JP2010178640A - Polypeptide capable of controlling adsorption of cell - Google Patents

Polypeptide capable of controlling adsorption of cell Download PDF

Info

Publication number
JP2010178640A
JP2010178640A JP2009023064A JP2009023064A JP2010178640A JP 2010178640 A JP2010178640 A JP 2010178640A JP 2009023064 A JP2009023064 A JP 2009023064A JP 2009023064 A JP2009023064 A JP 2009023064A JP 2010178640 A JP2010178640 A JP 2010178640A
Authority
JP
Japan
Prior art keywords
polypeptide
amino acid
protein
bacmps
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023064A
Other languages
Japanese (ja)
Other versions
JP5499296B2 (en
Inventor
Tadashi Matsunaga
是 松永
Tomoko Yoshino
知子 吉野
Masayuki Takahashi
正行 高橋
Takeshi Tanaka
剛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2009023064A priority Critical patent/JP5499296B2/en
Publication of JP2010178640A publication Critical patent/JP2010178640A/en
Application granted granted Critical
Publication of JP5499296B2 publication Critical patent/JP5499296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypeptide which can control the non-specific adsorption of cells to a solid surface, when used as a solid surface-modifying molecule. <P>SOLUTION: The polypeptide comprises polar amino acids and non-charged amino acids. The polypeptide comprises at least 50 amino acid residues. The polypeptide in which one unit of amino acid sequence is repeatedly arranged, wherein an amino acid sequence comprising several amino acid residues is one unit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固相表面修飾分子として使用する際に、固相表面への細胞の非特異的な吸着を制御可能なポリペプチドに関し、より詳細には、極性アミノ酸且つ非荷電アミノ酸から構成されるポリペプチドに関し、具体的には、少なくとも50アミノ酸残基から構成され、また、複数のアミノ酸残基から構成されるアミノ酸配列を1ユニットとし、当該1ユニットのアミノ酸配列が繰り返して配列されるポリペプチドに関する。   The present invention relates to a polypeptide capable of controlling nonspecific adsorption of cells to the surface of a solid phase when used as a solid phase surface modifying molecule, and more specifically composed of a polar amino acid and an uncharged amino acid. Regarding a polypeptide, specifically, a polypeptide comprising at least 50 amino acid residues, wherein an amino acid sequence comprising a plurality of amino acid residues is defined as one unit, and the amino acid sequence of the one unit is repeated. About.

人工血管のような医療デバイス、バイオチップのような生体分子の検出・解析デバイス,磁性ナノ粒子のような細胞関連アプリケーション用マテリアルを開発するにあたり、共通して問題とされる事項としてマテリアル・デバイス表面へのタンパク質や細胞の非特異的吸着が挙げられる。そして、様々な分子を用いた表面修飾により、マテリアル・デバイス表面へのタンパク質や細胞の非特異的吸着の抑制が試みられている。   In developing medical devices such as artificial blood vessels, biomolecule detection and analysis devices such as biochips, and materials for cell-related applications such as magnetic nanoparticles, materials and device surfaces are common issues. Nonspecific adsorption of proteins and cells to In addition, attempts have been made to suppress nonspecific adsorption of proteins and cells to the surface of materials and devices by surface modification using various molecules.

表面修飾分子として最も利用されている高分子にポリエチレングリコール(poly(ethylene) glycol)(PEG)がある。PEGは非電荷で強い親水性を有する極性分子であり、生体適合性にも優れている。より高分子のPEGを粒子表面に修飾することで、粒子表面に形成される固定化水層の厚み(Fixed Aqueous Layer Thickness : FALT)が増し、立体障害により粒子の細胞やタンパク質との相互作用を減らすことが可能である(非特許文献1、2参照)。また、DDSなど、in vivoでの粒子の使用に際し、粒子表面へのPEGの修飾は、血清タンパク質への吸着やマクロファージによる捕捉を低減し、粒子が細網内皮系(Reticulo-Endothelial System : RES)の異物貪食作用から逃れることに役立つ。これにより、PEG修飾粒子は、長時間血中を循環することが可能となる(非特許文献3、4及び5参照)。   Polyethylene glycol (PEG) is a polymer most utilized as a surface modifying molecule. PEG is a polar molecule that is non-charged and has strong hydrophilicity, and has excellent biocompatibility. By modifying higher molecular weight PEG on the particle surface, the thickness of the immobilized water layer (FALT) formed on the particle surface increases, and steric hindrance increases the interaction of particles with cells and proteins. It can be reduced (see Non-Patent Documents 1 and 2). In addition, when using particles in vivo such as DDS, the modification of PEG on the particle surface reduces adsorption to serum proteins and capture by macrophages, and the particles are in the reticuloendothelial system (RES). It helps to escape from the foreign body phagocytosis. Thereby, the PEG-modified particles can circulate in the blood for a long time (see Non-Patent Documents 3, 4 and 5).

また、PEGの他、粒子の細胞やタンパク質への非特異的吸着を妨げる効果を示す表面修飾分子として、PEG同様に非電荷且つ親水性を有する多糖であるデキストラン(dextran)やブロッキング剤として一般的に用いられているアルブミン(albumin)が報告されている(非特許文献6、7参照)。また、特にデバイス表面への修飾分子としてフォスファチジルコリン(phosphatidylcholine)(PC)が利用されている。PCは、動物細胞外膜を構成する主要なリン脂質である。細胞は、中性のリン脂質であるPCを表面に配することで細胞外のタンパク質や糖などの生体分子との非特異的な相互作用を回避し、選択的に情報の授受・伝達を行っている。PC基を側鎖に持つ2-methacryloyloxyethyl phosphorylcholine(MPC)ポリマーを用いて疎水性基盤上に自己組織化を利用して作製した人工生体膜表面では、血清タンパク質の非特異的吸着の回避と血液成分の粘着・活性化をほぼ完全に抑制することが可能であった(非特許文献8参照)。   In addition to PEG, as a surface-modifying molecule that has the effect of preventing nonspecific adsorption of particles to cells and proteins, it is commonly used as a dextran or blocking agent that is a non-charged and hydrophilic polysaccharide like PEG. Has been reported (see Non-Patent Documents 6 and 7). In particular, phosphatidylcholine (PC) is used as a modifying molecule for the device surface. PC is a major phospholipid constituting the outer cell membrane of animals. Cells distribute and transmit information selectively by avoiding non-specific interactions with extracellular proteins, sugars, and other biomolecules by placing neutral phospholipid PC on the surface. ing. Non-specific adsorption of serum proteins and blood components on the surface of artificial biological membranes made by self-assembly on a hydrophobic substrate using 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer with PC groups in the side chain It was possible to almost completely suppress the adhesion and activation of (see Non-Patent Document 8).

また、バイオセンサなどの医療デバイスに応用できる磁気微粒子として、非特異的吸着が少ない磁気微粒子や、目的物質と特異的に結合するための機能性タンパク質を結合した磁気微粒子が開示されている(特許文献1、2参照)。   In addition, as magnetic fine particles that can be applied to medical devices such as biosensors, magnetic fine particles with little non-specific adsorption and magnetic fine particles combined with a functional protein for specifically binding to a target substance are disclosed (patents) References 1 and 2).

特開2006−314314JP 2006-314314 A 特開平8−228782JP-A-8-228782

Sadzuka, Y., A. Nakade, R. Hirama, A. Miyagishima, Y. Nozawa, S. Hirota and T. Sonobe (2002). Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome. Int J Pharm 238(1-2): 171-80.Sadzuka, Y., A. Nakade, R. Hirama, A. Miyagishima, Y. Nozawa, S. Hirota and T. Sonobe (2002) .Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing lipid. Int J Pharm 238 (1-2): 171-80. Fang, C., B. Shi, Y. Y. Pei, M. H. Hong, J. Wu and H. Z. Chen (2006). In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1): 27-36.Fang, C., B. Shi, YY Pei, MH Hong, J. Wu and HZ Chen (2006) .In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size.Eur J Pharm Sci 27 (1): 27-36. Jeong, Y. I., S. J. Seo, I. K. Park, H. C. Lee, I. C. Kang, T. Akaike and C. S. Cho (2005). Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 296(1-2): 151-61.Jeong, YI, SJ Seo, IK Park, HC Lee, IC Kang, T. Akaike and CS Cho (2005). Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly (gamma-benzyl L-glutamate) and poly (ethylene glycol) ) diblock copolymer endcapped with galactose moiety. Int J Pharm 296 (1-2): 151-61. Martina, M. S., J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau, V. Cabuil and S. Lesieur (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127(30): 10676-85.Martina, MS, JP Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau, V. Cabuil and S. Lesieur (2005). Generation of superparamagnetic pores revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127 (30): 10676-85. Dixit, V., J. Van den Bossche, D. M. Sherman, D. H. Thompson and R. P. Andres (2006). Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem 17(3): 603-9.Dixit, V., J. Van den Bossche, DM Sherman, DH Thompson and RP Andres (2006) .Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells.Bioconjug Chem 17 (3): 603-9. Lewin, M., N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden and R. Weissleder (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4): 410-4.Lewin, M., N. Carlesso, CH Tung, XW Tang, D. Cory, DT Scadden and R. Weissleder (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18 (4 ): 410-4. Wilhelm, C., C. Billotey, J. Roger, J. N. Pons, J. C. Bacri and F. Gazeau (2003). Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6): 1001-11.Wilhelm, C., C. Billotey, J. Roger, J. N. Pons, J. C. Bacri and F. Gazeau (2003). Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24 (6): 1001-11. Futamura, K., R. Matsuno, T. Konno, M. Takai and K. Ishihara (2008). Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Langmuir 24(18): 10340-4.Futamura, K., R. Matsuno, T. Konno, M. Takai and K. Ishihara (2008). Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Langmuir 24 (18): 10340-4 .

以下の分析は、本発明により与えられる。なお、前掲の特許文献及び非特許文献の夫々は、引用をもって本明細書に組み込んで記載されているものとする。   The following analysis is given by the present invention. Each of the above-mentioned patent documents and non-patent documents is incorporated in the present specification by reference.

上述したような細胞関連アプリケーションに用いられるデバイス・マテリアル表面に対して分子修飾を施すことに以下の二つが施されている。一つは、抗体等を修飾することで目的細胞への結合性・特異性を付加していること、二つ目は、ポリエチレングリコール(Poly(ethylene) glycol)(PEG)、フォスファチジルコリン(phosphatidylcholine)(PC)、デキストラン(dextran)等を修飾することで細胞の非特異的吸着からの抵抗性を付加していることである。精度の高いアプリケーションを実現するためには、デバイス・マテリアル表面に対し、上記の二要素を同時に付加する必要があり、さらに、二種の分子を修飾する必要がある。抗体を固定化した表面に対しPEG等を化学架橋法により修飾する場合、抗体の活性を阻害しないような修飾機序や修飾分子の大きさ(長さ)を考慮する必要がある。しかしながら、それらを考慮することで細胞の非特異的吸着の抑制効果を十分に発揮できない場合が多い。そこで、PEG等の分子をリンカー(linker)として用いて抗体をデバイス・マテリアル表面に固定化する形態が検討されてきている。しかしながら、この方法においては、各分子の段階的な高精度の反応が必要となり、煩雑な操作と長い反応時間が問題とされている。   The following two methods are applied to the surface of the device / material used for the cell-related applications as described above. One is that the antibody is modified to add binding / specificity to the target cell, and the second is polyethylene glycol (PEG), phosphatidylcholine ( It is that resistance from non-specific adsorption of cells is added by modifying phosphatidylcholine (PC), dextran, etc. In order to realize a highly accurate application, it is necessary to simultaneously add the above two elements to the surface of the device / material, and further, it is necessary to modify two kinds of molecules. When PEG or the like is modified by a chemical crosslinking method on the surface on which the antibody is immobilized, it is necessary to consider a modification mechanism and a size (length) of the modified molecule that do not inhibit the activity of the antibody. However, in many cases, the effect of suppressing nonspecific adsorption of cells cannot be sufficiently exhibited by considering them. Therefore, a form in which an antibody is immobilized on the surface of a device / material using a molecule such as PEG as a linker has been studied. However, this method requires a stepwise high-accuracy reaction of each molecule, and there are problems of complicated operation and long reaction time.

したがって、本発明は上述に鑑みて成されたものであり、細胞の吸着を制御可能なポリペプチドを提供することを目的とするものであり、より詳細には、固相表面修飾分子として使用する際に、固相表面への細胞の非特異的な吸着を制御可能なポリペプチドを提供することを目的とする。   Therefore, the present invention has been made in view of the above, and an object of the present invention is to provide a polypeptide capable of controlling the adsorption of cells. More specifically, the present invention is used as a solid phase surface modifying molecule. An object of the present invention is to provide a polypeptide capable of controlling nonspecific adsorption of cells to the solid surface.

本発明者らは、上記課題を解決すべく鋭意研究した結果、極性アミノ酸且つ非荷電アミノ酸から構成されるポリペプチドが、固相表面における細胞の非特異的な吸着を制御することが可能であることを見出した。   As a result of intensive studies to solve the above problems, the inventors of the present invention are able to control nonspecific adsorption of cells on a solid phase surface by a polypeptide composed of polar amino acids and uncharged amino acids. I found out.

すなわち、本発明の一視点において、ポリペプチドは、極性アミノ酸且つ非荷電アミノ酸から構成されるポリペプチドであることを特徴とする。このポリペプチドは、少なくとも50アミノ酸残基から構成されるアミノ酸配列であれば、当該アミノ酸配列は任意の配列でよく、このポリペプチドが用いられる細胞の発現系に影響を及ぼさない限り、このポリペプチドの長さは特に制限されない。また、このポリペプチドは、複数のアミノ酸残基から構成されるアミノ酸配列を1ユニットとし、該1ユニットのアミノ酸配列が繰り返して配列されることを特徴とする。   That is, in one aspect of the present invention, the polypeptide is a polypeptide composed of a polar amino acid and an uncharged amino acid. As long as this polypeptide has an amino acid sequence composed of at least 50 amino acid residues, the amino acid sequence may be any sequence, and as long as it does not affect the expression system of the cell in which the polypeptide is used, The length of is not particularly limited. The polypeptide is characterized in that an amino acid sequence composed of a plurality of amino acid residues is defined as one unit, and the amino acid sequence of the one unit is repeatedly arranged.

本発明によれば、固相を用いて目的物質であるタンパク質や細胞を分離・回収・検出する際に、該ポリペプチドを固相表面に配することで、親水性と立体障害性により目的物質の固相表面への非特異的吸着を抑制することができる。   According to the present invention, when separating or recovering or detecting a protein or cell as a target substance using a solid phase, the target substance is provided with hydrophilicity and steric hindrance by arranging the polypeptide on the surface of the solid phase. Nonspecific adsorption to the solid phase surface can be suppressed.

また、このポリペプチドは、複数のアミノ酸残基から構成される1ユニットのアミノ酸配列が繰り返して配列される構造を有していてもよい。これにより、かかるポリペプチドを設計する際に、使用するアミノ酸の種類や残基長をユニット単位で最適化することができ、アミノ酸配列を効率的に選定することが可能となる。この1ユニットを構成するアミノ酸配列は、当該アミノ酸を適宜選択して、任意のアミノ酸配列とすることができる。   The polypeptide may have a structure in which an amino acid sequence of one unit composed of a plurality of amino acid residues is repeatedly arranged. Thus, when designing such a polypeptide, the type and residue length of the amino acid to be used can be optimized in units, and the amino acid sequence can be efficiently selected. The amino acid sequence constituting this 1 unit can be arbitrarily selected by appropriately selecting the amino acid.

該1ユニットを構成する、極性アミノ酸且つ非荷電アミノ酸としては、アスパラギン(N)、グルタミン(Q)、トレオニン(T)、チロシン(Y)及びセリン(S)が挙げられ、中でも親水性と立体障害性の付与の観点から、親水性が高く、且つ側鎖のサイズが小さいアスパラギンが好適である。また、該1ユニット中又は該ポリペプチド全体のアミノ酸配列中の一部にセリンが含まれていてもよい。セリンをアミノ酸配列中に付加することにより、該ポリペプチドにフレキシビリティを付与することができ、目的物質の非特異的吸着抑制能の向上に貢献すると期待できる。   Examples of polar amino acids and uncharged amino acids constituting one unit include asparagine (N), glutamine (Q), threonine (T), tyrosine (Y) and serine (S). Among them, hydrophilicity and steric hindrance From the viewpoint of imparting properties, asparagine having high hydrophilicity and a small side chain size is preferable. Moreover, serine may be contained in a part of the amino acid sequence of the whole unit or the entire polypeptide. By adding serine to the amino acid sequence, flexibility can be imparted to the polypeptide, and it can be expected to contribute to the improvement of the ability to suppress nonspecific adsorption of the target substance.

かかる1ユニットのアミノ酸配列は、a、bを任意の整数とした、第1種のアミノ酸×aと第2種のアミノ酸×bの組合せ、例えば、選択したアミノ酸の記号とa、bの値で表示した場合の(NQTYS×a、NQTYS×b)は、多様な組合せが可能である。例えば、第1種のアミノ酸にグルタミン(Q)、第2種のアミノ酸にセリン(S)を選択し、a、bの値の組合せ(例えば、a,b=2,1; 3,1; 3,2; 4,1; 4,2; 5,1; 5,2,,,)を表示した場合の(QaSb)は、(QS)、(QS)、(QS)、(QS)、(QS)、(QS)、(QS)、、、等がいずれも可能である。本発明では、具体的に、1ユニットを4つのアスパラギンと1つのセリンの組合せ(N4S)とし、この1ユニットの繰り返し配列((N4S)n)とすることで、本発明のポリペプチドは固相表面修飾分子として使用する際に固相表面への細胞の非特異的な吸着を制御できる。この場合、1ユニット内の配列において、セリンの配列位置は特に限定はなく、1ユニット内において任意の位置で設計すればよい。また、1ユニットの同じ配列の繰り返しの回数は、立体障害性を確保できれば特に制限はないが、一般に繰り返し回数が多くなるほど、コスト面と合成のしやすさから入手が困難となることから、例えば20回程度の繰り返しが好ましい。本発明においては、特に、配列番号1により表されるアミノ酸配列のポリペプチドが好ましく、アミノ酸合成機などを用いて、人工的に合成してもよい。 Such an amino acid sequence of one unit is a combination of the first type amino acid × a and the second type amino acid × b, where a and b are arbitrary integers, for example, the selected amino acid symbol and the values of a and b. When displayed (NQTYS × a, NQTYS × b), various combinations are possible. For example, glutamine (Q) is selected as the first type of amino acid, serine (S) is selected as the second type of amino acid, and a combination of the values of a and b (for example, a, b = 2,1; 3,1; 3 , 2; 4,1; 4,2; 5,1; 5,2 ,,), (QaSb) is (Q 2 S), (Q 3 S), (Q 3 S 2 ) , (Q 4 S), (Q 4 S 2 ), (Q 5 S), (Q 5 S 2 ), etc. are all possible. In the present invention, specifically, one unit is a combination of four asparagine and one serine (N 4 S), and this one unit is a repetitive sequence ((N 4 S) n ). Peptides can control nonspecific adsorption of cells to the solid surface when used as a solid surface modifying molecule. In this case, in the arrangement | sequence in 1 unit, the arrangement position of serine does not have limitation in particular, What is necessary is just to design in arbitrary positions in 1 unit. In addition, the number of repetitions of the same arrangement of one unit is not particularly limited as long as steric hindrance can be secured, but generally, as the number of repetitions increases, it becomes difficult to obtain due to cost and ease of synthesis. Repeating about 20 times is preferable. In the present invention, the polypeptide having the amino acid sequence represented by SEQ ID NO: 1 is particularly preferable, and may be artificially synthesized using an amino acid synthesizer or the like.

また、本発明のポリペプチドは、細胞関連アプリケーションに用いられるデバイス・マテリアルの表面に適用される抗体等の機能性タンパク質のアミノ酸を付加して、融合タンパク質として組み込むことが可能である。また、この機能性タンパク質によって捕獲した目的物質をさらなる研究等に用いるために、当該ポリペプチドから回収する必要があり、例えば、ポリペプチドの配列内に特定の制限酵素の認識部位を設けることによって、捕獲した目的物質を容易に回収することができる。   In addition, the polypeptide of the present invention can be incorporated as a fusion protein by adding amino acids of functional proteins such as antibodies applied to the surface of devices and materials used for cell-related applications. In addition, in order to use the target substance captured by this functional protein for further research and the like, it is necessary to recover from the polypeptide, for example, by providing a recognition site for a specific restriction enzyme within the polypeptide sequence, The captured target substance can be easily recovered.

また、本発明の別の視点によると、本発明は、上記ポリペプチドをコードする塩基配列を含むプラスミドを提供できる。好ましくは、配列番号2に示す塩基配列を含むプラスミドが好ましい。これにより、上記ポリペプチドが発現できるように細胞に形質転換できる。また、本発明は、当該プラスミドにより形質転換された細胞を提供でき、細胞は磁性細菌であることが好ましい。   Moreover, according to another viewpoint of this invention, this invention can provide the plasmid containing the base sequence which codes the said polypeptide. A plasmid containing the base sequence shown in SEQ ID NO: 2 is preferable. This allows the cells to be transformed so that the polypeptide can be expressed. In addition, the present invention can provide a cell transformed with the plasmid, and the cell is preferably a magnetic bacterium.

本発明のさらに別の視点によると、上記磁性細菌において、上記プラスミドを該磁性細菌に導入し、該磁性細菌を培養し、合成された磁性細菌粒子を抽出することにより、細胞に対する非特異的な吸着を制御可能なポリペプチドを合成した磁性細菌粒子の作製方法を提供できる。また、上記方法によって、上述したポリペプチドのいずれかを発現することができ、具体的には、磁性細菌の磁性細菌粒子膜上に発現された磁性細菌粒子を得ることができる。   According to still another aspect of the present invention, in the magnetic bacterium, the plasmid is introduced into the magnetic bacterium, the magnetic bacterium is cultured, and the synthesized magnetic bacterium particles are extracted, whereby non-specificity to the cell is obtained. It is possible to provide a method for producing magnetic bacterial particles obtained by synthesizing a polypeptide capable of controlling adsorption. In addition, any of the above-described polypeptides can be expressed by the above-described method. Specifically, magnetic bacterial particles expressed on the magnetic bacterial particle film of magnetic bacteria can be obtained.

さらにまた、本発明の別の視点によると、上記磁性細菌粒子を用いることによって、該粒子の細胞に対する非特異的吸着を抑制する方法、該粒子の分散性を向上する方法、及び細胞の分離方法を提供する。これによって、当該粒子表面にポリペプチドが配された粒子において、当該ポリペプチドのもたらす親水性と立体障害性により、細胞の粒子への非特異的な吸着を制御可能である。また、粒子表面の上記ポリペプチドは、粒子同士の凝集抑制にも寄与し、粒子の分散性を向上可能である。また、粒子表面の上記ポリペプチドによって細胞の非特異的吸着が抑制された結果、例えば、末梢血からの目的細胞の分離が高純度及び高効率で可能である。   Furthermore, according to another aspect of the present invention, by using the magnetic bacterial particles, a method for suppressing nonspecific adsorption of the particles to cells, a method for improving the dispersibility of the particles, and a method for separating cells I will provide a. As a result, nonspecific adsorption of the cells to the particles can be controlled by the hydrophilicity and steric hindrance caused by the polypeptide in the particle having the polypeptide arranged on the particle surface. In addition, the above-mentioned polypeptide on the particle surface contributes to suppression of aggregation between particles and can improve the dispersibility of the particles. In addition, as a result of the nonspecific adsorption of the cells being suppressed by the polypeptide on the particle surface, for example, the target cells can be separated from peripheral blood with high purity and high efficiency.

本発明によれば、本発明の極性アミノ酸且つ非荷電アミノ酸から構成されるポリペプチドによって、細胞の粒子への非特異的な吸着を制御可能である。少なくとも50アミノ酸残基から構成され、また、複数のアミノ酸残基から構成されるアミノ酸配列を1ユニットとし、当該1ユニットのアミノ酸配列が繰り返して配列されるポリペプチド、具体的には、少なくとも2種類の当該アミノ酸の組合せから構成されるポリペプチド、例えば、(N4S)nポリペプチドを粒子表面に配することで、ポリペプチドのもたらす親水性と立体障害性により、細胞の粒子への非特異的な吸着を制御可能である。また、粒子表面の(N4S)nポリペプチドは、粒子同士の凝集抑制にも寄与し、粒子の分散性を向上可能である。更に、ポリペプチド鎖長を伸長させることで、粒子と細胞間又は粒子同士の相互作用に及ぼす効果を増大させることが可能である。また、本発明のポリペプチドを磁気細胞分離に用いるマテリアル(磁性粒子)上に修飾する場合に、抗体結合性タンパク質と本発明のポリペプチドを融合タンパク質としてディスプレイすることで、磁性ナノ粒子上へ配向性を保った抗体の固定化が可能である。この抗体固定化磁性ナノ粒子を用いることで、細胞の非特異的吸着からの回避に伴い、目的とする細胞のみを高精度に磁気標識でき、高純度に磁気分離可能である。さらにまた、本発明のポリペプチドを修飾することで粒子の分散性も向上することから、抗体固定化磁性ナノ粒子の目的細胞との反応効率も向上し、高回収率での磁気分離も可能である。 According to the present invention, nonspecific adsorption to cellular particles can be controlled by the polypeptide composed of the polar amino acid and the uncharged amino acid of the present invention. A polypeptide composed of at least 50 amino acid residues and an amino acid sequence composed of a plurality of amino acid residues as one unit, wherein the amino acid sequence of the one unit is repeated, specifically, at least two types A polypeptide composed of a combination of the above amino acids, for example, (N 4 S) n polypeptide is arranged on the particle surface, and due to the hydrophilicity and steric hindrance caused by the polypeptide, non-specificity to cell particles Adsorption can be controlled. In addition, the (N 4 S) n polypeptide on the particle surface contributes to the suppression of aggregation between particles and can improve the dispersibility of the particles. Furthermore, by extending the polypeptide chain length, it is possible to increase the effect on the interaction between particles and cells or between particles. In addition, when the polypeptide of the present invention is modified on a material (magnetic particle) used for magnetic cell separation, the antibody-binding protein and the polypeptide of the present invention are displayed as a fusion protein so that they are oriented on the magnetic nanoparticles. It is possible to immobilize antibodies that retain their properties. By using the antibody-immobilized magnetic nanoparticles, only target cells can be magnetically labeled with high accuracy and can be magnetically separated with high purity, in accordance with avoidance of nonspecific adsorption of cells. Furthermore, since the dispersibility of the particles is improved by modifying the polypeptide of the present invention, the reaction efficiency of the antibody-immobilized magnetic nanoparticles with the target cells is improved, and magnetic separation at a high recovery rate is possible. is there.

実施例1におけるBacMPs上へのprotein G-NS polypeptide linker (100AA)-Mms13融合タンパク質発現用プラスミドの作製概略図を示す。FIG. 2 shows a schematic diagram for preparing a plasmid for protein G-NS polypeptide linker (100AA) -Mms13 fusion protein expression on BacMPs in Example 1. FIG. 実施例1におけるBacMPs上へのprotein G-NS polypeptide linker (50AA)-Mms13融合タンパク質発現用プラスミドの作製概略図を示す。FIG. 2 shows a schematic diagram for preparing a plasmid for protein G-NS polypeptide linker (50AA) -Mms13 fusion protein expression on BacMPs in Example 1. FIG. 本発明におけるProtein G-NS polypeptide linker (100AA)-Mms13融合タンパク質発現BacMP(protein G-linker(100)-BacMP)の概念図を示す。The conceptual diagram of Protein G-NS polypeptide linker (100AA) -Mms13 fusion protein expression BacMP (protein G-linker (100) -BacMP) in this invention is shown. 実施例1におけるBacMPs上へのprotein G-NS polypeptide linker (100AA)-Mms13融合タンパク質のSDS-PAGEによる発現確認の図を示す。The figure of the expression confirmation by SDS-PAGE of the protein G-NS polypeptide linker (100AA) -Mms13 fusion protein on BacMPs in Example 1 is shown. 実施例2におけるProtein G 依存的に BacMPs 上に固定化された rabbit IgG 抗体数を示す図である。It is a figure which shows the number of rabbit IgG antibody fix | immobilized on BacMPs depending on Protein G in Example 2. FIG. (A)及び(B)共に、実施例3におけるBacMPsの粒度分布を示す図である。(A) And (B) is a figure which shows the particle size distribution of BacMPs in Example 3. FIG. 実施例4における透過型電子顕微鏡(Transmission electron microscopic)(TEM)によるBacMPsの観察を示す図である。It is a figure which shows observation of BacMPs by the transmission electron microscope (Transmission electron microscopic) (TEM) in Example 4. FIG. 実施例5におけるBacMPs上へのNS polypeptide linkerの発現とBacMPsの細胞への非特異的吸着の相関を示す図である。It is a figure which shows the correlation of the expression of NS polypeptide linker on BacMPs in Example 5, and nonspecific adsorption | suction to the cell of BacMPs. 実施例6における抗CD19抗体固定化BacMPsを用いたRaji細胞の磁気回収率を示す図である。It is a figure which shows the magnetic recovery rate of the Raji cell using the anti-CD19 antibody fixed BacMPs in Example 6. 実施例7における抗CD19抗体固定化BacMPsを用いた末梢血からのCD19+細胞の直接的磁気分離を示す図である。FIG. 6 shows direct magnetic separation of CD19 + cells from peripheral blood using anti-CD19 antibody-immobilized BacMPs in Example 7.

本発明のポリペプチドは、磁性ナノ粒子のような細胞関連アプリケーション用マテリアルにおける、固相表面修飾分子として、固相表面への細胞の非特異的な吸着を制御可能なポリペプチドであることを特徴とする。   The polypeptide of the present invention is a polypeptide capable of controlling non-specific adsorption of cells to a solid phase surface as a solid phase surface modification molecule in a cell-related application material such as magnetic nanoparticles. And

より詳細に説明すると、本発明のポリペプチドは、極性アミノ酸且つ非荷電アミノ酸のポリペプチドである。このポリペプチドは、少なくとも50アミノ酸残基から構成されるアミノ酸配列であれば、当該アミノ酸配列は任意の配列でよく、また、このポリペプチドが用いられる細胞の発現系に影響を及ぼさない限り、このポリペプチドの長さは特に制限されない。また、このポリペプチドは、複数のアミノ酸残基から構成されるアミノ酸配列を1ユニットとし、当該1ユニットのアミノ酸配列が繰り返して配列されるポリペプチドを特徴とする。   More specifically, the polypeptide of the present invention is a polypeptide of polar amino acids and uncharged amino acids. As long as this polypeptide has an amino acid sequence composed of at least 50 amino acid residues, the amino acid sequence may be any sequence, and unless this affects the expression system of the cell in which the polypeptide is used, The length of the polypeptide is not particularly limited. This polypeptide is characterized by a polypeptide in which an amino acid sequence composed of a plurality of amino acid residues is taken as one unit, and the amino acid sequence of the one unit is repeated.

また、本発明のポリペプチドを構成するアミノ酸は、極性アミノ酸且つ非荷電アミノ酸であれば、特に制限はなく、これらのアミノ酸に該当するアスパラギン(N)、グルタミン(Q)、トレオニン(T)、チロシン(Y)及びセリン(S)から任意に選択されるが、好ましくは、アスパラギン、グルタミン及びセリンからなる群から2つ以上選択して使用される。また、極性アミノ酸且つ非荷電アミノ酸は親水性アミノ酸でもあり、本発明のポリペプチドを構成するアミノ酸は親水性でもある。また、1ユニット内のペプチド配列は、5つのアミノ酸の配列で構成されることが好ましいが、これに制限されるものではない。   The amino acid constituting the polypeptide of the present invention is not particularly limited as long as it is a polar amino acid and an uncharged amino acid. Asparagine (N), glutamine (Q), threonine (T), tyrosine corresponding to these amino acids Although it is arbitrarily selected from (Y) and serine (S), it is preferably used by selecting two or more from the group consisting of asparagine, glutamine and serine. Moreover, polar amino acids and uncharged amino acids are also hydrophilic amino acids, and the amino acids constituting the polypeptide of the present invention are also hydrophilic. The peptide sequence within one unit is preferably composed of a sequence of five amino acids, but is not limited thereto.

より好ましくは、本発明のポリペプチドは、具体的には、第1の種類のアミノ酸(例えば、アスパラギン)を4つ、次いで、第2の種類のアミノ酸(例えば、セリン)を1つ並べて配列した(N4S)を1ユニットとしたペプチドから構成されるポリペプチドが好ましいが、ここで、1ユニット内の5つのアミノ酸の配列は制限されるものでない。つまり、1ユニット内において、1つだけの第2種アミノ酸(セリン)と4つの第1種アミノ酸(アスパラギン)による配列に関しては、任意に配されてよい。また、例えば、a、bを任意の整数とすると、1ユニットは、第1種のアミノ酸×aと第2種のアミノ酸×bの組合せから構成されて、1ユニットの配列はアスパラギン(N)、グルタミン(Q)、トレオニン(T)、チロシン(Y)及びセリン(S)から任意に選択した多様な組合せからなるアミノ酸配列が可能である。 More preferably, the polypeptide of the present invention is specifically arranged by arranging four first type amino acids (eg, asparagine) and then one second type amino acid (eg, serine). A polypeptide composed of a peptide having (N 4 S) as one unit is preferable, but here, the sequence of five amino acids in one unit is not limited. That is, in one unit, the sequence of only one second-type amino acid (serine) and four first-type amino acids (asparagine) may be arbitrarily arranged. For example, when a and b are arbitrary integers, one unit is composed of a combination of the first type of amino acid × a and the second type of amino acid × b, and the sequence of one unit is asparagine (N), Amino acid sequences consisting of various combinations arbitrarily selected from glutamine (Q), threonine (T), tyrosine (Y) and serine (S) are possible.

また、本発明のポリペプチドとしては、上記の4つのアスパラギンと1つのセリンのアミノ酸配列より構成される1ユニットが繰り返し配列されたポリペプチド(以下、「(N4S)nポリペプチド」と記す)が好ましい。特に、アスパラギンは、ポリペプチドの親水性と立体障害性の付与の観点から好ましく、セリンは、ポリペプチドに構造上のフレキシビリティを付与することができ、目的物質の非特異的吸着抑制能の向上に寄与できる。ここで、当該1ユニットの繰り返し数(n)には特に制限がなく任意の値をとり得るが、本発明のポリペプチドにおいては、少なくとも数回、好ましくは10回程度以上、特に20回程度の繰り返しが好ましい。 The polypeptide of the present invention is a polypeptide in which one unit composed of the amino acid sequences of the above four asparagines and one serine (hereinafter referred to as “(N 4 S) n polypeptide”). ) Is preferred. In particular, asparagine is preferable from the viewpoint of imparting hydrophilicity and steric hindrance to the polypeptide, and serine can impart structural flexibility to the polypeptide and improve the nonspecific adsorption inhibition ability of the target substance. Can contribute. Here, the repeating number (n) of the one unit is not particularly limited and can take any value. In the polypeptide of the present invention, it is at least several times, preferably about 10 times or more, particularly about 20 times. Repeat is preferred.

また、本発明のポリヌクレオチドにおいては、当該1ユニットの繰り返し数を調整することで、ポリペプチド鎖長を調整でき、このポリペプチド鎖長に依存して、非特異的な吸着の制御の調節が可能である。   In the polynucleotide of the present invention, the polypeptide chain length can be adjusted by adjusting the number of repetitions of the one unit. Depending on the polypeptide chain length, the control of nonspecific adsorption can be adjusted. Is possible.

このように、本発明のポリペプチドは、非特異的な吸着の制御の度合いに依存して、上述した条件により適宜調製できるが、本発明においては、上記(N4S)nポリペプチドが好ましく、特には、1ユニットの(N4S)が20回繰り返す、(N4S)20ポリペプチドが好ましい。また、本発明においては、配列番号1により表されるアミノ酸配列のポリペプチドが好ましい。 Thus, the polypeptide of the present invention can be appropriately prepared according to the above-mentioned conditions depending on the degree of nonspecific adsorption control. In the present invention, the above (N 4 S) n polypeptide is preferable. In particular, (N 4 S) 20 polypeptide in which one unit of (N 4 S) repeats 20 times is preferred. In the present invention, the polypeptide having the amino acid sequence represented by SEQ ID NO: 1 is preferred.

さらに、本発明のポリペプチドは、細胞関連アプリケーション用マテリアルを開発するにあたり、例えば、磁性ナノ粒子の表面に修飾する際に、機能性タンパク質をディスプレイするためのリンカーとして使用することができる。この場合、機能性タンパク質を本発明のポリペプチドと一体化することができる。つまり、機能性タンパク質を調製する際に、本発明のポリペプチドとの融合タンパク質とすることができ、当該機能性タンパク質のアミノ酸配列を本発明のポリペプチドに組み込むことができる。機能性タンパク質としては、例えば、抗原、抗体、プロテインA、プロテインG等の免疫関連タンパク質や、レクチン、アビジン、ビオチン等の結合能を有する結合性タンパク質や、補酵素、加水分解酵素、酸化還元酵素、異性化酵素、転移酵素、脱離酵素、制限酵素等の酵素や、各種受容体や、GFP等のマーカタンパク質などが挙げられ、また、上記機能性タンパク質の一部からなるペプチドや、HA(ヘマグルチニン)、FLAG、Myc等のエピトープタグや、GST、マルトース結合タンパク質、ビオチン化ペプチド、オリゴヒスチジン等の親和性タグなどを例示することができるがこれらに限定されるものではなく、1又は2以上の機能性タンパク質や機能性ペプチドが融合した融合機能性タンパク質であってもよい。   Furthermore, the polypeptide of the present invention can be used as a linker for displaying a functional protein when developing a material for cell-related applications, for example, when modifying the surface of a magnetic nanoparticle. In this case, the functional protein can be integrated with the polypeptide of the present invention. That is, when preparing a functional protein, it can be used as a fusion protein with the polypeptide of the present invention, and the amino acid sequence of the functional protein can be incorporated into the polypeptide of the present invention. Examples of functional proteins include immune-related proteins such as antigens, antibodies, protein A, and protein G, binding proteins having binding ability such as lectin, avidin, and biotin, coenzymes, hydrolases, and oxidoreductases. , Enzymes such as isomerase, transferase, desorption enzyme, restriction enzyme, various receptors, marker proteins such as GFP, and the like, peptides composed of a part of the above functional proteins, HA ( Hemagglutinin), FLAG, Myc and other epitope tags, GST, maltose binding protein, biotinylated peptide, oligohistidine and other affinity tags can be exemplified, but are not limited to these, and one or more The functional protein or functional peptide may be fused functional protein.

また、この場合、本発明のポリペプチドの配列内に特定の制限酵素の認識部位を設けることによって、機能性タンパク質によって捕獲された目的物質を容易に回収することができ、回収された目的物質をさらなる研究及び実験などに使用することができる。   In this case, the target substance captured by the functional protein can be easily recovered by providing a recognition site for a specific restriction enzyme in the sequence of the polypeptide of the present invention. It can be used for further research and experiments.

また、本発明のポリペプチドは、アミノ酸合成機で人工的に合成することもできるが、本発明においては、当該ポリペプチドをコードする塩基配列、つまり、特定のアミノ酸配列である本発明のポリペプチドを細菌などの細胞内で合成するための塩基配列を作製し、当該塩基配列を公知の遺伝子技術によってプラスミドなどのベクターに導入し、次いで、マイクロインジェクション、エレクトロポレーション等の公知の導入技術によって、当該プラスミドを、上記ポリペプチドを発現することができる発現系を含んでなる宿主細胞に導入することによって合成することができる。   In addition, the polypeptide of the present invention can be artificially synthesized with an amino acid synthesizer. In the present invention, the base sequence encoding the polypeptide, that is, the polypeptide of the present invention which is a specific amino acid sequence. A base sequence for synthesizing in a cell such as bacteria, the base sequence is introduced into a vector such as a plasmid by a known gene technique, then, by a known introduction technique such as microinjection or electroporation, The plasmid can be synthesized by introducing it into a host cell comprising an expression system that can express the polypeptide.

宿主細胞としては、磁性細菌、大腸菌などの細菌原核細胞や、酵母などの真核細胞、昆虫細胞、動物細胞又は植物細胞を挙げることができるが、本発明のポリペプチドを細胞関連アプリケーションに利用する際に、磁性ナノ粒子上に形態化できることから、特に、磁性細菌を用いることが好ましい。   Examples of host cells include bacterial prokaryotic cells such as magnetic bacteria and Escherichia coli, eukaryotic cells such as yeast, insect cells, animal cells, and plant cells. The polypeptide of the present invention is used for cell-related applications. In particular, it is preferable to use a magnetic bacterium since it can be formed on the magnetic nanoparticles.

なお、磁性細菌とは、体内に磁性細菌粒子(磁気微粒子ともいう)を蓄積する能力を有する細菌であり、本発明において使用可能な磁性細菌(Magnetospirillum sp.)としては、AMB−1(FERM BP−5458)、MS−1(IFO15272,ATCC31632,DSM3856)、MSR−1(IFO15272,DSM6361)、RS−1(FERM BP−13283)、MGT−1(FERM P−16617)等の磁性細菌を具体的に例示することができるがこれらに限定されるものではない。   The magnetic bacterium is a bacterium having the ability to accumulate magnetic bacterium particles (also referred to as magnetic fine particles) in the body, and examples of the magnetic bacterium (Magnetospirillum sp.) Usable in the present invention include AMB-1 (FERM BP). -5458), MS-1 (IFO15272, ATCC31632, DSM3856), MSR-1 (IFO15272, DSM6361), RS-1 (FERM BP-13283), MGT-1 (FERM P-16617), etc. However, the present invention is not limited to these examples.

本発明のポリペプチドは、上記機能性タンパク質を含んで、磁気微粒子膜上に発現している磁気微粒子として、上記宿主磁性細菌を用いて製造することができる。かかる製造方法としては、例えば、本来的に有機膜に結合して生成する膜タンパク質Mms13の全部又は一部(少なくとも膜結合部分)をコードするDNA、又はそのDNAに機能性タンパク質及びポリペプチドをコードするDNAとを融合させたDNA配列と、例えば、mms16プロモーターなどの高転写活性を有するプロモーター配列とを含む組換えプラスミドにより形質転換された磁性細菌を培養することにより、本発明のポリペプチド(機能性タンパク質を含んで)が磁気微粒子膜上に発現している磁気微粒子を細菌内で生成させる方法を挙げることができる。本発明のポリペプチド(機能性タンパク質を含んで)が磁気微粒子膜上に発現している磁気微粒子は、培養により増殖させた上記磁性細菌を公知の方法により破砕又は溶解し、磁石を利用して容易に収集することができる。   The polypeptide of the present invention can be produced using the host magnetic bacterium as magnetic fine particles that contain the functional protein and are expressed on the magnetic fine particle film. As such a production method, for example, DNA encoding all or a part (at least a membrane-binding portion) of a membrane protein Mms13 that is inherently bound to an organic membrane, or a functional protein and a polypeptide are encoded in the DNA. By culturing a magnetic bacterium transformed with a recombinant plasmid containing a DNA sequence fused with the DNA to be treated and a promoter sequence having a high transcription activity such as the mms16 promoter, the polypeptide of the present invention (function Examples thereof include a method of generating magnetic fine particles that are expressed on the magnetic fine particle film in bacteria, including a sex protein. The magnetic fine particles in which the polypeptide of the present invention (including functional protein) is expressed on the magnetic fine particle film are obtained by crushing or dissolving the magnetic bacteria grown by culture by a known method, and using a magnet. Easy to collect.

このようにして得られた磁性細菌粒子は、(N4S)nポリペプチド鎖を粒子表面に配することで、ポリペプチドのもたらす親水性と立体障害性により、細胞の粒子への非特異的な吸着を制御可能である。また、粒子表面の(N4S)nポリペプチドは、粒子同士の凝集抑制にも寄与し、粒子の分散性を向上可能である。更に、ポリペプチド鎖長を伸長させることで、粒子と細胞間又は粒子同士の相互作用に及ぼす効果を増大させることが可能である。 The magnetic bacterial particles obtained in this way are non-specific to cellular particles due to the hydrophilicity and steric hindrance that the polypeptides provide by placing (N 4 S) n polypeptide chains on the particle surface. Can control the adsorption. In addition, the (N 4 S) n polypeptide on the particle surface contributes to the suppression of aggregation between particles and can improve the dispersibility of the particles. Furthermore, by extending the polypeptide chain length, it is possible to increase the effect on the interaction between particles and cells or between particles.

また、本発明のポリペプチドを磁性ナノ粒子などの粒子表面に修飾する際に、機能性タンパク質をディスプレイするためのリンカーとして利用する場合、本発明のポリペプチドは、それらのタンパク質の配向性を一定に保った状態でデバイス・マテリアル表面にディスプレイするのに役立つ。例えば、抗体結合性タンパク質であるプロテインGと本発明のポリペプチドを融合タンパク質としてディスプレイすることで、磁性ナノ粒子上へ配向性を保った抗体の固定化が可能である。この抗体固定化磁性ナノ粒子を用いることで、細胞の非特異的吸着からの回避に伴い、目的とする細胞のみを高精度に磁気標識でき、高純度に磁気分離可能である。また、本発明のポリペプチドを修飾することで粒子の分散性も向上することから、抗体固定化磁性ナノ粒子の目的細胞との反応効率も向上し、高回収率での磁気分離も可能である。   When the polypeptide of the present invention is used as a linker for displaying functional proteins when modifying the surface of particles such as magnetic nanoparticles, the polypeptide of the present invention has a constant orientation of the proteins. It is useful to display on the surface of the device material while keeping For example, by displaying protein G, which is an antibody-binding protein, and the polypeptide of the present invention as a fusion protein, it is possible to immobilize an antibody with orientation maintained on magnetic nanoparticles. By using the antibody-immobilized magnetic nanoparticles, only target cells can be magnetically labeled with high accuracy and can be magnetically separated with high purity, in accordance with avoidance of nonspecific adsorption of cells. Moreover, since the dispersibility of the particles is improved by modifying the polypeptide of the present invention, the reaction efficiency of the antibody-immobilized magnetic nanoparticles with the target cells is improved, and magnetic separation with high recovery rate is possible .

以下に、具体的な実施例を掲げて本発明を更に具体的に説明するが、本発明の範囲は、これらの例示に限定されるものではない。   Hereinafter, the present invention will be described more specifically with specific examples. However, the scope of the present invention is not limited to these examples.

本実施例では、細胞関連アプリケーションにおいて、ナノ粒子の細胞への非特異的吸着を抑制するための新規粒子表面修飾分子として、(N4S)nポリペプチド(NS polypeptideともいう)を合成した。そして、NS polypeptideの効果を検証するため、各実施例において、プロテインG(protein G)を発現させる際のリンカーとしてNS polypeptideを導入した磁性細菌粒子(Bacterial magnetic particles : 以下、BacMPsという)(磁気微粒子、磁性ナノ粒子ともいう)を作製し、protein G-NS polypeptide発現BacMPsと細胞の相互作用に関する解析を行った。 In this example, (N 4 S) n polypeptide (also referred to as NS polypeptide) was synthesized as a novel particle surface modifying molecule for suppressing nonspecific adsorption of nanoparticles to cells in cell-related applications. In order to verify the effect of NS polypeptide, in each Example, magnetic bacterial particles (hereinafter referred to as BacMPs) in which NS polypeptide is introduced as a linker when protein G is expressed (magnetic particles) , Also called magnetic nanoparticles), and analyzed the interaction between protein G-NS polypeptide-expressing BacMPs and cells.

Protein G-NS polypeptide linker発現BacMPs(protein G-linker-BacMPs)の作製
BacMPs上へのprotein G-NS polypeptide linker融合タンパク質のディスプレイを目的とし、プラスミドの構築を行った(図1及び2)。NS polypeptide linker((N4S)18+LVPRGS+(N4S)(配列番号1))をコードする遺伝子(315 bp)(配列番号2)を含むプラスミド(pUC18)(TAKARA BIO社に遺伝子合成を発注)から制限酵素Ssp Iを用いてリンカー(linker)遺伝子を切り出し、pUMP16M13のSspIサイトに導入した。これをNS polypeptide linker(100AA)発現用プラスミド(pUM13L(100))(図1)とした。更に、pUM13L(100)上のNS polypeptide linker遺伝子の中央にsite-direct mutagenesis法によりHpa Iサイト及びストップコドン(stop codon)を導入した。これをNS polypeptide linker(50AA)発現用プラスミド(pUM13L(50))(図2)とした。Protein GのIgG binding domain(B1-domain)(配列番号3)をコードする遺伝子(174 bp)(配列番号4)を含むプラスミド(pPCR-Script)(OPERON社に遺伝子合成を発注)から制限酵素Ssp Iを用いてB1-domain遺伝子を切り出し、pUM13L(100)のAfe Iサイト及びpUM13L(50)のHpa Iサイトに導入した。これらを、protein G-NS polypeptide linker(100 AAまたは50AA)発現用プラスミド(pUM13L(100)B1、pUM13L(50)B1)とした。なお、pUM13L(50)B1作製の際に、配列番号6、7を用いた。pUM13L(100)B1は、Mms13遺伝子+((N4S)18+LVPRGS+(N4S)) polypeptide遺伝子+protein G遺伝子の融合遺伝子、アンピシリン耐性遺伝子を含んでいる。pUM13L(50)B1は、Mms13遺伝子+(N4S)10polypeptide遺伝子+protein G遺伝子の融合遺伝子、アンピシリン耐性遺伝子を含んでいる。なお、(N4S)10polypeptideのアミノ酸配列は、配列番号5で示される。両プラスミド共にプロモーターにはmms16プロモーターを用いた。上記NS polypeptide linker((N4S)18+LVPRGS+(N4S))内のアミノ酸(LVPRGS)は、トロンビン(thrombin)酵素の消化部位である。
Production of protein G-NS polypeptide linker expressing BacMPs (protein G-linker-BacMPs)
A plasmid was constructed for the purpose of displaying protein G-NS polypeptide linker fusion protein on BacMPs (FIGS. 1 and 2). Plasmid (pUC18) containing gene (315 bp) (SEQ ID NO: 2) encoding NS polypeptide linker ((N 4 S) 18 + LVPRGS + (N 4 S) (SEQ ID NO: 1)) The linker gene was excised from the order) using the restriction enzyme SspI and introduced into the SspI site of pUMP16M13. This was designated as an NS polypeptide linker (100AA) expression plasmid (pUM13L (100)) (FIG. 1). Furthermore, an Hpa I site and a stop codon were introduced into the center of the NS polypeptide linker gene on pUM13L (100) by site-direct mutagenesis. This was designated as an NS polypeptide linker (50AA) expression plasmid (pUM13L (50)) (FIG. 2). The restriction enzyme Ssp from a plasmid (pPCR-Script) (ordered gene synthesis from OPERON) containing the gene (174 bp) (SEQ ID NO: 4) encoding the IgG binding domain (B1-domain) (SEQ ID NO: 3) of Protein G The B1-domain gene was excised using I and introduced into the Afe I site of pUM13L (100) and the Hpa I site of pUM13L (50). These were used as protein G-NS polypeptide linker (100 AA or 50AA) expression plasmids (pUM13L (100) B1, pUM13L (50) B1). Note that SEQ ID NOs: 6 and 7 were used in the preparation of pUM13L (50) B1. pUM13L (100) B1 contains a fusion gene of Mms13 gene + ((N 4 S) 18 + LVPRGS + (N 4 S)) polypeptide gene + protein G gene, and ampicillin resistance gene. pUM13L (50) B1 contains a fusion gene of Mms13 gene + (N 4 S) 10 polypeptide gene + protein G gene, and ampicillin resistance gene. The amino acid sequence of (N 4 S) 10 polypeptide is represented by SEQ ID NO: 5. For both plasmids, mms16 promoter was used as the promoter. The amino acid (LVPRGS) in the NS polypeptide linker ((N 4 S) 18 + LVPRGS + (N 4 S)) is a digestion site of thrombin enzyme.

また、本実施例においては、アスパラギンとセリンから構成されるポリペプチド((N4S)nポリペプチド)内に、捕獲後の目的物質の回収のための制限酵素の認識部位を設けたが、4つのアスパラギンと1つのセリンの1ユニットを20回繰り返したポリペプチド((N4S)20ポリペプチド)とすることができる。なお、図3に、本発明におけるProtein G-NS polypeptide linker (100AA)-Mms13融合タンパク質発現BacMP(protein G-linker(100)-BacMP)の概念図を示す。 In this example, a restriction enzyme recognition site for recovery of a target substance after capture was provided in a polypeptide composed of asparagine and serine ((N 4 S) n polypeptide). A polypeptide ((N 4 S) 20 polypeptide) in which one unit of four asparagines and one serine is repeated 20 times can be obtained. In addition, in FIG. 3, the conceptual diagram of Protein G-NS polypeptide linker (100AA) -Mms13 fusion protein expression BacMP (protein G-linker (100) -BacMP) in this invention is shown.

pUM13L(100)B1、pUM13L(50)B1を磁性細菌AMB-1にエレクトロポレーションにて導入後、形質転換体より抽出したBacMPsを1% SDS中で30分間煮沸することでBacMPs膜タンパク質を回収し、SDS-PAGE(アクリルアミド:12.5%)により目的タンパク質:protein G-NS polypeptide linkerのBacMPs膜への発現を確認した。その結果、形質転換体より抽出したBacMPsの膜タンパク質のSDS-PAGEにおいて、アンカータンパク質:Mms13とprotein G-NS polypeptide linkerの融合タンパク質に相当するバンドが確認された(図4)。これより、プラスミドpUM13L(100)B1またはpUM13L(50)B1を磁性細菌に導入することでprotein G-NS polypeptide linker(100AA)発現BacMPs(protein G-linker(100)-BacMPs)またはprotein G-NS polypeptide linker(50AA)発現BacMPs(protein G-linker(50)-BacMPs)の作製が可能であることが示された。   After introducing pUM13L (100) B1 and pUM13L (50) B1 into magnetic bacterium AMB-1 by electroporation, BacMPs extracted from the transformant is boiled in 1% SDS for 30 minutes to recover BacMPs membrane protein Then, the expression of the target protein: protein G-NS polypeptide linker in the BacMPs membrane was confirmed by SDS-PAGE (acrylamide: 12.5%). As a result, a band corresponding to the fusion protein of anchor protein: Mms13 and protein G-NS polypeptide linker was confirmed in SDS-PAGE of the membrane protein of BacMPs extracted from the transformant (FIG. 4). By introducing plasmid pUM13L (100) B1 or pUM13L (50) B1 into magnetic bacteria, protein G-NS polypeptide linker (100AA) -expressing BacMPs (protein G-linker (100) -BacMPs) or protein G-NS It was shown that BacMPs expressing protein linker (50AA) (protein G-linker (50) -BacMPs) can be produced.

Protein G-linker-BacMPs上への固定化抗体数の評価
プラスミドpUM13L(100)B1、pUM13L(50)B1、pUM13B1を導入したAMB-1の形質転換体よりprotein G-linker(100)-BacMPs、protein G-linker(50)-BacMPs、protein G-BacMPsをそれぞれ抽出した。HEPESによる洗浄後、各BacMPs:20μgとALP標識rabbit由来anti-goat IgGまたはALP標識chicken由来anti-rat IgG抗体溶液:20μl(20μg/ml)を反応させた(RT、30分間)。磁気分離による洗浄後、BacMPs懸濁液:20μlにルミホス530:80μlを加え5分後の発光強度を測定した。ALP標識抗体を用いて作製した検量線を基に、測定された発光強度からBacMPs上に固定化された固定化量を算出した。さらに、下記条件を用い、BacMPs上に固定化された抗体量から、BacMP 1粒子上に固定化された抗体数を算出した(抗体分子量:150kDa、BacMP直径:75nm、BacMP密度:5.2g/cm3)。
Evaluation of the number of immobilized antibodies on Protein G-linker-BacMPs Protein G-linker (100) -BacMPs Protein G-linker (50) -BacMPs and protein G-BacMPs were extracted. After washing with HEPES, each BacMPs: 20 μg was reacted with ALP-labeled rabbit-derived anti-goat IgG or ALP-labeled chicken-derived anti-rat IgG antibody solution: 20 μl (20 μg / ml) (RT, 30 minutes). After washing by magnetic separation, Lumifos 530: 80 μl was added to BacMPs suspension: 20 μl, and the luminescence intensity after 5 minutes was measured. Based on a calibration curve prepared using an ALP-labeled antibody, the amount immobilized on BacMPs was calculated from the measured luminescence intensity. Further, the number of antibodies immobilized on BacMP 1 particles was calculated from the amount of antibody immobilized on BacMPs using the following conditions (antibody molecular weight: 150 kDa, BacMP diameter: 75 nm, BacMP density: 5.2 g / cm 3 ).

その結果、評価した3種のBacMPにおいて、BacMP 1粒子上には約20分子の抗体がprotein G依存的に固定化された(図5)。Protein G-linker(100)-BacMP、protein G-linker(50)-BacMP、protein G-BacMP 1粒子上に固定化されたrabbit由来IgG抗体数から非特異的に結合したchicken由来IgG抗体数を引いた値を、BacMP 1粒子上に発現したprotein G依存的に結合した抗体数とした。これより、protein G-linker(100)-BacMP、protein G-linker(50)-BacMP、protein G-BacMP 1粒子上には、ほぼ同等数(20 molecules/a single BacMP)の機能性protein Gが発現していると考えられた。BacMPs上へのprotein Gの発現系において、NS polypeptide linkerの導入は融合タンパク質の発現及び機能に影響を及ぼさないと考えられた。以上より、作製したBacMPsは抗体を固定化するのに有用であることが示された。   As a result, in the three types of BacMP evaluated, about 20 molecules of antibody were immobilized on BacMP 1 particles in a protein G-dependent manner (FIG. 5). Protein G-linker (100) -BacMP, protein G-linker (50) -BacMP, protein G-BacMP Number of rabbit-derived IgG antibodies bound nonspecifically from the number of rabbit-derived IgG antibodies immobilized on one particle The subtracted value was defined as the number of antibodies bound on protein G dependently expressed on BacMP 1 particles. From this, protein G-linker (100) -BacMP, protein G-linker (50) -BacMP, protein G-BacMP 1 particle has approximately the same number (20 molecules / a single BacMP) of functional protein G. It was thought to be expressed. In the expression system of protein G on BacMPs, introduction of NS polypeptide linker was considered not to affect the expression and function of the fusion protein. From the above, it was shown that the prepared BacMPs are useful for immobilizing antibodies.

BacMPsの分散性と発現したNS polypeptide linker鎖長の相関解析
Protein G-linker(100)-BacMPs、protein G-linker(50)-BacMPs、protein G-BacMPsを超純水(super pure water)またはPBSに懸濁(5μg BacMPs/ml)し、超音波攪拌直後の粒度分布を動的光散乱式粒度分布測定装置を用いて測定し、分散性を評価した。
Correlation analysis of BacMPs dispersibility and expressed NS polypeptide linker chain length
Protein G-linker (100) -BacMPs, protein G-linker (50) -BacMPs, protein G-BacMPs are suspended in super pure water or PBS (5μg BacMPs / ml) and immediately after ultrasonic stirring. The particle size distribution was measured using a dynamic light scattering type particle size distribution measuring apparatus, and the dispersibility was evaluated.

その結果、超純水(super pure water)中での各BacMPsの平均粒径は、(protein G-linker(100)-BacMPs:52.9 ± 16.8nm、protein G-linker(50)-BacMPs:50.7 ± 13.5nm、protein G-BacMPs:61.9 ± 50.5nm)であった(図6(A))。一方、PBS中での各BacMPsのメインピークの示す粒径は、(protein G-linker(100)-BacMPs:66.8 ± 10.6nm、protein G-linker(50)-BacMPs:105.2 ± 29.3nm、protein G-BacMPs:211.8 ± 42.8nm)(図6(B))であり、NS polypeptide linker鎖長に比例しBacMPsの分散性が向上した。超純水(Super pure water)中では、BacMPsを覆う主要なリン脂質であるフォスファチジルエタノールアミン(phosphatidylethanolamine)由来の負電荷の効果によりBacMPs同士の電気的な反発が起こり、BacMPsが単分散を容易に保てると考えられた。一方、緩衝液であるPBS中においては、多量に存在するイオンによりBacMPsの表面電荷は打ち消され、個々のBacMPの有する磁力に起因した凝集塊の形成が促進されると考えられた。しかし、BacMPs上にNS polypeptide linkerを配することで、立体障害によりBacMPs同士の凝集が抑制されたと考えられた。更には、NS polypeptideは親水性であることから、PEGのもたらす効果と同様にBacMPs表面に固定化水層(非特許文献1参照)が形成されている可能性も示唆された。以上より、NS polypeptide linker のディスプレイにより緩衝液中においてもBacMPsの分散性を保持することが可能であることが示された。   As a result, the average particle size of each BacMPs in super pure water is (protein G-linker (100) -BacMPs: 52.9 ± 16.8 nm, protein G-linker (50) -BacMPs: 50.7 ± 13.5 nm and protein G-BacMPs: 61.9 ± 50.5 nm) (FIG. 6A). On the other hand, the particle size indicated by the main peak of each BacMPs in PBS is (protein G-linker (100) -BacMPs: 66.8 ± 10.6 nm, protein G-linker (50) -BacMPs: 105.2 ± 29.3 nm, protein G -BacMPs: 211.8 ± 42.8 nm) (FIG. 6B), and the dispersibility of BacMPs was improved in proportion to the NS polypeptide linker chain length. In super pure water, electrical repulsion between BacMPs occurs due to the negative charge derived from phosphatidylethanolamine, the main phospholipid that covers BacMPs, and BacMPs are monodispersed. I thought it was easy to keep. On the other hand, in PBS, which is a buffer solution, it was considered that the surface charge of BacMPs was canceled by a large amount of ions, and the formation of aggregates due to the magnetic force of each BacMP was promoted. However, it was thought that aggregation of BacMPs was suppressed by steric hindrance by arranging NS polypeptide linker on BacMPs. Furthermore, since NS polypeptide is hydrophilic, it was suggested that an immobilized water layer (see Non-Patent Document 1) may be formed on the surface of BacMPs as well as the effect of PEG. From the above, it was shown that the NS polypeptide linker display can maintain the dispersibility of BacMPs even in a buffer solution.

透過型電子顕微鏡(transmission electron microscope : TEM)によるprotein G-linker-BacMPsの観察
Protein G-linker(100)-BacMPs、protein G-BacMPsに関し透過型電子顕微鏡STEMによる観察を行った。
Observation of protein G-linker-BacMPs by transmission electron microscope (TEM)
Protein G-linker (100) -BacMPs and protein G-BacMPs were observed with a transmission electron microscope STEM.

その結果、Protein G-BacMPsと比較し、protein G-linker(100)-BacMPs表面には分厚い層が観察された(図7)。TEMでは真空中のサンプルを観察する為、protein G-linker(100)-BacMPs上に発現したNS polypeptideがBacMPs表面に集積されることで、分厚い層のように観察されたと考えられた。これは、BacMPs上へのNS polypeptideの発現及び、NS polypeptideの有する立体障害性を裏付ける結果と考えられた。   As a result, a thicker layer was observed on the surface of protein G-linker (100) -BacMPs compared to Protein G-BacMPs (FIG. 7). In TEM, it was considered that NS polypeptide expressed on protein G-linker (100) -BacMPs was accumulated on the surface of BacMPs to observe a sample in vacuum, and it was observed as a thick layer. This was considered to be a result supporting the expression of NS polypeptide on BacMPs and the steric hindrance of NS polypeptide.

BacMPsの細胞への非特異的吸着に及ぼすNS polypeptideディスプレイの効果の評価
培養細胞懸濁液:70μl(2×105 cells)に対し、protein G-linker(100)-BacMPs、protein G-linker(50)-BacMPs、protein G-BacMPs:30μl(1-30μg)を反応させた(4℃、10分間)。遠心洗浄及び磁気分離後、BacMPsの細胞への非特異的吸着により回収された細胞数を計測し、非特異的細胞回収率を算出した。培養細胞には、Raji細胞(B細胞系)、JM細胞(T細胞系)、THP-1細胞(単球系)、RAW 264.7細胞(マクロファージ系)を用いた。
Evaluation of NS polypeptide display effect on non-specific adsorption of BacMPs to cells Cultured cell suspension: 70μl (2 × 10 5 cells), protein G-linker (100) -BacMPs, protein G-linker ( 50) -BacMPs, protein G-BacMPs: 30 μl (1-30 μg) was reacted (4 ° C., 10 minutes). After centrifugal washing and magnetic separation, the number of cells recovered by nonspecific adsorption of BacMPs to cells was counted, and the nonspecific cell recovery rate was calculated. As cultured cells, Raji cells (B cell line), JM cells (T cell line), THP-1 cells (monocyte line), and RAW 264.7 cells (macrophage line) were used.

その結果を図8に示す。Protein G-BacMPsを用いた場合、反応量に比例してBacMPsの非特異的吸着に伴うRaji細胞及びRAW264.7細胞の非特異的回収率は増加した。また、protein G-linker(50)-BacMPsを用いた場合では、Raji細胞は非特異的にほとんど回収されることはなかったが、RAW264.7細胞においてはBacMPsの反応量に比例し非特異的に回収された細胞数が増加した。B細胞系培養細胞株であるRaji細胞と比較し、マクロファージ系培養細胞株であるRAW264.7細胞の有する高い接着性が、BacMPsの細胞表面への非特異的吸着を促進したと考えられた。一方、protein G-linker(100)-BacMPsを用いた場合では、Raji細胞及びRAW264.7細胞共に非特異的にほとんど回収されることはなかった。RAW264.7細胞に対し30μgのprotein G-linker(100)-BacMPsを反応させた場合、非特異的回収率は0.9 %(protein G-BacMPsを用いた場合の5分の1)であった。その他、JM細胞やTHP-1細胞を用いた評価においても、protein G-linker(100)-BacMPsを作用させることで非特異的に回収された細胞は非常に少なかった(非特異的回収率 ≦ 0.2%)。BacMPs表面にNS polypeptide linkerが存在することで、立体障害によりBacMPsと細胞間の相互作用が減少した結果、BacMPsの細胞への非特異的吸着が抑制されたと考えられた。そして、NS polypeptide linker鎖長が長いほどBacMPsの細胞への非特異的吸着の抑制効果が高いと考えられた。PEGを用いたナノ粒子表面修飾においても同様な効果が示されている(非特許文献2参照)ことから、NS polypeptide linkerはBacMPs上においてPEG様の働きをしていると考えられた。以上より、NS polypeptide linkerをBacMPs表面にディスプレイすることで、細胞のBacMPsへの非特異的吸着を低減可能であることが示された。   The result is shown in FIG. When Protein G-BacMPs was used, the nonspecific recovery rate of Raji cells and RAW264.7 cells increased with nonspecific adsorption of BacMPs in proportion to the reaction amount. In addition, when protein G-linker (50) -BacMPs was used, Raji cells were hardly recovered nonspecifically, but in RAW264.7 cells, it was proportional to the amount of BacMPs reaction and was not specific. The number of recovered cells increased. Compared with Raji cells, which are B cell line cultured cell lines, the high adhesion of RAW264.7 cells, which are macrophage line cultured cell lines, was thought to promote nonspecific adsorption of BacMPs to the cell surface. On the other hand, when protein G-linker (100) -BacMPs was used, both Raji cells and RAW264.7 cells were hardly recovered non-specifically. When 30 μg of protein G-linker (100) -BacMPs was reacted with RAW264.7 cells, the non-specific recovery rate was 0.9% (1/5 when protein G-BacMPs was used). In addition, in the evaluation using JM cells and THP-1 cells, very few cells were recovered nonspecifically by the action of protein G-linker (100) -BacMPs (nonspecific recovery rate ≤ 0.2%). It was considered that the nonspecific adsorption of BacMPs to cells was suppressed as a result of the decrease in interaction between BacMPs and cells due to steric hindrance due to the presence of NS polypeptide linker on the surface of BacMPs. It was considered that the longer the NS polypeptide linker chain length, the higher the effect of suppressing nonspecific adsorption of BacMPs to cells. Since the same effect is shown also in the nanoparticle surface modification using PEG (refer nonpatent literature 2), it was thought that NS polypeptide linker is acting like PEG on BacMPs. From the above, it was shown that nonspecific adsorption of cells to BacMPs can be reduced by displaying NS polypeptide linker on the surface of BacMPs.

抗体固定化BacMPsの細胞分離能に及ぼすNS polypeptideディスプレイの効果の評価
Raji細胞懸濁液:70μl(3×104 cells)に対し、anti-CD19モノクローナル抗体固定化protein G-linker(100)-BacMPs、protein G-BacMPs:30 μl(1-25μg)を反応させた(4℃、10分間)。遠心洗浄及び磁気洗浄後、回収された細胞数を計測し、細胞回収率を算出した。
Evaluation of the effect of NS polypeptide display on cell separation ability of antibody-immobilized BacMPs
Anti-CD19 monoclonal antibody immobilized protein G-linker (100) -BacMPs and protein G-BacMPs: 30 μl (1-25 μg) were reacted to Raji cell suspension: 70 μl (3 × 10 4 cells) (4 ° C, 10 minutes). After centrifugal washing and magnetic washing, the number of collected cells was counted, and the cell recovery rate was calculated.

その結果を図9に示す。同一の粒子量を反応させた結果、anti-CD19モノクローナル抗体固定化protein G-linker(100)-BacMPsを用いた場合において、protein G-BacMPsを用いた場合と比較し1.2-1.9倍数の細胞が回収された。NS polypeptideディスプレイにより向上したBacMPsの水溶液中での分散性が、抗体固定化BacMPsの抗原(細胞)結合能の向上に寄与したと考えられた。以上より、抗体固定化protein G-linker(100)-BacMPsを磁気細胞分離の磁気担体として用いることで、より高回収率での目的細胞の分離も図れると考えられた。   The result is shown in FIG. As a result of reacting the same amount of particles, 1.2-1.9 times more cells were observed when anti-CD19 monoclonal antibody immobilized protein G-linker (100) -BacMPs was used than when protein G-BacMPs was used. It was recovered. It was considered that the dispersibility of BacMPs in aqueous solution improved by NS polypeptide display contributed to the improvement of antigen (cell) binding ability of antibody-immobilized BacMPs. From the above, it was considered that separation of target cells with higher recovery rate can be achieved by using antibody-immobilized protein G-linker (100) -BacMPs as a magnetic carrier for magnetic cell separation.

Protein G-linker(100)-BacMPsを用いた全血からの細胞分離
ヒト末梢血:500μlに対し、mouse IgG1由来anti-CD19固定化protein G-linker(100)-BacMPs及びprotein G-BacMPs:160μl(40μg)を反応させた(4℃、10分間)。さらに、PE標識anti-CD19 mAb:60μlを反応させた(4℃、10分間)。遠心洗浄、磁気分離洗浄を行なった後、フローサイトメトリーにより分離細胞の蛍光を解析した。磁気分離洗浄2回目のみ懸濁液(buffer)として、溶血液(buffer)(VersaLyse)を用いた。また、ヒト末梢血に含まれたCD19+細胞の割合を評価するため以下の実験を行った。ヒト末梢血:100 μlに対し、PE標識anti-CD19 mAb:10μlをそれぞれ反応させた(4℃、10分間)。さらに、VersaLyse:1mlを加え反応させた(RT、10分間)。遠心洗浄後、フローサイトメトリーにより回収細胞(白血球)の蛍光を解析した。また、ヘマサイトメーターを用いて細胞数を計測し、末梢血中に含まれた各細胞数を算出した。
Cell isolation from whole blood using Protein G-linker (100) -BacMPs Human peripheral blood: 500 μl, mouse IgG1-derived anti-CD19 immobilized protein G-linker (100) -BacMPs and protein G-BacMPs: 160 μl (40 μg) was reacted (4 ° C., 10 minutes). Furthermore, 60 μl of PE-labeled anti-CD19 mAb was reacted (4 ° C., 10 minutes). After centrifugal washing and magnetic separation washing, the fluorescence of the separated cells was analyzed by flow cytometry. Hemolysis (buffer) (VersaLyse) was used as the suspension only for the second magnetic separation washing. In addition, the following experiment was conducted to evaluate the proportion of CD19 + cells contained in human peripheral blood. Human peripheral blood: 100 μl was reacted with 10 μl of PE-labeled anti-CD19 mAb (4 ° C., 10 minutes). Furthermore, VersaLyse: 1 ml was added and reacted (RT, 10 minutes). After centrifugal washing, the fluorescence of the collected cells (leukocytes) was analyzed by flow cytometry. In addition, the number of cells was counted using a hemacytometer, and the number of cells contained in the peripheral blood was calculated.

抗体を用いて白血球中のCD19+細胞の含有率を評価した結果、CD19+細胞は白血球の4.1%含まれていた。白血球は末梢血由来血球細胞中の約0.1%に当たることから、CD19+細胞は末梢血由来血球細胞中に約0.4×10-2%含まれていたと考えられた。また、anti-CD19固定化protein G-linker(100)-BacMPs及びprotein G-BacMPsを用いて、ヒト末梢血よりCD19+細胞の磁気細胞分離を行なった結果を図10に示す。末梢血由来血球細胞中に約0.4×10-2%含まれていたCD19+細胞は、anti-CD19固定化protein G-linker(100)-BacMPsを用いた場合、95.1%の純度、58.1%の回収率で分離された。anti-CD19固定化protein G-BacMPsを用いた場合では、81.9%の純度、63.6%の回収率であった。NS polypeptide linkerをBacMPs表面にディスプレイすることで、細胞のBacMPsへの非特異的吸着が抑制された結果、protein G-linker(100)-BacMPsを用いた場合において高純度に目的細胞を末梢血から分離可能であった。 As a result of evaluating the content of CD19 + cells in leukocytes using antibodies, CD19 + cells contained 4.1% of leukocytes. Since leukocytes accounted for about 0.1% of peripheral blood-derived blood cells, it was considered that CD19 + cells were contained in the peripheral blood-derived blood cells by about 0.4 × 10 −2 %. FIG. 10 shows the results of magnetic cell separation of CD19 + cells from human peripheral blood using anti-CD19-immobilized protein G-linker (100) -BacMPs and protein G-BacMPs. CD19 + cells, which contained approximately 0.4 x 10 -2 % in peripheral blood cells, were 95.1% pure and 58.1% when anti-CD19 immobilized protein G-linker (100) -BacMPs was used. Separated in recovery. When anti-CD19-immobilized protein G-BacMPs was used, the purity was 81.9% and the recovery rate was 63.6%. By displaying NS polypeptide linker on the surface of BacMPs, nonspecific adsorption of cells to BacMPs was suppressed. As a result, when protein G-linker (100) -BacMPs was used, target cells were isolated from peripheral blood with high purity. It was separable.

上記の実施例から分かるように、BacMPs表面に発現されたNS polypeptide linkerは、その鎖長に比例してBacMPs間及びBacMPsと細胞間の相互作用に効果を発揮した。   As can be seen from the above examples, the NS polypeptide linker expressed on the surface of BacMPs exerted an effect on the interaction between BacMPs and between BacMPs and cells in proportion to the chain length.

また、NS polypeptide linkerは、BacMPs同士の凝集を立体障害効果により抑制することで、緩衝液中でのBacMPsの分散性の維持に寄与した。これにより、抗体固定化BacMPsの細胞結合効率に依存した細胞分離効率の向上がなされた。   NS polypeptide linker also contributed to maintaining the dispersibility of BacMPs in a buffer solution by suppressing aggregation between BacMPs by steric hindrance effect. Thereby, the cell separation efficiency depending on the cell binding efficiency of the antibody-immobilized BacMPs was improved.

さらにまた、BacMPsの細胞への非特異的吸着の抑制へも効果を発揮した。特に、他の血球細胞と比較し高い接着性を有するマクロファージ系の細胞(RAW 264.7細胞)へのBacMPsの非特異的吸着の抑制効果は顕著であった。   Furthermore, it was effective in suppressing nonspecific adsorption of BacMPs to cells. In particular, the effect of suppressing nonspecific adsorption of BacMPs to macrophage cells (RAW 264.7 cells) having higher adhesion than other blood cells was remarkable.

本実施例において、親水性と非電荷を指標に設計されたNS polypeptideをBacMPs表面に発現させることで、従来のPEGを用いたナノ粒子の表面修飾によって得られるのと同様な効果を獲得することが可能であった。また、本実施例では、protein Gを発現させる際のリンカー(linker)としてNS polypeptideを組み込んだことで、protein Gの機能活性に影響を及ぼすことなくNS polypeptideをBacMPs表面に配することが可能であった。   In this example, NS polypeptide designed with hydrophilicity and non-charge as indicators is expressed on the surface of BacMPs to obtain the same effect as that obtained by surface modification of nanoparticles using conventional PEG. Was possible. In addition, in this example, NS polypeptide can be arranged on the surface of BacMPs without affecting the functional activity of protein G by incorporating NS polypeptide as a linker when protein G is expressed. there were.

以上より、NS polypeptideは、粒子の分散性の向上及び細胞の粒子表面への非特異的結合を抑制可能な、新規な表面修飾分子として開発された。また、NS polypeptideはリンカー(linker)として使用した場合においても機能を発揮することが可能であることから、粒子表面を含めた固相への機能性タンパク質固定化の際に用いるリンカー(linker)としても有用である。その他、熱・光・pH等の変化により構造や性質を可逆的に変化させるアミノ酸配列をリンカー(linker)として組み込むことで、細胞への非特異的吸着を低減する他、様々な機能をBacMPsに付加可能である。   As described above, NS polypeptide has been developed as a novel surface-modifying molecule capable of improving the dispersibility of particles and suppressing nonspecific binding of cells to the particle surface. In addition, NS polypeptide can function even when used as a linker, so as a linker used when immobilizing functional proteins on solid phases including the particle surface. Is also useful. In addition, by incorporating amino acid sequences that reversibly change the structure and properties due to changes in heat, light, pH, etc. as linkers, non-specific adsorption to cells is reduced, and various functions are added to BacMPs. It can be added.

また、抗体固定化protein G-linker(100)-BacMPsを磁気細胞分離の磁気担体として用いることで、より高効率に目的細胞を分離可能であり、本発明のポリペプチドは、本細胞分離システムは基礎研究から応用研究、細胞診断、細胞療法等、幅広い分野を支える基礎ツールとして有用である。   In addition, by using antibody-immobilized protein G-linker (100) -BacMPs as a magnetic carrier for magnetic cell separation, target cells can be separated more efficiently. It is useful as a basic tool that supports a wide range of fields, from basic research to applied research, cell diagnosis, and cell therapy.

本発明のポリペプチドと機能性タンパク質を融合タンパク質として融合することで、マテリアル・デバイス表面への機能性タンパク質の配向性を保った固定化が可能となると共に、マテリアル・デバイス表面への細胞の非特異的吸着の抑制が可能である。また、磁性ナノ粒子などの粒子上へ修飾した場合、粒子の分散性の向上にも寄与する。以上のように、二つないしは三つの重要要素を一度に解決可能な、本発明のポリペプチドを用いた表面修飾技術は、人工血管のような医療デバイス、バイオチップ・細胞チップのような生体分子・細胞の検出・解析デバイス、磁性ナノ粒子のような細胞関連アプリケーション用マテリアルの開発の際に重要技術として汎用されることが期待される。   By fusing the polypeptide of the present invention and a functional protein as a fusion protein, it becomes possible to immobilize the functional protein on the surface of the material / device while maintaining the orientation of the functional protein. Specific adsorption can be suppressed. In addition, when modified onto particles such as magnetic nanoparticles, it also contributes to improved dispersibility of the particles. As described above, the surface modification technology using the polypeptide of the present invention, which can solve two or three important elements at once, is a medical device such as an artificial blood vessel, and a living body such as a biochip / cell chip. It is expected to be widely used as an important technology when developing materials for cell-related applications such as molecular / cell detection / analysis devices and magnetic nanoparticles.

特に、細胞関連アプリケーションに用いられる粒子の表面修飾分子としての利用が最も期待される。これまで、細胞関連アプリケーションにおいて、(ナノ)粒子は、細胞集団の中からの特定細胞の分離、Drug Delivery System(DDS)(薬物送達システム)に用いる薬物キャリアとしての応用、細胞への遺伝子導入用担体としての応用など様々に利用されており、また磁性ナノ粒子に関しては、交流磁界の照射によるヒステリシス損失に伴う発熱現象を利用した磁気ハイパーサーミアや、Magnetic Resonance Imaging(MRI)の増感剤としての利用も積極的に研究されている。よって、本発明のポリペプチドの応用範囲が多岐に渡ることが期待される。   In particular, it is most expected to be used as a surface modification molecule for particles used in cell-related applications. So far, in cell-related applications, (nano) particles have been used for the separation of specific cells from a cell population, application as drug carriers for drug delivery systems (DDS), and gene transfer into cells. It is used in various applications such as as a carrier, and for magnetic nanoparticles, it is used as a magnetic hyperthermia that uses the heat generation phenomenon associated with hysteresis loss due to AC magnetic field irradiation, and as a sensitizer for Magnetic Resonance Imaging (MRI). Has also been actively researched. Therefore, it is expected that the range of application of the polypeptide of the present invention is wide-ranging.

以上より、本発明は、in vitroからin vivo、基礎研究から応用研究あるいは臨床応用に渡る幅広い分野で利用されることが期待される。   From the above, the present invention is expected to be used in a wide range of fields ranging from in vitro to in vivo, from basic research to applied research or clinical application.

特記事項:本発明により開示した塩基配列は、全体としての性質に実質的影響を与えない範囲で、いくつかの欠失、付加ないし置換の1以上を含むことが許容される。なお、アミノ酸配列においても同様である。   Special Notes: The nucleotide sequence disclosed by the present invention is allowed to contain one or more of several deletions, additions or substitutions within a range that does not substantially affect the overall properties. The same applies to the amino acid sequence.

Claims (21)

極性アミノ酸且つ非荷電アミノ酸から構成されるポリペプチド。   A polypeptide composed of a polar amino acid and an uncharged amino acid. 少なくとも50アミノ酸残基から構成される請求項1に記載のポリペプチド。   The polypeptide according to claim 1, which is composed of at least 50 amino acid residues. 複数のアミノ酸残基から構成されるアミノ酸配列を1ユニットとし、該1ユニットのアミノ酸配列が繰り返して配列される請求項1又は2に記載のポリペプチド。   The polypeptide according to claim 1 or 2, wherein an amino acid sequence composed of a plurality of amino acid residues is defined as one unit, and the amino acid sequence of the one unit is repeatedly arranged. 前記1ユニットのアミノ酸配列を構成するアミノ酸がアスパラギン、グルタミン、トレオニン、チロシン及びセリンからなる群から選択されるとともに、前記1ユニット中又は該ポリペプチド中の一部にセリンが含まれる請求項3に記載のポリペプチド。   The amino acid constituting the one-unit amino acid sequence is selected from the group consisting of asparagine, glutamine, threonine, tyrosine and serine, and serine is contained in one unit or in a part of the polypeptide. The described polypeptide. 前記1ユニットのアミノ酸配列は、前記2種類の選択されたアミノ酸と、当該2種類のアミノ酸の夫々の個数との組合せによって決定される請求項4に記載のポリペプチド。   The polypeptide according to claim 4, wherein the unit amino acid sequence is determined by a combination of the two kinds of selected amino acids and the number of each of the two kinds of amino acids. 前記1ユニットのアミノ酸配列は4つのアスパラギン及び1つのセリンの任意の配列である請求項3に記載のポリペプチド。   The polypeptide according to claim 3, wherein the amino acid sequence of one unit is an arbitrary sequence of four asparagines and one serine. 前記1ユニットのアミノ酸配列が20回繰り返されたアミノ酸配列を構成する請求項3乃至6のいずれか1項に記載のポリペプチド。   The polypeptide according to any one of claims 3 to 6, which constitutes an amino acid sequence in which the amino acid sequence of the one unit is repeated 20 times. 配列番号1に示すポリペプチド。   The polypeptide shown in SEQ ID NO: 1. 機能性タンパク質のアミノ酸配列をさらに付す請求項1乃至8のいずれか一項に記載のポリペプチド。   The polypeptide according to any one of claims 1 to 8, further comprising an amino acid sequence of a functional protein. 前記機能性タンパク質が抗体結合性タンパク質である請求項9に記載のポリペプチド。   The polypeptide according to claim 9, wherein the functional protein is an antibody-binding protein. 前記ポリペプチドの配列内に制限酵素認識部位をさらに有する請求項1乃至7のいずれか一項に記載のポリペプチド。   The polypeptide according to any one of claims 1 to 7, further comprising a restriction enzyme recognition site in the sequence of the polypeptide. 請求項1乃至11のいずれか一項に記載のポリペプチドをコードする塩基配列を含むプラスミド。   A plasmid comprising a base sequence encoding the polypeptide according to any one of claims 1 to 11. 配列番号2に示す塩基配列を含むプラスミド。   A plasmid comprising the base sequence shown in SEQ ID NO: 2. 請求項12又は13に記載のプラスミドにより形質転換された細胞。   A cell transformed with the plasmid according to claim 12 or 13. 前記細胞は磁性細菌である請求項14に記載の細胞。   The cell according to claim 14, wherein the cell is a magnetic bacterium. 細胞に対する非特異的な吸着を制御可能なポリペプチドを含む磁性細菌粒子の作製方法であって、請求項12又は13記載のプラスミドを磁性細菌に導入し、該磁性細菌を培養し、合成された磁性細菌粒子を抽出する、の各ステップを含む方法。   A method for producing a magnetic bacterial particle comprising a polypeptide capable of controlling nonspecific adsorption to cells, wherein the plasmid according to claim 12 or 13 is introduced into the magnetic bacterium, the magnetic bacterium is cultured, and synthesized. A method comprising the steps of extracting magnetic bacterial particles. 前記ポリペプチドが請求項1乃至11のいずれかに記載のポリペプチドである請求項16に記載の方法。   The method according to claim 16, wherein the polypeptide is the polypeptide according to any one of claims 1 to 11. 請求項1乃至11のいずれか1項に記載のポリペプチドが磁性細菌粒子膜上に発現された磁性細菌粒子。   Magnetic bacterial particles in which the polypeptide according to any one of claims 1 to 11 is expressed on a magnetic bacterial particle film. 請求項18に記載の磁性細菌粒子を用いる該粒子の細胞に対する非特異的吸着を抑制する方法。   A method for suppressing nonspecific adsorption of the particles of the magnetic bacteria according to claim 18 to cells. 請求項18に記載の磁性細菌粒子を用いる該粒子の分散性を向上する方法。   A method for improving the dispersibility of the particles using the magnetic bacterial particles according to claim 18. 請求項18に記載の磁性細菌粒子を用いる細胞の分離方法。   A method for separating cells using the magnetic bacterial particle according to claim 18.
JP2009023064A 2009-02-03 2009-02-03 Polypeptides that can control cell adsorption Active JP5499296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023064A JP5499296B2 (en) 2009-02-03 2009-02-03 Polypeptides that can control cell adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023064A JP5499296B2 (en) 2009-02-03 2009-02-03 Polypeptides that can control cell adsorption

Publications (2)

Publication Number Publication Date
JP2010178640A true JP2010178640A (en) 2010-08-19
JP5499296B2 JP5499296B2 (en) 2014-05-21

Family

ID=42760698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023064A Active JP5499296B2 (en) 2009-02-03 2009-02-03 Polypeptides that can control cell adsorption

Country Status (1)

Country Link
JP (1) JP5499296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182702A (en) * 2010-03-08 2011-09-22 Tokyo Univ Of Agriculture & Technology Fused mhc molecule connecting magnetic fine particle, method for screening antigen peptide, recombinant vector and transformant of magnetic bacterium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340722A (en) * 2003-05-15 2004-12-02 Fujirebio Inc Polyamino acid carrier
JP2006316010A (en) * 2005-05-13 2006-11-24 Institute Of Physical & Chemical Research Substance-fixing agent, method for fixing substance and substrate for fixing substance
US20080131451A1 (en) * 2004-03-05 2008-06-05 Giancarlo Tanzi Epitope escape mutations
JP2008133194A (en) * 2006-11-27 2008-06-12 Japan Science & Technology Agency Protein adsorption-inhibiting substrate and its use
JP2008528002A (en) * 2005-01-25 2008-07-31 セル セラピューティクス インコーポレーテッド Biologically active protein with improved in vivo half-life

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340722A (en) * 2003-05-15 2004-12-02 Fujirebio Inc Polyamino acid carrier
US20080131451A1 (en) * 2004-03-05 2008-06-05 Giancarlo Tanzi Epitope escape mutations
JP2008528002A (en) * 2005-01-25 2008-07-31 セル セラピューティクス インコーポレーテッド Biologically active protein with improved in vivo half-life
JP2006316010A (en) * 2005-05-13 2006-11-24 Institute Of Physical & Chemical Research Substance-fixing agent, method for fixing substance and substrate for fixing substance
JP2008133194A (en) * 2006-11-27 2008-06-12 Japan Science & Technology Agency Protein adsorption-inhibiting substrate and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182702A (en) * 2010-03-08 2011-09-22 Tokyo Univ Of Agriculture & Technology Fused mhc molecule connecting magnetic fine particle, method for screening antigen peptide, recombinant vector and transformant of magnetic bacterium

Also Published As

Publication number Publication date
JP5499296B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
Ma et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake
KR100848932B1 (en) Method for separating target substance by using magnetic nano-composite
Jacob et al. Magnetotactic bacteria and magnetosomes–Scope and challenges
Jutz et al. Bionanoparticles as functional macromolecular building blocks–a new class of nanomaterials
Sleytr et al. Nanobiotechnology with S-layer proteins as building blocks
US20110165647A1 (en) Nanoparticle conjugates
Takahashi et al. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces
KR101267260B1 (en) A Chimeric protein, A Preparation method thereof, A Nanosenser fixed with the same and An application thereof
Bittner et al. Nanoscale science and technology with plant viruses and bacteriophages
CN107614458A (en) stable nano magnetic particle dispersion
Sára et al. S-layers as patterning elements for application in nanobiotechnology
JP4965570B2 (en) Nanoparticles suitable for delivering biomolecules into and out of cells or organelles surrounded by membranes
Shen et al. Magnetic-activated cell sorting using coiled-coil peptides: an alternative strategy for isolating cells with high efficiency and specificity
Schuster et al. S-layer proteins as key components of a versatile molecular construction kit for biomedical nanotechnology
Rashid et al. Surface modification and bioconjugation of anti-CD4 monoclonal antibody to magnetic nanoparticles as a highly efficient affinity adsorbent for positive selection of peripheral blood T CD4+ lymphocytes
CN105478087B (en) A kind of preparation method and applications of the carboxyl magnetic bead based on dextran coating
JP2008127241A (en) Water-dispersible particle and its producing method
JP5499296B2 (en) Polypeptides that can control cell adsorption
Liu et al. Effect of surface hydrophobicity on the function of the immobilized biomineralization protein Mms6
Panwar et al. Efficient strategy to isolate exosomes using anti-CD63 antibodies conjugated to gold nanoparticles
KR101141192B1 (en) Methods for Detection and Isolation of DNAs Using Nanoparticles
Jeevanandam et al. Biofunctional nanoparticles for protein separation, purification and detection
Panizo et al. Nonviral gene therapy: design and application of inorganic nanoplexes
KR101663791B1 (en) Specific organic molecule -targeting Hybrid Nanostructures
Gupta et al. Magnetotactic Bacteria‐Synthesized Nanoparticles and Their Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5499296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250