JP2010178237A - Communication system and base station device, terminal device, and base station device, and program executed by terminal device - Google Patents

Communication system and base station device, terminal device, and base station device, and program executed by terminal device Download PDF

Info

Publication number
JP2010178237A
JP2010178237A JP2009021060A JP2009021060A JP2010178237A JP 2010178237 A JP2010178237 A JP 2010178237A JP 2009021060 A JP2009021060 A JP 2009021060A JP 2009021060 A JP2009021060 A JP 2009021060A JP 2010178237 A JP2010178237 A JP 2010178237A
Authority
JP
Japan
Prior art keywords
base station
interference
cell
frequency band
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021060A
Other languages
Japanese (ja)
Inventor
Isao Hirakawa
功 平川
Nagaaki Yana
永明 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009021060A priority Critical patent/JP2010178237A/en
Publication of JP2010178237A publication Critical patent/JP2010178237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanism for effectively reducing interference in a coordinated multipoint base station communication system which is a radio communication system for using a plurality of frequency bands to perform communication, and performed by a plurality of base station devices in the communication system by performing simultaneous communication with one terminal device, or performed by the plurality of base station devices by arbitrating the timing of communication with the one terminal device. <P>SOLUTION: The radio communication system prepares: a means for measuring an interference amount in a base station device; a means for measuring traffic in a cell; a means for exchanging the interference amount, the traffic, a cell identifier and a frequency band identifier between base stations in accordance with a traffic state in the cell; a means for determining an interference arbitration system from exchanged information; a means for performing radio resource management setting on the basis of the determined interference arbitration system; and a means for notifying terminal devices in each cell of the information of the radio resource management setting wherein the terminal devices reduce interference by determining whether to perform transmission and reception on the basis of the information of the radio resource management setting notified from the base station device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、通信システム及びその基地局装置、端末装置に関し、より詳細には、複数の周波数帯域を使用する通信システム及び該通信システムにおけるセル間干渉除去、低減技術、およびそのシステムにおいて使用する基地局装置および端末装置に関する。   The present invention relates to a communication system and a base station apparatus and a terminal apparatus thereof, and more specifically, a communication system using a plurality of frequency bands, an inter-cell interference cancellation and reduction technique in the communication system, and a base used in the system. The present invention relates to a station apparatus and a terminal apparatus.

無線通信システムにおいて、高速伝送技術、広帯域システム技術、サービス品質(QoS:Quality of Service)維持技術が重要な要求要素となっている。これら要求を満たすための技術として、多入力多出力技術(MIMO:Multiple Input Multiple Output)、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)、無線資源管理(RRM:Radio Resouce Management)、周波数帯域結合(CA:Carrier Aggregation)、セル間干渉除去/調停(ICIC:Inter−Cell Interference Cancellation/Coordination)、協調複数基地局通信(CoMP:Coordinated MultiPoint)等がある。これら技術により高速伝送が可能となる。   In a wireless communication system, high-speed transmission technology, broadband system technology, and quality of service (QoS) maintenance technology are important requirements. As a technique for satisfying these requirements, multiple input multiple output (MIMO), orthogonal frequency division multiplexing (OFDM), radio resource management (RRM), and radio resource management (RRM) band (CA: Carrier Aggregation), inter-cell interference cancellation / arbitration (ICIC: Inter-Cell Interference Cancellation / Coordination), cooperative multi-base station communication (CoMP: Coordinated MultiPoint), and the like. These technologies enable high-speed transmission.

図23はロングタームエボルーション(LTE:Long Term Evolution)システムにおけるセル間干渉低減、干渉除去の仕組みを表した図である。基地局装置BS300と、端末装置UE300とが通信を行っている。同様に基地局装置BS301と端末装置UE301、UE302とが、基地局装置BS302と端末装置UE303とがそれぞれ通信を行っている。使用する周波数帯域はLTEシステムの場合、1つである。   FIG. 23 is a diagram illustrating a mechanism of inter-cell interference reduction and interference cancellation in a long term evolution (LTE) system. The base station device BS300 and the terminal device UE300 communicate with each other. Similarly, the base station apparatus BS301 and the terminal apparatuses UE301 and UE302 communicate with each other between the base station apparatus BS302 and the terminal apparatus UE303. In the case of the LTE system, one frequency band is used.

各基地局装置は、まず、各端末装置からの電力が必要最小限となるよう制御を行う。端末装置の電力は次式で与えられる。端末装置の電力Pは、ネットワークで指示されたパラメータに基づき、次式で定める。
P = min(Pmax、10logM+Po+αPL+delta_mcs+f(delta_i))
ここでPmaxは端末装置毎の最大送信可能電力、Mは上りリソース割り当てで指示されたリソースブロック数、Poはセル毎に定められたデフォルトの電力値、αはセル毎の伝搬損失補償係数、PLは端末装置により計算される下り信号の伝搬損失、delta_mcsは上位層で決定し、通知される値、delta_iはリソース割り当てで合わせて指示された端末毎の補正値であり、関数f( )は上位層で指示される絶対値関数もしくは累積関数である。
Each base station apparatus first performs control so that the power from each terminal apparatus is minimized. The power of the terminal device is given by the following equation. The power P of the terminal device is determined by the following equation based on parameters instructed by the network.
P = min (Pmax, 10logM + Po + αPL + delta_mcs + f (delta_i))
Here, Pmax is the maximum transmittable power for each terminal device, M is the number of resource blocks instructed in uplink resource allocation, Po is a default power value determined for each cell, α is a propagation loss compensation coefficient for each cell, PL Is a propagation loss of a downlink signal calculated by the terminal device, delta_mcs is a value determined and notified by the upper layer, delta_i is a correction value for each terminal instructed together with resource allocation, and the function f () is the upper layer Absolute value function or cumulative function indicated by the layer.

次に、基地局装置は他セルに存在する端末装置からの上り信号による干渉量を過負荷指標(OI:Overload Indicator)として測定する。また、基地局は自セルのセル端に存在する端末が他セルへ干渉を及ぼすであろう量を過干渉指標(HII:High Interference Indicator)として推定する。これらOIおよびHIIはX2回線と呼ばれる基地局間の情報交換回線を通じて、基地局間で交換され、干渉低減、干渉除去に利用される。過負荷であるOIを受けた基地局は、セル端にいる端末装置の送信電力を減じるよう制御し、他セルへの干渉を低減する。また、過干渉であるHIIを受けた基地局は、そのキャリア周波数を使用しないようすることで、他セルからの干渉による影響が出ないようする。また、基地局は干渉量(IoT:Interference over Thermal)も測定している。また、基地局装置から端末装置へ送信する下り電力を必要最小限となるよう制御することで他セルへの干渉を低減する。   Next, the base station apparatus measures an interference amount due to an uplink signal from a terminal apparatus existing in another cell as an overload indicator (OI). In addition, the base station estimates an amount that a terminal existing at the cell edge of the own cell will interfere with another cell as an over interference indicator (HII). These OI and HII are exchanged between base stations through an information exchange line between base stations called an X2 line, and are used for interference reduction and interference removal. The base station that has received the overload OI controls to reduce the transmission power of the terminal device at the cell edge, and reduces interference with other cells. Moreover, the base station which received HII which is excessive interference prevents the influence by the interference from another cell by not using the carrier frequency. The base station also measures the amount of interference (IoT: Interference over Thermal). Also, interference with other cells is reduced by controlling the downlink power transmitted from the base station apparatus to the terminal apparatus to be the minimum necessary.

より詳細に説明すると、基地局装置BS300は使用周波数帯域の各リソースブロック(使用周波数帯域を複数に分割した、通信を行うのに必要な最小単位となる周波数帯域であり、このリソースブロックを1ないし複数個使用して通信を行う)毎に、受信した隣接セルの信号の干渉量(IoT)を測定する。次に、基地局装置BS300は測定したIoTを閾値と比較し、閾値より大きければOI=1、小さければOI=0と定義する。図24にOIの定義方法を示す。HIIは、基地局装置BS300が、端末装置UE300がセル端にいるかどうかを検出し、セル端にいて、端末装置UE300の送信電力が大きくて他セルへ影響を与えると判断すると、端末装置UE300が使用しているリソースブロックについて、HII=Highと定義する。また、基地局装置BS300は、自セル内のトラフィックの量の測定を行い、その情報をトラフィック負荷指標(TLI:Traffic Load Indicator)とする。これらOI、HII、TLIはX2回線を通じて他の基地局装置BS301、BS302へ送られる。また、これら基地局からのOI、HII、TLI情報も受け取る。OI=1として受け取った場合、該リソースブロックを使用している自セル内の端末装置の送信電力を下げるよう、端末装置へ支持する。その後、さらに基地局装置BS300はIoTの測定を行い、OIを決定し、HII,TLIの測定を行い、X2回線を通じてそれらを交換することを繰り返す。   More specifically, the base station apparatus BS300 uses each resource block of the used frequency band (the used frequency band is a frequency band that is a minimum unit necessary for communication, divided into a plurality of used frequency bands. Each time a plurality of communication is performed), the amount of interference (IoT) of the signal of the received neighboring cell is measured. Next, the base station apparatus BS300 compares the measured IoT with a threshold value, and defines OI = 1 if it is larger than the threshold value, and OI = 0 if smaller. FIG. 24 shows a method for defining OI. When the base station apparatus BS300 detects whether the terminal apparatus UE300 is at the cell edge and determines that the transmission power of the terminal apparatus UE300 is large and affects the other cells, the HII determines that the terminal apparatus UE300 The resource block being used is defined as HII = High. Further, the base station apparatus BS300 measures the amount of traffic in the own cell and uses the information as a traffic load index (TLI). These OI, HII, and TLI are sent to other base station apparatuses BS301 and BS302 through the X2 line. It also receives OI, HII and TLI information from these base stations. When it is received as OI = 1, the terminal device is supported so as to reduce the transmission power of the terminal device in the own cell using the resource block. Thereafter, the base station apparatus BS300 further performs IoT measurement, determines OI, performs HII and TLI measurements, and repeatedly exchanges them through the X2 line.

図25は、LTEにおけるチャネル構成例を示す図である。LTEの下りリンク(基地局装置BSから端末装置MSへの通信)は、下りリンク制御領域指定チャネル(PCFICH:Physical Control Format Indicator Channel)と、下りリンク複合再送要求チャネル(PHICH:Physical Hybrid ARQ Indicator Channel)、下りリンクマルチキャストチャネル(PMCH:Physical Multicast Channel)、下りリンク共用チャネル(PDSCH:Physical Downlink Shared Channel)と、下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)、下りリンク報知チャネル(PBCH:Physical Boradcast Channel)、により構成されている。さらに端末装置が基地局と同期を取るための基準信号である同期信号(SCH:Synchronization Channel)や、信号品質の測定や受信信号の復調の際の基準として用いる参照信号(RS:Reference Sygnal)も送信される。   FIG. 25 is a diagram illustrating a channel configuration example in LTE. The downlink of LTE (communication from the base station apparatus BS to the terminal apparatus MS) includes a downlink control area designation channel (PCFICH: Physical Control Format Channel) and a downlink complex retransmission request channel (PHICH: Physical Hybrid ARQ Indicator). ), Downlink multicast channel (PMCH: Physical Multicast Channel), downlink shared channel (PDSCH: Physical Downlink Shared Channel), and downlink control channel (PDCCH: Physical Downlink Control Channel) al Boradcast Channel), and is made of. Further, a synchronization signal (SCH) that is a reference signal for the terminal device to synchronize with the base station, and a reference signal (RS: Reference Signal) used as a reference when measuring signal quality or demodulating the received signal are also provided. Sent.

また、LTEの上りリンク(端末装置MSから基地局装置BSへの通信)は、ランダムアクセスチャネル(RACH:Random Access Channel)、上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)、により構成されている。また、信号品質の測定や受信信号の復調の際の基準として用いる参照信号(RS:Reference Sygnal)も送信される。(例えば、下記非特許文献7参照)。
The LTE uplink (communication from the terminal apparatus MS to the base station apparatus BS) includes a random access channel (RACH: Random Access Channel), an uplink shared channel (PUSCH), an uplink control channel ( PUCCH: Physical Uplink Control Channel). In addition, a reference signal (RS: Reference Signal) used as a standard for signal quality measurement and reception signal demodulation is also transmitted. (For example, see Non-Patent Document 7 below).

3GPP TS 36.814、V0.3.1(2009−01)、3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Further Advancements for E−UTRA Physical Layer Aspects (Release X)3GPP TS 36.814, V0.3. 1 (2009-01), 3rd Generation Partnership Project (Technical Specification Group Radio Access Network ---------------------------------------------------------------_ “Text proposal for capturing agreements on support of wider bandwidths”,3GPP TSG RAN WG1 Meeting #55,Nokia,Nokia Siemens Networks,Prague,Czech Republic,November 10−14,2008,R1−084706“Text proposal for capturing aggregations on support of wizard bandwidths”, 3GPP TSG RAN WG1 Meeting # 55, Nokia, Nokia Siemens Network 80, No. “New Interference Scenarios in LTE−Advanced”, 3GPP TSG RAN WG1 Meeting #54bis,Qualcomm Europe,Prague,Czech Republic,September 29−October 3,2008,R1−083809“New Interface Scenarios in LTE-Advanced”, 3GPP TSG RAN WG1 Meeting # 54bis, Qualcomm Europe, Prague, Czech Republic, Sept. 9-80 80-3 “Coordinated Multi−Point downlink transmission in LTE−Advanced”, 3GPP TSG RAN WG1 Meeting #55,Qualcomm Europe,Prague,Czech Republic,November 10−14,2008,R1−084400“Coordinated Multi-Point downlink transmission in LTE-Advanced”, 3GPP TSG RAN WG1 Meeting # 55, Qualcomm Europe, Prague, Czech Reverb 400 “Carrier Aggregation in Heterogeneous Networks”, 3GPP TSG RAN WG1 Meeting #55bis,Qualcomm Europe,Ljubljana,Slovenia,January 12−19,2009,R1−090357“Carrier Aggregation in Heterogeneous Networks”, 3GPP TSG RAN WG1 Meeting # 55bis, Qualcomm Europe, Ljubljana, Slovenia, January 12-19, 35R “Inter−cell Radio Resource Management for Heterogeneous Networks”, 3GPP TSG RAN WG1 Meeting #55,NTT DOCOMO,Prague,Czech Republic,November 10−14,2008,R1−084253“Inter-cell Radio Resource Management for Heterogeneous Networks”, 3GPP TSG RAN WG1 Meeting # 55, NTT DOCOMO, Prague, Czech Republish, Nove3R310-4 3GPP TS 36.211、V8.5.0(2008−12)、Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E−UTRA); Physical Channels and Modulation (Release 8)3GPP TS 36.211, V8.5.0 (2008-12), Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);

無線のロングタームエボルーション−アドバンスド(LTE−A:Long Term Evolution − Advanced)システムにおいて、セル間干渉キャンセルシステムは重要である。協調複数基地局通信を行わない場合、端末装置は隣接セルより干渉を受ける。図26はLTE−Aシステムにおいてのセル間干渉の一例を表すものである。端末装置UE100は、基地局装置BS100の信号を受信している。端末装置UE100は同一周波数帯域BW1を使用する他の基地局装置BS101およびBS102よりの信号により干渉を受けている。
協調複数基地局通信を行う場合、端末装置は干渉源となるべき隣接セルのリソースを、協調複数基地局通信として自端末で使用するので問題は低減される。しかしながら、協調複数基地局通信を行う端末装置は通常、セル端に位置しており、協調複数基地局通信を行わない基地局のセルより干渉を受けたり、干渉を与えたりする。さらに、端末装置がセル内部へ移動する場合、協調複数基地局通信を行わない場合には、最も近い、もしくは電界強度の強いセルへハンドオーバーを行うので、最小限の電力でしか基地局間と端末装置間とで通信を行わないが、協調複数基地局通信を行う場合、最も近い、もしくは電界強度の強いセル以外のセルの基地局とも通信を行うため、干渉を受けたり与えたりする場合が多くなる。
Inter-cell interference cancellation systems are important in wireless long term evolution-advanced (LTE-A) systems. When cooperative multi-base station communication is not performed, the terminal apparatus receives interference from the adjacent cell. FIG. 26 shows an example of inter-cell interference in the LTE-A system. The terminal device UE100 receives the signal of the base station device BS100. The terminal apparatus UE100 is interfered by signals from other base station apparatuses BS101 and BS102 that use the same frequency band BW1.
When performing coordinated multi-base station communication, the terminal device uses the resources of the adjacent cell that should be an interference source in the self-terminal as coordinated multi-base station communication, so the problem is reduced. However, a terminal apparatus that performs coordinated multiple base station communication is usually located at the cell edge, and receives or gives interference from a cell of a base station that does not perform coordinated multiple base station communication. Further, when the terminal device moves inside the cell, when the coordinated multi-base station communication is not performed, the handover is performed to the closest cell or the cell having a strong electric field strength, so that the base station can communicate with the base station with a minimum power. Although communication is not performed between terminal devices, when performing coordinated multi-base station communication, communication is also performed with a base station of a cell other than the nearest cell with a strong electric field strength, and may receive or give interference. Become more.

かかる課題を解決するために、本発明は複数の周波数帯域を使用して通信を行う無線通信システムであって、前記通信システムにおける複数の基地局装置が1つの端末装置と同時通信、もしくは複数の基地局装置が1つの端末装置に対する通信のタイミングを調停して行う、協調複数基地局通信方式において、基地局装置において干渉量を測定する手段と、セル内のトラフィックを測定する手段と、干渉量およびトラフィックおよびセル識別子および周波数帯域識別子とをセル内のトラフィックの状態に応じて基地局間で交換する手段と、交換された情報から干渉調停方式を決定する手段と、決定した干渉調停方式に基づき無線資源管理設定を行う手段と、無線資源管理設定の情報を各セル内の端末装置へ通知する手段と、を用意し、端末装置において、基地局装置より通知された無線資源管理設定の情報に基づき、送受信を行うかどうか決定することで、干渉を低減する。   In order to solve such a problem, the present invention is a wireless communication system that performs communication using a plurality of frequency bands, wherein a plurality of base station apparatuses in the communication system simultaneously communicate with one terminal apparatus, or a plurality of In a coordinated multi-base station communication system in which the base station apparatus arbitrates communication timing with respect to one terminal apparatus, means for measuring the amount of interference in the base station apparatus, means for measuring traffic in the cell, and amount of interference And means for exchanging traffic, cell identifiers and frequency band identifiers between base stations according to the traffic state in the cell, means for determining an interference arbitration scheme from the exchanged information, and based on the determined interference arbitration scheme Means for performing radio resource management setting and means for notifying information of radio resource management setting to a terminal device in each cell, the terminal device In FIG. 5, interference is reduced by determining whether to perform transmission / reception based on the radio resource management setting information notified from the base station apparatus.

また、その基地局装置が行う干渉量測定は、それぞれの基地局が独立して測定を行い、端末装置毎の下り干渉量を測定するか、セル毎の下り干渉量を測定するか、セル毎の上り干渉量を測定するかすることで、システムに応じた干渉測定を行い、効果的に干渉低減を行う。   In addition, the interference amount measurement performed by the base station device is performed by each base station independently measuring the downlink interference amount for each terminal device, the downlink interference amount for each cell, or for each cell. By measuring the amount of uplink interference, interference measurement according to the system is performed, and interference is effectively reduced.

また、その端末装置毎の下り干渉量測定は、下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは下り周波数帯域毎の過負荷指標、もしくは複数ビットを用いる下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは複数ビットを用いる下り周波数帯域毎の過負荷指標のうちの1乃至複数について行う。   In addition, the downlink interference amount measurement for each terminal device is performed using an overload index and a frequency band identifier for each downlink resource block, an overload index for each downlink frequency band, or an overload index for each downlink resource block using a plurality of bits. This is performed for one to a plurality of frequency band identifiers or overload indicators for each downlink frequency band using a plurality of bits.

また、そのセル毎の下り干渉量測定は、下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは下り周波数帯域毎の過負荷指標、もしくは複数ビットを用いる下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは複数ビットを用いる下り周波数帯域毎の過負荷指標のうちの1乃至複数について行う。   Further, the downlink interference amount measurement for each cell is performed by measuring the overload index and frequency band identifier for each downlink resource block, or the overload index for each downlink frequency band, or the overload index and frequency for each downlink resource block using multiple bits. This is performed for one to a plurality of band identifiers or overload indicators for each downlink frequency band using a plurality of bits.

また、そのセル毎の上り干渉量測定は、上りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは上り周波数帯域毎の過負荷指標、もしくは複数ビットを用いる上りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは複数ビットを用いる上り周波数帯域毎の過負荷指標のうちの1乃至複数について行う。   In addition, the uplink interference amount measurement for each cell is performed by measuring the overload index and frequency band identifier for each uplink resource block, or the overload index for each uplink frequency band, or the overload index and frequency for each uplink resource block using multiple bits. This is performed for one to a plurality of band identifiers or overload indicators for each upstream frequency band using a plurality of bits.

さらに干渉調停方式として、端末装置が複数基地局通信を行う場合は、部分的周波数再利用もしくは軟周波数再利用を行うことで柔軟なリソース割り当てを実現する。   Further, as an interference arbitration method, when a terminal apparatus performs a plurality of base station communications, flexible resource allocation is realized by performing partial frequency reuse or soft frequency reuse.

もしくはその干渉調停方式は、端末装置が複数基地局通信を行わない場合は、異なるセル端の端末装置に対して、異なる周波数帯域を割当てることにより大きな干渉低減効果を得る。   Alternatively, when the terminal apparatus does not perform a plurality of base station communications, the interference arbitration method obtains a large interference reduction effect by assigning different frequency bands to terminal apparatuses at different cell edges.

もしくはその干渉調停方式は、異なるセルにおける複数基地局通信を行う端末装置と、複数基地局通信を行わない端末装置とに対し、異なる周波数帯域を割当てることにより大きな干渉低減効果を得る。   Alternatively, the interference arbitration method obtains a large interference reduction effect by assigning different frequency bands to a terminal apparatus that performs multiple base station communication in different cells and a terminal apparatus that does not perform multiple base station communication.

加えて、無線資源管理設定の情報の各セル内の端末装置への通知は、報知チャネル、もしくは下りリンク制御チャネル、もしくは下りリンク共用チャネル、のうちの1乃至複数を用いて行う。   In addition, notification of radio resource management setting information to the terminal device in each cell is performed using one or more of a broadcast channel, a downlink control channel, or a downlink shared channel.

また、干渉調停方式の決定、および無線資源管理設定の決定は、端末装置が使用することのできる周波数帯域に関する能力に応じて行う。   In addition, the determination of the interference arbitration method and the determination of the radio resource management setting are performed according to the capability regarding the frequency band that can be used by the terminal device.

その干渉調停方式は、異種基地局ネットワークにおける下り電力制御を用いた周波数分割干渉調停方式、もしくは同種基地局ネットワークにおける下り周波数分割干渉調停方式、もしくは、周波数帯域毎の下り送信停止方式、もしくは周波数帯域毎の複数基地局通信方式、もしくは周波数帯毎の上り送信方式のうちの1乃至複数を用いる。   The interference arbitration method is a frequency division interference arbitration method using downlink power control in a heterogeneous base station network, or a downlink frequency division interference arbitration method in the same type of base station network, or a downlink transmission stop method for each frequency band, or a frequency band. One to a plurality of base station communication methods for each frequency band or an uplink transmission method for each frequency band are used.

さらに、基地局装置は干渉量を測定する手段と、セル内のトラフィックを測定する手段と、前記干渉量および前記トラフィックおよびセル識別子および周波数帯域識別子とをセル内のトラフィックの状態に応じて基地局間で交換する手段と、前記交換された情報から干渉調停方式を決定する手段と、前記決定した干渉調停方式に基づき無線資源管理設定を行う手段と、前記無線資源管理設定の情報を各セル内の端末装置へ通知する手段と、を有する。   Further, the base station apparatus determines the means for measuring the amount of interference, the means for measuring traffic in the cell, and the amount of interference, the traffic, the cell identifier, and the frequency band identifier according to the state of traffic in the cell. Means for exchanging between, means for determining an interference arbitration scheme from the exchanged information, means for performing radio resource management settings based on the determined interference arbitration scheme, and information on the radio resource management settings in each cell Means for notifying the terminal device.

また、端末装置は、基地局装置より通知された無線資源管理設定の情報に基づき、送受信を行うかどうか決定する手段を有する。   Further, the terminal device has means for determining whether to perform transmission / reception based on the information of the radio resource management setting notified from the base station device.

加えて、その制御方法は、干渉量を測定するステップと、セル内のトラフィックを測定するステップと、前記干渉量および前記トラフィックおよびセル識別子および周波数帯域識別子とをセル内のトラフィックの状態に応じて基地局間で交換するステップと、前記交換された情報から干渉調停方式を決定するステップと、前記決定した干渉調停方式に基づき無線資源管理設定を行うステップと、前記無線資源管理設定の情報を各セル内の端末装置へ通知するステップと、を有する。   In addition, the control method includes a step of measuring an amount of interference, a step of measuring traffic in the cell, and the amount of interference, the traffic, the cell identifier, and the frequency band identifier according to a state of traffic in the cell. A step of exchanging between base stations, a step of determining an interference arbitration scheme from the exchanged information, a step of performing radio resource management setting based on the determined interference arbitration scheme, and information of the radio resource management setting And notifying the terminal device in the cell.

これらを上記に記載の方法をコンピュータに実行させるためのプログラムや、該プログラムを記録した記録媒体として提供しても良い。プログラムは、インターネットなどの伝送媒体から取得するものであっても良い。   You may provide these as a program for making a computer perform the method of the above-mentioned, and a recording medium which recorded this program. The program may be acquired from a transmission medium such as the Internet.

本発明の無線通信システムは、複数のコンポーネントキャリアが存在する通信システムにおいて、セル間干渉を効果的に低減することができる。   The wireless communication system of the present invention can effectively reduce inter-cell interference in a communication system in which a plurality of component carriers exist.

本発明の第1の実施形態による無線通信システムを表す図である。It is a figure showing the radio | wireless communications system by the 1st Embodiment of this invention. 本発明におけるネットワーク毎の干渉低減処理に使用する要素を示す図である。It is a figure which shows the element used for the interference reduction process for every network in this invention. 本発明における干渉低減処理の基本動作を示す図である。It is a figure which shows the basic operation | movement of the interference reduction process in this invention. 本発明における各基地局間の干渉およびそれに伴うシグナリングを表す図である。図である。It is a figure showing the interference between each base station in this invention, and the signaling accompanying it. FIG. 図5は本発明の他の実施形態である、異種基地局ネットワークにおいて本発明を適用する場合の一例を表す図である。FIG. 5 is a diagram showing an example in which the present invention is applied to a heterogeneous base station network, which is another embodiment of the present invention. 図6は本発明の第1の実施形態の通信システムの処理を表すフロー図である。FIG. 6 is a flowchart showing the processing of the communication system according to the first embodiment of this invention. 本発明における実施形態における下り信号の干渉量の設定を端末毎に設定する場合の図である。It is a figure in the case of setting the setting of the interference amount of the downlink signal in embodiment in this invention for every terminal. 本発明における実施形態における下り信号の干渉量の設定を端末毎に設定する場合の周波数帯域とOIの関係を表す図である。It is a figure showing the relationship between a frequency band and OI in the case of setting the amount of interference of the downlink signal in embodiment in this invention for every terminal. 本発明における実施形態における下り信号の干渉量の設定をセル毎に設定する場合の他の例の図である。It is a figure of the other example in the case of setting the interference amount of the downlink signal in embodiment in this invention for every cell. 本発明における実施形態における下り信号の干渉量の設定をセル毎に設定する場合の周波数帯域とOIの関係を表す図である。It is a figure showing the relationship between a frequency band and OI in the case of setting the amount of interference of the downlink signal in embodiment in this invention for every cell. 本発明における他の実施形態における周波数分割方式を用いて干渉低減処理を行う例を表す図である。It is a figure showing the example which performs an interference reduction process using the frequency division system in other embodiment in this invention. 本発明の他の実施形態の通信システムの処理を表すフロー図である。It is a flowchart showing the process of the communication system of other embodiment of this invention. 本発明における他の実施形態における上り信号の干渉量の設定方法の例を表す図である。It is a figure showing the example of the setting method of the interference amount of the uplink signal in other embodiment in this invention. 本発明における他の実施形態における上り信号の干渉量の設定における周波数帯域とOIの関係を表す図である。It is a figure showing the relationship between the frequency band and OI in the setting of the interference amount of the upstream signal in other embodiment in this invention. 本発明の実施形態における干渉低減の他の例を表す図である。It is a figure showing the other example of interference reduction in embodiment of this invention. 本発明の他の実施形態である、複数の基地局装置から1つの端末装置に対して同時に通信が行われる場合の複数基地局通信における、下り信号の干渉低減方法を表す図である。It is a figure showing the interference reduction method of the downlink signal in the multiple base station communication in case communication is simultaneously performed with respect to one terminal device from the multiple base station apparatus which is another embodiment of the present invention. 図16における通信システムの処理を表すフロー図である。It is a flowchart showing the process of the communication system in FIG. 本発明における他の実施例である、複数の基地局装置へ1つの端末装置から同時に通信が行われる場合の複数基地局通信における、上り信号の干渉低減方法を表す図である。It is a figure showing the interference reduction method of the uplink signal in the multiple base station communication when communication is simultaneously performed from one terminal device to multiple base station apparatuses, which is another embodiment of the present invention. 図18における通信システムの処理を表すフロー図である。It is a flowchart showing the process of the communication system in FIG. 本発明における基地局装置の構成を表した図である。It is a figure showing the structure of the base station apparatus in this invention. 本発明における端末装置の構成を表した図である。It is a figure showing the structure of the terminal device in this invention. 本発明におけるシステム構成を表す図である。It is a figure showing the system configuration | structure in this invention. 従来技術であるLTEシステムにおけるセル間干渉低減、干渉除去の仕組みを表した図である。It is a figure showing the mechanism of the interference reduction between cells in the LTE system which is a prior art, and the mechanism of interference removal. LTEシステムにおけるOIの設定方法を表す図である。It is a figure showing the setting method of OI in a LTE system. LTEにおけるチャネル構成例を示す図である。It is a figure which shows the channel structural example in LTE. 図26はLTE−Aシステムにおいてのセル間干渉の一例を表す図である。FIG. 26 is a diagram illustrating an example of inter-cell interference in the LTE-A system.

以下、図面を参照して、本発明の各実施形態について説明する。本発明においては、異なる種類の基地局、たとえばセル半径が異なる基地局や、家庭内基地局(Home−eNB)や、リレー局や、加入者限定セル(CSG:Closed Subscriber Group)セル用の基地局等が混在する異種基地局ネットワークや、同種の基地局で構成される同種基地局ネットワークにおいて、複数の周波数帯域を使用する通信システムにおける、周波数帯域を基本とした干渉低減処理を行う。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present invention, different types of base stations, for example, base stations with different cell radii, home base stations (Home-eNB), relay stations, and bases for subscriber-limited cell (CSG: Closed Subscriber Group) cells Interference reduction processing based on frequency bands is performed in a communication system using a plurality of frequency bands in a heterogeneous base station network in which stations and the like are mixed or in a homogeneous base station network composed of the same kind of base stations.

始めに、本発明の第1の実施形態について説明する。図1は本発明の第1の実施形態による無線通信システムを表す図である。通信システムは5つの周波数帯域(BW1〜BW5)を使用する。基地局装置BS400は第1周波数帯域を用いて自セル内の端末装置UE400と通信を行う。同様に基地局装置BS401は第2周波数帯域を用いて自セル内の端末装置UE401と、基地局装置BS402は第3周波数帯域を用いて自セル内の端末装置UE403と通信を行う。異なる周波数帯域を用いて通信を行うことで、互いのセル間干渉を低減することができる。   First, a first embodiment of the present invention will be described. FIG. 1 is a diagram illustrating a wireless communication system according to a first embodiment of the present invention. The communication system uses five frequency bands (BW1 to BW5). Base station apparatus BS400 communicates with terminal apparatus UE400 in its own cell using the first frequency band. Similarly, base station apparatus BS401 communicates with terminal apparatus UE401 in its own cell using the second frequency band, and base station apparatus BS402 communicates with terminal apparatus UE403 in its own cell using the third frequency band. By performing communication using different frequency bands, it is possible to reduce mutual inter-cell interference.

これら使用する周波数帯域の選択は、端末装置が使用することのできる周波数帯域に関する能力に応じて定められる。定められた使用周波数帯域に基づき、無線資源管理手段の設定がなされる。また、上り電力制御、下り電力制御が併用される。これらの電力制御は異種基地局ネットワークにおいては、特に有効である。同種基地局ネットワークにおいては、それがカバーするセル半径は等しいので、主に上り電力制御を用いることが有効である。電力制御を行うために、セル毎および端末装置毎のOI測定やHII測定を行う。これら測定したOI、HII情報は周波数帯域識別子とともにX2回線を通じて他セルの基地局装置と交換される。図2に、本発明におけるネットワーク毎の干渉低減処理に使用する要素を示す。同種ネットワーク、異種ネットワークについて、本発明においては周波数帯域識別符号を用いた周波数帯帯域毎の干渉低減処理、周波数帯域毎のIoT、OI、HII測定、電力制御、端末能力に基づいた使用周波数帯域の割当て、無線資源管理による干渉制御、複数基地局通信における干渉低減処理を行う。図3に本発明における干渉低減処理の基本動作を示す。   The selection of the frequency band to be used is determined according to the capability regarding the frequency band that the terminal device can use. The radio resource management means is set based on the determined use frequency band. Further, uplink power control and downlink power control are used in combination. Such power control is particularly effective in a heterogeneous base station network. In the same type of base station network, since the cell radii covered by the network are equal, it is effective to mainly use uplink power control. In order to perform power control, OI measurement and HII measurement are performed for each cell and each terminal device. The measured OI and HII information is exchanged with the base station apparatus of another cell through the X2 line together with the frequency band identifier. FIG. 2 shows elements used for interference reduction processing for each network in the present invention. For homogeneous networks and heterogeneous networks, in the present invention, interference reduction processing for each frequency band using a frequency band identification code, IoT, OI, HII measurement for each frequency band, power control, and the frequency band used based on terminal capability Performs interference control by allocation, radio resource management, and interference reduction in multiple base station communications. FIG. 3 shows the basic operation of the interference reduction processing in the present invention.

図4は本発明における各基地局間の干渉およびそれに伴うシグナリングを表す図である。通信システムは5つの周波数帯域(BW1〜BW5)を使用する。基地局装置BS500は自セル内の端末装置UE500とBW1〜BW5のいずれか1乃至複数の周波数帯域を用いて通信を行う。基地局装置BS501とUE501、UE502の場合、および基地局装置BS502とUE503の場合も同様である。ここで、各基地局装置BS500、BS501、BS502は干渉量を各周波数帯域毎にそれぞれ測定している。測定された干渉量が閾値を超えている場合、OIが生起したと判断する。この場合、BS500のセルでは第3周波数帯域にてOIが生起している。同様にBS501のセルでは第2周波数帯域および第4周波数帯域にて、BS502のセルでは第5周波数帯域にてOIが生起している。HIIやTLIの測定も同様に行う。各基地局装置は測定したOIや、HII、TLIの情報を周波数帯域を区別する周波数帯域識別子(CC ID:Component Carier ID)とともにX2回線を用いて交換する。また、これら情報はネットワークセンターNC500へも送信され、ネットワークセンターはこれらの情報を元に無線資源管理を各基地局を統合して行う。このように、本発明においては周波数帯域毎のOI等の測定を行い、CC IDとともに送信することで、CCを利用した干渉低減処理を可能とする。   FIG. 4 is a diagram showing the interference between base stations and the accompanying signaling in the present invention. The communication system uses five frequency bands (BW1 to BW5). Base station apparatus BS500 communicates with terminal apparatus UE500 in its own cell using one or more frequency bands of BW1 to BW5. The same applies to base station apparatuses BS501 and UE501, UE502, and base station apparatuses BS502 and UE503. Here, each base station apparatus BS500, BS501, BS502 measures the amount of interference for each frequency band. If the measured interference amount exceeds the threshold, it is determined that OI has occurred. In this case, OI occurs in the third frequency band in the cell of BS500. Similarly, OI occurs in the second frequency band and the fourth frequency band in the cell of BS501, and in the fifth frequency band in the cell of BS502. The measurement of HII and TLI is similarly performed. Each base station apparatus exchanges the measured OI, HII, and TLI information using an X2 line together with a frequency band identifier (CC ID: Component Carrier ID) for distinguishing frequency bands. The information is also transmitted to the network center NC500, and the network center performs radio resource management by integrating the base stations based on the information. As described above, in the present invention, the OI and the like for each frequency band are measured and transmitted together with the CC ID, thereby enabling interference reduction processing using the CC.

図5は本発明の他の実施形態である、異種基地局ネットワークにおいて本発明を適用する場合の一例を表す図である。基地局装置BS600はBW1〜BW4の周波数帯域を使用して自セル内の端末装置UE600と通信を行っている。同様に基地局装置BS601はBW1、BW3〜BW5の周波数帯域を使用して自セル内の端末装置UE601と通信を行っているが、基地局装置BS601のセル半径は基地局装置BS600に比べて小さい。また、さらに小さいセル半径を持つ基地局装置BS602はBW2〜BW5の周波数帯域を使用して自セル内の端末装置UE602と通信を行っている。   FIG. 5 is a diagram showing an example in which the present invention is applied to a heterogeneous base station network, which is another embodiment of the present invention. Base station apparatus BS600 communicates with terminal apparatus UE600 in its own cell using the frequency bands BW1 to BW4. Similarly, base station apparatus BS601 communicates with terminal apparatus UE601 in its own cell using the frequency bands of BW1, BW3 to BW5, but the cell radius of base station apparatus BS601 is smaller than that of base station apparatus BS600. . In addition, the base station apparatus BS602 having a smaller cell radius communicates with the terminal apparatus UE602 in the own cell using the frequency band of BW2 to BW5.

今、セル半径の大きい基地局装置BS600と、比較的セル半径の大きい基地局装置BS601との間でOIが生起しているものとする。このとき、セル半径の小さい基地局装置BS602ではBW3ではOIが生起していないものとする。BS600はUE600との通信にBW3を使用し、BS601は他の周波数帯域BS601を使用することで干渉を回避する。セル半径の小さい基地局装置BS602ではOIが生起していないのでBW3を使用する。   Assume that an OI is occurring between a base station apparatus BS600 having a large cell radius and a base station apparatus BS601 having a relatively large cell radius. At this time, it is assumed that no OI occurs in BW3 in base station apparatus BS602 with a small cell radius. BS600 uses BW3 for communication with UE600, and BS601 avoids interference by using other frequency band BS601. The base station apparatus BS602 having a small cell radius uses the BW3 because no OI has occurred.

次に、使用周波数帯域の特性に応じた周波数帯域の利用について説明する。BW1の使用周波数帯域は450MHz帯、BW2の使用周波数帯域は700MHz帯、BW3の使用周波数帯域は2GHz帯、BW4の使用周波数帯域は3GHz帯、BW5の使用周波数帯域は4GHz帯とする。一般に周波数が高いほど伝搬時の減推量が大きくセル半径は小さくなる。本発明においては、干渉が生起する場合は減衰量の大きい周波数帯域を使用することで干渉の低減を行う。   Next, the use of a frequency band according to the characteristics of the used frequency band will be described. The frequency band used for BW1 is 450 MHz, the frequency band used for BW2 is 700 MHz, the frequency band used for BW3 is 2 GHz, the frequency band used for BW4 is 3 GHz, and the frequency band used for BW5 is 4 GHz. Generally, the higher the frequency, the greater the amount of reduction during propagation and the smaller the cell radius. In the present invention, when interference occurs, the interference is reduced by using a frequency band having a large attenuation.

さらに、同一もしくは近接の周波数帯域を使用しないことで、干渉を低減する。   Furthermore, interference is reduced by not using the same or adjacent frequency bands.

図6は本発明の第1の実施形態の通信システムの処理を表すフロー図である。2つの基地局装置のセル間における干渉低減処理を考えた場合、一方の基地局をサービスBS、他方を隣接BSとすると、まず各基地局装置はそれぞれのセルにおける端末装置から報告される下り信号のチャネル状況(CSI:Channel State Information)を測定する(Step S100)。次に各基地局装置はそれぞれ干渉量を測定し(Step S101)、また、各周波数帯域毎にOI、HII、TLIを計算(Step S102)する。計算した各情報はX2回線を通じて、負荷に応じて他基地局と情報交換を行う(Step S103)。情報を受け取った基地局装置は受け取った情報に応じて干渉低減方式の決定を行い、その方式に基づき無線資源管理(RRM)のパラメータを設定する(Step S104)。設定したRRMパラメータに基づき、各基地局装置は自セルの端末装置へRRM情報を通知する(Step S105)。基地局装置は引き続き下り電力制御量、電力分配、ビット配置、送信方法を設定し(Step S106)、自セルの端末装置へ信号を送信する(Step S107)。また、基地局装置は他セルへの端末装置への送信を行うかどうか、交換された他セルからの情報に基づき決定する(Step S108)。端末装置はその後、基地局装置のためにCSI情報のフィードバックを行う(Step S109)。   FIG. 6 is a flowchart showing the processing of the communication system according to the first embodiment of this invention. When considering interference reduction processing between cells of two base station apparatuses, assuming that one base station is a service BS and the other is an adjacent BS, each base station apparatus first transmits a downlink signal reported from a terminal apparatus in each cell. The channel state (CSI: Channel State Information) is measured (Step S100). Next, each base station apparatus measures the amount of interference (Step S101), and calculates OI, HII, and TLI for each frequency band (Step S102). Each piece of calculated information is exchanged with other base stations via the X2 line according to the load (Step S103). The base station apparatus that has received the information determines an interference reduction method according to the received information, and sets radio resource management (RRM) parameters based on the method (Step S104). Based on the set RRM parameter, each base station apparatus notifies the RRM information to the terminal apparatus of its own cell (Step S105). The base station device continues to set the downlink power control amount, power distribution, bit arrangement, and transmission method (Step S106), and transmits a signal to the terminal device of its own cell (Step S107). Further, the base station apparatus determines whether to perform transmission to the terminal apparatus to another cell based on the information from the exchanged other cell (Step S108). Thereafter, the terminal apparatus performs feedback of CSI information for the base station apparatus (Step S109).

図7および図8は本発明における実施形態における下り信号の干渉量の設定方法について表したものであり、端末毎に設定する場合の例である。下り信号による干渉は、同一セルにおいても、端末装置の位置により異なるため、端末毎に干渉量を測定することが望ましい。図7において、基地局装置BS700は端末装置UE700と通信を行っている。同様に基地局装置BS701は端末装置UE701、UE702と、基地局装置BS702は端末装置UE703と通信を行っている。基地局装置BS701のセル内に存在する端末装置UE701、UE702は他セルの基地局である基地局装置BS700からの下り信号により干渉を受けている。端末装置UE701、UE702は下り信号の干渉量を自セルの基地局装置BS701へ報告する。干渉量の基地局装置への報告は上りリンク制御チャネルや、上りリンク共通チャネルを用いて行う。基地局装置BS701は、報告された干渉量を元に、下り信号のOIを計算する。また、X2回線を用いてOI情報の基地局間での交換を行う。   FIGS. 7 and 8 show a method for setting the downlink signal interference amount in the embodiment of the present invention, and show an example of setting for each terminal. Since interference due to downlink signals varies depending on the position of the terminal apparatus even in the same cell, it is desirable to measure the amount of interference for each terminal. In FIG. 7, base station apparatus BS700 communicates with terminal apparatus UE700. Similarly, the base station device BS701 communicates with the terminal devices UE701 and UE702, and the base station device BS702 communicates with the terminal device UE703. The terminal devices UE701 and UE702 existing in the cell of the base station device BS701 are interfered by a downlink signal from the base station device BS700 which is a base station of another cell. Terminal apparatuses UE701 and UE702 report the amount of downlink signal interference to base station apparatus BS701 in the own cell. The amount of interference is reported to the base station apparatus using an uplink control channel or an uplink common channel. Base station apparatus BS701 calculates the OI of a downlink signal based on the reported interference amount. Further, exchange of OI information between base stations is performed using an X2 line.

OIの計算は各周波数帯域毎に行っても良いし、各周波数帯域についてさらに細かく分けて、たとえばリソースブロック単位で行っても良い。また、閾値を複数設定し、OIのビット数を複数ビットとしてもよい。このようにすることで、細かな干渉量の測定と制御を行うことが可能となる。図8にOIの定義の一例を示す。図8(a)は1つの閾値を設け、リソースブロック単位で定義する方法である。図8(b)は1つの閾値を設け、周波数帯域全体について1つのOIを定義する方法である。図8(c)は2つの閾値を設け、リソースブロック単位で定義する方法であり、この場合OIに必要なビット数はリソースブロックあたり2ビットとなる。図8(d)は複数の閾値を設け、リソースブロック単位で定義する方法である。   The OI calculation may be performed for each frequency band, or may be performed for each frequency band, for example, in units of resource blocks. A plurality of threshold values may be set, and the number of OI bits may be a plurality of bits. By doing in this way, it becomes possible to measure and control a fine interference amount. FIG. 8 shows an example of the definition of OI. FIG. 8A shows a method in which one threshold value is provided and defined in resource block units. FIG. 8B shows a method in which one threshold is provided and one OI is defined for the entire frequency band. FIG. 8C shows a method in which two threshold values are provided and defined in units of resource blocks. In this case, the number of bits required for OI is 2 bits per resource block. FIG. 8D shows a method in which a plurality of threshold values are provided and defined in units of resource blocks.

なお、この説明ではOIについて記したが、HIIについても定義の仕方は同様の手法をとることができる。   In this description, OI is described, but the same method can be used for defining HII.

このように、本発明においては下り信号についても端末毎にOI、HIIを定義し、各基地局層置換で交換を行うことにより、下り信号についても効果的に干渉低減を行うことができる。   As described above, in the present invention, by defining OI and HII for each terminal for the downlink signal and exchanging with each base station layer replacement, it is possible to effectively reduce the interference for the downlink signal.

図9および図10は本発明における他の実施形態における下り信号の干渉量の設定方法の例について表したものであり、セル毎に設定する場合の例である。本実施形態においては、下り信号の干渉量の設定を端末毎ではなく、セル毎に行う。各基地局装置BS800、BS801、BS802は自身により他セルからの下り信号の干渉量の測定を行い、下り信号の干渉量を計算する。また、X2回線を用いてOI情報の基地局間での交換を行う。このようにセル毎にOIの計算を行うことで、端末装置による測定、レポート手順を省略することができ、またX2回線を用いて交換する情報量を削減することができる。   FIG. 9 and FIG. 10 show an example of a method for setting the downlink signal interference amount in another embodiment of the present invention, which is an example of setting for each cell. In the present embodiment, the amount of downlink signal interference is set not for each terminal but for each cell. Each base station apparatus BS800, BS801, BS802 measures the amount of downlink signal interference from another cell by itself and calculates the amount of downlink signal interference. Further, exchange of OI information between base stations is performed using an X2 line. By calculating the OI for each cell in this way, measurement and reporting procedures by the terminal device can be omitted, and the amount of information exchanged using the X2 line can be reduced.

OIの計算は、前述したセル毎に計算する場合と同様、各周波数帯域毎に行っても良いし、各周波数帯域についてさらに細かく分けて、たとえばリソースブロック単位で行っても良い。また、閾値を複数設定し、OIのビット数を複数ビットとしてもよい。図10にOIの定義の一例を示す。図10(a)は1つの閾値を設け、リソースブロック単位で定義する方法である。図10(b)は1つの閾値を設け、周波数帯域全体について1つのOIを定義する方法である。図10(c)は2つの閾値を設け、リソースブロック単位で定義する方法であり、この場合OIに必要なビット数はリソースブロックあたり2ビットとなる。図10(d)は複数の閾値を設け、リソースブロック単位で定義する方法である。   The calculation of OI may be performed for each frequency band as in the case of calculating for each cell as described above, or may be performed for each frequency band, for example, in units of resource blocks. A plurality of threshold values may be set, and the number of OI bits may be a plurality of bits. FIG. 10 shows an example of the definition of OI. FIG. 10A shows a method in which one threshold value is provided and defined in resource block units. FIG. 10B shows a method in which one threshold value is provided and one OI is defined for the entire frequency band. FIG. 10C shows a method in which two threshold values are provided and defined in units of resource blocks. In this case, the number of bits required for OI is 2 bits per resource block. FIG. 10D shows a method in which a plurality of threshold values are provided and defined in resource block units.

図11は本発明における他の実施形態を表す図であり、周波数分割方式を用いて干渉低減処理を行う際の例を表したものである。基地局装置BS900は端末装置UE900、UE901、UE902と通信を行っている。基地局装置BS901は端末装置UE903と、基地局装置BS902は端末装置UE904と通信を行っている。   FIG. 11 is a diagram illustrating another embodiment of the present invention, and illustrates an example in which interference reduction processing is performed using a frequency division method. Base station apparatus BS900 communicates with terminal apparatuses UE900, UE901, and UE902. Base station apparatus BS901 communicates with terminal apparatus UE903, and base station apparatus BS902 communicates with terminal apparatus UE904.

今、各端末装置は複数の周波数帯域を使用して通信を行う能力を持っているものとする。他セルへの干渉を与える恐れの無い位置に存在する端末装置UE901、UE902はそれぞれ複数の周波数帯域を用いて通信を行う。セル端に位置し、他セルからの干渉を受ける可能性のある端末装置UE900、UE903、UE904については、使用できる周波数帯域の割当を周波数分割方式を用いて割当てる。例えば、BS900のセルにて周波数帯域BW3が、BS901のセルにて周波数帯域BW2が、BS902のセルにて周波数帯域BW4がOIが生起している場合、各セルにおいて、セル端の端末が使用する周波数をお互いに干渉しないように、かつOIが生起している周波数帯域を避けるように割当てる。端末装置UE900にはBW1が、端末装置UE903には周波数帯域903が、端末装置UE904にはBW4が割当てられる。   Now, it is assumed that each terminal device has a capability of performing communication using a plurality of frequency bands. The terminal apparatuses UE901 and UE902 existing at positions where there is no possibility of causing interference with other cells perform communication using a plurality of frequency bands. For the terminal devices UE900, UE903, and UE904 that are located at the cell edge and that may receive interference from other cells, allocation of usable frequency bands is performed using a frequency division scheme. For example, when the frequency band BW3 is generated in the cell of BS900, the frequency band BW2 is generated in the cell of BS901, and the frequency band BW4 is generated in the cell of BS902, the terminal at the cell end uses in each cell. The frequencies are allocated so as not to interfere with each other and to avoid the frequency band in which OI occurs. BW1 is allocated to the terminal device UE900, a frequency band 903 is allocated to the terminal device UE903, and BW4 is allocated to the terminal device UE904.

このように周波数分割方式を割当てることにより、セル端に位置していない端末については広い周波数帯域を割り当てつつ、セル端に位置する端末については干渉を避けることができるので効率よく干渉回避を行うことができる。   By assigning the frequency division method in this way, it is possible to avoid interference for terminals located at the cell edge while efficiently allocating interference while allocating a wide frequency band to terminals not located at the cell edge. Can do.

図12は本発明の他の実施形態の通信システムの処理を表すフロー図であり、上り信号の干渉低減処理を表したものである。2つの基地局装置のセル間における干渉低減処理を考えた場合、一方の基地局をサービスBS、他方を隣接BSとすると、まず各基地局装置はそれぞれのセルにおける端末装置からの上り信号のチャネル状況(CSI:Channel State Information)を測定する(Step S200)。次に各基地局装置はそれぞれ干渉量を測定し(Step S201)、また、各周波数帯域毎にOI、HII、TLIを計算(Step S202)する。計算した各情報はX2回線を通じて、負荷に応じて他基地局と情報交換を行う(Step S203)。情報を受け取った基地局装置は受け取った情報に応じて干渉低減方式の決定を行い、その方式に基づき無線資源管理(RRM)のパラメータを設定する(Step S204)。設定したRRMパラメータに基づき、各基地局装置は自セルの端末装置へRRM情報を通知する(Step S205)。基地局装置は引き続き上り電力制御量、電力分配、ビット配置、送信方法を設定し(Step S206)、自セルの端末装置へ信号を送信する(Step S207)。信号を受信した端末装置はその情報に基づき上り信号の送信を行うかどうかを決定する(Step S208)。端末装置はその後、基地局装置のためにCSI情報のフィードバックを行う(Step S209)。   FIG. 12 is a flowchart showing the processing of the communication system according to another embodiment of the present invention, and shows the interference reduction processing of the uplink signal. When considering interference reduction processing between cells of two base station apparatuses, assuming that one base station is a service BS and the other is an adjacent BS, each base station apparatus first transmits an uplink signal channel from a terminal apparatus in each cell. The situation (CSI: Channel State Information) is measured (Step S200). Next, each base station apparatus measures the amount of interference (Step S201), and calculates OI, HII, and TLI for each frequency band (Step S202). Each piece of calculated information is exchanged with other base stations via the X2 line according to the load (Step S203). The base station apparatus that has received the information determines an interference reduction method according to the received information, and sets radio resource management (RRM) parameters based on the method (Step S204). Based on the set RRM parameter, each base station apparatus notifies the RRM information to the terminal apparatus of its own cell (Step S205). The base station device continues to set the uplink power control amount, power distribution, bit arrangement, and transmission method (Step S206), and transmits a signal to the terminal device of its own cell (Step S207). The terminal device that has received the signal determines whether or not to transmit an uplink signal based on the information (Step S208). Thereafter, the terminal apparatus performs feedback of CSI information for the base station apparatus (Step S209).

図13および図14は本発明における他の実施形態における上り信号の干渉量の設定方法の例について表したものである。各基地局装置BS1000、BS1001、BS1002は自身により端末装置からの上り信号の干渉量の測定を行い、上り信号の干渉量を計算する。また、X2回線を用いてOI情報の基地局間での交換を行う。   FIG. 13 and FIG. 14 show an example of an uplink signal interference amount setting method in another embodiment of the present invention. Each base station apparatus BS1000, BS1001, BS1002 measures the amount of interference of the uplink signal from the terminal device by itself and calculates the amount of interference of the uplink signal. Further, exchange of OI information between base stations is performed using an X2 line.

OIの計算は、下り信号の干渉量の測定時と同様、各周波数帯域毎に行っても良いし、各周波数帯域についてさらに細かく分けて、たとえばリソースブロック単位で行っても良い。また、閾値を複数設定し、OIのビット数を複数ビットとしてもよい。図14にOIの定義の一例を示す。図14(a)は1つの閾値を設け、リソースブロック単位で定義する方法である。図14(b)は1つの閾値を設け、周波数帯域全体について1つのOIを定義する方法である。図14(c)は2つの閾値を設け、リソースブロック単位で定義する方法であり、この場合OIに必要なビット数はリソースブロックあたり2ビットとなる。図14(d)は複数の閾値を設け、リソースブロック単位で定義する方法である。   The calculation of OI may be performed for each frequency band as in the case of measuring the amount of interference of the downlink signal, or may be further divided into each frequency band, for example, in units of resource blocks. A plurality of threshold values may be set, and the number of OI bits may be a plurality of bits. FIG. 14 shows an example of the definition of OI. FIG. 14A shows a method in which one threshold value is provided and defined in resource block units. FIG. 14B shows a method in which one threshold is provided and one OI is defined for the entire frequency band. FIG. 14C shows a method in which two threshold values are provided and defined in resource block units. In this case, the number of bits required for OI is 2 bits per resource block. FIG. 14D shows a method in which a plurality of threshold values are provided and defined in resource block units.

次に、本発明の実施形態における端末装置の電力制御は次の式で表される。端末装置の電力Pは、ネットワークで指示されたパラメータに基づき、次式で定める。
P = min(Pmax、b*10logM+Po+αPL+c*delta_mcs+f(delta_i))
ここでbおよびcは使用周波数帯域毎に定められる係数である。複数周波数帯域を使用する場合、伝搬損失は周波数帯域毎に異なる。例えば高い周波数を使用する場合、伝搬損失は一般に大きくなるため電力を大きくしても他セルへ与える干渉は少なくなる。本発明においては、周波数帯域毎に異なる伝搬損失を考慮することで、干渉低減のための適切な電力設定を可能とする。
Next, the power control of the terminal device in the embodiment of the present invention is expressed by the following equation. The power P of the terminal device is determined by the following equation based on parameters instructed by the network.
P = min (Pmax, b * 10logM + Po + αPL + c * delta_mcs + f (delta_i))
Here, b and c are coefficients determined for each frequency band used. When multiple frequency bands are used, the propagation loss differs for each frequency band. For example, when a high frequency is used, propagation loss generally increases, so that interference with other cells is reduced even if power is increased. In the present invention, it is possible to set an appropriate power for reducing interference by considering a propagation loss that differs for each frequency band.

図15は本発明の実施形態における干渉低減の他の例を表す図である。基地局装置BS1101は端末装置UE1100と、基地局装置BS1101は端末装置UE1101と、基地局装置BS1102は端末装置UE1102とそれぞれ通信を行っている。下りOIが生起した場合、基地局装置はOIが生起している周波数帯域については低電力でセル内縁部の端末装置との通信にのみ用いる軟周波数再利用を行ったり、干渉を与えている端末装置との送信を全ての周波数帯域にわたり休止したり、もしくはOIが生起している周波数帯域でのみの通信を休止、もしくは電力を低減して通信したりすることで干渉を低減する。   FIG. 15 is a diagram illustrating another example of interference reduction in the embodiment of the present invention. Base station apparatus BS1101 communicates with terminal apparatus UE1100, base station apparatus BS1101 communicates with terminal apparatus UE1101, and base station apparatus BS1102 communicates with terminal apparatus UE1102. When downlink OI occurs, the base station apparatus performs soft frequency reuse only for communication with the terminal apparatus at the inner edge of the cell with respect to the frequency band in which the OI occurs, or a terminal giving interference Interference is reduced by suspending transmission with the apparatus over all frequency bands, suspending communication only in the frequency band in which OI occurs, or communicating with reduced power.

図16は本発明の他の実施形態である、複数の基地局装置から1つの端末装置に対して同時に通信が行われる場合の複数基地局通信における、下り信号の干渉低減方法を表す図である。基地局装置BS1200は端末装置UE1200と通信を行う。同時にまた基地局装置BS1202はリレー局Relay1200を経由して端末装置UE1200と通信を行っている。すなわち、端末装置UE1200に対しては2つの基地局装置との同時通信が行われている。同時通信が行われる場合、同時通信に使われる隣接セルからの信号は干渉要因ではなく、ゲイン増加要因となる。   FIG. 16 is a diagram illustrating a downlink signal interference reducing method in communication with a plurality of base stations when communication is performed simultaneously from a plurality of base station apparatuses to one terminal apparatus according to another embodiment of the present invention. . Base station apparatus BS1200 communicates with terminal apparatus UE1200. At the same time, the base station apparatus BS1202 communicates with the terminal apparatus UE1200 via the relay station Relay1200. That is, simultaneous communication with two base station apparatuses is performed for terminal apparatus UE1200. When simultaneous communication is performed, a signal from an adjacent cell used for simultaneous communication is not an interference factor but a gain increase factor.

図17はこのときにおける通信システムの処理を表すフロー図である。本発明の実施形態においては一方の基地局をサービスBS、他方を隣接BSとすると、まず各基地局装置はそれぞれのセルにおける端末装置から報告される下り信号のチャネル状況(CSI:Channel State Information)を測定する(Step S300)。次にサービスBSである基地局装置は、端末装置が同時通信モードかどうか判断し(Step S301)、同時通信モードであればサービスBSの基地局装置と隣接BSの基地局装置はそれぞれ干渉量を測定し(Step S302)、また、各周波数帯域毎にOI、HII、TLIを計算(Step S303)する。計算した各情報はX2回線を通じて、負荷に応じて他基地局と情報交換を行う(Step S304)。情報を受け取った基地局装置は受け取った情報に応じて干渉低減方式の決定を行い、その方式に基づき無線資源管理(RRM)のパラメータをセル間の結合パラメータとして設定する(Step S305)。設定した結合RRMパラメータを各基地局装置は交換し(Step S306)、その結合RRMパラメータに基づき、各基地局装置は端末装置へRRM情報を通知する(Step S307)。基地局装置は引き続き電力制御量、電力分配、ビット配置、送信方法を設定し(Step S308)、端末装置へ信号を送信する(Step S309)。また、基地局装置は他セルへの端末装置への送信を行うかどうか、交換された他セルからの情報に基づき決定する(Step S310)。端末装置はその後、基地局装置のためにCSI情報のフィードバックを行う(Step S311)。   FIG. 17 is a flowchart showing the processing of the communication system at this time. In the embodiment of the present invention, assuming that one base station is a service BS and the other is an adjacent BS, each base station apparatus first transmits a channel state (CSI: Channel State Information) of a downlink signal reported from a terminal apparatus in each cell. Is measured (Step S300). Next, the base station apparatus serving as the service BS determines whether or not the terminal apparatus is in the simultaneous communication mode (Step S301). If the terminal apparatus is in the simultaneous communication mode, the base station apparatus of the service BS and the base station apparatus of the adjacent BS each set an interference amount. Measure (Step S302), and calculate OI, HII, and TLI for each frequency band (Step S303). Each piece of calculated information is exchanged with other base stations via the X2 line according to the load (Step S304). The base station apparatus that has received the information determines an interference reduction method according to the received information, and sets a radio resource management (RRM) parameter as a coupling parameter between cells based on the method (Step S305). Each base station apparatus exchanges the set combined RRM parameter (Step S306), and each base station apparatus notifies the terminal apparatus of the RRM information based on the combined RRM parameter (Step S307). The base station apparatus continues to set the power control amount, power distribution, bit arrangement, and transmission method (Step S308), and transmits a signal to the terminal apparatus (Step S309). Further, the base station apparatus determines whether to perform transmission to the terminal apparatus to another cell based on the information from the exchanged other cell (Step S310). Thereafter, the terminal apparatus performs feedback of CSI information for the base station apparatus (Step S311).

図18は本発明における他の実施例である、複数の基地局装置へ1つの端末装置から同時に通信が行われる場合の複数基地局通信における、上り信号の干渉低減方法を表す図である。基地局装置BS1300は端末装置UE1300と通信を行っている。同様に基地局装置BS1301は端末装置UE1301と、基地局装置BS1302は端末装置UE1302と通信を行っている。基地局装置BS1300のセルと、基地局装置BS1302とは同じ周波数帯域BW1を使用しているため、OIが生起している。基地局装置BS1301は他の周波数帯域BW2を使用しているため、基地局装置BS1300と野間でOIの生起はない。   FIG. 18 is a diagram illustrating an interference reduction method for uplink signals in communication with a plurality of base stations when communication is performed simultaneously from one terminal device to a plurality of base station devices, which is another embodiment of the present invention. Base station apparatus BS1300 communicates with terminal apparatus UE1300. Similarly, base station apparatus BS1301 communicates with terminal apparatus UE1301, and base station apparatus BS1302 communicates with terminal apparatus UE1302. Since the cell of base station apparatus BS1300 and base station apparatus BS1302 use the same frequency band BW1, OI has occurred. Since base station apparatus BS1301 uses another frequency band BW2, there is no occurrence of OI between base station apparatus BS1300 and Noma.

図19はこのときにおける通信システムの処理を表すフロー図である。一方の基地局をサービスBS、他方を隣接BSとすると、まず各基地局装置はそれぞれのセルにおける上り信号のチャネル状況(CSI:Channel State Information)を測定する(Step S400)。次にサービスBSである基地局装置は、端末装置が同時通信モードかどうか判断し(Step S401)、同時通信モードでなければサービスBSの基地局装置と隣接BSの基地局装置はそれぞれ干渉量を測定し(Step S402)、また、各周波数帯域毎にOI、HII、TLIを計算(Step S403)する。計算した各情報はX2回線を通じて、負荷に応じて他基地局と情報交換を行う(Step S404)。情報を受け取った基地局装置は受け取った情報に応じて干渉低減方式の決定を行い、その方式に基づき無線資源管理(RRM)のパラメータを設定する(Step S405)。設定したRRMパラメータを各基地局装置は交換し(Step S406)、そのRRMパラメータに基づき、各基地局装置は端末装置へRRM情報を通知する(Step S407)。基地局装置は引き続き電力制御量、電力分配、ビット配置、送信方法を設定し(Step S408)、端末装置は信号を送信する(Step S409)。また、信号を受信した端末装置はその情報に基づき上り信号の送信を行うかどうかを決定する(Step S410)。端末装置はその後、基地局装置のためにCSI情報のフィードバックを行う(Step S411)。   FIG. 19 is a flowchart showing the processing of the communication system at this time. When one base station is a service BS and the other is an adjacent BS, each base station apparatus first measures the channel state (CSI: Channel State Information) of the uplink signal in each cell (Step S400). Next, the base station apparatus serving as the service BS determines whether or not the terminal apparatus is in the simultaneous communication mode (Step S401). If it is not in the simultaneous communication mode, the base station apparatus of the service BS and the base station apparatus of the adjacent BS each set an interference amount. Measure (Step S402), and calculate OI, HII, and TLI for each frequency band (Step S403). Each piece of calculated information is exchanged with other base stations through the X2 line according to the load (Step S404). The base station apparatus that has received the information determines an interference reduction method according to the received information, and sets parameters for radio resource management (RRM) based on the method (Step S405). Each base station apparatus exchanges the set RRM parameters (Step S406), and each base station apparatus notifies the terminal apparatus of the RRM information based on the RRM parameters (Step S407). The base station apparatus continues to set the power control amount, power distribution, bit arrangement, and transmission method (Step S408), and the terminal apparatus transmits a signal (Step S409). Further, the terminal device that has received the signal determines whether or not to transmit an uplink signal based on the information (Step S410). Thereafter, the terminal apparatus performs feedback of CSI information for the base station apparatus (Step S411).

同時通信モードであればサービスBSの基地局装置と、協調通信を行う隣接BSの基地局装置はそれぞれ干渉量を測定し(Step S412)、また、各周波数帯域毎にOI、HII、TLIを計算(Step S413)する。計算した各情報はX2回線を通じて、負荷に応じて他基地局と情報交換を行う(Step S414)。情報を受け取った基地局装置は受け取った情報に応じて干渉低減方式の決定を行い、その方式に基づき無線資源管理(RRM)のパラメータを結合パラメータとして設定する(Step S415)。設定した結合RRMパラメータを各基地局装置は交換し(Step S416)、その結合RRMパラメータに基づき、基地局装置は端末装置へ結合RRM情報を通知する(Step S417)。基地局装置は引き続き電力制御量、電力分配、ビット配置、送信方法を設定し(Step S418)、端末装置は信号を送信する(Step S419)。端末装置はその後、基地局装置のためにCSI情報のフィードバックを行う(Step S420)。   In the simultaneous communication mode, the base station apparatus of the service BS and the base station apparatus of the neighboring BS that performs cooperative communication measure the amount of interference (Step S412), and calculate OI, HII, and TLI for each frequency band. (Step S413). Each piece of calculated information is exchanged with other base stations via the X2 line according to the load (Step S414). The base station apparatus that has received the information determines an interference reduction method according to the received information, and sets a radio resource management (RRM) parameter as a coupling parameter based on the method (Step S415). Each base station apparatus exchanges the set combined RRM parameter (Step S416), and based on the combined RRM parameter, the base station apparatus notifies the terminal apparatus of combined RRM information (Step S417). The base station apparatus continues to set the power control amount, power distribution, bit arrangement, and transmission method (Step S418), and the terminal apparatus transmits a signal (Step S419). Thereafter, the terminal apparatus performs feedback of CSI information for the base station apparatus (Step S420).

図20は本発明における基地局装置の構成を表した図である。基地局装置は送受信部21、測定部22、協調モード決定部23、信号処理部24、情報交換部25、RRM部26、実行部27より構成される。   FIG. 20 is a diagram showing the configuration of the base station apparatus according to the present invention. The base station apparatus includes a transmission / reception unit 21, a measurement unit 22, a cooperative mode determination unit 23, a signal processing unit 24, an information exchange unit 25, an RRM unit 26, and an execution unit 27.

送受信部21は下り信号の端末装置への送信、端末装置からの上り信号の受信を行う。また、他セルからの干渉信号の受信も行う。測定部22は送受信部21で受信した信号の測定を行い、端末装置から報告されるチャネル状況の測定を行う。また、他セルからの干渉量測定も行う。協調モード決定部23は、端末装置が協調通信を行っているかどうかの判断を行う。信号処理部24は受信信号のダウンコンバート、サンプリング、チャネル推定、復調、データ検出、送信信号の変調、アップコンバート等を行う。情報交換部25は他セルとのOI、HII、TLI、周波数帯域識別子、セル識別子等をX2回線や無線回線を通じて交換する。RRM部26はスケジューリングやリソースブロックの配置、干渉低減方式の決定、電力制御方法の決定、送信モードの決定等を行う。実行部27は電力制御や全体の動作制御を行う。   The transmission / reception unit 21 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device. It also receives interference signals from other cells. The measurement unit 22 measures the signal received by the transmission / reception unit 21 and measures the channel status reported from the terminal device. It also measures the amount of interference from other cells. The cooperative mode determination unit 23 determines whether the terminal device is performing cooperative communication. The signal processing unit 24 performs down-conversion, sampling, channel estimation, demodulation, data detection, transmission signal modulation, up-conversion, and the like of the received signal. The information exchange unit 25 exchanges OI, HII, TLI, a frequency band identifier, a cell identifier, etc. with other cells through an X2 line or a radio line. The RRM unit 26 performs scheduling, resource block arrangement, interference reduction method determination, power control method determination, transmission mode determination, and the like. The execution unit 27 performs power control and overall operation control.

図21は本発明における端末装置の構成を表した図である。端末装置は送受信部31、信号処理部32、スケジューリング部33、実行部34より構成される。送受信部31は基地局装置からの信号を受信する。信号処理部32は受信信号のダウンコンバート、サンプリング、チャネル推定、復調、データ検出、送信信号の変調、アップコンバート等を行う。スケジューリング部33は送信装置から送られるスケジューリング情報を解析し、割り当てられたリソースでの受信、送信を行うよう管理する。実行部34は電力制御は全体の動作制御を行う。   FIG. 21 is a diagram showing the configuration of the terminal device according to the present invention. The terminal device includes a transmission / reception unit 31, a signal processing unit 32, a scheduling unit 33, and an execution unit 34. The transmission / reception unit 31 receives a signal from the base station apparatus. The signal processing unit 32 performs down-conversion, sampling, channel estimation, demodulation, data detection, transmission signal modulation, up-conversion, and the like of the received signal. The scheduling unit 33 analyzes the scheduling information sent from the transmission device, and manages the reception and transmission with the allocated resources. The execution unit 34 performs overall operation control of power control.

図22は本発明におけるシステム構成を表す図である。干渉低減システムは送受信部50、複数周波数帯域調整部51、バックハウルインタフェース52、RRM部53、無線インタフェース54より構成される。送受信部50は信号の送受信を行う。複数周波数帯域調整部は複数周波数帯域を使用する際にどの周波数帯域を使用するかの調整を行う。バックハウルインタフェース52はOI、HII、TLI、周波数帯域識別子、セル識別子、複数協調通信を行う際のデータの交換等を行う。RRM部53はスケジュール等の無線資源管理を行う。無線インタフェース54はX2インタフェースと同じ役割を咽んで行う市に用いられる。   FIG. 22 is a diagram showing a system configuration in the present invention. The interference reduction system includes a transmission / reception unit 50, a plurality of frequency band adjustment units 51, a back howl interface 52, an RRM unit 53, and a radio interface 54. The transmission / reception unit 50 transmits / receives signals. The multiple frequency band adjustment unit adjusts which frequency band is used when using multiple frequency bands. The backhaul interface 52 performs OI, HII, TLI, frequency band identifier, cell identifier, data exchange when performing plural cooperative communication, and the like. The RRM unit 53 performs radio resource management such as a schedule. The wireless interface 54 is used in cities that perform the same role as the X2 interface.

以上説明したシステムを用いることで、本発明においては効果的に干渉提言を行うことが可能となる。   By using the system described above, it is possible to effectively make interference proposals in the present invention.

上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。例えば本発明の説明においては、隣接セルとの干渉について説明したが、これに限ったものではなく、隣接セルの隣接セルとの干渉等についても含まれる。また、リレー局や遠隔無線送信局のようなマルチホップシステムについても適用できる。   In the above-described embodiment, the configuration and the like illustrated in the accompanying drawings are not limited to these, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention. For example, in the description of the present invention, interference with adjacent cells has been described. However, the present invention is not limited to this and includes interference with adjacent cells of adjacent cells. It can also be applied to multi-hop systems such as relay stations and remote radio transmission stations.

また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。   In addition, a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed. The “computer system” here includes an OS and hardware such as peripheral devices.

また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。   Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.

また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。   The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time. The program may be a program for realizing a part of the above-described functions, or may be a program that can realize the above-described functions in combination with a program already recorded in a computer system.

21…送受信部、22…測定部、23…協調モード決定部、24…信号処理部、25…情報交換部、26…RRM部、27…実行部、31…送受信部、32…信号処理部、33…スケジューリング部、34…実行部、50…送受信部、51…複数周波数帯域調停部、52…バックハウルインタフェース、53…RRM部、54…無線インタフェース DESCRIPTION OF SYMBOLS 21 ... Transmission / reception part, 22 ... Measurement part, 23 ... Cooperative mode determination part, 24 ... Signal processing part, 25 ... Information exchange part, 26 ... RRM part, 27 ... Execution part, 31 ... Transmission / reception part, 32 ... Signal processing part, 33 ... Scheduling unit, 34 ... execution unit, 50 ... transmission / reception unit, 51 ... multiple frequency band arbitration unit, 52 ... back howl interface, 53 ... RRM unit, 54 ... wireless interface

Claims (15)

複数の周波数帯域を使用して通信を行う無線通信システムであって、前記通信システムにおける複数の基地局装置が1つの端末装置と同時通信、もしくは複数の基地局装置が1つの端末装置に対する通信のタイミングを調停して行う、協調複数基地局通信方式において、前記複数基地局通信を行う基地局装置は干渉量を測定する手段と、セル内のトラフィックを測定する手段と、前記干渉量および前記トラフィックおよびセル識別子および周波数帯域識別子とをセル内のトラフィックの状態に応じて基地局間で交換する手段と、前記交換された情報から干渉調停方式を決定する手段と、前記決定した干渉調停方式に基づき無線資源管理設定を行う手段と、前記無線資源管理設定の情報を各セル内の端末装置へ通知する手段と、を有し、前記端末装置は前記通知された無線資源管理設定の情報に基づき、送受信を行うかどうか決定する手段を有することを特徴とする無線通信システム。   A wireless communication system that performs communication using a plurality of frequency bands, wherein a plurality of base station devices in the communication system simultaneously communicate with one terminal device, or a plurality of base station devices communicate with one terminal device. In a coordinated multi-base station communication system that performs timing arbitration, the base station apparatus that performs the multi-base station communication measures means for measuring interference, means for measuring traffic in a cell, the amount of interference and the traffic And a means for exchanging cell identifiers and frequency band identifiers between base stations according to the state of traffic in the cell, means for determining an interference arbitration scheme from the exchanged information, and based on the determined interference arbitration scheme Means for performing radio resource management setting, and means for notifying information of the radio resource management setting to a terminal device in each cell, the terminal The apparatus includes a means for determining whether to perform transmission / reception based on the notified information of the radio resource management setting. 前記複数基地局通信を行う基地局装置が行う干渉量測定は、それぞれの基地局が独立して測定を行い、また、その干渉量測定は端末装置毎の下り干渉量測定もしくは、セル毎の下り干渉量測定もしくは、セル毎の上り干渉量測定のうちの1乃至複数、を行うことを特徴とする請求項1に記載の無線通信システム。   The interference amount measurement performed by the base station apparatus that performs the multiple base station communication is performed independently by each base station, and the interference amount measurement is performed by measuring the downlink interference amount for each terminal device or the downlink amount for each cell. The wireless communication system according to claim 1, wherein one or more of interference amount measurement or uplink interference amount measurement for each cell is performed. 前記端末装置毎の下り干渉量測定は、下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは下り周波数帯域毎の過負荷指標、もしくは複数ビットを用いる下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは複数ビットを用いる下り周波数帯域毎の過負荷指標のうちの1乃至複数について行うことを特徴とする、請求項2に記載の無線通信システム。   The downlink interference amount measurement for each terminal device is performed by measuring an overload index and a frequency band identifier for each downlink resource block, an overload index for each downlink frequency band, or an overload index and a frequency band for each downlink resource block using a plurality of bits. The wireless communication system according to claim 2, wherein one or a plurality of identifiers or an overload index for each downlink frequency band using a plurality of bits is used. 前記セル毎の下り干渉量測定は、下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは下り周波数帯域毎の過負荷指標、もしくは複数ビットを用いる下りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは複数ビットを用いる下り周波数帯域毎の過負荷指標のうちの1乃至複数について行うことを特徴とする、請求項2に記載の無線通信システム。   The downlink interference amount measurement for each cell is an overload indicator and frequency band identifier for each downlink resource block, or an overload indicator for each downlink frequency band, or an overload indicator and frequency band identifier for each downlink resource block using a plurality of bits. The wireless communication system according to claim 2, wherein the wireless communication system is performed for one or a plurality of overload indicators for each downlink frequency band using a plurality of bits. 前記セル毎の上り干渉量測定は、上りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは上り周波数帯域毎の過負荷指標、もしくは複数ビットを用いる上りリソースブロック毎の過負荷指標と周波数帯域識別子、もしくは複数ビットを用いる上り周波数帯域毎の過負荷指標のうちの1乃至複数について行うことを特徴とする、請求項2に記載の無線通信システム。   The uplink interference amount measurement for each cell is performed using an overload indicator and frequency band identifier for each uplink resource block, or an overload indicator for each uplink frequency band, or an overload indicator and frequency band identifier for each uplink resource block using a plurality of bits. The wireless communication system according to claim 2, wherein the wireless communication system is performed for one or a plurality of overload indices for each uplink frequency band using a plurality of bits. 前記干渉調停方式は、端末装置が複数基地局通信を行う場合は、部分的周波数再利用もしくは軟周波数再利用であることを特徴とする、請求項1に記載の無線通信システム。   The radio communication system according to claim 1, wherein the interference arbitration method is partial frequency reuse or soft frequency reuse when the terminal apparatus performs multi-base station communication. 前記干渉調停方式は、端末装置が複数基地局通信を行わない場合は、異なるセル端の端末装置に対して、異なる周波数帯域を割当てることを特徴とする請求項1に記載の無線通信システム。   The radio communication system according to claim 1, wherein the interference arbitration method assigns different frequency bands to terminal devices at different cell edges when the terminal device does not perform communication with a plurality of base stations. 前記干渉調停方式は、異なるセルにおける複数基地局通信を行う端末装置と、複数基地局通信を行わない端末装置とに対し、異なる周波数帯域を割当てることを特徴とする請求項6乃至7に記載の無線通信システム。   The said interference arbitration system allocates a different frequency band with respect to the terminal device which performs multiple base station communication in a different cell, and the terminal device which does not perform multiple base station communication. Wireless communication system. 前記無線資源管理設定の情報の各セル内の端末装置への通知は、報知チャネル、もしくは下りリンク制御チャネル、もしくは下りリンク共用チャネル、のうちの1乃至複数を用いて行うことを特徴とする請求項1に記載の無線通信システム。   The notification of the radio resource management setting information to a terminal device in each cell is performed using one or more of a broadcast channel, a downlink control channel, or a downlink shared channel. Item 2. The wireless communication system according to Item 1. 前記決定される干渉調停方式、および前記決定される無線資源管理設定は、端末装置が使用することのできる周波数帯域に関する能力に応じて決定されることを特徴とする請求項1に記載の無線通信システム。   The radio communication according to claim 1, wherein the determined interference arbitration method and the determined radio resource management setting are determined according to a capability related to a frequency band that can be used by a terminal apparatus. system. 前記干渉調停方式は、異種基地局ネットワークにおける下り電力制御を用いた周波数分割干渉調停方式、もしくは同種基地局ネットワークにおける下り周波数分割干渉調停方式、もしくは、周波数帯域毎の下り送信停止方式、もしくは周波数帯域毎の複数基地局通信方式、もしくは周波数帯毎の上り送信方式のうちの1乃至複数であることを特徴とする請求項1に記載の無線通信システム。   The interference arbitration method is a frequency division interference arbitration method using downlink power control in a heterogeneous base station network, a downlink frequency division interference arbitration method in the same type base station network, or a downlink transmission stop method for each frequency band, or a frequency band The wireless communication system according to claim 1, wherein one or more of a plurality of base station communication systems for each frequency band or an uplink transmission system for each frequency band are used. 複数の周波数帯域を使用して通信を行う無線通信システムであって、前記通信システムにおける複数の基地局装置が1つの端末装置と同時通信、もしくは複数の基地局装置が1つの端末装置に対する通信のタイミングを調停して行う、協調複数基地局通信方式において用いられる基地局装置であって、干渉量を測定する手段と、セル内のトラフィックを測定する手段と、前記干渉量および前記トラフィックおよびセル識別子および周波数帯域識別子とをセル内のトラフィックの状態に応じて基地局間で交換する手段と、前記交換された情報から干渉調停方式を決定する手段と、前記決定した干渉調停方式に基づき無線資源管理設定を行う手段と、前記無線資源管理設定の情報を各セル内の端末装置へ通知する手段と、を有することを特徴とする基地局装置。   A wireless communication system that performs communication using a plurality of frequency bands, wherein a plurality of base station devices in the communication system simultaneously communicate with one terminal device, or a plurality of base station devices communicate with one terminal device. A base station apparatus used in a coordinated multiple base station communication system that performs timing arbitration, the means for measuring an interference amount, the means for measuring traffic in a cell, the interference amount, the traffic, and a cell identifier And means for exchanging frequency band identifiers between base stations according to the traffic state in the cell, means for determining an interference arbitration scheme from the exchanged information, and radio resource management based on the determined interference arbitration scheme Means for performing setting, and means for notifying information on the radio resource management setting to a terminal device in each cell. Base station device. 複数の周波数帯域を使用して通信を行う無線通信システムであって、前記通信システムにおける複数の基地局装置が1つの端末装置と同時通信、もしくは複数の基地局装置が1つの端末装置に対する通信のタイミングを調停して行う、協調複数基地局通信方式において用いられる端末装置であって、基地局装置より通知された無線資源管理設定の情報に基づき、送受信を行うかどうか決定する手段を有する、請求項12記載の基地局装置と通信を行うことを特徴とする端末装置。   A wireless communication system that performs communication using a plurality of frequency bands, wherein a plurality of base station devices in the communication system simultaneously communicate with one terminal device, or a plurality of base station devices communicate with one terminal device. A terminal device used in a coordinated multiple base station communication system that performs timing arbitration, and has means for determining whether to perform transmission / reception based on radio resource management setting information notified from the base station device. A terminal device that communicates with the base station device according to Item 12. 複数の周波数帯域を使用して通信を行う無線通信システムであって、前記通信システムにおける複数の基地局装置が1つの端末装置と同時通信、もしくは複数の基地局装置が1つの端末装置に対する通信のタイミングを調停して行う、協調複数基地局通信方式において用いられる基地局装置における制御方法であって、干渉量を測定するステップと、セル内のトラフィックを測定するステップと、前記干渉量および前記トラフィックおよびセル識別子および周波数帯域識別子とをセル内のトラフィックの状態に応じて基地局間で交換するステップと、前記交換された情報から干渉調停方式を決定するステップと、前記決定した干渉調停方式に基づき無線資源管理設定を行うステップと、前記無線資源管理設定の情報を各セル内の端末装置へ通知するステップと、を有することを特徴とする制御方法。   A wireless communication system that performs communication using a plurality of frequency bands, wherein a plurality of base station devices in the communication system simultaneously communicate with one terminal device, or a plurality of base station devices communicate with one terminal device. A control method in a base station apparatus used in a coordinated multi-base station communication system that performs timing arbitration, the step of measuring an amount of interference, the step of measuring traffic in a cell, the amount of interference and the traffic And a step of exchanging cell identifiers and frequency band identifiers between base stations according to the traffic state in the cell, a step of determining an interference arbitration scheme from the exchanged information, and based on the determined interference arbitration scheme A step of performing radio resource management setting, and notifying information of the radio resource management setting to a terminal device in each cell A control method comprising the steps of: 請求項14に記載の方法をコンピュータに実行させるためのプログラム。   A program for causing a computer to execute the method according to claim 14.
JP2009021060A 2009-02-02 2009-02-02 Communication system and base station device, terminal device, and base station device, and program executed by terminal device Pending JP2010178237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021060A JP2010178237A (en) 2009-02-02 2009-02-02 Communication system and base station device, terminal device, and base station device, and program executed by terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021060A JP2010178237A (en) 2009-02-02 2009-02-02 Communication system and base station device, terminal device, and base station device, and program executed by terminal device

Publications (1)

Publication Number Publication Date
JP2010178237A true JP2010178237A (en) 2010-08-12

Family

ID=42708706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021060A Pending JP2010178237A (en) 2009-02-02 2009-02-02 Communication system and base station device, terminal device, and base station device, and program executed by terminal device

Country Status (1)

Country Link
JP (1) JP2010178237A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246113A (en) * 2009-03-31 2010-10-28 Ntt Docomo Inc Method, system and transmitter for adaptive coordinated transmission in wireless communications
WO2012147198A1 (en) * 2011-04-28 2012-11-01 京セラ株式会社 Base station and communication control method
JP2012231342A (en) * 2011-04-26 2012-11-22 Kyocera Corp Base station and control method therefor
WO2013042289A1 (en) * 2011-09-21 2013-03-28 日本電気株式会社 Mobile communication system, base station, mobile station, base station control method, and computer readable medium
CN103079210A (en) * 2011-10-25 2013-05-01 中兴通讯股份有限公司 Methods, evolved Node B and system for coordinating downlink interference between cells
JP2013085246A (en) * 2011-10-05 2013-05-09 Samsung Electronics Co Ltd Method for managing interference of relay nodes in multi-hop network, relay nodes, terminals comprising transmitting and receiving nodes, and computer readable storage media
WO2013084694A1 (en) * 2011-12-07 2013-06-13 ソニー株式会社 Wireless base station, communication control method for wireless base station and computer program
JP2013533709A (en) * 2010-08-13 2013-08-22 富士通株式会社 Base station based on orthogonal frequency division multiplexing and its interference coordination method
CN103733681A (en) * 2011-08-12 2014-04-16 黑莓有限公司 Releasing time domain measurement restrictions
JP2014068118A (en) * 2012-09-25 2014-04-17 Ntt Docomo Inc Mobile communication system and radio base station
WO2014087454A1 (en) * 2012-12-05 2014-06-12 Nec Corporation Radio communication system and communication control method
JP2014515896A (en) * 2011-04-08 2014-07-03 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Reducing interference caused by atmospheric ducts in wireless communication systems
CN103997764A (en) * 2014-03-17 2014-08-20 华信咨询设计研究院有限公司 TD-LTE (Time Division-Long Term Evolution) cell reselection method based on quasi-normal distribution
WO2015008568A1 (en) * 2013-07-19 2015-01-22 株式会社Nttドコモ Base station, user device and interference reduction method
CN104641695A (en) * 2012-09-14 2015-05-20 华为技术有限公司 Method for energy saving in a cellular communication system
JP2015111788A (en) * 2013-12-06 2015-06-18 日本電信電話株式会社 Radio communication system, centralized control device, and radio communication method
JP2016139900A (en) * 2015-01-27 2016-08-04 日本電気株式会社 Radio communications system, control device, base station, control method, and program
US9419696B2 (en) 2011-12-19 2016-08-16 Comcast Cable Communications, Llc Beam information exchange between base stations
KR101729779B1 (en) 2010-08-31 2017-04-24 에릭슨 엘지 주식회사 Apparatus and method for removing other cell interference and mobile telecommunication system using the same technique
US10085165B2 (en) 2011-09-23 2018-09-25 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US10237032B2 (en) 2017-01-06 2019-03-19 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network
US10320512B2 (en) 2017-01-08 2019-06-11 At&T Intellectual Property I, L.P. Interference cancelation for 5G or other next generation network
US10334533B2 (en) 2016-11-02 2019-06-25 At&T Intellectual Property I, L.P. Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012030057; NTT DoCoMo, Inc.: 'Proposals for LTE-Advanced Technologies' R1-082575 , 20080704, slide 14,21,22, 3GPP *
JPN6012034260; CATT: 'Proposal of multiple sites coordination for LTE-A TDD' R1-084290 , 20081114, paragraph 3, 3GPP *
JPN6012034262; Mitsubishi Electric: 'Use case of OI/HII indicators for uplink ICIC' R1-081910 , 20080509, paragraph 2,4, 3GPP *

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246113A (en) * 2009-03-31 2010-10-28 Ntt Docomo Inc Method, system and transmitter for adaptive coordinated transmission in wireless communications
KR101446448B1 (en) * 2010-08-13 2014-10-01 후지쯔 가부시끼가이샤 Base station on the basis of orthogonal frequency division multiplexing scheme and interference coordination method thereof
JP2013533709A (en) * 2010-08-13 2013-08-22 富士通株式会社 Base station based on orthogonal frequency division multiplexing and its interference coordination method
KR101729779B1 (en) 2010-08-31 2017-04-24 에릭슨 엘지 주식회사 Apparatus and method for removing other cell interference and mobile telecommunication system using the same technique
JP2014515896A (en) * 2011-04-08 2014-07-03 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Reducing interference caused by atmospheric ducts in wireless communication systems
JP2012231342A (en) * 2011-04-26 2012-11-22 Kyocera Corp Base station and control method therefor
WO2012147198A1 (en) * 2011-04-28 2012-11-01 京セラ株式会社 Base station and communication control method
JPWO2012147198A1 (en) * 2011-04-28 2014-07-28 京セラ株式会社 Base station and communication control method
CN103733681A (en) * 2011-08-12 2014-04-16 黑莓有限公司 Releasing time domain measurement restrictions
WO2013042289A1 (en) * 2011-09-21 2013-03-28 日本電気株式会社 Mobile communication system, base station, mobile station, base station control method, and computer readable medium
US10917807B2 (en) 2011-09-23 2021-02-09 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US11611897B2 (en) 2011-09-23 2023-03-21 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US11871262B2 (en) 2011-09-23 2024-01-09 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US11432180B2 (en) 2011-09-23 2022-08-30 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US10667164B2 (en) 2011-09-23 2020-05-26 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US10306506B2 (en) 2011-09-23 2019-05-28 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US10085165B2 (en) 2011-09-23 2018-09-25 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
JP2013085246A (en) * 2011-10-05 2013-05-09 Samsung Electronics Co Ltd Method for managing interference of relay nodes in multi-hop network, relay nodes, terminals comprising transmitting and receiving nodes, and computer readable storage media
CN103079210A (en) * 2011-10-25 2013-05-01 中兴通讯股份有限公司 Methods, evolved Node B and system for coordinating downlink interference between cells
CN103079210B (en) * 2011-10-25 2018-11-16 南京中兴新软件有限责任公司 Inter-cell downlink disturbance coordination method, base station and system
WO2013084694A1 (en) * 2011-12-07 2013-06-13 ソニー株式会社 Wireless base station, communication control method for wireless base station and computer program
US9332562B2 (en) 2011-12-07 2016-05-03 Sony Corporation Radio base station, communication control method of radio base station and computer program
US10804987B2 (en) 2011-12-19 2020-10-13 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US10530439B2 (en) 2011-12-19 2020-01-07 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US9455775B2 (en) 2011-12-19 2016-09-27 Comcast Cable Communications, Llc Handover signaling for beamforming communications
US9444535B2 (en) 2011-12-19 2016-09-13 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
US9680544B2 (en) 2011-12-19 2017-06-13 Comcast Cable Communications, Llc Beamforming codeword exchange between base stations
US9788244B2 (en) 2011-12-19 2017-10-10 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
US11950145B2 (en) 2011-12-19 2024-04-02 Comcast Cable Communications, Llc Beamforming in wireless communications
US9826442B2 (en) 2011-12-19 2017-11-21 Comcast Cable Communications, Llc Beam information exchange between base stations
US9917625B2 (en) 2011-12-19 2018-03-13 Comcast Cable Communications, Llc Handover signaling for beamforming communications
US9917624B2 (en) 2011-12-19 2018-03-13 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US11647430B2 (en) 2011-12-19 2023-05-09 Comcast Cable Communications, Llc Signaling in a wireless network
US9419696B2 (en) 2011-12-19 2016-08-16 Comcast Cable Communications, Llc Beam information exchange between base stations
US11516713B2 (en) 2011-12-19 2022-11-29 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US10181883B2 (en) 2011-12-19 2019-01-15 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
US10193605B2 (en) 2011-12-19 2019-01-29 Comcast Cable Communications, Llc Beamforming codeword exchange between base stations
US10236956B2 (en) 2011-12-19 2019-03-19 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US11510113B2 (en) 2011-12-19 2022-11-22 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US11375414B2 (en) 2011-12-19 2022-06-28 Comcast Cable Communications, Llc Beamforming in wireless communications
US11082896B2 (en) 2011-12-19 2021-08-03 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
US10966124B2 (en) 2011-12-19 2021-03-30 Comcast Cable Communications, Llc Beamforming codeword exchange between base stations
US10966125B2 (en) 2011-12-19 2021-03-30 Comcast Cable Communications, Llc Beam information exchange between base stations
US9450656B2 (en) 2011-12-19 2016-09-20 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US10530438B2 (en) 2011-12-19 2020-01-07 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US10601476B2 (en) 2011-12-19 2020-03-24 Comcast Cable Communications, Llc Beam information exchange between base stations
US10715228B2 (en) 2011-12-19 2020-07-14 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
CN104641695A (en) * 2012-09-14 2015-05-20 华为技术有限公司 Method for energy saving in a cellular communication system
CN104641695B (en) * 2012-09-14 2018-05-11 华为技术有限公司 Energy saving method in cellular communication system
JP2014068118A (en) * 2012-09-25 2014-04-17 Ntt Docomo Inc Mobile communication system and radio base station
WO2014087454A1 (en) * 2012-12-05 2014-06-12 Nec Corporation Radio communication system and communication control method
US9814054B2 (en) 2013-07-19 2017-11-07 Ntt Docomo, Inc. Base station, user apparatus and interference reduction method
JP2015023454A (en) * 2013-07-19 2015-02-02 株式会社Nttドコモ Base station, user device, and interference reduction method
WO2015008568A1 (en) * 2013-07-19 2015-01-22 株式会社Nttドコモ Base station, user device and interference reduction method
JP2015111788A (en) * 2013-12-06 2015-06-18 日本電信電話株式会社 Radio communication system, centralized control device, and radio communication method
CN103997764A (en) * 2014-03-17 2014-08-20 华信咨询设计研究院有限公司 TD-LTE (Time Division-Long Term Evolution) cell reselection method based on quasi-normal distribution
JP2016139900A (en) * 2015-01-27 2016-08-04 日本電気株式会社 Radio communications system, control device, base station, control method, and program
US10834679B2 (en) 2016-11-02 2020-11-10 At&T Intellectual Property I, L.P. Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces
US11558822B2 (en) 2016-11-02 2023-01-17 At&T Intellectual Property I, L.P. Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces
US10334533B2 (en) 2016-11-02 2019-06-25 At&T Intellectual Property I, L.P. Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces
US10237032B2 (en) 2017-01-06 2019-03-19 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network
US10432376B2 (en) 2017-01-06 2019-10-01 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network
US10812237B2 (en) 2017-01-06 2020-10-20 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network
US10320512B2 (en) 2017-01-08 2019-06-11 At&T Intellectual Property I, L.P. Interference cancelation for 5G or other next generation network
US10742343B2 (en) 2017-01-08 2020-08-11 At&T Intellectual Property I, L.P. Interference cancelation for 5G or other next generation network

Similar Documents

Publication Publication Date Title
JP2010178237A (en) Communication system and base station device, terminal device, and base station device, and program executed by terminal device
US10506577B2 (en) Systems and methods for adaptive transmissions in a wireless network
US20210029700A1 (en) Communications in a Wireless Network for Carrier Selection and Switching
CN105493552B (en) Method for aperiodic CSI reporting triggering for flexible subframes in LTE TDD eIMTA systems with dynamic UL-DL
KR101411345B1 (en) Method and device for inter-cell interference coordination
EP2560426B1 (en) Wireless communication system, high-power base station, low-power base station, and communication control method
EP2695481B1 (en) Flexible configuration of uplink and downlink ratio by exchanging information using an x2 interface
US20150163794A1 (en) Uplink control information feedback method, base station, and user equipment
JP6484857B2 (en) Terminal apparatus, base station apparatus, and communication method
US9642135B2 (en) Method and apparatus for management of protected resource in a heterogeneous network
JP2013546230A (en) Method and apparatus for managing inter-cell interference cooperative actions for time domain partitioned cells
US20150043546A1 (en) Radio communication system, high-power base station, low-power base station, and communication control method
JP6204100B2 (en) Wireless base station and wireless communication method
TW201225725A (en) Method and arrangement for reporting channel state information in a telecommunication system
WO2015174328A1 (en) Radio base station, user equipment, and radio communication method
WO2012081513A1 (en) Wireless communication system, base station, and control method thereof
JP2014220719A (en) Radio base station, user terminal, and radio communication method
US20160037538A1 (en) System and method for interference coordination between communications nodes
US9674742B2 (en) Exploiting almost blank subframes for inter-cell scheduling
TW201540011A (en) Method and apparatus for coordinating inter-cell interference
JP7385340B2 (en) Terminals, wireless communication methods, base stations and systems
JP2015142356A (en) User terminal, radio base station, radio communication system and radio communication method
JP2017046077A (en) Radio base station, user terminal, and radio communication method
KR101445840B1 (en) Method for scheduling in wireless communicatoin system and apparatus thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030