幅、単位長さあたりのx方向の力σxは、
σx=−Kx・s・x’ …(13)
となる。但し、Kxは単位幅、長さあたりのトレッドラバーの縦方向の剛性である。ここで、タイヤの接地圧分布を考えると、
p=(6・Fz/b・L)・(x’/L)・(1−(x’/L)) …(14)
ここで、bは接地面幅、Lは接地面長さである。
Therefore, the force σx in the x direction per unit width and unit length acting on the point P is
σx = −Kx · s · x ′ (13)
It becomes. However, Kx is the longitudinal rigidity of the tread rubber per unit width and length. Here, considering the tire contact pressure distribution,
p = (6 · Fz / b · L) · (x ′ / L) · (1− (x ′ / L)) (14)
Here, b is the contact surface width, and L is the contact surface length.

接地圧による接地面内各部分の最大摩擦力の分布μpとσの大小関係により、0≦x’<x’sで示される粘着域の範囲のタイヤの接地面に働く力は、上述の(13)式で表され、x’≧x’sとなるすべり域の範囲ではμpで表されることになる。従って、粘着域での接地面に働くx方向力はσx、すべり領域でのそれはμpとなる(図5参照)。   Due to the magnitude relationship between the maximum frictional force distributions μp and σ of each part in the contact surface due to contact pressure, the force acting on the contact surface of the tire in the range of the adhesion range represented by 0 ≦ x ′ <x ′s is 13), and expressed in μp in the range of the slip region where x ′ ≧ x ′s. Therefore, the x-direction force acting on the ground contact surface in the adhesive region is σx, and that in the slip region is μp (see FIG. 5).

ところで、σ=μpに、上述の(13)、(14)式を代入してx’sを求め、これを無次元表示したものをξsとすれば、
ξs=x’s/L=1−(Ks/(3・μ・Fz))・λ …(15)
となる。ここで、
λ=s、Ks=b・L/2・Kx …(16)
である。
By the way, substituting the above equations (13) and (14) into σ = μp to obtain x ′s, and a dimensionless display of this is denoted as ξs.
ξs = x ′s / L = 1− (Ks / (3 · μ · Fz)) · λ (15)
It becomes. here,
λ = s, Ks = b · L 2/2 · Kx ... (16)
It is.

以上よりタイヤ接地面全体に働くx方向の力(前後力Fx)は、ξs>0、つまり、接地面が粘着域とすべり域からなるときには、
Fx=b・∫(σx)dx(但し、積分範囲は0〜xs) …(17)
である。
From the above, the force in the x direction (front-rear force Fx) acting on the entire tire contact surface is ξs> 0, that is, when the contact surface is composed of an adhesive region and a slip region,
Fx = b · ∫ (σx) dx (however, the integration range is 0 to xs) (17)
It is.

また、ξs≦0、つまり、接地面が全てすべり域となる場合には、
Fx=∫(−μp)dx’(但し、積分範囲は0〜L) …(18)
上述の(17)、(18)式に、前述の(13)、(14)、(15)式を代入して、以下の(19)、(20)式を得る。
Also, when ξs ≦ 0, that is, when the ground contact surface is all in the slip region,
Fx = ∫ (−μp) dx ′ (however, the integration range is 0 to L) (18)
The following equations (19) and (20) are obtained by substituting the above equations (13), (14), and (15) into the above equations (17) and (18).

・ξs=1−(Ks/(3・μ・Fz))・λ>0のとき
Fx=−Ks・s・ξs−6・μ・Fz・((1/6)
−(1/2)・ξs+(1/3)・ξs) …(19)
ここで、Fzはタイヤ(4輪分)の接地荷重(車体質量mで近似することも可)である。
Ξs = 1− (Ks / (3 · μ · Fz)) · λ> 0 Fx = −Ks · s · ξs 2 −6 · μ · Fz · ((1/6)
− (1/2) · ξs 2 + (1/3) · ξs 3 ) (19)
Here, Fz is a contact load of the tire (for four wheels) (can be approximated by a vehicle body mass m).

・ξs=1−(Ks/(3・μ・Fz))・λ<0のとき
Fx=−μ・Fz …(20)
Ξs = 1− (Ks / (3 · μ · Fz)) · when λ <0 Fx = −μ · Fz (20)

これら(19)、(20)式に対し、(16)式の左式から(15)式は、以下の(21)式となる。
ξs=1−(Ks/(3・μ・Fz))・|s| …(21)
ここで、エンジンからタイヤに伝達される推定前後力をFmとし、推定前後力Fmが、Ksの比例領域(図6中の破線領域)とすると、Fm=−Ks・sとなるので、上述の(21)式は、以下の(22)式となる。
ξs=1−(|Fm|/(3・μ・Fz)) …(22)
In contrast to these formulas (19) and (20), formulas (15) to (15) are changed to the following formula (21).
ξs = 1− (Ks / (3 · μ · Fz)) · | s | (21)
Here, assuming that the estimated longitudinal force transmitted from the engine to the tire is Fm and the estimated longitudinal force Fm is a proportional region of Ks (broken line region in FIG. 6), Fm = −Ks · s. Equation (21) becomes the following equation (22).
ξs = 1− (| Fm | / (3 · μ · Fz)) (22)

同様に、上述の(19)式を変形すると、以下の(23)式が得られる。
Fx=Fm・ξs−6・μ・Fz・((1/6)
−(1/2)・ξs+(1/3)・ξs) …(23)
これら(22)、(23)式により、前後力Fxは、FmとFzとμの式として扱えるようになる。すなわち、タイヤが発生する理想的な前後力(理想前後力)Fmdは、上述の(22)、(23)式により、以下の(24)式により求められる。
Fmd=Fm・ξs−6・μ・Fz・((1/6)
−(1/2)・ξs+(1/3)・ξs) …(24)
但し、ξs=1−(|Fm|/(3・μ・Fz)) …(25)
Similarly, when the above equation (19) is modified, the following equation (23) is obtained.
Fx = Fm · ξs 2 −6 · μ · Fz · ((1/6)
− (1/2) · ξs 2 + (1/3) · ξs 3 ) (23)
With these equations (22) and (23), the longitudinal force Fx can be handled as an equation of Fm, Fz, and μ. That is, the ideal longitudinal force (ideal longitudinal force) Fmd generated by the tire is obtained by the following equation (24) from the above equations (22) and (23).
Fmd = Fm · ξs 2 −6 · μ · Fz · ((1/6)
− (1/2) · ξs 2 + (1/3) · ξs 3 ) (24)
However, ξs = 1− (| Fm | / (3 · μ · Fz)) (25)

そして、前述の実前後力Fmsの今回の値と前回の値との差分値である実前後力差分値ΔFms(=Fms−Fms[k-1])と、理想前後力Fmdの今回の値と前回の値との差分値である理想前後力差分値ΔFmd(=Fmd−Fmd[k-1])がほぼ同じくなるような(24)、(25)式における路面μを探し出せば、路面μを推定できることになる。   Then, the actual longitudinal force difference value ΔFms (= Fms−Fms [k−1]), which is the difference between the current value of the actual longitudinal force Fms and the previous value, and the current value of the ideal longitudinal force Fmd, If the road surface μ in the equations (24) and (25) such that the ideal longitudinal force difference value ΔFmd (= Fmd−Fmd [k−1]), which is a difference value from the previous value, is substantially the same, the road surface μ is calculated. It can be estimated.

これは、実前後力差分値ΔFmsと理想前後力差分値ΔFmdとの偏差を最小にするような評価関数を設定し、収束演算を行うことで最適解を路面μとして求めることである。この偏差を最小にするような評価関数を設定し、収束演算を行う方法として最適化手法があり、本実施の形態では二乗誤差を最小化する解を求める最急降下法を用いるものとなっている。   This is to determine an optimum solution as the road surface μ by setting an evaluation function that minimizes the deviation between the actual longitudinal force difference value ΔFms and the ideal longitudinal force difference value ΔFmd and performing a convergence calculation. There is an optimization method as a method for setting an evaluation function that minimizes this deviation and performing a convergence calculation. In this embodiment, the steepest descent method is used to find a solution that minimizes the square error. .

以下(26)式に評価関数L[n]を示す。評価関数L[n]は、実前後力差分値ΔFmsと理想前後力差分値ΔFmdとの偏差を小さくする項(第1の評価関数)と、路面μ推定値の変化量δμを少なくする項(第2の評価関数)で構成される(すなわち、全体で第3の評価関数とする)。
L[n]=[ΔFmsve−ΔFmdve[n]]W1ve[ΔFmsve−ΔFmdve[n]]+W2・δμ
…(26)
Hereinafter, the evaluation function L [n] is shown in Equation (26). The evaluation function L [n] includes a term for reducing the deviation between the actual longitudinal force difference value ΔFms and the ideal longitudinal force difference value ΔFmd (first evaluation function), and a term for reducing the change amount δμ of the road surface μ estimated value ( (Second evaluation function) (that is, the third evaluation function as a whole).
L [n] = [ΔFmsve−ΔFmdve [n]] T W1ve [ΔFmsve−ΔFmdve [n]] + W2 · δμ 2
... (26)

具体的には、以下の(27)式により、路面μが微小変化した時の、理想前後力差分値ΔFmdveの変化量を要素とするベクトルであるヤコビアンJve[n-1]を、路面μ推定値の前回値μ[n-1]を使って演算する。尚、ヤコビアンJve[n-1]の添字[n-1]は、路面μ推定値の前回値μ[n-1]を表すものであり、反復演算n−1=0の場合は、路面μ推定値の前回値μ[n-1]が無いため、先のサンプリング時における路面μの推定結果μ[z-1]を代入する。   Specifically, according to the following equation (27), Jacobian Jve [n-1] which is a vector whose element is the amount of change in the ideal longitudinal force difference value ΔFmdve when the road surface μ changes slightly is estimated as the road surface μ. Calculation is performed using the previous value μ [n-1]. The subscript [n-1] of the Jacobian Jve [n-1] represents the previous value μ [n-1] of the estimated value of the road surface μ. When the iterative calculation n-1 = 0, the road surface μ Since there is no previous estimated value μ [n−1], the estimated result μ [z−1] of the road surface μ at the time of the previous sampling is substituted.

Figure 2010179767
ヤコビアンJve[n-1]の各要素は、以下の各式で求められるものである。
Figure 2010179767
Each element of the Jacobian Jve [n-1] is obtained by the following equations.

(∂ΔFmd[0]/∂μ[n-1])=(Fm[0]/(Fz・μ[n-1]))
・(−1+(1/27)・(Fm[0]/(Fz・μ[n-1])))
−((Fm[0][k-1]/(Fz・μ[n-1][k-1]))
・(−1+(1/27)・(Fm[0][k-1]/(Fz・μ[n-1][k-1]))))
(∂ΔFmd[1]/∂μ[n-1])=(Fm[1]/(Fz・μ[n-1]))
・(−1+(1/27)・(Fm[1]/(Fz・μ[n-1])))
−((Fm[1][k-1]/(Fz・μ[n-1][k-1]))
・(−1+(1/27)・(Fm[1][k-1]/(Fz・μ[n-1][k-1]))))

(∂ΔFmd[m]/∂μ[n-1])=(Fm[m]/(Fz・μ[n-1]))
・(−1+(1/27)・(Fm[m]/(Fz・μ[n-1])))
−((Fm[m][k-1]/(Fz・μ[n-1][k-1]))
・(−1+(1/27)・(Fm[m][k-1]/(Fz・μ[n-1][k-1]))))

(∂ΔFmd[18]/∂μ[n-1])=(Fm[18]/(Fz・μ[n-1]))
・(−1+(1/27)・(Fm[18]/(Fz・μ[n-1])))
−((Fm[18][k-1]/(Fz・μ[n-1][k-1]))
・(−1+(1/27)・(Fm[18][k-1]/(Fz・μ[n-1][k-1]))))
(∂ΔFmd[19]/∂μ[n-1])=(Fm[19]/(Fz・μ[n-1]))
・(−1+(1/27)・(Fm[19]/(Fz・μ[n-1])))
−((Fm[19][k-1]/(Fz・μ[n-1][k-1]))
・(−1+(1/27)・(Fm[19][k-1]/(Fz・μ[n-1][k-1]))))
(∂ΔFmd [0] / ∂μ [n-1]) = (Fm [0] 2 / (Fz · μ [n-1]))
(-1+ (1/27). (Fm [0] / (Fz.μ [n-1])))
− ((Fm [0] [k-1] 2 / (Fz · μ [n-1] [k-1]))
(-1+ (1/27) / (Fm [0] [k-1] / (Fz.μ [n-1] [k-1]))))
(∂ΔFmd [1] / ∂μ [n-1]) = (Fm [1] 2 / (Fz · μ [n-1]))
(-1+ (1/27). (Fm [1] / (Fz.μ [n-1])))
− ((Fm [1] [k-1] 2 / (Fz · μ [n-1] [k-1]))
(-1+ (1/27) / (Fm [1] [k-1] / (Fz.μ [n-1] [k-1]))))
:
(∂ΔFmd [m] / ∂μ [n-1]) = (Fm [m] 2 / (Fz · μ [n-1]))
(-1+ (1/27). (Fm [m] / (Fz.μ [n-1])))
− ((Fm [m] [k-1] 2 / (Fz · μ [n-1] [k-1]))
(-1+ (1/27) / (Fm [m] [k-1] / (Fz.μ [n-1] [k-1]))))
:
(∂ΔFmd [18] / ∂μ [n-1]) = (Fm [18] 2 / (Fz · μ [n-1]))
(-1+ (1/27) / (Fm [18] / (Fz. [Mu] [n-1])))
− ((Fm [18] [k-1] 2 / (Fz · μ [n-1] [k-1]))
(-1+ (1/27) / (Fm [18] [k-1] / (Fz.μ [n-1] [k-1]))))
(∂ΔFmd [19] / ∂μ [n-1]) = (Fm [19] 2 / (Fz · μ [n-1]))
(-1+ (1/27). (Fm [19] / (Fz.μ [n-1])))
− ((Fm [19] [k-1] 2 / (Fz · μ [n-1] [k-1]))
(-1+ (1/27) / (Fm [19] [k-1] / (Fz.μ [n-1] [k-1]))))

尚、FΔmd[0]〜ΔFmd[19]は、理想前後力差分値ΔFmdveの各成分(詳しくは後述する)であり、添え字[k-1]は、それぞれの値の過去の値(本実施の形態では前回値)を示す。   FΔmd [0] to ΔFmd [19] are components of the ideal longitudinal force difference value ΔFmdve (details will be described later), and the subscript [k-1] is the past value of each value (this embodiment) In the form of, the previous value) is shown.

次に、以下の(28)式により、路面μ推定値の変化量δμを演算する。
δμ=[Jve[n-1]W1veJve[n-1]+W2]−1
Jve[n-1]W1ve[ΔFmsve−ΔFmdve[n-1]] …(28)
ここで、W2は実験的に定める固定値である。
Next, a change amount δμ of the road surface μ estimated value is calculated by the following equation (28).
δμ = [Jve [n-1 ] T W1veJve [n-1] + W2] -1
Jve [n-1] T W1ve [ΔFmsve-ΔFmdve [n-1]] ... (28)
Here, W2 is a fixed value determined experimentally.

次いで、以下の(29)式により、路面μ推定値μ[n]を演算する。
μ[n]=μ[n-1]+δμ …(29)
Next, the road surface μ estimated value μ [n] is calculated by the following equation (29).
μ [n] = μ [n−1] + δμ (29)

次に、上述の(29)式で演算した路面μ推定値μ[n]を用いて、理想前後力差分値ΔFmdve[n]を演算する。尚、反復演算回数n=0の場合は、前サンプリング時間における推定結果を代入する。   Next, the ideal longitudinal force difference value ΔFmdve [n] is calculated using the road surface μ estimated value μ [n] calculated by the above equation (29). When the number of iterations n = 0, the estimation result at the previous sampling time is substituted.

Figure 2010179767
ここで、ΔFmdve[n]の各要素は、次式で演算される。 すなわち、前述のタイヤモデルからの(24)、(25)式により、
ΔFmd[0][n]=Fmd[0][n]−Fmd[0][n][k-1]
=( Fm[0]−(Fm[0]/(Fz・μ[n]))
+(1/27)・(Fm[0]/(Fz・μ[n])))
−( Fm[0][k-1]−(Fm[0][k-1]/(Fz・μ[n][k-1]))
+(1/27)・(Fm[0][k-1]/(Fz・μ[n][k-1]))) …(31)
同様に、ΔFmd[1][n]〜ΔFmd[19][n]も演算される。
Figure 2010179767
Here, each element of ΔFmdve [n] is calculated by the following equation. That is, according to the equations (24) and (25) from the above tire model,
ΔFmd [0] [n] = Fmd [0] [n] −Fmd [0] [n] [k−1]
= (Fm [0] − (Fm [0] 2 / (Fz · μ [n]))
+ (1/27) · (Fm [0] 3 / (Fz 2 · μ [n] 2 ))
− (Fm [0] [k-1] − (Fm [0] [k-1] 2 / (Fz · μ [n] [k-1]))
+ (1/27) · (Fm [0] [k-1] 3 / (Fz 2 · μ [n] [k-1] 2 ))) (31)
Similarly, ΔFmd [1] [n] to ΔFmd [19] [n] are also calculated.

次いで、前述の(26)式で示す評価関数L[n]を演算して、この評価関数の前回値L[n-1]と今回値L[n]とを比較して、予め設定した値ε未満に収束しているか否か判定し、収束している場合は、そこで収束演算を止め、演算された路面μ推定値μ[n]を今回の路面μ推定値μ[z]として出力する。また、ε未満に収束していない場合は、再び、ヤコビアンJve[n-1]からの演算を繰り返す。このように、路面μ演算部10dは、理想前後力差分値算出手段、路面摩擦係数推定手段としての機能を有している。   Next, the evaluation function L [n] represented by the above equation (26) is calculated, the previous value L [n-1] of this evaluation function is compared with the current value L [n], and a preset value is obtained. It is determined whether or not it has converged below ε, and if it has converged, the convergence calculation is stopped and the calculated road surface μ estimated value μ [n] is output as the current road surface μ estimated value μ [z]. . If it has not converged below ε, the operation from Jacobian Jve [n−1] is repeated again. Thus, the road surface μ calculation unit 10d functions as an ideal longitudinal force difference value calculation unit and a road surface friction coefficient estimation unit.

次に、路面μ推定装置10で実行される路面摩擦係数推定プログラムを、図2、図3のフローチャートで説明する。   Next, a road surface friction coefficient estimation program executed by the road surface μ estimation apparatus 10 will be described with reference to the flowcharts of FIGS.

まず、ステップ(以下、「S」と略称)101で、必要なパラメータ、すなわち、前後加速度Ax、エンジン回転数Ne、エンジントルクTeg、主変速ギヤ比i、トルクコンバータのタービン回転数Ntを読み込む。   First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, longitudinal acceleration Ax, engine speed Ne, engine torque Teg, main transmission gear ratio i, and turbine speed Nt of the torque converter are read.

次いで、S102に進み、実前後力差分値演算部10aは、現在の実前後力差分値ΔFmseを、前述の(2)式により演算する。   Next, in S102, the actual front / rear force difference value calculation unit 10a calculates the current actual front / rear force difference value ΔFmse according to the above-described equation (2).

次に、S103に進み、実前後力差分値演算部10aは、前述の(4)式により、実前後力差分値ΔFmsveを更新する。   Next, it progresses to S103 and the actual longitudinal force difference value calculating part 10a updates actual longitudinal force difference value (DELTA) Fmsve by the above-mentioned (4) Formula.

次いで、S104に進み、推定前後力演算部10bは、現在のエンジンからタイヤに伝達される前後力(推定前後力)Fmeを、前述の(5)式により演算する。   Next, in S104, the estimated longitudinal force calculator 10b calculates the longitudinal force (estimated longitudinal force) Fme transmitted from the current engine to the tire by the above-described equation (5).

次に、S105に進み、推定前後力演算部10bは、推定前後力Fmveを前述の(7)式の如く更新する。   Next, proceeding to S105, the estimated longitudinal force calculation unit 10b updates the estimated longitudinal force Fmve as in the above-described equation (7).

次いで、S106に進み、重み関数設定部10cは、図7に示すマップ等を参照して、前述の(8)式に示すような、実前後力差分値ΔFmsve、推定前後力Fmveのデータ数と同じ行数、列数を持つ正方行列である、第1の重み関数W1veを設定する。   Next, in S106, the weight function setting unit 10c refers to the map shown in FIG. 7 and the like, and the number of data of the actual front / rear force difference value ΔFmsve and the estimated front / rear force Fmve as shown in the above equation (8). A first weight function W1ve, which is a square matrix having the same number of rows and columns, is set.

次に、S107に進むと、路面μ演算部10dは、前述した(27)式により、路面μが微小変化した時の、理想前後力差分値ΔFmdveの変化量を要素とするベクトルであるヤコビアンJve[n-1]を、路面μ推定値の前回値μ[n-1]を使って演算する。   Next, when proceeding to S107, the road surface μ calculating unit 10d is a Jacobian Jve that is a vector whose element is the amount of change in the ideal longitudinal force difference value ΔFmdve when the road surface μ is slightly changed according to the above-described equation (27). [n-1] is calculated using the previous value μ [n-1] of the road surface μ estimated value.

次いで、S108に進み、路面μ演算部10dは、前述した(28)式により、路面μ推定値の変化量δμを演算する。   Next, in S108, the road surface μ calculator 10d calculates the change amount δμ of the estimated value of the road surface μ according to the above-described equation (28).

次に、S109に進み、路面μ演算部10dは、前述した(29)式により、路面μ推定値μ[n]を演算する。   Next, proceeding to S109, the road surface μ calculator 10d calculates the road surface μ estimated value μ [n] by the above-described equation (29).

次いで、S110に進み、路面μ演算部10dは、タイヤモデルにより、前述した(31)式により、(30)式で示す理想前後力差分値ΔFmdve[n]を演算する。   Next, in S110, the road surface μ calculation unit 10d calculates an ideal longitudinal force difference value ΔFmdve [n] shown in the equation (30) by the above-described equation (31) based on the tire model.

次に、S111に進み、路面μ演算部10dは、前述した(26)式による評価関数L[n]を演算する。   Next, proceeding to S111, the road surface μ calculator 10d calculates the evaluation function L [n] according to the above-described equation (26).

そして、S112に進み、評価関数の前回値L[n-1]と今回値L[n]とを比較して、予め設定した値ε未満に収束しているか否か(L[n]−L[n-1]<εか否か)を判定し、収束している場合は、S113に進んで、路面μ推定値μ[n]を今回の路面μ推定値μ[z]として設定し(μ[z]=μ[n])、収束していない場合は、S116に進んで、ΔFmdve[n-1]=ΔFmdve[n]、μ[n-1]=μ[n]、L[n-1]=L[n]と設定して、再び、S107からの演算を繰り返す。   In S112, the previous value L [n-1] of the evaluation function is compared with the current value L [n], and whether or not the evaluation function has converged to less than a preset value ε (L [n] −L If [n-1] <ε) is determined, and if it converges, the process proceeds to S113, and the road surface μ estimated value μ [n] is set as the current road surface μ estimated value μ [z] ( μ [z] = μ [n]), if not converged, the process proceeds to S116, and ΔFmdve [n−1] = ΔFmdve [n], μ [n−1] = μ [n], L [n -1] = L [n] is set, and the calculation from S107 is repeated again.

S113で、今回の路面μ推定値μ[z]を設定した後は、S114に進み、今回の路面μ推定値μ[z]を出力し、S115に進んで、今回の路面μ推定値μ[z]を前回の路面μ推定値μ[z-1]と更新して(μ[z-1]=μ[z])、プログラムを抜ける。   After setting the current road surface μ estimated value μ [z] in S113, the process proceeds to S114, where the current road surface μ estimated value μ [z] is output, and the process proceeds to S115, where the current road surface μ estimated value μ [z] is output. [z] is updated to the previous road surface μ estimated value μ [z-1] (μ [z-1] = μ [z]), and the program exits.

このように、本発明の実施の形態によれば、サンプリング時間毎にタイヤが発生している実際の前後力を実前後力Fmsveとして算出し、実前後力Fmsveの今回の値と過去の値との差分値を実前後力差分値ΔFmsveとして算出し、実前後力Fmsveと同じタイミングで路面μをパラメータとして含むタイヤモデルによりタイヤが発生する理想的な前後力を理想前後力Fmdveとして算出し、理想前後力Fmdveの今回の値と過去の値との差分値を理想前後力差分値ΔFmdveとして算出して、少なくともサンプリング時間毎の実前後力差分値ΔFmsveと理想前後力差分値ΔFmdveとの偏差の二乗和が最小となるように路面μの値を最適化計算により求めるようになっている。このため、たとえ登降坂走行時であっても、これによって生じる誤差は差分処理によって取り除かれ、常に精度の良い路面μをレスポンス良く推定することが可能となる。   As described above, according to the embodiment of the present invention, the actual longitudinal force generated by the tire at each sampling time is calculated as the actual longitudinal force Fmsve, and the current value and the past value of the actual longitudinal force Fmsve are calculated. Is calculated as the actual front / rear force difference value ΔFmsve, and the ideal front / rear force Fmdve is calculated as the ideal front / rear force Fmdve by the tire model including the road surface μ as a parameter at the same timing as the actual front / rear force Fmsve. The difference value between the current value of the longitudinal force Fmdve and the past value is calculated as an ideal longitudinal force difference value ΔFmdve, and at least the square of the deviation between the actual longitudinal force difference value ΔFmsve and the ideal longitudinal force difference value ΔFmdve for each sampling time. The value of the road surface μ is obtained by optimization calculation so that the sum is minimized. For this reason, even when traveling on an uphill / downhill, errors caused by this are removed by differential processing, and it is possible to always estimate the road surface μ with high accuracy with good response.

尚、本実施の形態では、評価関数L[n]の収束判定を、ε未満になるまで行うようにしているが、収束演算の回数を予め設定しておくようにしても良い。また、演算回数の制限値を設けておいても良い。   In this embodiment, the convergence determination of the evaluation function L [n] is performed until it becomes less than ε. However, the number of convergence calculations may be set in advance. Also, a limit value for the number of operations may be provided.

更に、本実施の形態では、過去の値との差分値を演算するにあたり、今回の値と前回の値との間の差分を算出するようにしているが、今回の値と複数サンプル前の値との差分を算出するようにしても良い。   Furthermore, in this embodiment, when calculating the difference value with the past value, the difference between the current value and the previous value is calculated. The difference may be calculated.

10 路面μ推定装置
10a 実前後力差分値演算部(実前後力差分値算出手段)
10b 推定前後力演算部
10c 重み関数設定部
10d 路面μ演算部(理想前後力差分値算出手段、路面摩擦係数推定手段)
11 前後加速度センサ
12 エンジン回転数センサ
13 エンジン制御部
14 トランスミッション制御部
DESCRIPTION OF SYMBOLS 10 Road surface micro-estimation apparatus 10a Real front-back force difference value calculating part (Actual front-back force difference value calculation means)
10b Estimated longitudinal force calculation unit 10c Weight function setting unit 10d Road surface μ calculation unit (ideal longitudinal force difference value calculation means, road friction coefficient estimation means)
11 Longitudinal Acceleration Sensor 12 Engine Speed Sensor 13 Engine Control Unit 14 Transmission Control Unit

Claims (3)

サンプリング時間毎にタイヤが発生している実際の前後力を実前後力として算出し、該実前後力の今回の値と過去の値との差分値を実前後力差分値として算出する実前後力差分値算出手段と、
上記実前後力と同じタイミングで路面摩擦係数をパラメータとして含むタイヤモデルにより上記タイヤが発生する理想的な前後力を理想前後力として算出し、該理想前後力の今回の値と過去の値との差分値を理想前後力差分値として算出する理想前後力差分値算出手段と、
少なくとも上記サンプリング時間毎の上記実前後力差分値と上記理想前後力差分値との偏差の二乗和が最小となるように上記路面摩擦係数の値を最適化計算により求める路面摩擦係数推定手段と、
を備えたことを特徴とする路面摩擦係数推定装置。
Calculate the actual longitudinal force generated by the tire at each sampling time as the actual longitudinal force, and calculate the difference between the current actual longitudinal force and the previous value as the actual longitudinal force difference value. Difference value calculating means;
The ideal longitudinal force generated by the tire is calculated as an ideal longitudinal force by a tire model including the road friction coefficient as a parameter at the same timing as the actual longitudinal force, and the current value and the past value of the ideal longitudinal force are calculated. An ideal longitudinal force difference value calculating means for calculating the difference value as an ideal longitudinal force difference value;
Road surface friction coefficient estimating means for obtaining the value of the road surface friction coefficient by optimization calculation so that the sum of squares of the deviation between the actual front / rear force difference value and the ideal front / rear force difference value at least for each sampling time is minimized;
A road surface friction coefficient estimating device comprising:
上記路面摩擦係数推定手段は、上記各サンプリング時間における上記偏差を二乗した値に、それぞれのサンプリング時間における計測条件に応じた重み関数を乗算した第1の評価関数と、前回算出した路面摩擦係数に対する今回の路面摩擦係数の修正量を二乗した値を含む第2の評価関数と、上記第1の評価関数と上記第2の評価関数との和である第3の評価関数とを求め、上記第3の評価関数を路面摩擦係数で偏微分した値が0となることを利用して上記路面摩擦係数の修正量を算出し、今回の路面摩擦係数を求めることを特徴とする請求項1記載の路面摩擦係数推定装置。   The road surface friction coefficient estimating means is a first evaluation function obtained by multiplying a value obtained by squaring the deviation at each sampling time by a weight function according to a measurement condition at each sampling time, and a previously calculated road surface friction coefficient. A second evaluation function including a value obtained by squaring the correction amount of the road surface friction coefficient this time, and a third evaluation function that is the sum of the first evaluation function and the second evaluation function are obtained, 2. The current road surface friction coefficient is obtained by calculating a correction amount of the road surface friction coefficient using the fact that a value obtained by partial differentiation of the evaluation function of 3 with respect to a road surface friction coefficient is 0. Road friction coefficient estimation device. 上記重み関数は、エンジンからタイヤに伝達される前後力に応じて設定されることを特徴とする請求項2記載の路面摩擦係数推定装置。   3. The road surface friction coefficient estimating apparatus according to claim 2, wherein the weight function is set according to a longitudinal force transmitted from the engine to the tire.
JP2009024927A 2009-02-05 2009-02-05 Road friction coefficient estimation device Active JP5140015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024927A JP5140015B2 (en) 2009-02-05 2009-02-05 Road friction coefficient estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024927A JP5140015B2 (en) 2009-02-05 2009-02-05 Road friction coefficient estimation device

Publications (2)

Publication Number Publication Date
JP2010179767A true JP2010179767A (en) 2010-08-19
JP5140015B2 JP5140015B2 (en) 2013-02-06

Family

ID=42761638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024927A Active JP5140015B2 (en) 2009-02-05 2009-02-05 Road friction coefficient estimation device

Country Status (1)

Country Link
JP (1) JP5140015B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497814A (en) * 2019-01-29 2020-08-07 长城汽车股份有限公司 Vehicle control method and device
JP2022088238A (en) * 2020-12-02 2022-06-14 本田技研工業株式会社 Travel control system and travel control method
JP7421577B2 (en) 2022-01-13 2024-01-24 本田技研工業株式会社 How to determine tire slippage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118554A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Calculating device of road surface friction coefficient
JP2005007972A (en) * 2003-06-17 2005-01-13 Honda Motor Co Ltd Method for estimating road surface friction coefficient
JP2009001244A (en) * 2007-06-25 2009-01-08 Fuji Heavy Ind Ltd Road surface state estimating device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118554A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Calculating device of road surface friction coefficient
JP2005007972A (en) * 2003-06-17 2005-01-13 Honda Motor Co Ltd Method for estimating road surface friction coefficient
JP2009001244A (en) * 2007-06-25 2009-01-08 Fuji Heavy Ind Ltd Road surface state estimating device for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497814A (en) * 2019-01-29 2020-08-07 长城汽车股份有限公司 Vehicle control method and device
JP2022088238A (en) * 2020-12-02 2022-06-14 本田技研工業株式会社 Travel control system and travel control method
JP7158456B2 (en) 2020-12-02 2022-10-21 本田技研工業株式会社 Travel control system and travel control method
JP7421577B2 (en) 2022-01-13 2024-01-24 本田技研工業株式会社 How to determine tire slippage

Also Published As

Publication number Publication date
JP5140015B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
EP3378679A1 (en) Model based tire wear estimation system and method
JP5035418B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP5035419B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
EP2957440B1 (en) Tire temperature predictive system and method
JP4926850B2 (en) Vehicle road surface state estimating device
CN112292271B (en) Tread wear monitoring method, system, electronic control unit, and storage medium
JP5293814B2 (en) Sensor offset estimation device
JP2008265467A (en) Road surface friction coefficient estimating device of vehicle
JP4230961B2 (en) Estimation apparatus and vehicle motion control apparatus using the same
CN105829185A (en) Steering spline telescoping shaft, and steering device
EP3309026B1 (en) Method and system for computing a road friction estimate
JP2009073466A (en) Vehicle posture angle estimation device and program
KR20110079841A (en) Determination of a maximum steering angle for a vehicle
JP2005205956A (en) Method and device for estimating tire state and tire with sensor
KR101829698B1 (en) Method for simulating a rolling radius of a motor vehicle tyre
JP5140015B2 (en) Road friction coefficient estimation device
JP2014532170A (en) Method for estimating rolling resistance of vehicle wheel
JP5752633B2 (en) Speed detection device, travel position calculation device, and speed calculation method
JP2012149925A (en) Running resistance calculation device
JP5206490B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
US20090204318A1 (en) Method for checking the plausibility of an ascertained vehicle mass
JP3236004B1 (en) Road surface friction coefficient estimation device for vehicles
JP5281368B2 (en) Road friction coefficient estimation device
JP2006256469A (en) Method of estimating vehicle body slip angle, and slip angle of four wheels
JP5304171B2 (en) Road surface μ estimation apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5140015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250