JP2010178416A - Dc high-voltage power supply device, and method of controlling the same - Google Patents

Dc high-voltage power supply device, and method of controlling the same Download PDF

Info

Publication number
JP2010178416A
JP2010178416A JP2009015247A JP2009015247A JP2010178416A JP 2010178416 A JP2010178416 A JP 2010178416A JP 2009015247 A JP2009015247 A JP 2009015247A JP 2009015247 A JP2009015247 A JP 2009015247A JP 2010178416 A JP2010178416 A JP 2010178416A
Authority
JP
Japan
Prior art keywords
voltage
temperature
high voltage
power supply
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009015247A
Other languages
Japanese (ja)
Other versions
JP5222748B2 (en
Inventor
Minoru Sakamaki
稔 酒巻
Masahiro Tomita
正弘 富田
Ken Harada
研 原田
Isao Matsui
功 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Ltd, RIKEN Institute of Physical and Chemical Research, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009015247A priority Critical patent/JP5222748B2/en
Publication of JP2010178416A publication Critical patent/JP2010178416A/en
Application granted granted Critical
Publication of JP5222748B2 publication Critical patent/JP5222748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact DC high-voltage power supply device capable of achieving superior stability in a short time, and to provide a method for controlling the same. <P>SOLUTION: In a high voltage division part 106 including a voltage dividing resistor 104 and a detection resistor 105 for detecting a voltage HV generated by a high voltage generating section 107 as a detected voltage Vs and feeding it back to an error detection circuit 102, a resistance value Rs is controlled so that a ratio between a resistance value Ra and the resistance value Rs of the detection resistor 105 becomes constant at a prescribed set value in response to the variation of the resistance value Ra of the voltage dividing resistor 104, thereby suppressing the variation of the detected voltage Vs to achieve the stabilization of voltage HV in a short time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、出力電圧の安定化機能を有する直流高電圧電源装置及びその制御方法に関する。   The present invention relates to a direct current high voltage power supply device having a function of stabilizing an output voltage and a control method thereof.

電子回路に要求される仕様は、年々高精度・高安定化しており、昨今では回路を構成する部品の単体性能を超えてしまうことも少なくない。電子顕微鏡においても、主たる性能を左右する電子線源へ高電圧(数十キロボルト〜数百キロボルト)を印加する直流高電圧電源装置に対しては高い安定性が要求されている。とりわけ、性能を左右する基準電圧源ICや分圧抵抗器には、最も高い安定性が必要とされる。   The specifications required for electronic circuits are highly accurate and stable year by year, and in recent years, the performance of individual components constituting the circuit is often exceeded. Also in an electron microscope, high stability is required for a DC high-voltage power supply device that applies a high voltage (several tens of kilovolts to several hundred kilovolts) to an electron beam source that affects main performance. In particular, the highest stability is required for the reference voltage source IC and the voltage dividing resistor that influence the performance.

このうち分圧抵抗器に関しては、高電圧を用いることが安定性能を制限する要因の一つとなっている。すなわち、一般的に抵抗器には金属薄膜抵抗器,巻き線抵抗器,厚膜抵抗器などがあるが、安定性について良い順に記載すると、金属薄膜抵抗器>巻き線抵抗器>厚膜抵抗器であり、一方、単体で実現しうる抵抗値の大きさ順に記載すると、厚膜抵抗器>巻き線抵抗器>金属薄膜抵抗器となる。高電圧を扱うためには非常に高い抵抗値が必要となるため、直流高電圧電源の分圧抵抗器においては、最も安定性能の劣る厚膜抵抗器を選択せざるを得ないのが現状である。なお、直流高電圧電源装置に関しては、例えば特許文献1、特許文献2に開示されている。   Among these, with respect to the voltage dividing resistor, the use of a high voltage is one of the factors that limit the stability performance. That is, in general, there are a metal thin film resistor, a winding resistor, a thick film resistor, etc., but the resistors are described in order of good stability. Metal thin film resistor> winding resistor> thick film resistor On the other hand, when describing in order of the magnitude of the resistance value that can be realized by itself, it becomes thick film resistor> winding resistor> metal thin film resistor. In order to handle high voltages, very high resistance values are required. Therefore, for voltage divider resistors for DC high-voltage power supplies, it is currently necessary to select thick film resistors with the least stable performance. is there. Note that the DC high-voltage power supply device is disclosed in, for example, Patent Document 1 and Patent Document 2.

特開2003−284323号公報JP 2003-284323 A 特開2006−191742号公報JP 2006-191742 A

直流高電圧電源において、分圧抵抗器の温度安定性を向上させるための対応策としては、以下の2点が挙げられる。
(1)安定性に優れた単体部品を選別し使用する。
(2)分圧抵抗器部の温度を安定化させる。
上記(1)は、高い安定性能を有する単体部品を多数準備し、それらの中からさらに安定性能の良いものを選び出す方法であるが、本方法では、余分の部品を準備しなければならないため、部品コストが増し、選別に要する時間が製造とは別に必要となる。また、本方法により安定性能を向上させることが出来るが、選別を経た単体部品であっても使用時の温度変化による抵抗値変化は不可避であり、単なる選別部品を使用するだけでは動作時の安定性が十分ではない。
The following two points can be cited as countermeasures for improving the temperature stability of the voltage dividing resistor in the DC high-voltage power supply.
(1) Select and use single parts with excellent stability.
(2) Stabilize the temperature of the voltage dividing resistor section.
The above (1) is a method of preparing a large number of single parts having high stability performance, and selecting those with better stability performance from them, but in this method, extra parts must be prepared. The cost of parts increases and the time required for sorting is required separately from manufacturing. In addition, although this method can improve the stability performance, even if it is a single part that has been selected, a change in resistance value due to a temperature change during use is inevitable. Sex is not enough.

上記(2)は、分圧抵抗器部の温度を安定化させる方法である。安定性に影響を与える要因として、実使用時の各抵抗器における温度変化とそれに伴う抵抗値変化が挙げられ、本方法は抵抗値の安定化に有効である。特許文献1には、対象となる回路を恒温槽内に配置する技術が開示されている。しかしながら、本技術では、抵抗部品単体の自己発熱による温度変動とそれに伴う抵抗値の変化への対応が十分でない。また、恒温槽の設置には電源装置内に恒温槽を準備しなければならず、装置の大型化を伴う。さらに、回路部の熱容量の増加を伴うので、熱平衡状態への到達時間が増大し制御性が低下する。すなわち、温度ドリフトが安定するまでに数十時間という長時間を要するという問題がある。対象となる回路を絶縁性の高い樹脂等で覆う(樹脂モールド)ことや、絶縁ガスや絶縁油中に設置することにより、回路部としての熱容量を増し、温度変化に対する変動を小さくする技術もあるが、回路部の熱容量の増加を伴うので、熱平衡状態への到達時間が増大し制御性が低下する。特許文献2には、この熱平衡所要時間の長大化に関して、樹脂モールドされた部品の熱時定数を考慮した制御方式(初期制御モードと高精度制御モードとを分離制御する)が提案されているが、恒温化が必要な部品を全て制御しなければならず、非常に大きな容積を必要とし、装置の大型化を招く結果となる。   The above (2) is a method of stabilizing the temperature of the voltage dividing resistor part. Factors that affect the stability include temperature changes in each resistor during actual use and the accompanying resistance value changes, and this method is effective in stabilizing the resistance value. Patent Document 1 discloses a technique for arranging a target circuit in a thermostatic bath. However, the present technology does not sufficiently cope with temperature fluctuations due to self-heating of the resistance component alone and changes in resistance value associated therewith. In addition, the installation of the thermostatic chamber requires a thermostatic chamber in the power supply device, which increases the size of the apparatus. Furthermore, since the heat capacity of the circuit unit increases, the time to reach the thermal equilibrium state increases and the controllability decreases. That is, there is a problem that it takes a long time of several tens of hours until the temperature drift is stabilized. There is also a technology to increase the heat capacity of the circuit part and reduce fluctuations due to temperature changes by covering the target circuit with highly insulating resin (resin mold) or installing it in insulating gas or insulating oil. However, since the heat capacity of the circuit unit is increased, the time to reach the thermal equilibrium state is increased and the controllability is lowered. Patent Document 2 proposes a control method (separate control between the initial control mode and the high-precision control mode) in consideration of the thermal time constant of the resin-molded component for increasing the time required for thermal equilibrium. In addition, all the parts that need constant temperature must be controlled, which requires a very large volume, resulting in an increase in the size of the apparatus.

本発明の目的は、高い安定性を短時間で実現できる小型の直流高電圧電源装置及びその制御方法を提供することにある。   An object of the present invention is to provide a small DC high-voltage power supply device that can realize high stability in a short time and a control method thereof.

上記目的を達成するための一形態として、高電圧発生部と、誤差検出回路を備えた高電圧制御部と、前記高電圧発生部で発生した電圧を検出電圧として検出し前記誤差検出回路へフィードバックするための分圧抵抗器および検出抵抗器を備えた高電圧分圧部とを有する直流高電圧電源装置であって、前記分圧抵抗器の抵抗値の変動に応じ、前記抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値で一定となるように前記検出抵抗器の抵抗値を制御する手段を更に有することを特徴とする直流高電圧電源装置とする。   As one form for achieving the above object, a high voltage generation unit, a high voltage control unit including an error detection circuit, and a voltage generated in the high voltage generation unit is detected as a detection voltage and fed back to the error detection circuit. A high voltage voltage dividing unit including a voltage dividing resistor and a detection resistor for performing a DC high voltage power supply device, wherein the resistance value and the detection according to a change in the resistance value of the voltage dividing resistor The DC high-voltage power supply apparatus further comprises means for controlling the resistance value of the detection resistor so that the ratio with the resistance value of the resistor becomes constant at a predetermined set value.

また、上記直流高電圧電源装置の制御方法であって、前記高電圧発生部にて高電圧を発生させるための設定電圧を前記高電圧制御部にて設定するステップと、前記分圧抵抗器の抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値か否かを判定するステップと、前記比が所定の設定値ではない場合に、前記比が所定の設定値で一定となるように前記検出抵抗値を制御するステップとを有し、前記設定電圧と前記検出電圧とを用いて、前記高電圧給電部が供給する高電圧を安定化させることを特徴とする直流高電圧の制御方法とする。   Further, in the method for controlling the direct current high voltage power supply apparatus, a step of setting a setting voltage for generating a high voltage in the high voltage generation unit in the high voltage control unit; and Determining whether the ratio between the resistance value and the resistance value of the detection resistor is a predetermined set value; and when the ratio is not the predetermined set value, the ratio is constant at the predetermined set value. Controlling the detection resistance value, and using the set voltage and the detection voltage to stabilize the high voltage supplied by the high voltage power supply unit. Control method.

上記構成とすることにより、高い安定性を短時間で実現できる小型の直流高電圧電源装置及びその制御方法を提供することができる。   With the above configuration, it is possible to provide a small DC high-voltage power supply device that can achieve high stability in a short time and a control method thereof.

先ず本方法の原理を説明する。
1.直流高電圧電源の基本構成
直流高電圧電源100の基本構成を図1に示す。直流高電圧電源は主に、電圧設定回路101と誤差検出回路102とを備えた高電圧制御部103と、分圧抵抗器104と検出抵抗器105とを備えた高電圧分圧部106と、高電圧発生部107と、高電圧給電部108とで構成されている。動作概略は次の通りである。
First, the principle of this method will be described.
1. Basic Configuration of DC High Voltage Power Supply The basic configuration of the DC high voltage power supply 100 is shown in FIG. The DC high voltage power supply mainly includes a high voltage control unit 103 including a voltage setting circuit 101 and an error detection circuit 102, a high voltage voltage dividing unit 106 including a voltage dividing resistor 104 and a detection resistor 105, The high voltage generation unit 107 and the high voltage power supply unit 108 are configured. The outline of the operation is as follows.

電圧設定回路101より与えられる設定電圧Vrefに従い、高電圧発生部107において高電圧HVを発生させ、高電圧分圧部106の分圧抵抗器104と検出抵抗器105から検出電圧Vsが得られる。この検出電圧Vsと設定電圧Vrefとの差分がなくなるように制御を行う方式である。図1の回路模式図を図2に、関係式を式(1)〜式(3)に示す。   In accordance with the set voltage Vref supplied from the voltage setting circuit 101, the high voltage generator 107 generates a high voltage HV, and the detection voltage Vs is obtained from the voltage dividing resistor 104 and the detection resistor 105 of the high voltage divider 106. In this method, control is performed so that the difference between the detection voltage Vs and the set voltage Vref is eliminated. The schematic circuit diagram of FIG. 1 is shown in FIG. 2, and the relational expressions are shown in equations (1) to (3).

Figure 2010178416
Figure 2010178416

Figure 2010178416
Figure 2010178416

Figure 2010178416
Figure 2010178416

式(1)〜式(3)より、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値から求まる検出電圧Vsと設定電圧Vrefが変動しなければ、フィードバックによる制御で安定な高電圧HVを得られることがわかる。すなわち、式(1)において、Vref−Vs=0を達成することが、該高電圧直流電源におけるフィードバック制御の根幹である。
2.温度係数
上述により、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値の安定度が検出電圧Vsに直接関係することが明らかとなった。ここでは検出電圧の安定度に関する指標として、該両抵抗器に用いられる抵抗値の温度係数について定義する。
温度係数は、2つの温度での抵抗値変化量で抵抗値を温度の関数とみなしたときの変化率であり、式(4)に定義される。
If the detection voltage Vs obtained from the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 and the set voltage Vref do not fluctuate according to the equations (1) to (3), a stable high voltage can be obtained by feedback control. It can be seen that HV can be obtained. That is, in Formula (1), achieving Vref−Vs = 0 is the basis of feedback control in the high-voltage DC power supply.
2. Temperature coefficient From the above, it has been clarified that the stability of the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 is directly related to the detection voltage Vs. Here, the temperature coefficient of the resistance value used for both the resistors is defined as an index related to the stability of the detected voltage.
The temperature coefficient is the rate of change when the resistance value is regarded as a function of temperature with the amount of change in resistance value at two temperatures, and is defined in Equation (4).

Figure 2010178416
Figure 2010178416

ここでは実際の使用を想定して測定時刻t1、t2を含む形で表わしているが、熱平衡状態での抵抗値で検討を行う場合、時刻については割愛してかまわない。また、定義は抵抗器自身の温度であるが、抵抗器の設置された周囲の環境温度で代用することも多い。なお、温度に対する抵抗値が1次関数ではないため、温度係数自体も厳密には温度の関数となっている。
3.抵抗器の温度係数、温度変化と出力電圧の関係
次に温度係数、および抵抗素子ごとの温度変化を考慮した場合について検討する。図3に高電圧分圧部の回路模式図を示す。各素子のパラメータは図中にも示したように、抵抗値R〔Ω〕、温度係数ε〔ppm/℃〕、温度変化ΔT〔℃〕である。このときの入力である高電圧(HV)、検出電圧(Vs)、分圧抵抗器104の抵抗値の関係式を式(5)〜式(7)に示す。
Here, it is expressed in a form including measurement times t1 and t2 assuming actual use, but when the resistance value in the thermal equilibrium state is considered, the time may be omitted. The definition is the temperature of the resistor itself, but the ambient temperature around the resistor is often substituted. Since the resistance value with respect to temperature is not a linear function, the temperature coefficient itself is strictly a function of temperature.
3. Resistor temperature coefficient, relationship between temperature change and output voltage Next, consider the case where the temperature coefficient and the temperature change for each resistance element are considered. FIG. 3 shows a circuit schematic diagram of the high voltage voltage divider. As shown in the figure, the parameters of each element are a resistance value R [Ω], a temperature coefficient ε [ppm / ° C.], and a temperature change ΔT [° C.]. Expressions (5) to (7) show relational expressions among the high voltage (HV), the detection voltage (Vs), and the resistance value of the voltage dividing resistor 104 that are inputs at this time.

Figure 2010178416
Figure 2010178416

Figure 2010178416
Figure 2010178416

Figure 2010178416
Figure 2010178416

ここで、電源の動作状態、温度の影響によらず安定な高電圧出力を得るには、(Vs−Vs′)の絶対値が略ゼロとなるような電源の回路構成、もしくは動作時の制御を行うことが重要である。そのために(1)温度係数の小さな抵抗素子(εs→0、εm→0)を用いて式(7)の右辺第2項をゼロに漸近させる方法。(2)各抵抗素子の恒温化(ΔTs→0、ΔTm→0)を図って式(7)の右辺第2項をゼロに漸近させる方法などが、前述までに述べた一般的に採られる安定化方法((1)安定性に優れた単体部品を選別し使用する。(2)分圧抵抗器部の温度を安定化させる。)である。
4.本願における出力電圧安定化の原理
本願における直流高電圧電源装置における分圧抵抗器の温度安定性や高電圧安定化のための方法は、上記(1)、(2)の方法と原理的に異なる。各々の抵抗素子の温度係数を小さくしたり、各素子の実用時の温度変化を小さくするような制御をするのではなく、式(7)の右辺第2項をまとめてゼロに漸近する方法、すなわち、分圧抵抗器と検出抵抗器の抵抗値の比率(Rs/Ra)を一定とするように制御を行うものである。なお、設定値に対して±0.3ppm/min以内なら一定とみなせる。ppmとは10のマイナス6乗を意味する。
Here, in order to obtain a stable high voltage output regardless of the operating state and temperature of the power supply, the circuit configuration of the power supply in which the absolute value of (Vs−Vs ′) is substantially zero, or control during operation It is important to do. To that end, (1) a method in which the second term on the right side of Equation (7) is made asymptotic to zero using a resistance element (εs → 0, εm → 0) having a small temperature coefficient. (2) The method of achieving constant temperature of each resistance element (ΔTs → 0, ΔTm → 0) and making the second term on the right side of Equation (7) asymptotic to zero, etc., is generally adopted as described above. (1) Select and use a single component with excellent stability. (2) Stabilize the temperature of the voltage dividing resistor section.
4). Principle of output voltage stabilization in the present application The temperature stability of the voltage dividing resistor and the method for stabilizing the high voltage in the DC high-voltage power supply apparatus in the present application differ in principle from the methods (1) and (2) above. . Rather than reducing the temperature coefficient of each resistance element or controlling the temperature change of each element during practical use, a method of bringing the second term on the right side of Equation (7) together asymptotically to zero, That is, control is performed so that the ratio (Rs / Ra) of the resistance value between the voltage dividing resistor and the detection resistor is constant. In addition, it can be considered constant if it is within ± 0.3 ppm / min with respect to the set value. ppm means 10 to the sixth power.

数式で表わすと、式(7)の右辺第2項=0より、   When expressed by a mathematical formula, from the second term of the right side of formula (7) = 0,

Figure 2010178416
Figure 2010178416

Figure 2010178416
Figure 2010178416

Figure 2010178416
Figure 2010178416

なお、分圧抵抗器104と検出抵抗器105の抵抗値の比率(Rs/Ra)を一定とするために、検出抵抗器105の温度を制御し、結果として検出抵抗器105の抵抗値を制御することが、本願の基本的アイデアであるが、検出抵抗器105の抵抗値を可変抵抗等を用いて直接制御しても、比率(Rs/Ra)を一定とできることは言うまでも無く、本願はこの可能性を排除するものではない。また、分圧抵抗器の抵抗値を求めることにより、温度変化だけでなく経年変化等を含む抵抗値の変動に対しても、検出抵抗器の抵抗値を直接的に又間接的に制御することにより、安定化を図ることが可能となる。
5.抵抗素子の温度特性評価方法
温度を制御するに際しては、事前に各抵抗値の温度特性を知っておくことが必要である。温度特性を評価するに際して、本願で扱っている精度は非常に高精度(0.1ppmの桁)であり、測定に工夫を要する。また、分圧抵抗器104に関しては抵抗素子が組み合わされて多段化しており、抵抗値が大きくなってしまう。そこで、出来る限り高精度の電圧源(数ppm以下)及び基準抵抗器(0.1ppm以下)を用いて、電圧として評価し、抵抗値に換算する。この方式を用いれば、抵抗器単体のみならず、全体の温度特性も得ることが出来る。その上で、測定環境も制御することで高精度な測定が可能となる。図4に単体での高精度温度特性評価の回路模式図、図5に組み合わせた抵抗器の電圧評価による高精度温度特性評価の回路模式図を示す。
Note that the temperature of the detection resistor 105 is controlled so that the ratio (Rs / Ra) of the resistance value between the voltage dividing resistor 104 and the detection resistor 105 is constant, and as a result, the resistance value of the detection resistor 105 is controlled. This is a basic idea of the present application, but it goes without saying that the ratio (Rs / Ra) can be kept constant even if the resistance value of the detection resistor 105 is directly controlled using a variable resistor or the like. Does not exclude this possibility. In addition, by determining the resistance value of the voltage dividing resistor, the resistance value of the detection resistor can be directly or indirectly controlled not only with respect to temperature change but also with respect to fluctuations in resistance value including aging. Therefore, stabilization can be achieved.
5). Method for evaluating temperature characteristics of resistance element In order to control the temperature, it is necessary to know the temperature characteristics of each resistance value in advance. When evaluating the temperature characteristics, the accuracy dealt with in the present application is very high accuracy (digits of 0.1 ppm), and some measures are required for measurement. Further, the voltage dividing resistor 104 is multistaged by combining resistance elements, and the resistance value becomes large. Therefore, the voltage is evaluated as a voltage using a highly accurate voltage source (a few ppm or less) and a reference resistor (0.1 ppm or less) as much as possible, and converted into a resistance value. If this method is used, not only the resistor alone but also the entire temperature characteristic can be obtained. In addition, by controlling the measurement environment, high-precision measurement is possible. FIG. 4 shows a schematic circuit diagram for high-accuracy temperature characteristic evaluation by itself, and FIG. 5 shows a schematic circuit diagram for high-accuracy temperature characteristic evaluation by voltage evaluation of resistors combined.

図4に示した方法では、一定の温度に保つ第1恒温槽402に抵抗測定器401を実装し、別途温度を変化させて特性を評価するための第2恒温槽403に被測定抵抗器404を入れることで、抵抗測定器401の特性を無視できる。なお、恒温槽は設定温度に対して、±0.1℃以内の温度に制御される。図5では複数の被測定抵抗器501により大きくなった抵抗値を計測するために、電圧を用いている。高精度電圧源502と、検出抵抗器503、検出電圧Vsより取りうる抵抗値を導き出す手法である。このとき、図4と同様に複数の被測定抵抗器501を第2恒温槽403に入れ、他の測定系を第1恒温槽402に入れて評価することで、高精度な特性評価を行える。こうして得られた温度特性(温度係数)を、本願での直流高電圧電源装置の出力電圧制御の際に用いることができる。   In the method shown in FIG. 4, a resistance measuring device 401 is mounted on a first thermostat 402 maintained at a constant temperature, and a resistor to be measured 404 is added to a second thermostat 403 for separately evaluating the characteristics by changing the temperature. By inserting, the characteristic of the resistance measuring device 401 can be ignored. The constant temperature bath is controlled to a temperature within ± 0.1 ° C. with respect to the set temperature. In FIG. 5, a voltage is used to measure the resistance value increased by the plurality of resistors 501 to be measured. This is a technique for deriving a possible resistance value from the high-accuracy voltage source 502, the detection resistor 503, and the detection voltage Vs. At this time, similarly to FIG. 4, a plurality of resistors 501 to be measured are placed in the second thermostat 403, and other measurement systems are put in the first thermostat 402 for evaluation, whereby highly accurate characteristic evaluation can be performed. The temperature characteristic (temperature coefficient) thus obtained can be used for output voltage control of the DC high-voltage power supply device in the present application.

直流高電圧電源装置における分圧抵抗部において重要なのは、抵抗値ではなく分圧抵抗器の抵抗値と検出抵抗器の抵抗値との比率である。供給される電圧はこの比率が崩れない限り変動することはなく、分圧抵抗部全体の抵抗値の変動は印加電流の許容値内であれば問題ではない。本願は、安定度を必要とする回路部分の恒温化を図ったり、そもそも温度安定性に優れた部品を選定・使用するのではなく、分圧抵抗器と検出抵抗器の抵抗値の比率を一定に保つことにより、分圧抵抗器の温度の変動に能動的に応答し検出電圧が変動しないように積極的に安定化を図る方法である。常に分圧抵抗器と検出抵抗器の抵抗値の比率を一定にするように制御することによって、周囲の温度変化のみならず、自己発熱によるドリフトもキャンセルすることが出来る。加えて、抵抗器に対する直接操作ではなく、温度を介した間接対応をも可能とする。   What is important in the voltage dividing resistor part in the DC high-voltage power supply device is not the resistance value but the ratio between the resistance value of the voltage dividing resistor and the resistance value of the detection resistor. The supplied voltage does not fluctuate as long as this ratio does not collapse, and the fluctuation of the resistance value of the entire voltage dividing resistor section is not a problem as long as it is within the allowable value of the applied current. In this application, the ratio of the resistance value of the voltage divider resistor and the detection resistor is constant, not the constant temperature of the circuit part that requires stability, or the selection and use of components with excellent temperature stability in the first place. This is a method for actively stabilizing the voltage divider resistor so that the detected voltage does not fluctuate by actively responding to fluctuations in the temperature of the voltage dividing resistor. By always controlling the ratio of the resistance values of the voltage dividing resistor and the detection resistor to be constant, not only the ambient temperature change but also the drift due to self-heating can be canceled. In addition, it is possible not only to directly operate the resistor but also indirectly through temperature.

なお、本願の方法は、従来の方法((1)安定性に優れた単体部品を選別し使用する。(2)分圧抵抗器部の温度を安定化させる。)と全く独立の方法であり、従来の方法と併用することも可能である。   The method of the present application is a completely independent method from the conventional method ((1) selecting and using a single component having excellent stability. (2) stabilizing the temperature of the voltage dividing resistor part). It can also be used in combination with conventional methods.

以上の通り、本発明の実施の形態によれば、従来型高電圧直流電源装置で採用されていた、温度変化に伴う抵抗値の変化が小さい抵抗器を用いて安定度を向上させる方法、もしくは、分圧抵抗部における温度の変化量を小さくして安定度を向上させるという受動的な安定化方法ではなく、分圧抵抗部の温度変化は生ずるものとして考慮し、その変化に適切に対応して積極的に安定度を確保していく、能動的な安定化方法を備えた電源を提供できる。この方法は、分圧抵抗部の温度変動に対して追随できる限りにおいては、装置を大型化し熱容量を増大させる必要がなく、装置全体の小型化、測定前運転時間の短縮化が期待される。   As described above, according to the embodiment of the present invention, a method of improving stability using a resistor that is employed in a conventional high-voltage DC power supply device and has a small change in resistance value due to a temperature change, or This is not a passive stabilization method that improves the stability by reducing the amount of temperature change in the voltage dividing resistor part, but considers that the temperature change of the voltage dividing resistor part occurs and responds appropriately to that change. It is possible to provide a power supply with an active stabilization method that actively secures stability. As long as this method can follow the temperature fluctuation of the voltage dividing resistor, it is not necessary to increase the size of the device and increase the heat capacity, and it is expected to reduce the size of the entire device and shorten the operation time before measurement.

図6及び図7を用いて第1の実施例について説明する。なお、基本動作等は上述の直流高電圧電源の基本構成の項等で説明した通りである。   The first embodiment will be described with reference to FIGS. The basic operation and the like are as described in the section of the basic configuration of the DC high-voltage power source.

図6は、本実施例に係る直流高電圧電源装置のブロック図である。本実施例では、高電圧HVとして200kVを発生させた。また、分圧抵抗器104の抵抗値Raと検出抵抗器105の抵抗値Rsとの比を(Rs/Ra)=1/20,000とした。これにより、Vsは約10Vの電圧となる。温度センサ601により、分圧抵抗器104の温度変化を読み取り、温度制御回路602へと伝達する。使用した温度センサの測定誤差は±0.01℃以内である。温度センサ601は各分圧抵抗器にそれぞれ取り付けられている。各分圧抵抗器の抵抗値が揃っている場合には、温度センサ601は全ての分圧抵抗器に取り付ける必要はない。この温度制御回路602にて、事前に調べておいた温度係数εから検出抵抗器105への必要な制御量を算出し、加熱・冷却器603へ入力して分圧抵抗器104の抵抗値と検出抵抗器の抵抗値との比が上記値で一定となるように、検出抵抗器105の抵抗値を制御することで、安定な検出電圧Vsを得ることができる。検出抵抗器105は、分圧抵抗器を含む高電圧制御部に対し、部品数が少なく温度制御が容易である。さらに、加熱・冷却器を小型化できる。なお、加熱・冷却器603は、加熱器又は冷却器のいずれか一方でも良いが、両者の機能を有する加熱冷却器を用いることにより、より短時間での温度制御が可能となる。   FIG. 6 is a block diagram of the DC high-voltage power supply apparatus according to this embodiment. In this example, 200 kV was generated as the high voltage HV. Further, the ratio of the resistance value Ra of the voltage dividing resistor 104 and the resistance value Rs of the detection resistor 105 was set to (Rs / Ra) = 1 / 20,000. Thereby, Vs becomes a voltage of about 10V. The temperature sensor 601 reads the temperature change of the voltage dividing resistor 104 and transmits it to the temperature control circuit 602. The measurement error of the used temperature sensor is within ± 0.01 ° C. The temperature sensor 601 is attached to each voltage dividing resistor. When the resistance values of the voltage dividing resistors are equal, the temperature sensor 601 need not be attached to all the voltage dividing resistors. In this temperature control circuit 602, a necessary control amount to the detection resistor 105 is calculated from the temperature coefficient ε examined in advance, and is input to the heating / cooling device 603 to obtain the resistance value of the voltage dividing resistor 104. A stable detection voltage Vs can be obtained by controlling the resistance value of the detection resistor 105 so that the ratio with the resistance value of the detection resistor is constant at the above value. The detection resistor 105 has a smaller number of parts and can be easily temperature controlled than the high voltage control unit including the voltage dividing resistor. Furthermore, the heater / cooler can be downsized. The heating / cooling device 603 may be either a heating device or a cooling device. However, by using a heating / cooling device having both functions, temperature control can be performed in a shorter time.

本実施例では、温度センサ601、温度制御回路602、加熱・冷却器603及び放熱片604等で、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値の比が所定の設定値で一定とするための抵抗比制御部700が構成される。   In this embodiment, the ratio of the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 is a predetermined setting value in the temperature sensor 601, the temperature control circuit 602, the heating / cooling device 603, the heat radiation piece 604, and the like. A resistance ratio control unit 700 is formed to maintain a constant value.

次に、直流高電圧電源装置の制御方法を図7のフロー図を用いて説明する。
先ず、ステップ1(S1)では、電圧設定回路101により、設定電圧Vrefを設定し、高電圧発生部107にて高電圧HVを発生させる。次いで、ステップ2(S2)において、分圧抵抗器104の温度を温度センサ601で取得し、温度制御回路602へと入力する。次いで、ステップ3(S3)において、取得した温度データを元に温度制御回路602で算出された制御量を加熱・冷却器603へと入力する。次いで、ステップ4(S4)において、設定電圧Vrefと検出電圧Vsの差分がゼロか否かを誤差検出回路102で判断する。Vref−Vs=0ならば、高電圧は所望の値に安定に制御されており、現状の高電圧HVはそのまま維持される(ステップ6(S6))。Vref−Vs≠0ならば、ステップ5へと進む。
Next, a control method of the DC high-voltage power supply device will be described with reference to the flowchart of FIG.
First, in step 1 (S1), the voltage setting circuit 101 sets the set voltage Vref, and the high voltage generator 107 generates the high voltage HV. Next, in step 2 (S 2), the temperature of the voltage dividing resistor 104 is acquired by the temperature sensor 601 and is input to the temperature control circuit 602. Next, in step 3 (S3), the control amount calculated by the temperature control circuit 602 based on the acquired temperature data is input to the heating / cooling device 603. Next, in step 4 (S4), the error detection circuit 102 determines whether or not the difference between the set voltage Vref and the detection voltage Vs is zero. If Vref−Vs = 0, the high voltage is stably controlled to a desired value, and the current high voltage HV is maintained as it is (step 6 (S6)). If Vref−Vs ≠ 0, go to Step 5.

ステップ5(S5)において、Vref > Vsを判断し、「はい」の時は、高電圧HVが所望の値より小さいため、高電圧発生部107に対して電圧を増加させる方向へ制御がかかる(ステップ6(S6))。「いいえ」の場合は、高電圧が所望の値より大きいため、高電圧発生部107に対して電圧を減少させる方向へ制御がかかる(ステップ6(S6))。なお、これらの制御はすべて回路的なフィードバック制御がかかる。ステップ2〜ステップ6は直流高電圧電源の電源が入力されている間は繰り返し実行される。これにより、直流高電圧電源装置の電源を入れ、装置全体のウオーミングアップに要する時間経過後(数十分の桁)において、例えば、200kVの高電圧の変動を±0.3ppm/min以内に制御できる見通しが得られた。   In step 5 (S5), Vref> Vs is determined. When “Yes”, since the high voltage HV is smaller than a desired value, the high voltage generator 107 is controlled to increase the voltage ( Step 6 (S6)). In the case of “No”, since the high voltage is larger than a desired value, the high voltage generator 107 is controlled to reduce the voltage (step 6 (S6)). Note that all these controls require circuit-like feedback control. Steps 2 to 6 are repeatedly executed while the power source of the DC high voltage power source is input. As a result, after the time required for warming up the entire apparatus is turned on (tens of digits), for example, the fluctuation of the high voltage of 200 kV can be controlled within ± 0.3 ppm / min. A prospect was obtained.

なお、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値との比を所定の設定値で一定に制御するための制御フォロー図を図13に示す。図7との違いはステップ2(S2)とステップ3(S3)であり、本制御の場合にはステップ2(S2)において、抵抗値Raと抵抗値Rsの比が所定の設定値か否かを抵抗比制御部にて判断し、所定の設定値であればステップ4(S4)へ進み、所定の設定値と異なる場合には、ステップ3(S3)において、設定値となるように検出抵抗器105の抵抗値を抵抗比制御部にて制御する。ステップ4(S4)以降のステップは図7と同様である。   FIG. 13 shows a control follow diagram for controlling the ratio between the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 to be constant at a predetermined set value. The difference from FIG. 7 is Step 2 (S2) and Step 3 (S3). In the case of this control, in Step 2 (S2), whether or not the ratio of the resistance value Ra to the resistance value Rs is a predetermined set value. Is determined by the resistance ratio control unit, and if it is a predetermined set value, the process proceeds to step 4 (S4). If it is different from the predetermined set value, in step 3 (S3), the detection resistance is set to be the set value. The resistance value of the device 105 is controlled by the resistance ratio control unit. Steps after Step 4 (S4) are the same as those in FIG.

本実施例によれば、分圧抵抗器の抵抗値と検出抵抗器の抵抗値との比が所定の設定値で一定となるように検出抵抗器の抵抗値を制御することにより、高い安定性を短時間で実現できる小型の直流高電圧電源装置及びその制御方法を提供することができることが分かった。また、検出抵抗器の抵抗値を、温度により間接的に制御することにより、容易に装置及びその制御方法を実現することすることができる。また、温度制御回路が高電圧分圧部に設けられているため、分圧抵抗器の温度変化への迅速な対応が可能である。   According to the present embodiment, by controlling the resistance value of the detection resistor so that the ratio between the resistance value of the voltage dividing resistor and the resistance value of the detection resistor is constant at a predetermined setting value, high stability is achieved. It has been found that a small DC high-voltage power supply device and a control method thereof can be provided in a short time. Further, by indirectly controlling the resistance value of the detection resistor according to the temperature, the apparatus and the control method thereof can be easily realized. Further, since the temperature control circuit is provided in the high voltage voltage dividing section, it is possible to quickly cope with the temperature change of the voltage dividing resistor.

図8及び図9を用いて第2の実施例について説明する。なお、装置の基本動作は、上述の直流高電圧電源の基本構成の項で説明したとおりである。また、実施例1に記載され本実施例に記載の無い事項は、実施例1と同様である。   A second embodiment will be described with reference to FIGS. The basic operation of the apparatus is as described in the section of the basic configuration of the DC high-voltage power source. The matters described in the first embodiment and not described in the present embodiment are the same as those in the first embodiment.

図8は、温度制御機能付き直流高電圧電源装置に外部の制御システム801を組み込んだ装置のブロック図である。制御システム801は、演算処理部810とメモリ部とを有する。メモリ部820には、高電圧設定データや予め取得された分圧抵抗器104や検出抵抗器105の温度特性データが保存されている。演算処理部810は、温度センサ601の出力データとメモリ部820に保存された温度特性データとを用いて必要とされる制御量の演算処理を実施し、温度制御データ802を算出する。温度制御回路602は、温度制御データ802を加熱・冷却器603の制御量へと変換し、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値との比が設定値となるように検出抵抗器105の温度を制御する。これにより安定な検出電圧Vsが得られ、高い安定性を短時間で実現できる小型の直流高電圧電源装置を得ることができる。外部の制御システム801を用いることにより、実施例1の図6にて説明した、装置内において回路的に制御量を算出する温度制御回路602を用いた方式に比べ、より複雑な制御を行うことが出来る。   FIG. 8 is a block diagram of an apparatus in which an external control system 801 is incorporated in a DC high-voltage power supply apparatus with a temperature control function. The control system 801 includes an arithmetic processing unit 810 and a memory unit. The memory unit 820 stores high voltage setting data and temperature characteristic data of the voltage dividing resistor 104 and the detection resistor 105 acquired in advance. The arithmetic processing unit 810 performs arithmetic processing of a required control amount using the output data of the temperature sensor 601 and the temperature characteristic data stored in the memory unit 820, and calculates temperature control data 802. The temperature control circuit 602 converts the temperature control data 802 into a control amount of the heating / cooling device 603 so that the ratio between the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 becomes a set value. The temperature of the detection resistor 105 is controlled. As a result, a stable detection voltage Vs can be obtained, and a small DC high-voltage power supply device capable of realizing high stability in a short time can be obtained. By using the external control system 801, more complicated control is performed as compared with the method using the temperature control circuit 602 that calculates the control amount in a circuit in the apparatus described in FIG. 6 of the first embodiment. I can do it.

本実施例では、温度センサ601、温度制御回路602、加熱・冷却器603、放熱片604及び制御システム801等で、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値の比が所定の設定値で一定とするための抵抗比制御部が構成される。   In this embodiment, the ratio between the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 is predetermined in the temperature sensor 601, the temperature control circuit 602, the heating / cooling device 603, the heat radiation piece 604, the control system 801, and the like. A resistance ratio control unit for making the set value constant is configured.

図8に示した直流高電圧電源装置の制御方法を図9のフロー図を用いて説明する。
ステップ1(S1)では、設定電圧Vrefが、制御システム801からの高電圧設定データ803に基づいて電圧設定回路101において設定され、高電圧発生部107において高電圧HVが発生する。次いで、ステップ2(S2)では、温度センサ601で取得された分圧抵抗器104の温度データが、外部の制御システム801へ入力される。次いで、ステップ3(S3)では、温度データ及びメモリ部820に保存された温度特性データを用いて、分圧抵抗器104の抵抗値と検出抵抗器105の抵抗値との比が設定値となるように検出抵抗器105を温度制御するための制御量が情報処理部810において算出される。次いで、ステップ4(S4)では、算出された制御量が温度制御データ802として温度制御回路602へ伝送され、加熱・冷却器603へ入力される。次いで、ステップ5(S5)において、設定電圧Vrefと検出電圧Vsの差がゼロか否かを誤差検出回路102で判断する。Vref−Vs=0ならば、高電圧は所望の値に安定に制御されており、現状の高電圧HVはそのまま維持される(ステップ7(S7))。Vref−Vs≠0ならば、ステップ6へと進む。
A control method of the DC high-voltage power supply device shown in FIG. 8 will be described with reference to the flowchart of FIG.
In step 1 (S 1), the set voltage Vref is set in the voltage setting circuit 101 based on the high voltage setting data 803 from the control system 801, and the high voltage HV is generated in the high voltage generator 107. Next, in step 2 (S2), the temperature data of the voltage dividing resistor 104 acquired by the temperature sensor 601 is input to the external control system 801. Next, in step 3 (S3), using the temperature data and the temperature characteristic data stored in the memory unit 820, the ratio between the resistance value of the voltage dividing resistor 104 and the resistance value of the detection resistor 105 becomes a set value. Thus, the control amount for controlling the temperature of the detection resistor 105 is calculated in the information processing unit 810. Next, in step 4 (S4), the calculated control amount is transmitted as temperature control data 802 to the temperature control circuit 602 and input to the heating / cooling device 603. Next, in step 5 (S5), the error detection circuit 102 determines whether or not the difference between the set voltage Vref and the detection voltage Vs is zero. If Vref−Vs = 0, the high voltage is stably controlled to a desired value, and the current high voltage HV is maintained as it is (step 7 (S7)). If Vref−Vs ≠ 0, go to Step 6.

ステップ6(S6)において、Vref > Vsを判断し、「はい」の時は、高電圧HVが所望の値より小さいため、高電圧発生部107に対して電圧を増加させる方向へ制御がかかる(ステップ7(S7))。「いいえ」の場合は、高電圧が所望の値より大きいため、高電圧発生部107に対して電圧を減少させる方向へ制御がかかる(ステップ7(S7))。なお、これらの制御はすべて回路的なフィードバック制御がかかる。ステップ2〜ステップ7は直流高電圧電源の電源が入力されている間は繰り返し実行される。   In step 6 (S6), Vref> Vs is determined. When “Yes”, since the high voltage HV is smaller than a desired value, the high voltage generator 107 is controlled to increase the voltage ( Step 7 (S7)). In the case of “No”, since the high voltage is larger than a desired value, the high voltage generator 107 is controlled to decrease the voltage (step 7 (S7)). Note that all these controls require circuit-like feedback control. Steps 2 to 7 are repeatedly executed while the power source of the DC high voltage power source is input.

本実施例においても、実施例1と同様の効果を得ることができる。更に、実施例1ではハード的に処理していた制御量を、本実施例では、事前に取得したデータを入力した外部システムから制御することにより、より複雑なアルゴリズムを用いて制御することが可能となる。   Also in this embodiment, the same effect as that of Embodiment 1 can be obtained. Furthermore, in this embodiment, it is possible to control the control amount processed in hardware in the first embodiment by using a more complicated algorithm by controlling it from an external system to which previously acquired data is input. It becomes.

図10を用いて第3の実施例について説明する。なお、実施例1や実施例2に記載され、本実施例に記載されていない事項は実施例1や実施例2と同様である。   A third embodiment will be described with reference to FIG. The matters described in the first embodiment and the second embodiment and not described in the present embodiment are the same as those in the first embodiment and the second embodiment.

図10は、検出抵抗器の温度制御方式を構成する部品の断面図である。断熱材1001で囲われた検出抵抗器105の温度を、放熱片604を備えた加熱・冷却器603で直接的に制御する方法で、単体部品の場合には簡便に制御が可能となる。放熱片604により検出抵抗器105の温度が高温になる場合でも対応可能である。なお、本構成部品は前実施例1,2のどちらにも適用可能である。   FIG. 10 is a cross-sectional view of components constituting the temperature control method of the detection resistor. This is a method in which the temperature of the detection resistor 105 surrounded by the heat insulating material 1001 is directly controlled by the heating / cooling device 603 provided with the heat dissipating piece 604, and can be easily controlled in the case of a single component. Even when the temperature of the detection resistor 105 becomes high due to the heat dissipating piece 604, it can be dealt with. This component is applicable to both the first and second embodiments.

本実施例によれば、実施例1と同様の効果がある。また、加熱・冷却器の温度制御面を検出抵抗器に直接接触させおり検出抵抗器の温度を短時間で高精度に制御することができる。   According to the present embodiment, there are the same effects as in the first embodiment. Further, the temperature control surface of the heating / cooling device is brought into direct contact with the detection resistor, so that the temperature of the detection resistor can be controlled with high accuracy in a short time.

図11を用いて第4の実施例について説明する。なお、実施例1や実施例2に記載され、本実施例に記載されていない事項は実施例1や実施例2と同様である。   A fourth embodiment will be described with reference to FIG. The matters described in the first embodiment and the second embodiment and not described in the present embodiment are the same as those in the first embodiment and the second embodiment.

図11は、検出抵抗器の温度制御方式を構成する部品の別例の断面図である。検出抵抗器105は、熱伝導の良い充填材1102で満たされた箱1101内に配置され、箱1101の周囲は断熱材1001で覆われている。この箱1101の温度を制御することで、複数の検出抵抗器105を1つの加熱・冷却器603でまとめて制御することができ、安定な検出電圧Vsを得ることができる。放熱片604により検出抵抗器105の温度が高温になる場合でも対応可能である。なお、前実施例3と同様に、本構成部品は前実施例1,2のどちらにも適用可能である。   FIG. 11 is a cross-sectional view of another example of components constituting the temperature control method of the detection resistor. The detection resistor 105 is arranged in a box 1101 filled with a filler 1102 having good heat conductivity, and the periphery of the box 1101 is covered with a heat insulating material 1001. By controlling the temperature of the box 1101, the plurality of detection resistors 105 can be controlled together by one heating / cooling device 603, and a stable detection voltage Vs can be obtained. Even when the temperature of the detection resistor 105 becomes high due to the heat dissipating piece 604, it can be dealt with. As in the third embodiment, this component can be applied to both the first and second embodiments.

本実施例によれば、実施例1と同様の効果がある。また、断熱材で囲われ、内部に熱伝導性の良い充填剤が満たされた箱を用いることにより、複数の検出抵抗器の温度制御を行なうことができる。   According to the present embodiment, there are the same effects as in the first embodiment. In addition, the temperature of the plurality of detection resistors can be controlled by using a box surrounded by a heat insulating material and filled with a filler having good thermal conductivity.

図12を用いて第5の実施例について説明する。なお、実施例1〜実施例4に記載され、本実施例に記載されていない事項は実施例1〜実施例4と同様である。   A fifth embodiment will be described with reference to FIG. In addition, it describes in Example 1- Example 4, and the matter which is not described in a present Example is the same as that of Example 1-4.

図12は、分圧抵抗器104への温度センサ601の簡素化を実施する部品構成の例を示す断面図である。図12に示すように、熱的に良伝導体でかつ電気的に絶縁体(熱伝導性ゴム等)である基板(伝熱板)1201の上に、分圧抵抗器104を二次元上に分散して配置する。これにより、各分圧抵抗器104の温度制御状態を等しくすることができ、温度センサ601も伝熱板1201の一ヶ所温度制御を検出するだけでよくなり、制御が容易になる。   FIG. 12 is a cross-sectional view illustrating an example of a component configuration that simplifies the temperature sensor 601 to the voltage dividing resistor 104. As shown in FIG. 12, the voltage dividing resistor 104 is two-dimensionally arranged on a substrate (heat transfer plate) 1201 that is a thermally good conductor and electrically insulating (thermal conductive rubber or the like). Distribute and arrange. As a result, the temperature control state of each voltage dividing resistor 104 can be made equal, and the temperature sensor 601 only needs to detect the temperature control of one place of the heat transfer plate 1201, and the control becomes easy.

本実施例によれば、実施例1と同様の効果がある。また、分圧抵抗器を伝熱板上に設置することにより、温度センサの数を低減することができる。   According to the present embodiment, there are the same effects as in the first embodiment. Moreover, the number of temperature sensors can be reduced by installing the voltage dividing resistor on the heat transfer plate.

直流高電圧電源の構成を示すブロック図である。It is a block diagram which shows the structure of direct-current high voltage power supply. 直流高圧電源の回路模式図である。It is a circuit schematic diagram of a DC high-voltage power supply. 高電圧分圧部の回路模式図である。It is a circuit schematic diagram of a high voltage voltage dividing part. 単体抵抗器の高精度温度特性評価用の回路模式図である。It is a circuit schematic diagram for highly accurate temperature characteristic evaluation of a single resistor. 直列接続された複数の抵抗器の高精度温度特性評価用の回路模式図である。It is a circuit schematic diagram for highly accurate temperature characteristic evaluation of a plurality of resistors connected in series. 第1実施例に係る温度制御機能付き直流高電圧電源装置の構成を示すブロック図である。It is a block diagram which shows the structure of the direct current | flow high voltage power supply device with a temperature control function which concerns on 1st Example. 第1実施例に係る高電圧安定化制御フロー図である。It is a high voltage stabilization control flowchart according to the first embodiment. 第2実施例に係る温度制御機能付き直流高電圧電源装置と制御システムを示すブロック図である。It is a block diagram which shows the direct-current high voltage power supply device with a temperature control function and control system which concern on 2nd Example. 第2実施例に係る外部制御システムを用いた場合の高電圧安定化制御フロー図である。It is a high voltage stabilization control flow figure at the time of using the external control system which concerns on 2nd Example. 第3実施例に係る検出抵抗器を直接温度制御するときの構成を示す断面図である。It is sectional drawing which shows a structure when carrying out direct temperature control of the detection resistor which concerns on 3rd Example. 第4実施例に係る複数の検出抵抗器を温度制御するときの構成を示す断面図である。It is sectional drawing which shows a structure when temperature-controlling the some detection resistor which concerns on 4th Example. 第5実施例に係る分圧抵抗器の温度測定するときの構成を示す断面図である。It is sectional drawing which shows a structure when measuring the temperature of the voltage dividing resistor which concerns on 5th Example. 分圧抵抗器の抵抗値と検出抵抗器の抵抗値の比を制御する高電圧安定化制御フロー図である。It is a high voltage stabilization control flowchart which controls the ratio of the resistance value of a voltage dividing resistor, and the resistance value of a detection resistor.

100…直流高電圧電源、101…電圧設定回路、102…誤差検出回路、103…高電圧制御部、104…分圧抵抗器、105、503…検出抵抗器、106…高電圧分圧部、107…高電圧発生部、108…高電圧給電部、Vref…設定電圧、HV…高電圧、Vs…検出電圧、γ…昇圧ゲイン、β…誤差検出回路ゲイン、Ra…分圧抵抗器抵抗値、Rs…検出抵抗器抵抗値、401…抵抗測定器、402…第1恒温槽、403…第2恒温槽、404…被測定抵抗器、501…複数の被測定抵抗器、502…高精度電圧源、505…電圧測定器、601…温度センサ、602…温度制御回路、603…加熱・冷却器、604…放熱片、VG…接地電位、700…抵抗比制御部、801…外部制御システム、802…温度制御データ、803…高電圧設定データ、810…情報処理部、820…メモリ部、1001…断熱材、1101…周囲に取り付けた箱、1102…充填材、1201…伝熱板。 DESCRIPTION OF SYMBOLS 100 ... DC high voltage power supply, 101 ... Voltage setting circuit, 102 ... Error detection circuit, 103 ... High voltage control part, 104 ... Voltage dividing resistor, 105, 503 ... Detection resistor, 106 ... High voltage voltage dividing part, 107 ... High voltage generator 108, High voltage power supply, Vref ... Set voltage, HV ... High voltage, Vs ... Detection voltage, γ ... Boosting gain, β ... Error detection circuit gain, Ra ... Ratio of resistance of voltage dividing resistor, Rs Reference resistor resistance value, 401 ... Resistance measuring device, 402 ... First thermostat, 403 ... Second thermostat, 404 ... Resistor to be measured, 501 ... Multiple resistors to be measured, 502 ... High precision voltage source, 505 ... Voltage measuring device, 601 ... Temperature sensor, 602 ... Temperature control circuit, 603 ... Heating / cooling device, 604 ... Heat radiation piece, VG ... Ground potential, 700 ... Resistance ratio control unit, 801 ... External control system, 802 ... Temperature Control data, 803 ... high voltage setting data, 810 ... information processing section, 820 ... memory section, 1001 ... heat insulating material, 1101 ... box attached around, 1102 ... filler, 1201 ... heat transfer plate.

Claims (11)

高電圧発生部と、誤差検出回路を備えた高電圧制御部と、前記高電圧発生部で発生した電圧を検出電圧として検出し、前記誤差検出回路へフィードバックするための分圧抵抗器および検出抵抗器を備えた高電圧分圧部とを有する直流高電圧電源装置であって、
前記分圧抵抗器の抵抗値の変動に応じ、前記抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値で一定となるように前記検出抵抗器の抵抗値を制御する手段を更に有することを特徴とする直流高電圧電源装置。
A high voltage generation unit, a high voltage control unit including an error detection circuit, a voltage dividing resistor and a detection resistor for detecting a voltage generated by the high voltage generation unit as a detection voltage and feeding back to the error detection circuit A DC high voltage power supply device having a high voltage voltage dividing unit equipped with a device,
Means for controlling the resistance value of the detection resistor so that a ratio between the resistance value and the resistance value of the detection resistor is constant at a predetermined set value in accordance with a change in the resistance value of the voltage dividing resistor; A direct-current high-voltage power supply device further comprising:
請求項1記載の直流高電圧電源装置において、
前記抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値で一定となるように前記検出抵抗器の抵抗値を制御する手段は、前記分圧抵抗器の温度を測定するための温度センサと、前記温度センサからの出力に基づき前記検出抵抗器の温度を制御する手段とを含むことを特徴とする直流高電圧電源装置。
The DC high-voltage power supply device according to claim 1,
The means for controlling the resistance value of the detection resistor so that the ratio of the resistance value and the resistance value of the detection resistor is constant at a predetermined setting value is for measuring the temperature of the voltage dividing resistor. A direct current high voltage power supply apparatus comprising: a temperature sensor; and means for controlling the temperature of the detection resistor based on an output from the temperature sensor.
請求項2記載の直流高電圧電源装置において、
前記検出抵抗器の温度を制御する手段は、加熱器又は冷却器或いはその両者の機能を有する加熱冷却器と、前記温度センサからの出力に基づき前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器の温度を制御する温度制御回路とを含むことを特徴とする直流高電圧電源装置。
The DC high-voltage power supply device according to claim 2,
The means for controlling the temperature of the detection resistor has a function of the heater and / or cooler, or both, and the function of the heater and / or cooler based on the output from the temperature sensor. A DC high-voltage power supply device comprising a temperature control circuit for controlling the temperature of the heating / cooling device.
請求項3記載の直流高電圧電源装置において、
前記検出抵抗器は、前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器に直接取り付けられ、それ以外の部分は断熱材で覆われていることを特徴とする直流高電圧電源装置。
In the DC high-voltage power supply device according to claim 3,
The direct current high voltage power supply apparatus characterized by the said detection resistor being directly attached to the heating / cooling device which has the function of the said heating device, a cooling device, or both, and the other part being covered with the heat insulating material.
請求項3記載の直流高電圧電源装置において、
前記検出抵抗器は、熱伝導性の良い充填剤で満たされた箱内に設置され、
前記箱は、前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器に直接取り付けられ、それ以外の部分は断熱材で覆われていることを特徴とする直流高電圧電源装置。
In the DC high-voltage power supply device according to claim 3,
The detection resistor is installed in a box filled with a filler having good thermal conductivity,
A direct current high voltage power supply apparatus, wherein the box is directly attached to the heater and / or the cooler having the functions of both, and the other part is covered with a heat insulating material.
請求項2記載の直流高電圧電源装置において、
前記分圧抵抗器は、熱的に良伝導体でかつ電気的に絶縁体の基板上に設置され、前記温度センサが前記基板に取り付けられていることを特徴とする直流高電圧電源装置。
The DC high-voltage power supply device according to claim 2,
The DC high-voltage power supply apparatus, wherein the voltage dividing resistor is installed on a thermally conductive and electrically insulating substrate, and the temperature sensor is attached to the substrate.
高電圧発生部と、誤差検出回路を備えた高電圧制御部と、前記高電圧発生部で発生した電圧を検出電圧として検出し前記誤差検出回路へフィードバックするための、分圧抵抗器及び検出抵抗器を備えた高電圧分圧部とを有する直流高電圧電源装置であって、
前記分圧抵抗器の温度を測定するための温度センサと、
前記検出抵抗器の温度を制御するための加熱器又は冷却器或いはその両者の機能を有する加熱冷却器と、
前記温度センサからの温度データに基づき、前記分圧抵抗器の抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値で一定となるように前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器を制御する温度制御回路とを更に有することを特徴とする直流高電圧電源装置。
A high voltage generation unit, a high voltage control unit including an error detection circuit, a voltage dividing resistor and a detection resistor for detecting a voltage generated in the high voltage generation unit as a detection voltage and feeding back to the error detection circuit A DC high voltage power supply device having a high voltage voltage dividing unit equipped with a device,
A temperature sensor for measuring the temperature of the voltage dividing resistor;
A heater / cooler for controlling the temperature of the detection resistor, or a heater / cooler having a function of both,
Based on the temperature data from the temperature sensor, the ratio of the resistance value of the voltage dividing resistor and the resistance value of the detection resistor is constant at a predetermined set value so that the heater and / or the cooler are A direct-current high-voltage power supply device further comprising a temperature control circuit for controlling a heating / cooling device having a function.
高電圧発生部と、誤差検出回路を備えた高電圧制御部と、前記高電圧発生部で発生した電圧を検出電圧として検出し前記誤差検出回路へフィードバックするための、分圧抵抗器及び検出抵抗器を備えた高電圧分圧部とを有する直流高電圧電源装置であって、
前記分圧抵抗器の温度を測定するための温度センサと、
前記検出抵抗器の温度を制御するための加熱器又は冷却器或いはその両者の機能を有する加熱冷却器と、
予め取得された分圧抵抗器および検出抵抗器の温度特性データが保存されているメモリ部と、前記温度センサからの出力データと前記温度特性データとを用いて前記分圧抵抗器の抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値で一定となるように前記検出抵抗器の温度を制御するための制御量を演算処理する演算処理部とを備えた制御システムと、
前記制御システムからの前記制御量に基づき、前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器を制御する温度制御回路とを更に有することを特徴とする直流高電圧電源装置。
A high voltage generation unit, a high voltage control unit including an error detection circuit, a voltage dividing resistor and a detection resistor for detecting a voltage generated in the high voltage generation unit as a detection voltage and feeding back to the error detection circuit A DC high voltage power supply device having a high voltage voltage dividing unit equipped with a device,
A temperature sensor for measuring the temperature of the voltage dividing resistor;
A heater / cooler for controlling the temperature of the detection resistor, or a heater / cooler having a function of both,
A memory unit storing temperature characteristic data of the voltage dividing resistor and the detection resistor acquired in advance, output data from the temperature sensor, and the resistance value of the voltage dividing resistor using the temperature characteristic data A control system including an arithmetic processing unit that calculates a control amount for controlling the temperature of the detection resistor so that a ratio with the resistance value of the detection resistor is constant at a predetermined setting value;
A DC high-voltage power supply apparatus further comprising: a temperature control circuit that controls the heating / cooling device having the functions of the heating device and / or the cooling device based on the control amount from the control system.
請求項1記載の直流高電圧電源装置の制御方法であって、
前記高電圧発生部にて高電圧を発生させるための設定電圧を前記高電圧制御部にて設定するステップと、
前記分圧抵抗器の抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値か否かを判定するステップと、
前記比が所定の設定値でない場合に、前記比が所定の設定値で一定となるように前記検出抵抗値を制御するステップとを有し、
前記設定電圧と前記検出電圧とを用いて、前記前記高電圧給電部が供給する高電圧を安定化させることを特徴とする直流高電圧の制御方法。
A control method for a DC high-voltage power supply device according to claim 1,
Setting a setting voltage for generating a high voltage in the high voltage generation unit in the high voltage control unit;
Determining whether a ratio of a resistance value of the voltage dividing resistor and a resistance value of the detection resistor is a predetermined set value;
Controlling the detection resistance value so that the ratio is constant at a predetermined set value when the ratio is not a predetermined set value;
A control method for a DC high voltage, wherein the high voltage supplied from the high voltage power supply unit is stabilized using the set voltage and the detection voltage.
請求項7記載の直流高電圧電源装置の制御方法であって、
前記高電圧発生部にて高電圧を発生させるための設定電圧を前記高電圧制御部にて設定するステップと、
前記温度センサからの温度データを前記温度制御回路へ入力するステップと、
前記温度データに基づいて、前記分圧抵抗器の抵抗値と前記検出抵抗器の抵抗値の比が所定の設定値で一定となるような温度の制御量を算出し、前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器へ入力するステップとを有し、
前記設定電圧と前記検出電圧とを用いて、前記前記高電圧給電部が供給する高電圧を安定化させることを特徴とする直流高電圧の制御方法。
A control method for a DC high-voltage power supply device according to claim 7,
Setting a setting voltage for generating a high voltage in the high voltage generation unit in the high voltage control unit;
Inputting temperature data from the temperature sensor into the temperature control circuit;
Based on the temperature data, a temperature control amount is calculated such that a ratio between the resistance value of the voltage dividing resistor and the resistance value of the detection resistor is constant at a predetermined set value, and the heater or cooler is calculated. Or a step of inputting to a heating / cooling device having both functions,
A control method for a DC high voltage, wherein the high voltage supplied from the high voltage power supply unit is stabilized using the set voltage and the detection voltage.
請求項8記載の直流高電圧電源装置の制御方法であって、
前記制御システムからの前記高電圧設定データに基づき、前記高電圧発生部にて高電圧を発生させるための設定電圧を前記高電圧制御部にて設定するステップと、
前記温度センサからの温度データを前記制御システムに入力するステップと、
前記温度データと前記温度特性データとを用いて前記分圧抵抗器の抵抗値と前記検出抵抗器の抵抗値との比が所定の設定値で一定となるように前記検出抵抗器の温度を制御するための制御量を算出するステップと、
算出された前記制御量を温度制御データとして前記温度制御回路へ伝送し、前記加熱器又は冷却器或いはその両者の機能を有する加熱冷却器へ入力するステップとを有し、
前記設定電圧と前記検出電圧とを用いて、前記高電圧給電部が供給する高電圧を安定化させることを特徴とする直流高電圧の制御方法。
A method for controlling a DC high-voltage power supply device according to claim 8,
Based on the high voltage setting data from the control system, setting a setting voltage for generating a high voltage in the high voltage generation unit in the high voltage control unit;
Inputting temperature data from the temperature sensor into the control system;
Using the temperature data and the temperature characteristic data, the temperature of the detection resistor is controlled so that the ratio between the resistance value of the voltage dividing resistor and the resistance value of the detection resistor is constant at a predetermined setting value. Calculating a control amount for
The calculated control amount is transmitted to the temperature control circuit as temperature control data, and input to the heating / cooling device having the functions of the heating device and / or the cooling device,
A method for controlling a DC high voltage, wherein the high voltage supplied from the high voltage power supply unit is stabilized using the set voltage and the detection voltage.
JP2009015247A 2009-01-27 2009-01-27 DC high-voltage power supply device and control method thereof Expired - Fee Related JP5222748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015247A JP5222748B2 (en) 2009-01-27 2009-01-27 DC high-voltage power supply device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015247A JP5222748B2 (en) 2009-01-27 2009-01-27 DC high-voltage power supply device and control method thereof

Publications (2)

Publication Number Publication Date
JP2010178416A true JP2010178416A (en) 2010-08-12
JP5222748B2 JP5222748B2 (en) 2013-06-26

Family

ID=42708822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015247A Expired - Fee Related JP5222748B2 (en) 2009-01-27 2009-01-27 DC high-voltage power supply device and control method thereof

Country Status (1)

Country Link
JP (1) JP5222748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247663A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Voltage divider

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736728A (en) * 2017-04-25 2018-11-02 山西北极熊环境科技有限公司 Molecule high energy enhances module
TWI664799B (en) * 2018-02-13 2019-07-01 友達光電股份有限公司 Voltage converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141932A (en) * 1997-07-22 1999-02-12 Nichicon Corp High dc voltage generator
JP2005150480A (en) * 2003-11-18 2005-06-09 Hitachi High-Technologies Corp Electron beam drawing device
JP2007288907A (en) * 2006-04-14 2007-11-01 Origin Electric Co Ltd High-stability power supply device and high-voltage electronic tube device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141932A (en) * 1997-07-22 1999-02-12 Nichicon Corp High dc voltage generator
JP2005150480A (en) * 2003-11-18 2005-06-09 Hitachi High-Technologies Corp Electron beam drawing device
JP2007288907A (en) * 2006-04-14 2007-11-01 Origin Electric Co Ltd High-stability power supply device and high-voltage electronic tube device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247663A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Voltage divider

Also Published As

Publication number Publication date
JP5222748B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US8920026B2 (en) Accurate current sensing with heat transfer correction
US8602645B2 (en) Temperature detection system
CN102246115B (en) Circuit, reim, and layout for temperature compensation of metal resistors in semi-conductor chips
JP2004531741A5 (en)
CN110178002B (en) Liquid level gauge, vaporizer provided with same, and liquid level detection method
JP2011510274A (en) Thermal camera
CN107110716B (en) Sensor sheet
JP5222748B2 (en) DC high-voltage power supply device and control method thereof
TWI789501B (en) Thermal conductivity gauge
US10274356B2 (en) Liquid level detection circuit, liquid level meter, container provided with liquid level meter, and vaporizer using container
US20090045187A1 (en) Adaptive Temperature Controller
CN109270972A (en) A kind of thermostatically-controlled equipment
KR20170027673A (en) Sensor device and method for calibrating a sensor device
US20210368584A1 (en) Passive and active calibration methods for a resistive heater
KR101261627B1 (en) Apparutus and system for measuring heat flux
JP2020517961A (en) Device and method for measuring the power value of a target
US20200124685A1 (en) Sensor circuit with offset compensation
CN207718265U (en) Current reference circuit
JP2015153121A (en) Temperature compensation reference voltage circuit arrangement
El Matarawy et al. New adiabatic calorimeter for realization the triple point of water in metallic-sealed cell at NIS-Egypt
JP2007288907A (en) High-stability power supply device and high-voltage electronic tube device using the same
CN114020071B (en) Constant temperature system and constant temperature control method
JP4576238B2 (en) Electronic component device and DC high-voltage power supply device using the same
CN103887025A (en) Metallic resistor containing heat conductive metal foil part with non-load current
CN116263354A (en) Method and device for calibrating a temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees