JP2010176008A - Optical path switching type optical signal transceiver and optical path switching method for optical signal - Google Patents

Optical path switching type optical signal transceiver and optical path switching method for optical signal Download PDF

Info

Publication number
JP2010176008A
JP2010176008A JP2009020482A JP2009020482A JP2010176008A JP 2010176008 A JP2010176008 A JP 2010176008A JP 2009020482 A JP2009020482 A JP 2009020482A JP 2009020482 A JP2009020482 A JP 2009020482A JP 2010176008 A JP2010176008 A JP 2010176008A
Authority
JP
Japan
Prior art keywords
light
optical path
control
stage
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009020482A
Other languages
Japanese (ja)
Other versions
JP5071870B2 (en
Inventor
Hirofumi Watanabe
浩文 渡邊
Shiro Futaki
志郎 二木
Norio Tanaka
教雄 田中
Ichiro Ueno
一郎 上野
Takashi Hiraga
隆 平賀
Noritaka Yamamoto
典孝 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Inter Energy Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Inter Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Inter Energy Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2009020482A priority Critical patent/JP5071870B2/en
Publication of JP2010176008A publication Critical patent/JP2010176008A/en
Application granted granted Critical
Publication of JP5071870B2 publication Critical patent/JP5071870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To link a plurality of light control mode optical path switching devices by effectively exploiting an emission spectral band of a light source related to control light and an absorption spectral band of a control light absorption layer, and making a plurality of control light beams with wavelengths different from that of signal light propagate through an optical path identical to that of the signal light on the basis of a wavelength multiplexing mode. <P>SOLUTION: In the optical path switching type optical signal transceiver, an optical path of the signal light 1001 of one kind with a wavelength different from that of the control light is switched to seven different directions 1201-1207 by combining one-to-seven light control type optical path switching devices 120, 220, 320 together in three steps, by using six control light beams 1001-1016, 1021-1026, 1031-1036 with respectively different wavelengths for each stage, and by using a light control mode. In each stage, demultiplexers 110 etc. to separate the control light and the signal light, distributors 130 etc. to distribute the control light, and seven multiplexers 141-147 etc. are provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光通信や光情報処理等の光エレクトロニクスやフォトニクスの各分野において活用され、波長多重された複数の制御光の各々を利用して光路の切替を行う光路切替型光信号送受信装置、および光信号の光路切替方法に関する。   The present invention is utilized in each field of optoelectronics and photonics such as optical communication and optical information processing, and switches an optical path using each of a plurality of wavelength-multiplexed control lights, The present invention also relates to an optical path switching method for optical signals.

本発明者等は、先に、新しい原理に基づく光路切替の装置および方法を発明した(特許文献1参照)。この光路切替装置等では、熱レンズ形成素子内の制御光吸収領域に対して、制御光吸収領域が吸収する波長帯域の制御光と、制御光吸収領域が吸収しない波長帯域の信号光とを、各光軸が一致するように収束させて照射し得る構成を有している。この構成によれば、熱レンズ形成素子内の制御光吸収領域への信号光の照射に対して、制御光の照射は選択的に行われる。制御光の照射が信号光の照射と同時に行われないときには信号光が穴付きミラーの穴を通して直進し、他方、制御光の照射が信号光の照射と同時に行われるときには信号光の進行方向に対して傾けて設けた穴付きミラーで反射して光路を変更させる。特許文献1には、1種類の波長の制御光によって制御光の進行方向を2方向に切り替えることができる光制御型光路切替装置が開示されている。この光制御型光路切替装置は以下では「1対2対応光制御型光路切替装置」と記す。   The present inventors previously invented an optical path switching apparatus and method based on a new principle (see Patent Document 1). In this optical path switching device or the like, with respect to the control light absorption region in the thermal lens forming element, the control light in the wavelength band that the control light absorption region absorbs and the signal light in the wavelength band that the control light absorption region does not absorb, It has the structure which can converge and irradiate so that each optical axis may correspond. According to this configuration, the control light irradiation is selectively performed with respect to the signal light irradiation to the control light absorption region in the thermal lens forming element. When the control light irradiation is not performed simultaneously with the signal light irradiation, the signal light travels straight through the hole of the mirror with a hole. On the other hand, when the control light irradiation is performed simultaneously with the signal light irradiation, The light path is changed by reflecting with a mirror with a hole provided at an angle. Patent Document 1 discloses a light control type optical path switching device capable of switching the traveling direction of control light to two directions by control light of one type of wavelength. This light control type optical path switching device is hereinafter referred to as a “one-to-two correspondence light control type optical path switching device”.

さらに、本発明者等は、熱レンズ形成素子および穴付きミラーを複数組み合わせて用いて構成した光制御式の光路切替型光信号伝送装置および光信号光路切替方法を発明した(特許文献2参照)。この光路切替型光信号伝送装置等では、制御光吸収領域が吸収する波長帯域と制御光の波長とを1対1に対応させており、さらに、例えば吸収波長帯域の異なる色素を用いた3種類の制御光吸収領域の熱レンズ形成素子を合計7個組み合わせて使用し、併せて、3種類の波長の制御光の各々の明滅を制御することにより、例えばサーバのデータを8箇所に光制御方式で切り替えて配信するシステムが開示されている。   Furthermore, the present inventors have invented a light control type optical path switching type optical signal transmission device and an optical signal optical path switching method configured by combining a plurality of thermal lens forming elements and holed mirrors (see Patent Document 2). . In this optical path switching type optical signal transmission device or the like, the wavelength band of the control light absorption region and the wavelength of the control light are in a one-to-one correspondence, and further, for example, three types using dyes having different absorption wavelength bands A total of seven thermal lens forming elements in the control light absorption region are used in combination, and by controlling the blinking of each of the control light of three types of wavelengths, for example, the server data can be controlled at eight locations. The system which switches and distributes by this is disclosed.

なお上記の特許文献1,2に開示された光路切替の方式では、制御光を照射した場合、熱レンズ効果によって信号光のビーム断面形状はリング状に変化する。そこで、この光路切替方式を以下では「リングビーム方式」と記すこととする。   In the optical path switching methods disclosed in Patent Documents 1 and 2, when the control light is irradiated, the beam cross-sectional shape of the signal light changes into a ring shape due to the thermal lens effect. Therefore, this optical path switching method is hereinafter referred to as “ring beam method”.

さらに本発明者等は、その後、特許文献3〜6に開示される通り、光路変更方法および光路切替装置を提案した。これらの光路変更方法および光路切替装置によれば、熱レンズ形成光素子中の制御光吸収領域に、制御光吸収領域が吸収する波長帯域の制御光、および制御光吸収領域が吸収しない波長帯域の信号光を入射させ、制御光および信号光は、制御光収領域にて収束するように照射されかつ各々の光の収束点の位置が異なるように照射される。このため、制御光および信号光は、光の進行方向で制御光吸収領域の入射面またはその近辺で収束し、その後、拡散する。これにより、制御光吸収領域内で制御光を吸収した領域およびその周辺領域に温度上昇が起き、当該温度上昇に起因して可逆的に熱レンズの構造が変化し、屈折率が変化し、信号光の進行方向を変化させることができる。特許文献3〜6に記載される光路変更の方式では、制御光を照射しても信号光のビーム断面形状はほぼ円形に保たれる。そこで、当該光路変更の方式を以下では「丸ビーム方式」と記すこととする。   Furthermore, the present inventors then proposed an optical path changing method and an optical path switching device as disclosed in Patent Documents 3 to 6. According to these optical path changing methods and optical path switching devices, the control light absorption region in the thermal lens forming optical element has the control light in the wavelength band absorbed by the control light absorption region, and the wavelength band not absorbed by the control light absorption region. The signal light is incident, and the control light and the signal light are irradiated so as to converge in the control light collection region, and are irradiated so that the positions of the convergence points of the respective lights are different. For this reason, the control light and the signal light converge at or near the incident surface of the control light absorption region in the light traveling direction, and then diffuse. As a result, a temperature rise occurs in the control light absorption region in the control light absorption region and its peripheral region, and the structure of the thermal lens reversibly changes due to the temperature rise, the refractive index changes, and the signal changes. The traveling direction of light can be changed. In the optical path changing methods described in Patent Documents 3 to 6, even when the control light is irradiated, the beam cross-sectional shape of the signal light is maintained in a substantially circular shape. Therefore, the method of changing the optical path is hereinafter referred to as a “round beam method”.

特許文献4,5には、1種類の波長の制御光によって制御光の進行方向を2方向に切り替える1対2対応光制御型光路切替装置が開示されている。また特許文献6には、例えば、7芯光ファイバーの中心ファイバーから出射する信号光の光路を、中心ファイバーの周辺に設けられた光ファイバーから出射する制御光によって7方向に切り替える光制御型光路切替装置が開示されている。この光制御型光路切替装置を以下では「1対7対応光制御型光路切替装置」と記す。また特許文献7には、1対7対応光制御型光路切替装置に用いられる端面近接多芯光ファイバーおよびその製造方法が開示されている。   Patent Documents 4 and 5 disclose a one-to-two light control type optical path switching device that switches the traveling direction of control light in two directions by using control light of one type of wavelength. Patent Document 6 discloses a light control type optical path switching device that switches the optical path of signal light emitted from a central fiber of a seven-core optical fiber in seven directions by control light emitted from an optical fiber provided around the central fiber. It is disclosed. This light control type optical path switching device is hereinafter referred to as a “one-to-seven correspondence light control type optical path switching device”. Further, Patent Document 7 discloses an end-surface proximity multicore optical fiber used in a one-to-seven correspondence light control type optical path switching device and a method for manufacturing the same.

特許第3809908号公報Japanese Patent No. 3809908 特許第3906926号公報Japanese Patent No. 3906926 特開2007−225825号公報JP 2007-225825 A 特開2007−225826号公報JP 2007-225826 A 特開2007−225827号公報JP 2007-225827 A 特開2008−083095号公報JP 2008-083095 A 特開2008−076685号公報JP 2008-076765 A

特に、上記の特許文献2に開示された光路切替型光信号伝送装置等の構成によれば、制御光吸収領域が吸収する波長帯域と制御光の波長とを1対1に対応させているため、制御光波長を例えば5nm刻みに細かく、組み合わせて使用することが困難であるという課題があった。   In particular, according to the configuration of the optical path switching type optical signal transmission device and the like disclosed in Patent Document 2 above, the wavelength band absorbed by the control light absorption region and the wavelength of the control light are in a one-to-one correspondence. There is a problem that the control light wavelength is fine, for example, in increments of 5 nm and is difficult to use in combination.

そこで、近年、制御光の波長が例えば5nm刻みに細かく設定された多数の制御光を用意し、これらの制御光を組み合わせて利用することにより多数段階の光制御型光路切替装置を構築し、送信側の1種類以上の信号光の光路を、受信側の複数個の異なる方向へ切り替えるようにできる制御光波長多重方式に基づく光路切替型光信号送受信システムが要望されている。   Therefore, in recent years, a large number of control lights whose control light wavelengths are set finely in increments of 5 nm, for example, are prepared, and a combination of these control lights is used to construct a multi-stage light control type optical path switching device. There is a need for an optical path switching type optical signal transmission / reception system based on a control light wavelength multiplexing system that can switch the optical path of one or more types of signal light on the side in a plurality of different directions on the reception side.

本発明の目的は、上記の課題に鑑み、制御光に係る光源の発光スペクトル帯域、および制御光吸収層の吸収スペクトル帯域を有効に活用し、信号光とは波長の異なる複数の制御光を波長多重方式に基づき当該信号光と同一の光路を伝搬させ、光制御方式の複数の光路切替装置を組み合わせてなる制御光波長多重方式の光路切替型光信号送受信装置および光信号の光路切替方法を提供することにある。   In view of the above problems, an object of the present invention is to effectively utilize the emission spectrum band of the light source related to the control light and the absorption spectrum band of the control light absorption layer, and to control a plurality of control lights having different wavelengths from the signal light. Providing a controlled optical wavelength multiplexing optical path switching type optical signal transmission / reception device and an optical signal optical path switching method by propagating the same optical path as the signal light based on the multiplexing scheme and combining a plurality of optical path switching devices of the optical control scheme There is to do.

本発明に係る光路切替型光信号送受信装置および光信号の光路切替方法は、上記の目的を達成するため、次のように構成される。   In order to achieve the above object, an optical path switching type optical signal transmitting / receiving apparatus and an optical path switching method according to the present invention are configured as follows.

請求項1の本発明に係る光路切替型光信号送受信装置は、
Nを1以上の整数としかつMを2以上の整数とするとき、波長の異なるN個の制御光を用いて、光制御方式により、制御光とは波長の異なる1種類以上の信号光の光路を、(N+1)個の異なる方向へ切り替えるM段階の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置される1以上の光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
KをM×Nとするとき、K種類の波長の制御光を出力するK個の制御光光源と、
送信側の光信号送受信装置と制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
K種類の波長の制御光と信号光を混合して出力する合波器と、
を備え、
M段階の前記光制御型光路切替装置の各段階で、
前段の合波器から出力される信号光と制御光を同一経路で伝搬させる光路と、
Lを1以上でかつM以下の整数とするとき、L段目の光制御型光路切替装置を制御するためのN種類の波長の制御光を、L段目以降の光制御型光路切替装置を制御するための波長の制御光および信号光と分離する分波器と、
RLを0以上でかつ(N+1)以下の整数とするとき、L段目の光制御型光路切替装置で光路切替された信号光の光路に接続されるRL個の受信側の光信号送受信装置と、
前記分波器で分離された、L段目以降の光制御型光路切替装置を制御するための波長を有する制御光を((N+1)−RL)個に分配する分配器と、
L段目の光制御型光路切替装置で(N+1)個の異なる方向に光路が切り替えられ、L段目以降への光路を進む信号光の各々と、((N+1)−RL)個に分配された、L段目以降の光制御型光路切替装置を制御するための波長の制御光を混合して光路に導くための合波器と、を備える、
ことで特徴づけられる。
An optical path switching type optical signal transmission / reception device according to the present invention of claim 1 comprises:
When N is an integer of 1 or more and M is an integer of 2 or more, the optical path of one or more types of signal light having a wavelength different from that of the control light by using the N control lights having different wavelengths and the light control method Is an optical path switching type optical signal transmission / reception device including an M-stage optical control type optical path switching device that switches to (N + 1) different directions,
One or more optical signal transmitting and receiving devices arranged on the transmitting side;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
When K is M × N, K control light sources that output control light of K types of wavelengths;
An electronic control device for controlling the operation of the optical signal transmitting / receiving device on the transmission side and the control light source via the electronic control wiring;
A multiplexer for mixing and outputting control light of K types of wavelengths and signal light;
With
At each stage of the light control type optical path switching device of M stages,
An optical path for propagating the signal light and the control light output from the previous-stage multiplexer on the same path;
When L is an integer greater than or equal to 1 and less than or equal to M, the control light of the N types of wavelengths for controlling the light control type optical path switching device of the L stage is used as the light control type optical path switching device of the L stage and thereafter. A demultiplexer that separates control light and signal light having a wavelength for control;
When RL is an integer greater than or equal to 0 and less than or equal to (N + 1), RL reception-side optical signal transmission / reception devices connected to the optical path of the signal light whose optical path has been switched by the L-th stage optical control type optical path switching device; ,
A distributor that distributes the control light having a wavelength for controlling the optical control type optical path switching device of the L-th stage and later separated by the duplexer into ((N + 1) −RL) pieces;
The optical path is switched in (N + 1) different directions by the light control type optical path switching device in the L-th stage, and is distributed to each of the signal light traveling on the optical path from the L-th stage onward and ((N + 1) -RL). In addition, a multiplexer for mixing control light having a wavelength for controlling the light control type optical path switching device in the L-th stage and thereafter and guiding it to the optical path,
It is characterized by that.

上記の構成において、Nを6とし、Mを3とし、Kを18とし、Lを1〜3のうちいずれかの整数とし、RLを0〜7のいずれかの整数とし、かつ信号光を1種類であるとするとき、光制御型光路切替装置は3段階で構成される。   In the above configuration, N is 6, M is 3, K is 18, L is any integer from 1 to 3, RL is any integer from 0 to 7, and signal light is 1 When it is assumed that it is a kind, the light control type optical path switching device is composed of three stages.

上記の構成において、Pを2以上の整数とするとき、M段階の光制御型光路切替装置の各々は1対P対応光制御型光路切替装置である。   In the above configuration, when P is an integer of 2 or more, each of the M-stage light control type optical path switching devices is a one-to-P correspondence light control type optical path switching device.

上記の構成において、Pは2または7である。   In the above configuration, P is 2 or 7.

上記の構成において、1対7対応の光制御型光路切替装置は、信号光透過・制御光吸収層を有する熱レンズ形成素子を含み、制御光出射側および信号光受光側の光路は7芯光ファイバーである。   In the above configuration, the light control type optical path switching device corresponding to 1 to 7 includes a thermal lens forming element having a signal light transmission / control light absorption layer, and the optical paths on the control light emission side and the signal light reception side are 7-core optical fibers. It is.

上記の構成において、信号光は1500〜1600nmの範囲に含まれる波長の光であり、5nm毎に波長の異なる光を波長多重で用い、制御光は、1260〜1400nmの範囲に含まれる波長の光であり、5nm毎に波長の異なる光を波長多重で用いることを特徴とする。   In the above configuration, the signal light is light having a wavelength included in the range of 1500 to 1600 nm, light having different wavelengths is used by wavelength multiplexing every 5 nm, and the control light is light having a wavelength included in the range of 1260 to 1400 nm. It is characterized in that light having different wavelengths every 5 nm is used in wavelength multiplexing.

請求項7の本発明に係る光路切替型光信号送受信装置は、
各段階毎、波長の異なる6個の制御光を用いて、光制御方式により、制御光とは波長の異なる1種類の信号光の光路を7個の異なる方向へ切り替える3段階の1対7対応の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置され、信号光を出力する光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
各段階毎、6種類の波長の制御光を出力する6個の制御光光源と、
送信側の光信号送受信装置と制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
6種類の波長の制御光と1種類の信号光を混合して出力する合波器と、
を備え、
3段階の光制御型光路切替装置のうち1段目と2段目の段階で、
前段の合波器から出力される信号光と制御光を同一経路で伝搬させる光路と、
当該段階の光制御型光路切替装置を制御するための6種類の波長の制御光を、当該段階以降の光制御型光路切替装置を制御するための波長の制御光および信号光と分離する分波器と、
分波器で分離された、後段の光制御型光路切替装置を制御するための波長を有する制御光を7個に分配する分配器と、
当該段階での光制御型光路切替装置で7個の異なる方向に光路が切り替えられ、さらに後段への光路を進む信号光の各々と、7個に分配された、後段の光制御型光路切替装置を制御するための波長の制御光を混合して光路に導くための7個の合波器とを備え、
3段階の光制御型光路切替装置のうち第3段目の段階で、
前段の合波器から出力される信号光と制御光を同一経路で伝搬させる光路と、
当該段階の光制御型光路切替装置を制御するための6種類の波長の制御光を信号光と分離する分波器と、を備え、
当該段階での光制御型光路切替装置で、分波器から出力される6種類の波長の制御光を用いて、7個の異なる方向に光路が切り替えられ、これらの7個の光路のそれぞれに光信号送受信装置が接続される、ことで特徴づけられる。
An optical path switching type optical signal transmitting / receiving apparatus according to the present invention of claim 7 is provided:
Each stage has six control lights with different wavelengths and uses a light control method to switch the optical path of one type of signal light with a different wavelength from the control light in seven different directions. An optical path switching type optical signal transmission / reception device comprising the optical control type optical path switching device of
An optical signal transmitting / receiving device arranged on the transmission side and outputting signal light;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
6 control light sources that output control light of 6 different wavelengths for each stage;
An electronic control device for controlling the operation of the optical signal transmitting / receiving device on the transmission side and the control light source via the electronic control wiring;
A multiplexer that mixes and outputs six types of wavelength control light and one type of signal light;
With
Of the three-stage light control type optical path switching device, the first stage and the second stage,
An optical path for propagating the signal light and the control light output from the previous-stage multiplexer on the same path;
Demultiplexing the control light of six types of wavelengths for controlling the optical control type optical path switching device at the stage from the control light and the signal light of the wavelength for controlling the optical control type optical path switching apparatus at the stage and thereafter And
A distributor that distributes control light having a wavelength for controlling a light control type optical path switching device at a subsequent stage, separated by a duplexer, to seven;
The light control type optical path switching device at the corresponding stage switches the optical path in seven different directions, and further distributes each of the signal light traveling along the optical path to the subsequent stage and the latter seven. And 7 multiplexers for mixing the control light of the wavelength for controlling the light and guiding it to the optical path,
In the third stage of the three-stage light control type optical path switching device,
An optical path for propagating the signal light and the control light output from the previous-stage multiplexer on the same path;
A demultiplexer that separates control light of six types of wavelengths from the signal light for controlling the light control type optical path switching device at the stage,
In the optical control type optical path switching device at this stage, the optical paths are switched in seven different directions using the control light of six types of wavelengths output from the demultiplexer, and each of these seven optical paths is switched. It is characterized in that an optical signal transmitting / receiving device is connected.

請求項8の本発明に係る光路切替型光信号送受信装置は、
各段階毎、波長の異なる2個の制御光を用いて、光制御方式により、制御光とは波長の異なる1種類の信号光の光路を2個の異なる方向へ切り替える2段階の1対2対応の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置され、信号光を出力する光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
各段階毎、2種類の波長の制御光を出力する2個の制御光光源と、
送信側の光信号送受信装置と制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
2種類の波長の制御光と1種類の信号光を混合して出力する合波器と、
を備え、
2段階の前記光制御型光路切替装置の各段階で、
前段の合波器から出力される信号光と制御光を同一経路で伝搬させる光路と、
当該段階の光制御型光路切替装置を制御するための制御光を、後段の光制御型光路切替装置を制御するための波長の制御光および信号光と分離する分波器と、
当該段階の光制御型光路切替装置で2個の異なる方向に光路が切り替えられ、さらに後段への光路を進む信号光と、分配された、後段の光制御型光路切替装置を制御するための波長の制御光を混合して光路に導くための合波器と、を備える、
ことで特徴づけられる。
An optical path switching type optical signal transmission / reception device according to the present invention of claim 8 comprises:
Two-stage one-to-two correspondence that switches the optical path of one type of signal light with a different wavelength from that of the control light in two different directions using two control lights with different wavelengths at each stage. An optical path switching type optical signal transmission / reception device comprising the optical control type optical path switching device of
An optical signal transmitting / receiving device arranged on the transmission side and outputting signal light;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
Two control light sources that output control light of two types of wavelengths for each stage;
An electronic control device for controlling the operation of the optical signal transmitting / receiving device on the transmission side and the control light source via the electronic control wiring;
A multiplexer that mixes and outputs control light of two types of wavelengths and one type of signal light;
With
At each stage of the light control type optical path switching device in two stages,
An optical path for propagating the signal light and the control light output from the previous-stage multiplexer on the same path;
A demultiplexer that separates control light for controlling the light control type optical path switching device at the stage from control light and signal light of a wavelength for controlling the light control type optical path switching device at the subsequent stage;
The optical path is switched in two different directions by the light control type optical path switching device at the stage, and further, the signal light that travels the optical path to the subsequent stage and the wavelength for controlling the distributed light control type optical path switching device at the subsequent stage And a multiplexer for mixing the control light and guiding it to the optical path,
It is characterized by that.

請求項9の本発明に係る光路切替型光信号送受信装置は、
各段階毎、波長の異なる6個の制御光を用いて、光制御方式により、制御光とは波長の異なる1種類の信号光の光路を7個の異なる方向へ切り替える3段階の1対7対応の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置され、信号光を出力する光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
各段階毎、6種類の波長の制御光を出力する6個の制御光光源と、
送信側の光信号送受信装置と制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
6種類の波長の制御光と1種類の信号光を混合して出力する合波器と、
を備え、
3段階の光制御型光路切替装置のうち1段目と2段目の段階で、
前段の合波器から出力される信号光と制御光を同一経路で伝搬させる光路と、
当該段階の光制御型光路切替装置を制御するための6種類の波長の制御光を、当該段階以降の光制御型光路切替装置を制御するための波長の制御光および信号光と分離する分波器と、
分波器で分離された、後段の光制御型光路切替装置を制御するための波長を有する制御光を7より小さい数で分配する分配器と、
光制御型光路切替装置で光路切替された信号光の一部の光路に接続される1以上の受信側の光信号送受信装置と、
光制御型光路切替装置で7個の異なる方向に光路が切り替えられ、さらに後段への光路を進む信号光の各々と、後段の光制御型光路切替装置を制御するための波長の制御光を混合して光路に導くための複数の合波器と、を備える、
ことで特徴づけられる。
An optical path switching type optical signal transmission / reception device according to the present invention of claim 9 comprises:
Each stage has six control lights with different wavelengths and uses a light control method to switch the optical path of one type of signal light with a different wavelength from the control light in seven different directions. An optical path switching type optical signal transmission / reception device comprising the optical control type optical path switching device of
An optical signal transmitting / receiving device arranged on the transmission side and outputting signal light;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
6 control light sources that output control light of 6 different wavelengths for each stage;
An electronic control device for controlling the operation of the optical signal transmitting / receiving device on the transmission side and the control light source via the electronic control wiring;
A multiplexer that mixes and outputs six types of wavelength control light and one type of signal light;
With
Of the three-stage light control type optical path switching device, the first stage and the second stage,
An optical path for propagating the signal light and the control light output from the previous-stage multiplexer on the same path;
Demultiplexing the control light of six types of wavelengths for controlling the optical control type optical path switching device at the stage from the control light and the signal light of the wavelength for controlling the optical control type optical path switching apparatus at the stage and thereafter And
A distributor for distributing control light having a wavelength for controlling the latter-stage light control type optical path switching device separated by the demultiplexer in a number smaller than 7;
One or more receiving-side optical signal transmission / reception devices connected to a part of the optical path of the signal light whose optical path is switched by the optical control type optical path switching device;
The light control type optical path switching device switches the optical path in seven different directions, and further mixes each of the signal light traveling on the optical path to the subsequent stage and the control light of the wavelength for controlling the optical control type optical path switching device of the subsequent stage And a plurality of multiplexers for guiding to the optical path,
It is characterized by that.

請求項11の本発明に係る光信号の光路切替方法は、
Nを1以上の整数としかつMを2以上の整数とするとき、波長の異なるN個の制御光を用いて、光制御方式により、制御光とは波長の異なる1種類以上の信号光の光路を、(N+1)個の異なる方向へ切り替える光制御型光路切替装置をM段階組み合わせる光路切替方法であって、
KをM×Nとするとき、K種類の波長の制御光光源を、信号光の目的とする光路に導くために所定時間で明滅させ、
M段階の各段階で、
信号光と制御光とを同一の光路で伝搬させ、
K種類の波長の制御光を混合して光路に導き、
Lを1以上であってM以下の整数とするとき、L段目の光制御型光路切替装置を制御するためのN種類の波長の制御光を、L段目以降の光制御型光路切替装置を制御するための波長の制御光および信号光と分波し、
L段目の光制御型光路切替装置を制御するためのN種類の波長の制御光のいずれか1つの波長の制御光を点灯することによってL段目の信号光の光路をN種類の方向のいずれか1つに切り替え、
分波された、L段目以降の光制御型光路切替装置を制御するための波長の制御光を(N+1)個に分配し、
RLを0以上かつ(N+1)以下の整数として、L段目で光路切替された信号光の光路をRL個の光信号送受信装置に接続して送受信を行わせ、
L段目の光制御型光路切替装置でN種類の方向に光路が切替られた信号光の各々と、((N+1)−RL)個に分配された、L段目以降の光制御型光路切替装置を制御するための波長の制御光を合波して次段への光路に導き、
送信側の光信号送受信装置と受信側の光信号送受信装置と間の光路を選択的に切替接続させる、
ことを特徴とする。
An optical signal switching method of an optical signal according to the present invention of claim 11 comprises:
When N is an integer of 1 or more and M is an integer of 2 or more, the optical path of one or more types of signal light having a wavelength different from that of the control light by using the N control lights having different wavelengths and the light control method Is an optical path switching method that combines M stages of light-controlled optical path switching devices that switch (N + 1) different directions,
When K is M × N, the control light source of K types of wavelengths is blinked at a predetermined time in order to guide it to the target optical path of the signal light,
At each stage of M stage,
Propagating signal light and control light in the same optical path,
Mix control light of K types of wavelengths and guide it to the optical path.
When L is an integer greater than or equal to 1 and less than or equal to M, control light of N types of wavelengths for controlling the L-th stage light control type optical path switching apparatus is used as the light control type optical path switching apparatus after the L stage. Demultiplexing with wavelength control light and signal light to control
By turning on the control light of any one of the N types of control lights for controlling the L-stage light control type optical path switching device, the optical path of the L-stage signal light is changed to N types of directions. Switch to one of them
Distributing the divided control light of the wavelength for controlling the optical control type optical path switching device after the L-th stage to (N + 1),
RL is an integer greater than or equal to 0 and less than or equal to (N + 1), and the optical path of the signal light whose optical path has been switched in the L-th stage is connected to RL optical signal transmitting and receiving apparatuses to perform transmission and reception.
Each of the signal light whose optical paths are switched in N types of directions by the light control type optical path switching device of the L stage and the light control type optical path switching of the Lth stage and thereafter distributed to ((N + 1) −RL). Combines the wavelength control light to control the device and leads it to the optical path to the next stage,
Selectively switching and connecting the optical path between the optical signal transmission / reception device on the transmission side and the optical signal transmission / reception device on the reception side,
It is characterized by that.

本発明に係る光路切替型光信号送受信装置および光信号の光路切替方法は、次の効果を奏する。   The optical path switching type optical signal transmission / reception apparatus and optical signal switching method according to the present invention have the following effects.

第1に、代表的に1対7対応光制御型光路切替装置または1対2対応光制御型光路切替装置等を利用して多段構造で、制御光波長多重方式の光路切替型光信号送受信装置を構築したため、制御光の波長が例えば5nm刻みに細かく設定された多数の制御光を利用でき、制御光に係る光源の発光スペクトル帯域、および制御光吸収層の吸収スペクトル帯域を有効に活用することができる。   First, the optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system having a multi-stage structure using a one-to-7 correspondence optical control type optical path switching apparatus or a one-to-two correspondence optical control type optical path switching apparatus. Therefore, it is possible to use a large number of control lights whose control light wavelengths are set finely in increments of 5 nm, for example, and to effectively utilize the emission spectrum band of the light source related to the control light and the absorption spectrum band of the control light absorption layer. Can do.

第2に、制御光送信側の光信号送受信装置、制御光光源、信号光および制御光の電子制御装置、および終端側の光信号送受信装置等の各々については電子回路との接続があるが、その他の光信号伝送路および光路切替装置部分については、電気信号を一切用いず、光信号の光路切替伝送を行うことができる。特に、終端側の光信号送受信装置が電気信号を用いない受動型光センサー等の場合、制御光送信側の光信号送受信装置、制御光光源、信号光および制御光の電子制御装置の部分以外は、一切、電気信号を用いない光信号送受信システムを構築することができる。   Secondly, each of the optical signal transmission / reception device on the control light transmission side, the control light source, the electronic control device for signal light and control light, the optical signal transmission / reception device on the termination side, etc. has connection with an electronic circuit, Other optical signal transmission paths and optical path switching device portions can perform optical path switching transmission of optical signals without using any electrical signals. In particular, when the optical signal transmitter / receiver on the termination side is a passive optical sensor or the like that does not use an electrical signal, other than the optical signal transmitter / receiver on the control light transmitter side, the control light source, the signal light and the control light electronic control unit It is possible to construct an optical signal transmission / reception system that uses no electrical signal.

第3に、光路切替に要する時間を、丸ビーム方式の1対7対応光制御型光路切替装置を用いる場合、10ミリ秒以内、リングビーム方式の1対2対応光制御型光路切替装置を用いる場合、250マイクロ秒以内とすることができる。   Thirdly, the time required for switching the optical path is within 10 milliseconds when the round beam type 1-to-7 correspondence light control type optical path switching device is used, and the ring beam type 1-to-2 correspondence light control type optical path switching device is used. In some cases, it can be within 250 microseconds.

本発明の第1の実施形態に係る制御光波長多重方式の光路切替型光信号送受信装置における第1段目の光路切替装置を示すブロック構成図である。FIG. 2 is a block configuration diagram showing a first-stage optical path switching device in the optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system according to the first embodiment of the present invention. 第1の実施形態に係る光路切替型光信号送受信装置における第2段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the optical path switching apparatus of the 2nd step | paragraph in the optical path switching type optical signal transmission / reception apparatus which concerns on 1st Embodiment. 第1の実施形態に係る光路切替型光信号送受信装置における第3段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the 3rd step | paragraph optical path switching apparatus in the optical path switching type optical signal transmission / reception apparatus which concerns on 1st Embodiment. 第1の実施形態において使用される丸ビーム方式光路切替装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the round beam type optical path switching apparatus used in 1st Embodiment. 図4におけるA−A’線断面図であり、7芯光ファイバーの光出射側端面を模式的に示す図である。FIG. 5 is a cross-sectional view taken along line A-A ′ in FIG. 4, schematically showing a light emission side end face of a seven-core optical fiber. 図4におけるB−B’線断面図であり、7芯光ファイバーの受光側端面を模式的に示す図である。FIG. 5 is a cross-sectional view taken along line B-B ′ in FIG. 4, schematically showing a light receiving side end face of a seven-core optical fiber. 第1の実施形態の光路切替型光信号送受信装置に用いられる制御光光源の半導体レーザーの発振スペクトルを示すグラフである。It is a graph which shows the oscillation spectrum of the semiconductor laser of the control light source used for the optical path switching type optical signal transmission / reception apparatus of 1st Embodiment. 本発明の第1の実施形態の光路切替型光信号送受信装置に用いられる光制御型光路切替装置の熱レンズ形成素子の信号光透過・制御光吸収層の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the signal light permeation | transmission and control light absorption layer of the thermal lens formation element of the optical control type optical path switching apparatus used for the optical path switching type optical signal transmission / reception apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の制御光波長多重方式の光路切替型光信号送受信装置を概念的に示すブロック構成図である。It is a block block diagram which shows notionally the optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system of the 2nd Embodiment of this invention. 本発明の第3の実施形態の制御光波長多重方式の光路切替型光信号送受信装置における第1段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the 1st step | paragraph optical path switching apparatus in the optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system of the 3rd Embodiment of this invention. 第3の実施形態に係る光路切替型光信号送受信装置における第2段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the optical path switching apparatus of the 2nd step | paragraph in the optical path switching type optical signal transmission / reception apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る光路切替型光信号送受信装置における第3段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the 3rd step | paragraph optical path switching apparatus in the optical path switching type optical signal transmission / reception apparatus which concerns on 3rd Embodiment. 本発明の第4の実施形態の制御光波長多重方式の光路切替型光信号送受信装置における第1段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the optical path switching apparatus of the 1st step | paragraph in the optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system of the 4th Embodiment of this invention. 第4の実施形態に係る光路切替型光信号送受信装置における第2段目の光路切替装置を示すブロック構成図である。It is a block block diagram which shows the optical path switching apparatus of the 2nd step | paragraph in the optical path switching type optical signal transmission / reception apparatus which concerns on 4th Embodiment.

以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Preferred embodiments (examples) of the present invention will be described below with reference to the accompanying drawings.

〔第1の実施形態〕
図1〜図8を参照して本発明の第1の実施形態に係る制御光波長多重方式の光路切替型光信号送受信装置を説明し、併せて光信号の光路切替方法を説明する。第1の実施形態に係る光路切替型光信号送受信装置は、複数の光路切替装置を組合せ、例えば3段構造のような多段構造を有している。この場合、制御光送信側の光信号送受信装置と他端の光信号送受信装置の間を伝搬する信号光が経由する光路切替装置の個数は光路切替された全ての経路において3である。第1の実施形態に係る光路切替装置の各々には、特許文献6に記載された前述の1対7対応光制御型光路切替装置を使用しており、第1段目では光路切替装置を1個、第2段目では光路切替装置を7個、第3段目では光路切替装置を49個、用いている。制御光波長多重方式の光路切替型光信号送受装置は、波長の異なる複数の制御光を多重にして使用し、例えば、信号光の光路を第1段目の光路切替装置では7方向に切り替え、第2段目の光路切替装置では合計49(7×7)方向に切り替え、第3段目の光路切替装置では合計343(7×7×7)方向に切り替えることにより、送信側(起点側)と受信側(最終段側)との間で光信号の送受信を行う。なお多段構造は、3段構造が好ましいが、これに限定されるものではない。
[First Embodiment]
The optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system according to the first embodiment of the present invention will be described with reference to FIGS. The optical path switching type optical signal transmitting / receiving apparatus according to the first embodiment has a multi-stage structure such as a three-stage structure by combining a plurality of optical path switching apparatuses. In this case, the number of optical path switching apparatuses through which the signal light propagating between the optical signal transmitting / receiving apparatus on the control light transmitting side and the optical signal transmitting / receiving apparatus on the other end passes is 3 in all the paths that are switched. Each of the optical path switching devices according to the first embodiment uses the above-described one-to-seven-corresponding light control type optical path switching device described in Patent Document 6, and the optical path switching device is 1 in the first stage. In the second stage, seven optical path switching devices are used, and in the third stage, 49 optical path switching apparatuses are used. The optical path switching type optical signal transmission / reception apparatus of the control light wavelength multiplexing system uses a plurality of control lights having different wavelengths, for example, switches the optical path of the signal light in seven directions in the first-stage optical path switching apparatus, The second-stage optical path switching device switches to a total of 49 (7 × 7) directions, and the third-stage optical path switching device switches to a total of 343 (7 × 7 × 7) directions, thereby transmitting (starting side). And the receiving side (final stage side) transmit and receive optical signals. The multistage structure is preferably a three-stage structure, but is not limited thereto.

図1は1組の第1段目の光路切替装置の構成を示し、図2は7組が用いられる第2段目の光路切替装置のうちの1組の構成を示し、図3は49組が用いられる第3段目の光路切替装置のうちの1組の構成を示す。第1段目から第3段目の光路切替装置はいずれも1対7対応光制御型光路切替装置である。図4は、合計57組が用いられる1対7対応光制御型光路切替装置の具体的な構成例を示す。また図5は、図4のA−A’線に沿った断面図を示し、7芯光ファイバーの光出射側端面を模式的に示す。図6は図4のB−B’線に沿った断面図を示し、7芯光ファイバーの受光側端面を模式的に示す。さらに図7は第1の実施形態の光路切替型送受信装置に用いられる制御光光源の半導体レーザーの発振スペクトルを示す。図8は第1の実施形態の光路切替型信号送受信装置に用いられる光制御型光路切替装置の熱レンズ形成素子の信号光透過・制御光吸収層の吸収スペクトルを示す。   1 shows the configuration of one set of first-stage optical path switching devices, FIG. 2 shows the configuration of one of the second-stage optical path switching devices in which seven sets are used, and FIG. The structure of one set of the optical path switching apparatus of the 3rd step | stage where is used is shown. The optical path switching devices from the first stage to the third stage are all 1-to-7 correspondence light control type optical path switching apparatuses. FIG. 4 shows a specific configuration example of a 1-to-7 correspondence light control type optical path switching device in which a total of 57 sets are used. FIG. 5 is a cross-sectional view taken along the line A-A ′ in FIG. 4, and schematically shows a light emission side end face of the seven-core optical fiber. FIG. 6 is a sectional view taken along line B-B ′ in FIG. 4, and schematically shows the light-receiving side end face of the seven-core optical fiber. Further, FIG. 7 shows an oscillation spectrum of a semiconductor laser of a control light source used in the optical path switching type transmitting / receiving apparatus of the first embodiment. FIG. 8 shows an absorption spectrum of the signal light transmission / control light absorption layer of the thermal lens forming element of the light control type optical path switching device used in the optical path switching type signal transmitting / receiving device of the first embodiment.

なお本実施形態では、特許文献7に記載した端面近接多芯光ファイバーのうち、図4〜図6に示したように7芯光ファイバーを用いた1対7対応光制御型光路切替装置を複数組み合わせて用いている。   In the present embodiment, among the end-face proximity multicore optical fibers described in Patent Document 7, a plurality of one-to-seven-corresponding light control type optical path switching devices using seven-core optical fibers as shown in FIGS. 4 to 6 are combined. Used.

ここで、特許文献6に記載のように7芯光ファイバーの中心光ファイバー・コアに信号光を、6本の周辺光ファイバー・コアに制御光(N種類制御光のNが6の場合に相当)を伝搬させるが、6本の周辺光ファイバー・コア全てに制御光を伝搬させる必要はなく、周辺光ファイバー・コアのいずれか特定の1,2,3,4,5本にのみ制御光(N種類制御光のNが1,2,3,4,5の場合に相当)を伝搬させることで、各々、1対N足す1、すなわち、1対2、1対3、1対4、1対5、および、1対6対応光制御型光路切替装置として作動させることができる。   Here, as described in Patent Document 6, the signal light is propagated to the central optical fiber core of the seven-core optical fiber, and the control light (corresponding to the case where N of the N types of control lights is 6) is propagated to the six peripheral optical fiber cores. However, it is not necessary to propagate the control light to all the six peripheral optical fiber cores, and only one specific 1, 2, 3, 4, or 5 of the peripheral optical fiber cores can control light (N kinds of control light N is equivalent to 1, 2, 3, 4 and 5), respectively, by adding 1 to N, that is, 1 to 2, 1 to 3, 1 to 4, 1 to 5 and It can be operated as a 1 to 6 compatible light control type optical path switching device.

また、特許文献7に記載の端面近接多芯光ファイバーは、同じクラッド径のシングルモード光ファイバーを19芯、37芯、61芯等、最密充填構成で束ねて構成することができるが、その中心光ファイバー・コアに信号光を、周辺光ファイバー・コアに制御光を伝搬させることで、特許文献6に記載の1対7対応光制御型光路切替装置の場合と同様にして、19芯光ファイバーを用いて1対8〜20対応、37芯光ファイバーを用いて1対21〜38対応、61芯光ファイバーを用いて1対39〜62対応の光制御型光路切替装置を構成し、作動させることが可能である。   The multi-core optical fiber near the end face described in Patent Document 7 can be configured by bundling single mode optical fibers having the same cladding diameter in a close-packed configuration such as 19 cores, 37 cores, and 61 cores. By transmitting signal light to the core and control light to the peripheral optical fiber core, a 19-core optical fiber is used for the 1-to-7 correspondence light control type optical path switching device described in Patent Document 6 It is possible to configure and operate a light control type optical path switching device corresponding to 8 to 20 and corresponding to 1 to 21 to 38 using a 37-core optical fiber and corresponding to 1 to 39 to 62 using a 61-core optical fiber.

まず光路切替型光信号送受信装置およびその光路切替方法を説明し、次いで、光路切替型光信号送受信装置を構成する個々の部品の詳細について説明する。   First, an optical path switching type optical signal transmitting / receiving apparatus and an optical path switching method thereof will be described, and then details of individual components constituting the optical path switching type optical signal transmitting / receiving apparatus will be described.

図1〜図3において、第1の実施形態に係る光路切替型光信号送受信装置は、光ファイバー等からなる光路1001の制御光送信側の一端に接続された1つの光信号送受信装置1と、多数の光路3201等の各々の終端に接続された複数の光信号送受信装置3301等との接続を、3段に組み合わされた光制御型光路切替装置120,220,320などによって切り替えるものである。   1 to 3, the optical path switching type optical signal transmission / reception apparatus according to the first embodiment includes one optical signal transmission / reception apparatus 1 connected to one end on the control light transmission side of an optical path 1001 made of an optical fiber or the like, and many The connection with a plurality of optical signal transmitting / receiving devices 3301 etc. connected to the respective ends of the optical paths 3201 etc. is switched by the optical control type optical path switching devices 120, 220, 320 etc. combined in three stages.

光信号送受信装置1は例えば送信側(起点側)の光信号送受信装置であり、その個数は1に限定されず、1以上であっても良い。複数の光信号送受信装置3301等は例えば受信側(最終段側)の光信号送受信装置である。以上の送信側と受信側は逆の役割にすることもできる。
なお、図1では光信号送受信装置1を1基のみ図示しているが、複数の光信号送受信装置から信号光1001として複数の波長の信号光を多重に送信し、受信時に分波して各々受信しても良い。また、複数の光信号送受信装置が各々用いる、複数の異なる波長の信号光を分波した後、切り替えて送受信しても良い。
The optical signal transmission / reception device 1 is, for example, a transmission side (starting side) optical signal transmission / reception device, and the number thereof is not limited to 1, and may be 1 or more. The plurality of optical signal transmission / reception devices 3301 and the like are, for example, optical signal transmission / reception devices on the reception side (final stage side). The above transmission side and reception side can also be reversed.
In FIG. 1, only one optical signal transmitting / receiving device 1 is shown. However, signal light of a plurality of wavelengths is transmitted from a plurality of optical signal transmitting / receiving devices as signal light 1001, and is demultiplexed at the time of reception. You may receive it. Further, after a plurality of signal lights having different wavelengths used by a plurality of optical signal transmission / reception apparatuses are demultiplexed, they may be switched and transmitted / received.

ここで「光路」とは、空間、光ファイバー、または光導波路等の光伝送経路のことを意味する。   Here, the “optical path” means an optical transmission path such as a space, an optical fiber, or an optical waveguide.

なお、伝搬する「光」そのものを図示することはできないので「空間を伝搬する光の光路」や「光ファイバーのコアを伝搬する光路」を図示することで、その光路を伝搬する「光」を表現するものとし、「光およびその光路」という表現をする。   In addition, since the "light" that propagates cannot be illustrated, the "light" that propagates the optical path is expressed by illustrating the "optical path of light that propagates in space" and "the optical path that propagates through the core of the optical fiber". It shall be expressed as “light and its optical path”.

光制御型光路切替装置120,220,320を駆動し、信号光の光路を予め選択された特定の組合せに切り替えるための複数の波長の制御光は、複数の制御光光源11〜16,21〜26,31〜36から選択的に発振される。光路の両端にある光信号送受信装置1および光信号送受信装置3301等との信号光のやり取りに同期するよう、信号光および制御光の電子制御装置10から、信号光および制御光の電子制御配線101を通じて送られる制御電子信号によって、複数の制御光光源11〜16,21〜26,31〜36の明滅の組合せが選択される。制御光光源11〜16は第1段目(光制御型光路切替装置120)の光路切替用の制御光光源であり、制御光光源21〜26は第2段目(光制御型光路切替装置220)の光路切替用の制御光光源であり、制御光源31〜36は第3段目(光制御型光路切替装置320)の光路切替用の制御光光源である。   The control light having a plurality of wavelengths for driving the light control type optical path switching devices 120, 220, and 320 and switching the optical path of the signal light to a specific combination selected in advance is a plurality of control light sources 11 to 16, 21 to 21. 26 and 31 to 36 are selectively oscillated. From the signal light and control light electronic control device 10 to the signal light and control light electronic control device 10 so as to synchronize with the signal light exchange with the optical signal transmission / reception device 1 and the optical signal transmission / reception device 3301 at both ends of the optical path. The blinking combination of the plurality of control light sources 11-16, 21-26, 31-36 is selected according to the control electronic signal sent through. The control light sources 11 to 16 are control light sources for switching the optical path of the first stage (light control type optical path switching apparatus 120), and the control light sources 21 to 26 are the second stage (light control type optical path switching apparatus 220). The control light sources 31 to 36 are control light sources for switching the optical path of the third stage (light control type optical path switching device 320).

複数の制御光光源11〜16,21〜26,31〜36からの複数の波長の制御光1011〜1016,1021〜1026,1031〜1036と、光路1001を正方向および逆方向に進む信号光は、合波器100によって合波され、その後、共通の1つの光路1100を進行し、分波器110にて、信号光1101および第1段目光路切替用の制御光1111〜1116の各々と、第2段目および第3段目光路切替用の制御光の一群1300とに分波される。   Control light 1011 to 1016, 1021 to 1026, 1031 to 1036 of a plurality of wavelengths from a plurality of control light sources 11 to 16, 21 to 26, and 31 to 36, and signal light traveling in the forward direction and the reverse direction on the optical path 1001 Are multiplexed by the multiplexer 100, and then travel through a common optical path 1100. In the duplexer 110, each of the signal light 1101 and the control light 1111 to 1116 for switching the first-stage optical path, It is demultiplexed into a group 1300 of control light for switching the second-stage and third-stage optical paths.

分波器110にて独立に分波された信号光1101は、第1段目の光制御型光路切替装置120の中心の光ファイバー・コア(図5に示した符号400に相当する)に接続される。また、分波器110にて波長別に分波された第1段目光路切替用の制御光1111〜1116の各々は、第1段目の光制御型光路切替装置120の周辺の光ファイバー・コア(図5に示された符号401〜406の各々に相当する)に接続される。第1段目光路切替用の制御光光源11〜16に対応した制御光1111〜1116の明滅に応じて、信号光1101は第1段目の光制御型光路切替装置120の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光1201〜1207のいずれかとして第2段目に進む。   The signal light 1101 that is independently demultiplexed by the demultiplexer 110 is connected to the optical fiber core (corresponding to reference numeral 400 shown in FIG. 5) at the center of the first-stage light control type optical path switching device 120. The Each of the control light 1111 to 1116 for switching the first-stage optical path, which is demultiplexed by the wavelength by the branching filter 110, is an optical fiber core around the first-stage light-controlled optical path switching device 120 ( (Corresponding to each of reference numerals 401 to 406 shown in FIG. 5). In response to the blinking of the control lights 1111 to 1116 corresponding to the control light sources 11 to 16 for the first-stage optical path switching, the signal light 1101 is output from the seven emission sides of the first-stage light-controlled optical path switching apparatus 120. The optical path is switched to one of the optical fiber cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and proceeds to the second stage as one of the signal lights 1201 to 1207.

ここで、分波器110で分波された第2段目および第3段目の光路切替用の制御光の一群1300は分配器130によって制御光群1301〜1307の7つのビームに等分され、さらに、7基の合波器141〜147によって、上記の信号光1201〜1207と合波され、第2段目への光路1411,1421,1431,1441,1451,1461,1471を進む。第2段目の光路への切替は、第1段目の制御光光源11〜16のいずれかが点灯する6通りに加え、全てが消灯した状態の1通りの合計7通りが選択される。   Here, the group 1300 of the control light for switching the second and third stages of the optical paths separated by the demultiplexer 110 is equally divided into seven beams of the control light groups 1301 to 1307 by the distributor 130. Further, the signal light 1201 to 1207 is multiplexed by seven multiplexers 141 to 147 and travels on the optical paths 1411, 1421, 1431, 1441, 1451, 1461, 1471 to the second stage. For the switching to the second-stage optical path, in addition to the six ways in which any one of the first-stage control light sources 11 to 16 is turned on, a total of seven ways are selected in which all are turned off.

第2段目への7系統の光路を進む光の内容は、光路切替された信号光と7分割された制御光群であり、同等である。そこで、以下の説明は、図2に示すように、7系統の光路の1つである光路1411が接続する第2段目の装置について述べる。他の6本の光路についても、以下同様にして第2段目以降の光路切替が行われる。   The contents of the light traveling through the seven optical paths to the second stage are the signal light whose optical path has been switched and the control light group divided into seven, which are equivalent. Therefore, in the following description, as shown in FIG. 2, a second-stage apparatus to which an optical path 1411 that is one of seven optical paths is connected will be described. With respect to the other six optical paths, the optical path switching after the second stage is performed in the same manner.

一筋の光路1411を進む信号光および制御光群は、分波器210にて、信号光2101および第2段目光路切替用の制御光2121〜2126の各々と、第3段目光路切替用の制御光の一群2300に分波される。   The signal light and the control light group traveling along a single optical path 1411 are separated by the demultiplexer 210 from the signal light 2101 and each of the control light 2121 to 2126 for switching the second-stage optical path, and for switching the third-stage optical path. The control light is demultiplexed into a group 2300.

分波器210にて独立に分波された信号光2101は、第2段目の光制御型光路切替装置220の中心の光ファイバー・コア(図5の符号400に相当する)に接続される。また、分波器210にて波長別に分波された第2段目光路切替用の制御光2121〜2126の各々は、第2段目の光制御型光路切替装置220の周辺の光ファイバー・コア(図5の符号401〜406に相当する)に接続される。第2段目光路切替用の制御光源21〜26に対応した制御光2121〜2126の明滅に応じて、信号光2101は第2段目の光制御型光路切替装置220の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光2201〜2207のいずれかとして第3段目に進む。   The signal light 2101 independently demultiplexed by the demultiplexer 210 is connected to the optical fiber core (corresponding to reference numeral 400 in FIG. 5) at the center of the second-stage light control type optical path switching device 220. Further, each of the second stage optical path switching control lights 2121 to 2126 demultiplexed by wavelength by the duplexer 210 is an optical fiber core around the second stage optical control type optical path switching device 220 ( (Corresponding to reference numerals 401 to 406 in FIG. 5). In response to the blinking of the control lights 2121 to 2126 corresponding to the control light sources 21 to 26 for the second-stage optical path switching, the signal light 2101 is output from the seven outgoing-side optical fibers of the second-stage light-controlled optical path switching device 220. The optical path is switched to one of the cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and proceeds to the third stage as one of the signal lights 2201 to 2207.

ここで、分波器210で分波された第3段目光路切替用の制御光の一群2300は分配器230によって制御光群2301〜2307の7つのビームに等分され、さらに、7基の合波器241〜247によって、信号光2201〜2207と合波され、第3段目への光路2411,2421,2431,2441,2451,2461,2471を進む。第3段目の光路への切替は、第2段目の制御光光源21〜26のいずれかが点灯する6通りに加え、全てが消灯状態の1通りの合計7通りが選択される。   Here, the group 2300 of control light for switching the third-stage optical path demultiplexed by the demultiplexer 210 is equally divided into seven beams of the control light groups 2301 to 2307 by the distributor 230, The light is combined with the signal lights 2201 to 2207 by the multiplexers 241 to 247 and travels on the optical paths 2411, 2421, 2431, 2441, 2451, 2461, 2471 to the third stage. The switching to the third-stage optical path is selected in addition to six ways in which any one of the second-stage control light sources 21 to 26 is turned on, and a total of seven ways in which all are turned off.

第2段目の1対7対応光制御型光路切替装置220と同等のものが、全部で7個設けられ、各々で7方向の光路切替が行われる。従って、第1段目に続く第2段目では、7×7、すなわち49通りの光路が合計12個の制御光光源11〜16,21〜26の明滅の組合せで選択され、切り替えられる。   A total of seven devices equivalent to the second-stage one-to-seven-corresponding light control type optical path switching device 220 are provided, and optical paths are switched in seven directions. Therefore, in the second stage following the first stage, 7 × 7, that is, 49 optical paths, are selected and switched by combinations of blinking of a total of 12 control light sources 11 to 16 and 21 to 26.

第3段目への49系統の光路を進む光の内容は、光路切替された信号光と合計49分割された制御光群であり、同等である。そこで、以下の説明は、図3に示すように、49本の光路の1つである光路2411が接続する第3段目の装置について述べる。他の48本の光路についても、以下同様にして第3段目の光路切替が行われる。   The content of the light traveling through the 49 systems of optical paths to the third stage is the same as the signal light whose optical path has been switched and the control light group divided into a total of 49. Therefore, in the following description, as shown in FIG. 3, a third-stage apparatus to which an optical path 2411 that is one of 49 optical paths is connected will be described. For the other 48 optical paths, the third-stage optical path switching is performed in the same manner.

一筋の光路2411を進む信号光および制御光群は、分波器310にて、信号光3101および第2段目光路切替用の制御光3131〜3136の各々に分波される。   The signal light and the control light group traveling along the single optical path 2411 are demultiplexed by the demultiplexer 310 into the signal light 3101 and the control light 3131 to 136 for the second-stage optical path switching.

分波器310にて独立に分波された信号光3101は第3段目の1対7対応光制御型光路切替装置320の中心の光ファイバー・コア(図5の符号400に相当する)に接続される。また、分波器310にて波長別に分波された第3段目の光路切替用の制御光3131〜3136の各々は、第3段目の1対7対応光制御型光路切替装置320の周辺の光ファイバー・コア(図5の符号401〜406に相当する)に接続される。第3段目光路切替用の制御光源31〜36に対応した制御光3131〜3136の明滅に応じて、信号光3101は第3段目の光制御型光路切替装置320の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光3201〜3207のいずれかとして各々、終端の光信号送受信装置3301〜3307に進む。   The signal light 3101 independently demultiplexed by the demultiplexer 310 is connected to the optical fiber core (corresponding to reference numeral 400 in FIG. 5) at the center of the third-stage one-to-seven-corresponding optical path switching device 320. Is done. Further, each of the third-stage optical path switching control lights 3131 to 136 demultiplexed by wavelength by the demultiplexer 310 is the periphery of the third-stage one-to-seven-corresponding optical control type optical path switching apparatus 320. Optical fiber cores (corresponding to reference numerals 401 to 406 in FIG. 5). In response to the flickering of the control lights 3131 to 136 corresponding to the control light sources 31 to 36 for the third-stage optical path switching, the signal light 3101 is output from the seven emission-side optical fibers of the third-stage light-controlled optical path switching device 320. The optical path is switched to one of the cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and each of the signal lights 3201 to 3207 proceeds to the terminal optical signal transmission / reception devices 3301 to 3307.

第3段目の光制御型光路切替装置320と同等のものが合わせて49個設けられ、各々で7方向の光路切替が行われる。従って、第1段目から第3段目では、7の3乗、すなわち343通りの光路が合計18個の制御光光源の明滅の組合せで選択され、切り替えられる。   Forty-nine devices equivalent to the light control type optical path switching device 320 in the third stage are provided in total, and optical path switching in 7 directions is performed in each. Therefore, from the first stage to the third stage, 7 to the third power, that is, 343 light paths are selected and switched by a combination of blinking of a total of 18 control light sources.

以下、個々の装置構成要素の詳細について説明する。   Hereinafter, details of the individual device components will be described.

制御光光源11〜16,21〜26,31〜36と同じ側(送信側または起点)に設けられる光信号送受信装置1と、光路切替された終端(受信側または最終段)に設けられる光信号送受信装置3301等の仕様は、相補的に決定され、以下のような組合せを例示することができる。   Optical signal transmitting / receiving apparatus 1 provided on the same side (transmission side or starting point) as the control light sources 11-16, 21-26, 31-36, and an optical signal provided at the end (reception side or final stage) whose optical path has been switched. The specifications of the transmission / reception device 3301 and the like are determined in a complementary manner, and the following combinations can be exemplified.

(1) 制御光光源と同じ側に設けられる光信号送受信装置1、および、光路切替された終端に設けられる光信号送受信装置3301等、いずれも電気信号を光信号に変換して送信および受信を行うことのできる装置である。
具体的には、電気信号に対応して明滅する信号光光源、受光した信号光を電気信号に変換する受光部、自分が送信する信号光と受信する信号光とを、波長の違いによって分離するダイクロマティックミラー、信号光光源の温度を制御するためのペルチェ素子およびその制御電子回路等からなる光信号送受信装置である。
(2) 制御光光源と同じ側に設けられる光信号送受信装置1は、光信号を送信する機能のみを有し、光路切替された終端に設けられる光信号送受信装置3301等は光信号を受信する機能のみを有する。
(3) 制御光光源と同じ側に設けられる光信号送受信装置1は、光信号を受信する機能のみを有し、光路切替された終端に設けられる光信号送受信機3301等は光信号を送信する機能のみを有する。
(4) 制御光光源と同じ側に設けられる光信号送受信装置1は、光信号を送信する機能および受信する機能を有し、光路切替された終端に設けられる光信号送受信装置3301等はミラーを設けた光ファイバーセンサーである。
この場合、光路切替された終端に設けられる光信号送受信装置3301等は光学的受動素子であり、電気信号による制御および電力を必要としない。
(1) The optical signal transmission / reception device 1 provided on the same side as the control light source, the optical signal transmission / reception device 3301 provided at the end of which the optical path is switched, and the like all convert electrical signals into optical signals for transmission and reception. It is a device that can be performed.
Specifically, a signal light source that blinks in response to an electrical signal, a light receiving unit that converts received signal light into an electrical signal, and a signal light that is transmitted by itself and a signal light that is received are separated by a difference in wavelength. An optical signal transmitting / receiving device including a dichroic mirror, a Peltier element for controlling the temperature of a signal light source, and a control electronic circuit thereof.
(2) The optical signal transmission / reception device 1 provided on the same side as the control light source has only a function of transmitting an optical signal, and the optical signal transmission / reception device 3301 provided at the terminal whose optical path is switched receives the optical signal. Has function only.
(3) The optical signal transmitter / receiver 1 provided on the same side as the control light source has only a function of receiving an optical signal, and the optical signal transmitter / receiver 3301 provided at the terminal whose optical path is switched transmits the optical signal. Has function only.
(4) The optical signal transmission / reception device 1 provided on the same side as the control light source has a function of transmitting and receiving an optical signal, and the optical signal transmission / reception device 3301 provided at the terminal whose optical path is switched has a mirror. An optical fiber sensor provided.
In this case, the optical signal transmission / reception device 3301 and the like provided at the end of which the optical path is switched are optical passive elements, and do not require control and electric power by electric signals.

ここで、光ファイバーセンサーとしては、例えば、光ファイバー末端のミラー部近傍の光ファイバー外周に回折格子を設け、温度変化による回折格子の寸法の変化を信号光の波長変化として検出する光ファイバー温度センサー、末端端面にミラーを設け、光ファイバーの屈曲状態変化をドップラー効果による波長変化として検出する光ファイバードップラーセンサー、光ファイバー末端のミラー部近傍の光ファイバー内部に放射線によって、当該光ファイバーを透過する波長の蛍光ないし燐光を放射する光ファイバー型シンチレーター等が用いられる。   Here, as the optical fiber sensor, for example, a diffraction grating is provided on the outer periphery of the optical fiber near the mirror portion at the end of the optical fiber, and an optical fiber temperature sensor that detects a change in the size of the diffraction grating due to a temperature change as a change in wavelength of the signal light. An optical fiber Doppler sensor that detects a change in the bending state of an optical fiber as a wavelength change due to the Doppler effect, an optical fiber type that emits fluorescence or phosphorescence having a wavelength that passes through the optical fiber by radiation inside the optical fiber near the mirror at the end of the optical fiber A scintillator or the like is used.

信号光の波長としては、制御光の波長帯域とは異なる波長である。光制御型光路切替装置の熱レンズ形成素子47の信号光透過・制御光吸収層40を透過する波長であれば、光路の透過特性に応じて、任意の波長を用いることができる。光路として光通信用シングルモード光ファイバーを用いる場合、シングルモードで伝送可能な波長は概ね1260nmから1600nmの間にある。例えば、制御光の波長帯域として1260nmから1400nmを使用する場合、熱レンズ形成素子47の信号光透過・制御光吸収層として波長1200nmから1450nmの光を吸収する色素を用いると、信号光として1500nmから1600nmの波長の光を用いることができる。   The wavelength of the signal light is different from the wavelength band of the control light. Any wavelength can be used according to the transmission characteristics of the optical path as long as the wavelength transmits the signal light transmission / control light absorption layer 40 of the thermal lens forming element 47 of the light control type optical path switching device. When a single mode optical fiber for optical communication is used as the optical path, the wavelength that can be transmitted in the single mode is approximately between 1260 nm and 1600 nm. For example, when 1260 nm to 1400 nm is used as the wavelength band of the control light, if a dye that absorbs light having a wavelength of 1200 nm to 1450 nm is used as the signal light transmission / control light absorption layer of the thermal lens forming element 47, the signal light from 1500 nm Light having a wavelength of 1600 nm can be used.

従って、信号光として、例えば5nm毎に波長の異なる光を波長多重で用いることができる。信号光の光源としては、例えば、温度制御された半導体レーザーを好適に用いることができる。   Therefore, as the signal light, for example, light having different wavelengths every 5 nm can be used in wavelength multiplexing. As a light source for signal light, for example, a temperature-controlled semiconductor laser can be suitably used.

制御光の波長としては、信号光の波長帯域とは異なる波長である。光制御型光路切替装置の熱レンズ形成素子47の信号光透過・制御光吸収層に吸収される波長であれば、光路の透過特性に応じて、任意の波長を用いることができる。光路として光通信用シングルモード光ファイバーを用いる場合、シングルモードで伝送可能な波長は概ね1260nmから1600nmの間にある。例えば、信号光の波長帯域として1500nmから1600nmを使用する場合、熱レンズ形成素子47の信号光透過・制御光吸収層として波長1200nmから1450nmの光を吸収する色素を用いると、制御光として1260nmから1400nmの波長の光を用いることができる。   The wavelength of the control light is a wavelength different from the wavelength band of the signal light. Any wavelength can be used according to the transmission characteristics of the optical path as long as the wavelength is absorbed by the signal light transmission / control light absorption layer of the thermal lens forming element 47 of the light control type optical path switching device. When a single mode optical fiber for optical communication is used as the optical path, the wavelength that can be transmitted in the single mode is approximately between 1260 nm and 1600 nm. For example, when a wavelength band of 1500 nm to 1600 nm is used as the signal light wavelength band, if a dye that absorbs light having a wavelength of 1200 nm to 1450 nm is used as the signal light transmission / control light absorption layer of the thermal lens forming element 47, the control light starts from 1260 nm. Light having a wavelength of 1400 nm can be used.

従って、制御光として、例えば5nm毎に波長の異なる光を波長多重で用いることができる。   Therefore, as the control light, for example, light having different wavelengths every 5 nm can be used in wavelength multiplexing.

制御光の光源としては、例えば、InAs/GaAs量子ドット構造半導体レーザーを好適に用いることができる。半導体レーザーは素子中のレーザー発振キャビティの寸法に応じた波長で発振するため、発振波長を安定化させるためには温度制御を精密に行う必要がある。温度センサーとペルチェ素子を用いた温度制御装置によって制御光光源の温度を0℃近辺から50℃程度の温度範囲において、±0.1℃よりも高精度で制御することができる。半導体レーザーの発振波長帯域は半導体素子に流す電流によっても変化する。制御光光源の半導体レーザーの温度および電流を適切に制御することによって、例えば5nm毎に波長の異なる制御光を発信させることができる。   As the light source of the control light, for example, an InAs / GaAs quantum dot structure semiconductor laser can be suitably used. Since the semiconductor laser oscillates at a wavelength corresponding to the size of the laser oscillation cavity in the element, it is necessary to precisely control the temperature in order to stabilize the oscillation wavelength. A temperature control device using a temperature sensor and a Peltier element can control the temperature of the control light source with higher accuracy than ± 0.1 ° C. in a temperature range from around 0 ° C. to about 50 ° C. The oscillation wavelength band of the semiconductor laser also changes depending on the current flowing through the semiconductor element. By appropriately controlling the temperature and current of the semiconductor laser of the control light source, for example, control light having a different wavelength can be transmitted every 5 nm.

また、半導体レーザーの構造によっては、複数の波長の光を安定して、同時に発振可能である。図7に制御光光源の半導体レーザーの発振スペクトルの例を示す。この半導体レーザー1個から、波長5nm毎に、平均出力28mWで波長1260nmおよび1275nm、および、平均出力58mWで波長1265nmおよび1270nmの4種類の波長の制御光を取り出して使用することができる。1つの制御光光源から複数の波長の制御光が発振する場合、異なる波長の制御光を各々明滅するためには、制御光光源からの波長多重制御光を、波長選択透過フィルターにて分波し、波長毎に、例えば電気光学効果光スイッチにてオン・オフする。
制御光の強度については後に分波器130等に関連して述べる。
Further, depending on the structure of the semiconductor laser, light of a plurality of wavelengths can be stably oscillated simultaneously. FIG. 7 shows an example of the oscillation spectrum of the semiconductor laser of the control light source. From this single semiconductor laser, four types of control light with wavelengths of 1260 nm and 1275 nm with an average output of 28 mW and wavelengths of 1265 nm and 1270 nm with an average output of 58 mW can be extracted and used at every wavelength of 5 nm. When control light with a plurality of wavelengths oscillates from one control light source, in order to blink each control light with different wavelengths, the wavelength-multiplexed control light from the control light source is demultiplexed by a wavelength selective transmission filter. Each wavelength is turned on / off by, for example, an electro-optic effect optical switch.
The intensity of the control light will be described later in connection with the duplexer 130 and the like.

光制御型光路切替装置120等の熱レンズ形成素子47の信号光透過・制御光吸収層40としては、例えば、赤外線吸収色素として、日本カーリット製CIR−1081やCIR−1085をシクロヘキサノン溶液として好適に用いることができる。第1の実施形態の光路切替型光信号送受信装置に用いられる光制御型光路切替装置120等の熱レンズ形成素子の信号光透過・制御光吸収層の吸収スペクトルの一例を図8に示す。制御光および信号光と吸収スペクトルの関係を図8中に白矢印および点線で示す。波長1260,1265,1270,1275nmの4種類の制御光は、図8内の左側の白矢印が示すように、光制御型光路切替装置120等の熱レンズ形成素子47の信号光透過・制御光吸収層40の吸収帯域にある。一方、波長1550nmの信号光は図8内の右側の白矢印が示すように光制御型光路切替装置120等の熱レンズ形成素子47の信号光透過・制御光吸収層40の透過帯域にある。   As the signal light transmission / control light absorption layer 40 of the thermal lens forming element 47 such as the light control type optical path switching device 120, for example, CIR-1081 or CIR-1085 manufactured by Nippon Carlit as a cyclohexanone solution is suitably used as an infrared absorbing dye. Can be used. An example of the absorption spectrum of the signal light transmission / control light absorption layer of the thermal lens forming element such as the light control type optical path switching device 120 used in the optical path switching type optical signal transmitting / receiving device of the first embodiment is shown in FIG. The relationship between the control light and signal light and the absorption spectrum is shown by white arrows and dotted lines in FIG. The four types of control light of wavelengths 1260, 1265, 1270, and 1275 nm are transmitted through the signal light of the thermal lens forming element 47 such as the light control type optical path switching device 120 as shown by the white arrow on the left side in FIG. It is in the absorption band of the absorption layer 40. On the other hand, the signal light having a wavelength of 1550 nm is in the transmission band of the signal light transmission / control light absorption layer 40 of the thermal lens forming element 47 such as the light control type optical path switching device 120 as indicated by the white arrow on the right side in FIG.

第1の実施形態の光路切替型光信号送受信装置では、信号光の波長として、例えば、第1段目の光制御型光路切替装置120の1台を駆動するために、6種類の波長1260nm、1265nm、1270nm、1275nm、1280nm、1285nmの1群の制御光を使用する。第2段目の光制御型光路切替装置220等、合計7台を駆動するために6種類の波長1290nm、1295nm、1300nm、1305nm、1310nm、1315nmの1群の制御光を使用する。さらに、第3段目の光制御型光路切替装置320等、合計49台を駆動するために6種類の波長1320nm、1325nm、1330nm、1335nm、1340nm、1345nmの1群の制御光を使用する。制御光の波長は合計18種類である。これら3群の制御光帯域の吸収スペクトル特性に応じて、第1の実施形態の光路切替型光信号送受信装置で用いられる第1段目、第2段目、第3段目の光制御型光路切替装置120,220,230の各々の熱レンズ形成素子47の信号光透過・制御光吸収層40における色素の濃度は、当該制御光群の波長に応じ、吸光度2ないし3の範囲になるよう、適宜、調整することが好ましい。例えば、図8に示すような吸収スペクトル特性の熱レンズ形成素子47の信号光透過・制御光吸収層40を有する光制御型光路切替装置は第1段目には好適に用いられる。   In the optical path switching type optical signal transmission / reception device of the first embodiment, as the wavelength of the signal light, for example, in order to drive one of the first-stage light control type optical path switching device 120, six types of wavelengths 1260 nm, A group of control lights of 1265 nm, 1270 nm, 1275 nm, 1280 nm, and 1285 nm are used. In order to drive a total of seven units such as the light control type optical path switching device 220 in the second stage, a group of control lights having six wavelengths 1290 nm, 1295 nm, 1300 nm, 1305 nm, 1310 nm, and 1315 nm are used. Further, a group of control lights having six wavelengths 1320 nm, 1325 nm, 1330 nm, 1335 nm, 1340 nm, and 1345 nm are used to drive a total of 49 units such as the third-stage light control type optical path switching device 320. There are a total of 18 wavelengths of control light. The first-stage, second-stage, and third-stage optical control-type optical paths used in the optical path switching type optical signal transmitting / receiving apparatus of the first embodiment according to the absorption spectrum characteristics of these three groups of control optical bands. The concentration of the dye in the signal light transmission / control light absorption layer 40 of each thermal lens forming element 47 of the switching device 120, 220, 230 is in the range of absorbance 2 to 3 depending on the wavelength of the control light group. It is preferable to adjust appropriately. For example, a light control type optical path switching device having the signal light transmission / control light absorption layer 40 of the thermal lens forming element 47 having absorption spectrum characteristics as shown in FIG. 8 is preferably used in the first stage.

しかるに第2段目の光制御型光路切替装置220等、合計7台を駆動するための6種類の波長のうち1305〜1315nmに関しては吸光度が2を下回る。この場合、第2段目の光制御型光路切替装置220における熱レンズ形成素子47の信号光透過・制御光吸収層40の色素濃度は、第1段目におけるよりも、1.1〜1.2倍高濃度にすることが好ましい。   However, the absorbance is less than 2 for 1305 to 1315 nm among the six types of wavelengths for driving a total of seven units such as the light control type optical path switching device 220 in the second stage. In this case, the dye concentration of the signal light transmission / control light absorption layer 40 of the thermal lens forming element 47 in the second-stage light control type optical path switching device 220 is 1.1 to 1. It is preferable that the concentration be twice as high.

同様にして、第3段目の光制御型光路切替装置320等、合計49台を駆動するための6種類の波長1320〜1345nmに関しては第3段目の光制御型光路切替装置320における熱レンズ形成素子47の信号光透過・制御光吸収層40の色素濃度は、第1段目におけるよりも1.5〜1.6倍高濃度にすることが好ましい。   Similarly, for the six types of wavelengths 1320 to 1345 nm for driving a total of 49 units, such as the third-stage light-controlled optical path switching device 320, the thermal lens in the third-stage light-controlled optical path switching device 320 The dye concentration of the signal light transmission / control light absorption layer 40 of the forming element 47 is preferably 1.5 to 1.6 times higher than that in the first stage.

合波器100としては、例えば波長1500〜1600nmの信号光を透過し、波長帯域1260〜1400nmの制御光を反射する特性の波長選択反射ミラーを用いることができる。   As the multiplexer 100, for example, a wavelength selective reflection mirror that transmits signal light having a wavelength of 1500 to 1600 nm and reflects control light having a wavelength band of 1260 to 1400 nm can be used.

合波器100に接続する光路1100としては、空間、光ファイバー、または光導波路等の光伝送経路を用いることができるが、第1の実施形態では、光通信用シングルモード光ファイバーを用いることとする。   As the optical path 1100 connected to the multiplexer 100, an optical transmission path such as a space, an optical fiber, or an optical waveguide can be used. In the first embodiment, a single mode optical fiber for optical communication is used.

分波器110は、信号光1101および第1段目光路切替用の制御光1111〜1116の各々と、第2段目および第3段目光路切替用の制御光の一群1300に分波するものである。分波器110は具体的には、或る波長よりも長い波長は透過し、当該波長よりも短い波長は反射する波長選択透過・反射ミラー(エッジ・フィルター)または或る波長よりも長い波長は反射し、当該波長よりも短い波長は透過するエッジ・フィルター、および、特定の波長のみを選択的に反射または透過するミラー(バンドパス・フィルター)を適宜に組み合わせたものである。その動作は、例えば、まず、1500nmよりも長波長を選択的に反射(または透過)するエッジ・フィルターによって信号光1101を分離し、次いで波長1290〜1400nmの光を選択的に反射(または透過)するエッジ・フィルターによって第2段目以降への制御光群1300を分離し、さらに、第1段目の光制御型光路切替装置120のための制御光1111〜1116(例えば波長1260〜1285nm)を各々の波長に対応するエッジ・フィルターで分波することができる。   The demultiplexer 110 demultiplexes the signal light 1101 and the control light 1111 to 1116 for switching the first-stage optical path, and the group 1300 of control light for switching the second-stage and third-stage optical paths. It is. Specifically, the duplexer 110 transmits a wavelength longer than a certain wavelength and reflects a wavelength shorter than the wavelength, or reflects a wavelength selective transmission / reflection mirror (edge filter) that reflects a wavelength longer than a certain wavelength. An edge filter that reflects and transmits a wavelength shorter than the wavelength, and a mirror (bandpass filter) that selectively reflects or transmits only a specific wavelength are appropriately combined. For example, the signal light 1101 is first separated by an edge filter that selectively reflects (or transmits) a wavelength longer than 1500 nm, and then light having a wavelength of 1290 to 1400 nm is selectively reflected (or transmitted). The control light group 1300 for the second and subsequent stages is separated by the edge filter, and control lights 1111 to 1116 (for example, wavelengths 1260 to 1285 nm) for the first-stage light control type optical path switching device 120 are further separated. The signal can be demultiplexed by an edge filter corresponding to each wavelength.

第1の実施形態の制御光波長多重方式の光路切替型光信号送受信装置で用いられる第1段目、第2段目、3段目の光制御型光路切替装置120,220,230の動作は同等であるので、以下、第1段目を例にとり、詳細を説明する。   The operations of the first-stage, second-stage, and third-stage optical control type optical path switching devices 120, 220, and 230 used in the optical path switching type optical signal transmission / reception apparatus of the control optical wavelength multiplexing system of the first embodiment are as follows. Since they are equivalent, the details will be described below by taking the first stage as an example.

図4に示すように、第1段目の光制御型光路切替装置120において、信号光4200は、制御光の照射がない場合、制御光出射側の7芯光ファイバー440の中心コア400から出射し、直進して信号光受光側7芯光ファイバー450の中心コア420へ入射する。   As shown in FIG. 4, in the first-stage light control type optical path switching device 120, the signal light 4200 is emitted from the central core 400 of the seven-core optical fiber 440 on the control light emission side when there is no control light irradiation. Then, the light travels straight and enters the central core 420 of the signal light receiving side seven-core optical fiber 450.

図4において、矢印4001は光制御型光路切替装置120での制御光の進行方向を示す。制御光4010または4020等、および信号光4200が、熱レンズ形成素子47の信号光透過・制御光吸収層40またはその近辺にて収束し、かつ制御光4010または4020等、および信号光4200の各々の収束点の位置が光軸に対し垂直方向で相異なるように照射される。制御光4010または制御光4020等の波長は、信号光透過・制御光吸収層40が吸収する波長帯域から選ばれる。信号光4200の波長は、信号光透過・制御光吸収層40が吸収しない波長帯域から選ばれる。制御光4010または制御光4020等と信号光4200は、信号光透過・制御光吸収層40またはその近辺に各々収束して入射され、1つ以上の制御光4010または制御光4020等の各々の照射の有無および各々の照射強度に応じ、信号光透過・制御光吸収層40内にて制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因する屈折率変化により、信号光の進行方向を変える。進行方向が変えられた信号光4201または信号光4202等は、光路切替要求に応じ、受光側の光ファイバー・コア420〜426に選択的に入射される。光路切替された信号光は、受光側の光ファイバー以外に、後段の光学素子へ空間結合させても良い。   In FIG. 4, an arrow 4001 indicates the traveling direction of the control light in the light control type optical path switching device 120. The control light 4010 or 4020 or the like and the signal light 4200 converge at the signal light transmission / control light absorbing layer 40 of the thermal lens forming element 47 or the vicinity thereof, and the control light 4010 or 4020 or the like and the signal light 4200 respectively. Irradiation is performed so that the positions of the converging points are different in the direction perpendicular to the optical axis. The wavelength of the control light 4010 or the control light 4020 is selected from the wavelength band that the signal light transmission / control light absorption layer 40 absorbs. The wavelength of the signal light 4200 is selected from a wavelength band that the signal light transmission / control light absorption layer 40 does not absorb. The control light 4010 or the control light 4020 or the like and the signal light 4200 are respectively converged and incident on the signal light transmitting / control light absorbing layer 40 or the vicinity thereof, and each of the one or more control lights 4010 or the control light 4020 is irradiated. Depending on the presence or absence of each and the intensity of each irradiation, the direction of signal light travel is determined by the refractive index change caused by the temperature rise in the area where the control light is absorbed in the signal light transmission / control light absorption layer 40 and the surrounding area. Change. The signal light 4201 or the signal light 4202 whose traveling direction has been changed is selectively incident on the optical fiber cores 420 to 426 on the light receiving side in response to an optical path switching request. The signal light whose optical path has been switched may be spatially coupled to a subsequent optical element in addition to the optical fiber on the light receiving side.

第1段目の光制御型光路切替装置120の受光側の光ファイバー・コア420〜426に入射した、7方向に光路切替された信号光1201〜1207は、各々、合波器141〜147に導かれる。合波器141〜147に導かれる信号光は、光路として受光側の光ファイバーを用いず、空間を伝搬させても良い。   The signal lights 1201 to 1207 whose optical paths are switched in the seven directions and incident on the optical fiber cores 420 to 426 on the light receiving side of the first-stage light control type optical path switching device 120 are guided to the multiplexers 141 to 147, respectively. It is burned. The signal light guided to the multiplexers 141 to 147 may propagate through the space without using the optical fiber on the light receiving side as an optical path.

一方、分波器110で分波された第2段目以降への制御光群1300は分配器130によって制御光群1301〜1307の7つのビームに等分され、さらに、7基の合波器141〜147によって、信号光1201〜1207と合波され、第2段目への光路1411,1421,1431,1441,1451,1451.1461,1471を進む。   On the other hand, the control light group 1300 to the second and subsequent stages demultiplexed by the demultiplexer 110 is equally divided into seven beams of the control light groups 1301 to 1307 by the distributor 130, and further, seven multiplexers 141 to 147 are combined with the signal lights 1201 to 1207 and travel on the optical paths 1411, 1421, 1431, 1441, 1451, 1451.1461 and 1471 to the second stage.

分配器130としては、公知のビームスプリッターを好適に用いることができる。1対7分岐のビームスプリッターだけでなく、既製の1対8分岐のビームスプリッターを7分岐用に用いても良い。   A known beam splitter can be suitably used as the distributor 130. In addition to the 1: 7 branch beam splitter, an off-the-shelf 1: 8 branch beam splitter may be used for seven branches.

第1の実施形態の光路切替型光信号送受信装置において、第1段目の1対7対応光制御型光路切替装置120に供給される制御光パワーは、制御光光源11〜16から合波器100、光路1100および分波器110における伝送ロスを考慮した上で、第1段目の1対7対応光制御型光路切替装置120の直前において10〜40mWであることが好ましく、20〜30mWであればより好ましい。制御光パワーが10mWよりも小さいと、充分な光路切替が行えない。また制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。   In the optical path switching type optical signal transmitting / receiving apparatus of the first embodiment, the control light power supplied to the first-stage one-to-seven corresponding optical control type optical path switching apparatus 120 is a multiplexer from the control light sources 11-16. 100, the optical path 1100, and the transmission loss in the branching filter 110 are taken into consideration, and it is preferably 10 to 40 mW immediately before the first-stage one-to-seven corresponding light control type optical path switching device 120. More preferably. If the control light power is less than 10 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked.

第1の実施形態の光路切替型光信号送受信装置において、第2段目の1対7対応光制御型光路切替装置220に供給される制御光は、制御光光源21〜26から合波器100、光路1100、分波器110を経由した後、分配器130にて7分割され、さらに光路1301等、合波器141等、光路1411等、分波器210等を経由する。そこで、第2段目の1対7対応光制御型光路切替装置220に供給される制御光パワーは、上記経路における伝送ロスおよび7分割を考慮した上で、第2段目の1対7対応光制御型光路切替装置220の各々の直前において10〜40mWであることが好ましく、20〜30mWであればより好ましい。制御光パワーが10mWよりも小さいと、充分な光路切替が行えない。また、制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。特定の波長の制御光光源1基では必要とする制御光パワーに足りない場合は、同一波長で発振する半導体レーザーを複数、同期させて明滅させ、出射したレーザーを合波して用いれば良い。   In the optical path switching type optical signal transmission / reception apparatus of the first embodiment, the control light supplied to the second-stage one-to-seven corresponding optical control type optical path switching apparatus 220 is transmitted from the control light sources 21 to 26 to the multiplexer 100. After passing through the optical path 1100 and the demultiplexer 110, it is divided into seven by the distributor 130, and further through the optical path 1301, etc., the multiplexer 141, etc., the optical path 1411, etc., the demultiplexer 210, etc. Thus, the control light power supplied to the second-stage one-to-seven-corresponding optical path switching device 220 corresponds to the second-stage one-to-seven, taking into account the transmission loss and seven divisions in the above path. It is preferably 10 to 40 mW immediately before each of the light control type optical path switching devices 220, and more preferably 20 to 30 mW. If the control light power is less than 10 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked. If the control light power required by one control light source having a specific wavelength is insufficient, a plurality of semiconductor lasers oscillating at the same wavelength may be blinked in synchronization, and the emitted lasers may be combined and used.

上記の光路切替型光信号送受信装置において、第3段目の1対7対応光制御型光路切替装置に供給される制御光は、制御光光源31〜36から合波器100、光路1100、分波器110を経由した後、分配器130にて7分割され、次に光路1301等、合波器141等、光路1411等、分波器210等、光路2300を経由し、次に分配器230にて7分割され、さらに光路2301等、合波器241等、光路2411等を経由する。そこで、第3段目の1対7光制御型光路切替装置320に供給される制御光パワーは経路における伝送ロスおよび2回の7分割すなわち49分割を考慮した上で、第3段目の1対7対応光制御型光路切替装置320の各々の直前において10〜40mWであることが好ましく、20〜30mWであればより好ましい。制御光パワーが10mWよりも小さいと、充分な光路切替が行えない。また、制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。特定の波長の制御光光源1基では必要とする制御光パワーに足りない場合は、同一波長で発振する半導体レーザーを複数、同期させて明滅させ、出射したレーザーを合波して用いれば良い。   In the above optical path switching type optical signal transmission / reception apparatus, the control light supplied to the third-stage one-to-seven correspondence optical control type optical path switching apparatus is transmitted from the control light sources 31 to 36 to the multiplexer 100, the optical path 1100, the splitting light. After passing through the waver 110, it is divided into seven by the distributor 130, and then passes through the optical path 2300, such as the optical path 1301, the multiplexer 141, the optical path 1411, the duplexer 210, and the like, and then the distributor 230. And further passes through the optical path 2301, etc., the multiplexer 241 etc., the optical path 2411, etc. Therefore, the control light power supplied to the third-stage one-to-seven light control type optical path switching device 320 takes into account the transmission loss in the path and two 7 divisions, that is, 49 divisions, and the 1st stage 1 It is preferably 10 to 40 mW immediately before each of the pair 7 corresponding light control type optical path switching device 320, and more preferably 20 to 30 mW. If the control light power is less than 10 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked. If the control light power required by one control light source having a specific wavelength is insufficient, a plurality of semiconductor lasers oscillating at the same wavelength may be blinked in synchronization, and the emitted lasers may be combined and used.

合波器141〜147としては、例えば波長1500〜1600nmの信号光を透過し、波長帯域1260〜1400nmの制御光を反射する特性の波長選択反射ミラーを用いることができる。合波器141〜147として2本のシングルモード光ファイバーのコア部分を融着させた光ファイバー型合波器を用いることもできる。   As the multiplexers 141 to 147, for example, wavelength selective reflection mirrors having characteristics of transmitting signal light having a wavelength of 1500 to 1600 nm and reflecting control light having a wavelength band of 1260 to 1400 nm can be used. As the multiplexers 141 to 147, an optical fiber type multiplexer in which the core portions of two single mode optical fibers are fused can also be used.

前述のように第2段目への7系統の光路1411,1421,1431,1441,1451,1461,1471を進む光の内容は、光路切替された上記信号光と7分割された上記制御光群であり、同等である。そこで、以下の説明は、図2に示すように、7系統の光路の1つである光路1411が接続する第2段目の装置について述べる。他の6本の光路についても、以下同様にして第2段目以降の光路切替が行われる。   As described above, the contents of the light traveling on the seven optical paths 1411, 1421, 1431, 1441, 1451, 1461, 1471 to the second stage are the signal light whose path has been switched and the control light group divided into seven. Is equivalent. Therefore, in the following description, as shown in FIG. 2, a second-stage apparatus to which an optical path 1411 that is one of seven optical paths is connected will be described. With respect to the other six optical paths, the optical path switching after the second stage is performed in the same manner.

合波器141に接続する光路1411としては、空間、光ファイバー、または光導波路等の光伝送経路を用いることができるが、第1の実施形態では、光通信用シングルモード光ファイバーを用いることとする。   As the optical path 1411 connected to the multiplexer 141, an optical transmission path such as a space, an optical fiber, or an optical waveguide can be used. In the first embodiment, a single mode optical fiber for optical communication is used.

分波器210は、信号光2101および第2段目光路切替用の制御光2121〜2126の各々と、第3段目光路切替用の制御光の一群2300に分波するものであり、第1段目の分波器110と同様なものを用いることができる。すなわち、分波器210は、或る波長よりも長い波長は透過し、当該波長よりも短い波長は反射する波長選択透過・反射ミラー(エッジ・フィルター)または或る波長よりも長い波長は反射し、当該波長よりも短い波長は透過するエッジ・フィルター、および、特定の波長のみを選択的に反射または透過するミラー(バンドパス・フィルター)を適宜に組み合わせたものである。その動作は、例えば、まず、1500nmよりも長波長を選択的に反射(または透過)するエッジ・フィルターによって信号光2101を分離し、次いで、波長1320〜1400nmの光を選択的に反射(または透過)するエッジ・フィルターによって第3段目への制御光群2300を分離し、さらに、第2段目の光制御型光路切替装置220のための制御光2201〜2206(例えば波長1290〜1315nm)を各々の波長に対応するエッジ・フィルターで分波することができる。   The demultiplexer 210 demultiplexes the signal light 2101 and the control light 2121 to 2126 for switching the second stage optical path into a group 2300 of control light for switching the third stage optical path. The same one as the stage duplexer 110 can be used. That is, the demultiplexer 210 transmits a wavelength longer than a certain wavelength and reflects a wavelength shorter than the wavelength, or reflects a wavelength longer than a certain wavelength. An edge filter that transmits a wavelength shorter than the wavelength and a mirror (bandpass filter) that selectively reflects or transmits only a specific wavelength are appropriately combined. For example, the signal light 2101 is first separated by an edge filter that selectively reflects (or transmits) wavelengths longer than 1500 nm, and then the light of wavelengths 1320 to 1400 nm is selectively reflected (or transmitted). ), The control light group 2300 to the third stage is separated by the edge filter, and the control lights 2201 to 2206 (for example, wavelengths 1290 to 1315 nm) for the second-stage light control type optical path switching device 220 are further separated. The signal can be demultiplexed by an edge filter corresponding to each wavelength.

光路切替型光信号送受信装置で用いられる第2段目の光制御型光路切替装置220の動作は第1段目の光制御型光路切替装置120と全く同等であるので、説明は省略する。   The operation of the second-stage optical control type optical path switching device 220 used in the optical path switching type optical signal transmission / reception device is exactly the same as that of the first-stage optical control type optical path switching device 120, and thus the description thereof is omitted.

光路切替型光信号送受信装置で用いられる第2段目の光制御型光路切替装置220の受光側の光ファイバー・コア(図6の符号420〜426に相当する)に入射した、7方向に光路切替された信号光2201〜2207は、各々、合波器241〜247に導かれる。合波器241〜247に導かれる信号光は、光路として受光側の光ファイバーを用いず、空間を伝搬させても良い。   Optical path switching in seven directions incident on the optical fiber core (corresponding to reference numerals 420 to 426 in FIG. 6) on the light receiving side of the second-stage optical control optical path switching apparatus 220 used in the optical path switching optical signal transmission / reception apparatus The signal lights 2201 to 2207 thus guided are guided to the multiplexers 241 to 247, respectively. The signal light guided to the multiplexers 241 to 247 may propagate through the space without using the optical fiber on the light receiving side as the optical path.

一方、分波器210で分波された第3段目への制御光群2300は分配器230によって制御光群2301〜2307の7つのビームに等分され、さらに、7基の合波器241〜247によって、信号光2201〜2207と合波され、第2段目への光路2411,2421,2431,2441,2451,2461,2471を進む。   On the other hand, the control light group 2300 to the third stage demultiplexed by the demultiplexer 210 is equally divided into seven beams of the control light groups 2301 to 2307 by the distributor 230, and further, seven multiplexers 241. ˜247 are combined with the signal lights 2201 to 2207 and travel on the optical paths 2411, 2421, 2431, 2441, 2451, 2461, 2471 to the second stage.

分配器230としては、公知のビームスプリッターを好適に用いることができる。1対7分岐のビームスプリッターだけでなく、既製の1対8分岐のビームスプリッターを7分岐用に用いても良い。   A known beam splitter can be suitably used as the distributor 230. In addition to the 1: 7 branch beam splitter, an off-the-shelf 1: 8 branch beam splitter may be used for seven branches.

合波器241〜247としては、例えば波長1500〜1600nmの信号光を透過し、波長帯域1260〜1400nmの制御光を反射する特性の波長選択反射ミラーを用いることができる。合波器241〜247として2本のシングルモード光ファイバーのコア部分を融着させた光ファイバー型合波器を用いることもできる。   As the multiplexers 241 to 247, for example, wavelength selective reflection mirrors having characteristics of transmitting signal light having a wavelength of 1500 to 1600 nm and reflecting control light having a wavelength band of 1260 to 1400 nm can be used. As the multiplexers 241 to 247, an optical fiber type multiplexer in which the core portions of two single mode optical fibers are fused can also be used.

前述のように第3段目への7系統の光路2411,2421,2431,2441,2451,2461,2471を進む光の内容は、光路切替された信号光と7分割された制御光群であり、同等である。そこで、以下の説明は、図3に示すように、7系統の光路の1つである2411が接続する第3段目の装置について述べる。他の6本の光路についても、以下同様にして第3段目の光路切替が行われる。   As described above, the contents of the light traveling on the seven optical paths 2411, 2421, 2431, 2441, 2451, 2461, 2471 to the third stage are the signal light whose path has been switched and the control light group divided into seven. Are equivalent. Therefore, in the following description, as shown in FIG. 3, a third-stage apparatus to which 2411 which is one of seven optical paths is connected will be described. For the other six optical paths, the third-stage optical path switching is performed in the same manner.

合波器241に接続する光路2411としては、空間、光ファイバー、または光導波路等の光伝送経路を用いることができるが、第1の実施形態では、光通信用シングルモード光ファイバーを用いることとする。   As the optical path 2411 connected to the multiplexer 241, an optical transmission path such as a space, an optical fiber, or an optical waveguide can be used. In the first embodiment, a single mode optical fiber for optical communication is used.

分波器310は、信号光3101および第3段目光路切替用の制御光3131〜3136の各々を分波するものである。すなわち、分波器310は、或る波長よりも長い波長は透過し、当該波長よりも短い波長は反射する波長選択透過・反射ミラー(エッジ・フィルター)または或る波長よりも長い波長は反射し、当該波長よりも短い波長は透過するエッジ・フィルター、および、特定の波長のみを選択的に反射または透過するミラー(バンドパス・フィルター)を適宜に組み合わせたものである。その動作は、例えば、まず、1500nmよりも長波長を選択的に反射(または透過)するエッジ・フィルターによって制御光2101を分離し、次いで、例えば波長1345〜1320nmの光を選択的に反射(または透過)するエッジ・フィルターによって第3段目への制御光3131〜3136(例えば1345,1340,1335,1330,1325,1320nm)を順次、分離する。   The demultiplexer 310 demultiplexes each of the signal light 3101 and the control light 3131 to 136 for the third-stage optical path switching. That is, the demultiplexer 310 transmits a wavelength longer than a certain wavelength and reflects a wavelength shorter than the wavelength, or reflects a wavelength longer than a certain wavelength. An edge filter that transmits a wavelength shorter than the wavelength and a mirror (bandpass filter) that selectively reflects or transmits only a specific wavelength are appropriately combined. For example, the control light 2101 is first separated by an edge filter that selectively reflects (or transmits) wavelengths longer than 1500 nm, and then selectively reflects (or, for example, light having a wavelength of 1345 to 1320 nm). The control light 3131 to 136 (for example, 1345, 1340, 1335, 1330, 1325, and 1320 nm) to the third stage are sequentially separated by the edge filter that transmits.

光路切替型光信号送受信装置で用いられる第3段目の光制御型光路切替装置320の動作は第1段目の光制御型光路切替装置120と全く同等であるので、説明は省略する。   The operation of the third-stage light-controlled optical path switching device 320 used in the optical-path-switching optical signal transmitting / receiving device is exactly the same as that of the first-stage light-controlled optical path switching device 120, and thus the description thereof is omitted.

第3段目の光制御型光路切替装置320によって7方向に光路切替された信号光3201〜3207は、各々の光路を伝搬し、光信号送受信装置3301〜3307の各々に導かれる。   The signal lights 3201 to 3207 whose optical paths are switched in the seven directions by the third-stage light control type optical path switching device 320 propagate through the respective optical paths and are guided to the optical signal transmission / reception devices 3301 to 3307.

第1段目、第2段目、第3段目の光制御型光路切替装置120,220,320の光路切替の組合せによって選択的に接続された制御光送信側の光信号送受信装置1と終端側の343基中1基の光信号送受信装置3301等との間の光路が開通されたときには、双方向での光送受信が可能である。   Control signal transmission side optical signal transmission / reception device 1 and termination connected selectively by a combination of optical path switching of first-stage, second-stage, and third-stage optical control-type optical path switching apparatuses 120, 220, and 320 When an optical path between one of the 343 optical signal transmitting / receiving devices 3301 and the like is opened, bidirectional optical transmission / reception is possible.

終端側の343基の光信号送受信装置3301等から制御光送信側の光信号送受信装置1へ光路開放の要求を伝えるタイミングは、光信号送受信装置1との光路が開通したときに限られる。終端側の343基の光信号送受信装置3301等がミラーを設けた光ファイバーセンサーのような受動光素子の場合は、信号光および制御光の電子制御装置10によって「時間分割多重」の制御方式によって、343基の光信号送受信装置3301等との接続を一定時間毎に切り替え、定期的に光信号のやり取りを行うことができる。例えば、光路切替に要する時間を10ミリ秒、光信号の送受信に要する時間を20ミリ秒と仮定すると、10.29秒で終端側の343基の光信号送受信装置全てと光信号の送受信が可能である。   The timing to transmit a request for opening an optical path from the 343 optical signal transmitting / receiving apparatuses 3301 on the termination side to the optical signal transmitting / receiving apparatus 1 on the control light transmitting side is limited to when the optical path to the optical signal transmitting / receiving apparatus 1 is opened. In the case of a passive optical element such as an optical fiber sensor in which the 343 optical signal transmission / reception devices 3301 and the like on the termination side are provided with a mirror, the control system of “time division multiplexing” by the electronic control device 10 of signal light and control light, The connection with 343 optical signal transmission / reception devices 3301 and the like can be switched at regular intervals, and optical signals can be exchanged periodically. For example, assuming that the time required for optical path switching is 10 milliseconds and the time required for optical signal transmission / reception is 20 milliseconds, optical signals can be transmitted / received to / from all 343 optical signal transmission / reception devices on the termination side in 10.29 seconds. It is.

前述した第1の実施形態に係る光路切替型光信号送受信装置および光路切替方法によれば、次の効果を奏する。
第1に、制御光送信側の光信号送受信装置、制御光光源、信号光および制御光の電子制御装置、および終端側の光信号送受信装置等については電子回路との接続があるが、その他の光信号伝送路および光路切替装置部分については、電気信号を一切用いず、光信号の光路切替伝送を行うことができる。
特に、終端側の光信号送受信装置が電気信号を用いない受動型光センサー等の場合、制御光送信側の光信号送受信装置、制御光光源、信号光および制御光の電子制御装置の部分以外は、一切、電気信号を用いない光信号送受信システムを構築することができる。
第2に、光路切替に要する時間を、丸ビーム方式の1対7対応光制御型光路切替装置を用いる場合、10ミリ秒以内、リングビーム方式の1対2対応光制御型光路切替装置を用いる場合、250マイクロ秒以内とすることができる。
The optical path switching type optical signal transmitting / receiving apparatus and optical path switching method according to the first embodiment described above have the following effects.
First, the optical signal transmission / reception device on the control light transmission side, the control light source, the electronic control device for signal light and control light, and the optical signal transmission / reception device on the termination side are connected to electronic circuits. The optical signal transmission path and the optical path switching device portion can perform optical path switching transmission of an optical signal without using any electrical signal.
In particular, when the optical signal transmitter / receiver on the termination side is a passive optical sensor or the like that does not use an electrical signal, other than the optical signal transmitter / receiver on the control light transmitter side, the control light source, the signal light and the control light electronic control unit It is possible to construct an optical signal transmission / reception system that uses no electrical signal.
Second, the time required for optical path switching is within 10 milliseconds when using a round beam type 1-to-7 optical control type optical path switching device, and a ring beam type 1-to-2 optical control type optical path switching device is used. In some cases, it can be within 250 microseconds.

〔第2の実施形態〕
図9を参照して、本発明の第2の実施形態に係る制御光波長多重方式の光路切替型光信号送受信装置とその光路切替方法を説明する。第2の実施形態に係る光路切替型光信号送受信装置は、前述した特許文献1および特許文献2に記載のリングビーム方式、または、前述した特許文献4および特許文献5に記載の丸ビーム方式の1対2対応光制御型光路切替装置を複数組み合わせて使用し、複数の波長の制御光を多重に用い、1対2対応光制御型光路切替装置の各々において1つの光信号送受信装置への接続または後段への接続を選択して切り替えて光信号の送受信を行う。第2の実施形態においては、第1の実施形態で用いられた、後段への制御光群を分配する分配器は不要である。
[Second Embodiment]
With reference to FIG. 9, a description will be given of an optical path switching type optical signal transmission / reception apparatus of a control light wavelength multiplexing system according to a second embodiment of the present invention and an optical path switching method thereof. The optical path switching type optical signal transmission / reception apparatus according to the second embodiment is based on the ring beam method described in Patent Document 1 and Patent Document 2 described above, or the round beam method described in Patent Document 4 and Patent Document 5 described above. A plurality of one-to-two optical control type optical path switching devices are used in combination, and control lights having a plurality of wavelengths are multiplexed, and each one-to-two optical control type optical path switching device is connected to one optical signal transmission / reception device. Alternatively, the connection to the subsequent stage is selected and switched to transmit / receive optical signals. In the second embodiment, the distributor used for distributing the control light group to the subsequent stage used in the first embodiment is not necessary.

図9において、第2の実施形態の光路切替型光信号送受信装置では、2基の制御光光源51,52および2基の1対2対応光制御型光路切替装置512,522を用い、制御光送信側の光信号送受信装置5と3基の光信号送受信装置514,523,524との光路を切り替えて開通させる。用語の定義については第1の実施形態の場合と同様である。   In FIG. 9, in the optical path switching type optical signal transmitting / receiving apparatus of the second embodiment, two control light sources 51 and 52 and two one-to-two correspondence light control type optical path switching apparatuses 512 and 522 are used. The optical paths between the transmission-side optical signal transmission / reception device 5 and the three optical signal transmission / reception devices 514, 523, and 524 are switched and opened. The definition of terms is the same as that in the first embodiment.

まず、第2の実施形態の光路切替型光信号送受信装置およびその光路切替方法の概要を説明し、次いで装置を構成する個々の部品を詳述する。   First, an outline of the optical path switching type optical signal transmitting / receiving apparatus and the optical path switching method of the second embodiment will be described, and then individual components constituting the apparatus will be described in detail.

本発明の第2の実施形態の光路切替型光信号送受信装置は、1つの光信号送受信装置5に接続された光路を伝搬する信号光5001と、複数(第2の実施形態の場合、例えば2基)の制御光光源51,52からの制御光5011および5012とを、合波器500で合波して光路5100を伝搬させる。次の段には単位装置55を備える。単位装置55は、光路5100,5101,5110,5111,5112,5151,5200、分波器511、1対2対応光制御型光路切替装置512、合波器513、および光信号送受信装置514からなる光路切替方式光信号送受信装置の繰り返し単位装置である。合波器500から出力される合波光は、単位装置55を通過する。第2の実施形態の場合には1段のみ通過させる。単位装置55からの光路5200は、分波器521、光路5201,5211,5212,5252、光信号送受信装置523,524からなる光路切替方式光信号送受信装置の終端ユニットに接続される。信号光および制御光の電子制御装置50からの制御信号を、信号光および制御光の電子制御配線501を通じて、制御光光源側の光信号送受信装置5の送受信を、制御光光源51または52の明滅と同期させることによって、制御光光源側の光信号送受信装置5の接続先光路を切替先の光信号送受信装置514,523,524のいずれか任意のものと切り替えて開通させ、光信号の送受信を行わせるものである。   The optical path switching type optical signal transmission / reception apparatus according to the second embodiment of the present invention includes a signal light 5001 propagating through an optical path connected to one optical signal transmission / reception apparatus 5 and a plurality (for example, 2 in the case of the second embodiment). The control light 5011 and 5012 from the base control light sources 51 and 52 are combined by the multiplexer 500 and propagated in the optical path 5100. The next stage includes a unit device 55. The unit device 55 includes optical paths 5100, 5101, 5110, 5111, 5112, 5151, 5200, a demultiplexer 511, a one-to-two correspondence optical control type optical path switching device 512, a multiplexer 513, and an optical signal transmission / reception device 514. It is a repeating unit device of an optical path switching type optical signal transmitting / receiving device. The combined light output from the multiplexer 500 passes through the unit device 55. In the case of the second embodiment, only one stage is allowed to pass. The optical path 5200 from the unit device 55 is connected to the termination unit of the optical path switching type optical signal transmission / reception apparatus including the demultiplexer 521, the optical paths 5201, 5211, 5212, and 5252, and the optical signal transmission / reception apparatuses 523 and 524. The control signal from the electronic control device 50 for signal light and control light is transmitted and received by the optical signal transmission / reception device 5 on the control light source side through the electronic control wiring 501 for signal light and control light, and the control light source 51 or 52 blinks. , The connection destination optical path of the optical signal transmission / reception device 5 on the control light source side is switched to any one of the switching destination optical signal transmission / reception devices 514, 523, and 524, and the optical signal is transmitted / received. It is what you want to do.

なお容易に理解できるように、光路5100,5101,5110,5111,5112,5151,5200、分波器511、1対2対応光制御型光路切替装置512、合波器513、および光信号送受信装置514からなる光路切替方式光信号送受信装置の繰り返し単位装置55、および、制御光光源51等を各々1組毎増設することで、システムに接続される光信号送受信装置の数を1つずつ増やすことができる。第2の実施形態では光路切替方式光信号送受信装置の繰り返しの単位装置55が1つの場合について説明する。   As can be easily understood, the optical paths 5100, 5101, 5110, 5111, 5112, 5151, 5200, the demultiplexer 511, the one-to-two correspondence optical control type optical path switching device 512, the multiplexer 513, and the optical signal transmission / reception device The number of optical signal transmission / reception devices connected to the system is increased by one by adding one unit each of the repeating unit device 55 of the optical path switching type optical signal transmission / reception device consisting of 514, the control light source 51, etc. Can do. In the second embodiment, a case will be described in which the number of unit devices 55 of the optical path switching type optical signal transmission / reception device is one.

複数の制御光光源51,52からの複数の波長の制御光5011,5012と、光路5001を正方向および逆方向に進む信号光とは、合波器500によって合波される。その後、制御光と信号光は、共通の1筋の光路5100を進行し、分波器511にて、信号光5101、第1段目光路切替用の制御光5151、および、第2段目光路切替用の制御光5110に分波される。なお、光路切替方式光信号送受信装置の繰り返し単位装置55および制御光光源51,52等を第2の実施形態の場合よりも多く設けた場合は、第2段目以降の光路切替用の制御光として、複数の波長の制御光が光路5110を伝搬する。   Control light 5011 and 5012 having a plurality of wavelengths from the plurality of control light sources 51 and 52 and signal light traveling in the forward and reverse directions along the optical path 5001 are combined by the multiplexer 500. Thereafter, the control light and the signal light travel along a common single optical path 5100, and in the demultiplexer 511, the signal light 5101, the first stage optical path switching control light 5151, and the second stage optical path. It is demultiplexed into control light 5110 for switching. In the case where more repeating unit devices 55 and control light sources 51, 52, etc., of the optical path switching type optical signal transmission / reception apparatus are provided than in the second embodiment, the control light for switching the optical path after the second stage is provided. As a result, control light having a plurality of wavelengths propagates along the optical path 5110.

分波器511にて独立に分波された信号光5101および第1段目光路切替用の制御光5151は、第1段目の1対2対向光制御型光路切替装置512の信号光ポートおよび制御光ポートに各々接続される。第1段目光路切替用の制御光光源51に対応した制御光5151の明滅に応じて、信号光5101は第1段目の1対2対応光制御型光路切替装置512にて直進する光路5111または光路変更された光路5112のいずれかに光路切替される。制御光5011〜5151が点灯し光路切替が行われた場合、信号光は光路5112を通じて光信号送受信装置514に接続され、光信号送受信装置5と光信号送受装置514との間で光信号の送受信が行われる。   The signal light 5101 and the first-stage optical path switching control light 5151 independently demultiplexed by the demultiplexer 511 include the signal light port of the first-stage one-to-two facing light control type optical path switching device 512 and Each is connected to a control light port. In response to the blinking of the control light 5151 corresponding to the control light source 51 for switching the first-stage optical path, the signal light 5101 travels straight through the first-stage one-to-two correspondence light control type optical path switching device 512. Alternatively, the optical path is switched to one of the optical paths 5112 whose optical path has been changed. When the control lights 5011 to 5151 are turned on and the optical path is switched, the signal light is connected to the optical signal transmitting / receiving apparatus 514 through the optical path 5112, and the optical signal is transmitted / received between the optical signal transmitting / receiving apparatus 5 and the optical signal transmitting / receiving apparatus 514. Is done.

制御光5011〜5151が点灯しない場合、信号光は光路5111を通じて合波器513に導かれ、第2段目光路切替用の制御光5110と合波され、光路5200を伝搬し分波器521へ到達する。   When the control lights 5011 to 5151 are not turned on, the signal light is guided to the multiplexer 513 through the optical path 5111, is combined with the control light 5110 for second-stage optical path switching, propagates through the optical path 5200, and is sent to the demultiplexer 521. To reach.

分波器521にて独立に分波された信号光5201および第2段目光路切替用の制御光5252は、第2段目の1対2対応光制御型光路切替装置522の信号光ポートおよび制御光ポートに各々接続される。第2段目光路切替用の制御光光源52に対応した制御光5252の明滅に応じて、信号光5201は第2段目の1対2対応光制御型光路切替装置522にて直進する光路5211または光路変更された光路5212のいずれかに光路切替される。制御光5252が点灯し光路切替が行われた場合、信号光は光路5212を通じて光信号送受信装置524に接続され、光信号送受信装置5と光信号送受装置524との間で光信号の送受信が行われる。   The signal light 5201 and the second-stage optical path switching control light 5252 that are separately demultiplexed by the demultiplexer 521 are the signal light ports of the second-stage one-to-two correspondence optical control type optical path switching device 522 and Each is connected to a control light port. In response to the blinking of the control light 5252 corresponding to the control light source 52 for second-stage optical path switching, the signal light 5201 travels straight in the second-stage one-to-two corresponding light control type optical path switching device 522. Alternatively, the optical path is switched to one of the optical paths 5212 whose optical path has been changed. When the control light 5252 is turned on and the optical path is switched, the signal light is connected to the optical signal transmission / reception device 524 through the optical path 5212, and transmission / reception of the optical signal is performed between the optical signal transmission / reception device 5 and the optical signal transmission / reception device 524. Is called.

制御光5012〜5252が点灯しない場合、信号光は光路5211を通じて光信号送受信装置523に接続され、光信号送受信装置5と光信号送受装置523との間で光信号の送受信が行われる。   When the control lights 5012 to 5252 are not turned on, the signal light is connected to the optical signal transmission / reception device 523 through the optical path 5211, and the optical signal is transmitted / received between the optical signal transmission / reception device 5 and the optical signal transmission / reception device 523.

次に、個々の装置構成要素の詳細について説明する。   Next, details of individual device components will be described.

制御光光源と同じ側に設けられる光信号送受信装置5と、光路切替された終端に設けられる光信号送受信装置514,523,524の仕様は、第1の実施形態の場合と同じである。   The specifications of the optical signal transmission / reception device 5 provided on the same side as the control light source and the optical signal transmission / reception devices 514, 523, and 524 provided at the optical path switching terminal are the same as those in the first embodiment.

信号光および制御光の波長および光源の仕様については、第1の実施形態の場合と同様である。例えば、信号光として波長1550nmのレーザー、制御光として図7に示すような発振特性の半導体レーザーからの、例えば波長1265nmおよび1270nmのレーザーを用いることができる。   The wavelengths of the signal light and the control light and the specifications of the light source are the same as in the first embodiment. For example, a laser having a wavelength of 1550 nm and a laser having wavelengths of 1265 nm and 1270 nm, for example, from a semiconductor laser having an oscillation characteristic as shown in FIG. 7 can be used as the signal light.

光制御型光路切替装置512,522の熱レンズ形成素子の信号光透過・制御光吸収層としては、第1の実施形態の場合と同様に、例えば、赤外線吸収色素として、日本カーリット製CIR−1081やCIR−1085をシクロヘキサノン溶液として、第1の実施形態の場合と同様に好適に用いることができる。第2の実施形態の場合、光制御型光路切替装置は2段で用いるため、光制御型光路切替装置512,522において色素濃度は同一でさしつかえない。   As the signal light transmission / control light absorption layer of the thermal lens forming element of the light control type optical path switching device 512, 522, as in the case of the first embodiment, for example, as IR absorbing dye, CIR-1081 manufactured by Nippon Carlit And CIR-1085 can be suitably used as a cyclohexanone solution, as in the first embodiment. In the case of the second embodiment, since the light control type optical path switching device is used in two stages, the light control type optical path switching devices 512 and 522 may have the same dye concentration.

合波器500としては、例えば波長1500〜1600nmの信号光を透過し、波長帯域1260〜1400nmの制御光を反射する特性の波長選択反射ミラーを用いることができる。   As the multiplexer 500, for example, a wavelength selective reflection mirror that transmits signal light with a wavelength of 1500-1600 nm and reflects control light with a wavelength band of 1260-1400 nm can be used.

合波器500に接続する光路5100としては、空間、光ファイバー、または光導波路等の光伝送経路を用いることができるが、第2の実施の形態では、光通信用シングルモード光ファイバーを用いることとする。   As the optical path 5100 connected to the multiplexer 500, a space, an optical fiber, or an optical transmission path such as an optical waveguide can be used. In the second embodiment, a single mode optical fiber for optical communication is used. .

分波器511は、信号光5101(例えば波長1550nm)、第1段目光路切替用の制御光5151(例えば波長1265nm)、および、第2段目光路切替用の制御光5110(例えば波長1270nm)を分波するものである。分波器511は、具体的には、或る波長よりも長い波長は透過し、当該波長よりも短い波長は反射する波長選択透過・反射ミラー(エッジ・フィルター)を2種類、組み合わせることで構成できる。その動作は、例えば、1500nmよりも長波長を選択的に反射(または透過)するエッジ・フィルターによって制御光5101(波長1550nm)を分離し、次いで、波長1270nmよりも長波長の光を選択的に反射(または透過)するエッジ・フィルターによって第2段目への制御光5110(波長1270nm)を分離すると第1段目の光制御型光路切替装置522のための制御光5110(波長1265nm)を分波することができる。   The demultiplexer 511 includes signal light 5101 (for example, wavelength 1550 nm), control light 5151 for switching the first stage optical path (for example, wavelength 1265 nm), and control light 5110 for switching the second stage optical path (for example, wavelength 1270 nm). Is to demultiplex. Specifically, the demultiplexer 511 is configured by combining two types of wavelength selective transmission / reflection mirrors (edge filters) that transmit wavelengths longer than a certain wavelength and reflect wavelengths shorter than the wavelength. it can. The operation is, for example, separating the control light 5101 (wavelength 1550 nm) by an edge filter that selectively reflects (or transmits) wavelengths longer than 1500 nm, and then selectively selects light having a wavelength longer than 1270 nm. When the control light 5110 (wavelength 1270 nm) to the second stage is separated by the reflecting (or transmitting) edge filter, the control light 5110 (wavelength 1265 nm) for the first-stage light control type optical path switching device 522 is separated. Can wave.

特許文献1,2に記載されたリングビーム方式光制御式光路切替装置を用いる場合、第2の実施形態の光路切替型光信号送受信装置において、第1段目の1対2対応光制御型光路切替装置に供給される制御光パワーは、制御光光源51から合波器500、光路5100および分波器511における伝送ロスを考慮した上で、第1段目の1対2対応光制御型光路切替装置の直前において2ないし40mWであることが好ましく、5ないし10mWであればより好ましい。制御光パワーが2mWよりも小さいと、充分な光路切替が行えない。また、制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。   In the case of using the ring beam optical control type optical path switching device described in Patent Literatures 1 and 2, in the optical path switching type optical signal transmission / reception device of the second embodiment, the first-stage one-to-two correspondence optical control type optical path The control light power supplied to the switching device takes into account the transmission loss in the multiplexer 500, the optical path 5100, and the demultiplexer 511 from the control light source 51, and the first-stage one-to-two light control type optical path It is preferably 2 to 40 mW immediately before the switching device, and more preferably 5 to 10 mW. If the control light power is less than 2 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked.

特許文献1,2に記載されたリングビーム方式光制御式光路切替装置を用いる場合、第2の実施形態の光路切替型光信号送受信装置において、第2段目の1対2対応光制御型光路切替装置に供給される制御光は、制御光光源52から合波器500、光路5100、分波器511、光路5110、合波器513、光路5200、および、分波器521における伝送ロスを考慮した上で、第2段目の1対2対応光制御型光路切替装置の直前において2〜40mWであることが好ましく、5〜10mWであればより好ましい。制御光パワーが2mWよりも小さいと、充分な光路切替が行えない。また、制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。   In the case of using the ring beam type optical control type optical path switching device described in Patent Documents 1 and 2, in the optical path switching type optical signal transmission / reception device of the second embodiment, the second-stage one-to-two correspondence optical control type optical path The control light supplied to the switching device considers transmission loss in the multiplexer 500, the optical path 5100, the demultiplexer 511, the optical path 5110, the multiplexer 513, the optical path 5200, and the demultiplexer 521 from the control light source 52. In addition, it is preferably 2 to 40 mW, more preferably 5 to 10 mW immediately before the second-stage one-to-two correspondence optical control type optical path switching device. If the control light power is less than 2 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked.

特許文献4,5に記載された丸ビーム方式光制御式光路切替装置を用いる場合、第2の実施形態の制御光波長多重方式光路切替型光信号送受信装置において、第1段目の1対2対応光制御型光路切替装置に供給される制御光パワーは、制御光光源51から合波器500、光路5100および分波器511における伝送ロスを考慮した上で、第1段目の1対2対応光制御型光路切替装置の直前において10〜40mWであることが好ましく、20〜30mWであればより好ましい。制御光パワーが10mWよりも小さいと、充分な光路切替が行えない。また、制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。   In the case of using the round beam type optical control type optical path switching device described in Patent Documents 4 and 5, in the control optical wavelength division multiplexing type optical path switching type optical signal transmission / reception device of the second embodiment, The control light power supplied to the corresponding light control type optical path switching device takes into account the transmission loss from the control light source 51 in the multiplexer 500, the optical path 5100, and the demultiplexer 511, and is one-to-two in the first stage. It is preferably 10 to 40 mW immediately before the corresponding light control type optical path switching device, and more preferably 20 to 30 mW. If the control light power is less than 10 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked.

特許文献4,5に記載された丸ビーム方式光制御式光路切替装置を用いる場合、第2の実施形態の制御光波長多重方式光路切替型光信号送受信装置において、第2段目の1対2対応光制御型光路切替装置に供給される制御光は、制御光光源52から合波器500、光路5100、分波器511、光路5110、合波器513、光路5200、および、分波器521における伝送ロスを考慮した上で、第2段目の1対2対応光制御型光路切替装置の直前において10〜40mWであることが好ましく、10〜30mWであればより好ましい。制御光パワーが10mWよりも小さいと、充分な光路切替が行えない。また、制御光パワーが40mWを越えると、信号光透過・制御光吸収層40を構成する色素溶液の溶剤が沸騰し信号光が遮断される。   In the case of using the round beam type optical control type optical path switching device described in Patent Documents 4 and 5, in the control optical wavelength division multiplexing type optical path switching type optical signal transmission / reception device of the second embodiment, The control light supplied to the corresponding light control type optical path switching device includes a multiplexer 500, an optical path 5100, a demultiplexer 511, an optical path 5110, a multiplexer 513, an optical path 5200, and a demultiplexer 521 from the control light source 52. In consideration of the transmission loss, it is preferably 10 to 40 mW immediately before the second-stage one-to-two correspondence optical control type optical path switching device, and more preferably 10 to 30 mW. If the control light power is less than 10 mW, sufficient optical path switching cannot be performed. When the control light power exceeds 40 mW, the solvent of the dye solution constituting the signal light transmission / control light absorption layer 40 boils and the signal light is blocked.

合波器513としては、例えば波長1500〜1600nmの信号光を透過し、波長帯域1260〜1400nmの制御光を反射する特性の波長選択反射ミラーを用いることができる。合波器141〜147として2本のシングルモード光ファイバーのコア部分を融着させた光ファイバー型合波器を用いることもできる。   As the multiplexer 513, for example, a wavelength selective reflection mirror that transmits signal light having a wavelength of 1500 to 1600 nm and reflects control light having a wavelength band of 1260 to 1400 nm can be used. As the multiplexers 141 to 147, an optical fiber type multiplexer in which the core portions of two single mode optical fibers are fused can also be used.

合波器513に接続する光路5200としては、空間、光ファイバー、または光導波路等の光伝送経路を用いることができるが、第2の実施形態では、光通信用シングルモード光ファイバーを用いることとする。   As the optical path 5200 connected to the multiplexer 513, a space, an optical fiber, or an optical transmission path such as an optical waveguide can be used. In the second embodiment, a single mode optical fiber for optical communication is used.

分波器521は、信号光5201(例えば波長1550nm)、および、第2段目光路切替用の制御光5252(例えば波長1270nm)を分波するものである。分波器521は具体的には、或る波長よりも長い波長は透過し、当該波長よりも短い波長は反射する波長選択透過・反射ミラー(エッジ・フィルター)を1種類用いることで構成できる。その動作は、例えば、1500nmよりも長波長を選択的に反射(または透過)するエッジ・フィルターによって制御光5201(波長1550nm)を分離すると第2段目の光制御型光路切替装置522のための制御光5252(波長1270nm)を分波することができる。   The demultiplexer 521 demultiplexes the signal light 5201 (for example, wavelength 1550 nm) and the second stage optical path switching control light 5252 (for example, wavelength 1270 nm). Specifically, the duplexer 521 can be configured by using one type of wavelength selective transmission / reflection mirror (edge filter) that transmits wavelengths longer than a certain wavelength and reflects wavelengths shorter than the wavelength. For example, when the control light 5201 (wavelength 1550 nm) is separated by an edge filter that selectively reflects (or transmits) a wavelength longer than 1500 nm, the operation for the second-stage light-controlled optical path switching device 522 is performed. The control light 5252 (wavelength 1270 nm) can be demultiplexed.

第2段目の1対2対応光制御型光路切替装置522によって2方向に光路切替された信号光5211〜5212は、各々の光路を伝搬し、光信号送受信装置523〜524に導かれる。   The signal lights 5211 to 5212 whose optical paths are switched in two directions by the second-stage one-to-two optical control type optical path switching apparatus 522 propagate through the respective optical paths and are guided to the optical signal transmission / reception apparatuses 523 to 524.

第1段目および第2段目の光制御型光路切替装置の光路切替の組合せによって選択的に接続された制御光送信側の光信号送受信装置5と終端側の光信号送受信装置514,523,524との間の光路が開通されたときには、双方向での光送受信が可能である。   The control signal transmission side optical signal transmission / reception device 5 and the termination side optical signal transmission / reception devices 514, 523, which are selectively connected by a combination of optical path switching of the first-stage and second-stage optical control type optical path switching devices. When the optical path to 524 is opened, bidirectional optical transmission / reception is possible.

終端側の光信号送受信装置514,523,524から制御光送信側の光信号送受信装置5へ光路開放の要求を伝えるタイミングは、光信号送受信装置5との光路が開通したときに限られる。終端側の光信号送受信装置514,523,524がミラーを設けた光ファイバーセンサーのような受動光素子の場合は、信号光および制御光の電子制御装置50によって「時間分割多重」の制御方式によって、3基の光信号送受信装置514,523,524との接続を一定時間毎に切り替え、定期的に光信号のやり取りを行うことができる。例えば、光路切替に要する時間を10ミリ秒、光信号の送受信に要する時間を20ミリ秒と仮定すると、90ミリ秒で終端側の3基の光信号送受信装置全てと光信号の送受信が可能である。   The timing for transmitting a request for opening an optical path from the optical signal transmission / reception device 514, 523, 524 on the termination side to the optical signal transmission / reception device 5 on the control light transmission side is limited to when the optical path to the optical signal transmission / reception device 5 is opened. In the case where the optical signal transmission / reception devices 514, 523, and 524 on the end side are passive optical elements such as optical fiber sensors provided with mirrors, the signal light and control light electronic control device 50 uses a "time division multiplexing" control method, The connection with the three optical signal transmission / reception devices 514, 523, and 524 is switched at regular intervals, and optical signals can be exchanged periodically. For example, assuming that the time required for optical path switching is 10 milliseconds and the time required for optical signal transmission / reception is 20 milliseconds, optical signals can be transmitted / received to / from all three optical signal transmission / reception apparatuses on the termination side in 90 milliseconds. is there.

前述した第2の実施形態に係る光路切替型光信号送受信装置および光路切替方法によれば、次の効果を奏する。
第1に、制御光送信側の光信号送受信装置5、制御光光源51〜52、信号光および制御光の電子制御装置50、および、終端側の光信号送受信装置514,523,524については電子回路との接続があるが、その他の光信号伝送路および光路切替装置部分については、電気信号を一切用いず、光信号の光路切替伝送を行うことができる。
特に、終端側の光信号送受信装置514,523,524が電気信号を用いない受動型光センサー等の場合、制御光送信側の光信号送受信装置5、制御光光源51〜52、信号光および制御光の電子制御装置10の部分以外は、一切、電気信号を用いない光信号送受信システムを構築することができる。
第2に、光路切替に要する時間を、丸ビーム方式の1対2対応光制御型光路切替装置を用いる場合、10ミリ秒以内、リングビーム方式の1対2対応光制御型光路切替装置を用いる場合、250マイクロ秒以内とすることができる。
The optical path switching type optical signal transmitting / receiving apparatus and optical path switching method according to the second embodiment described above have the following effects.
First, the control light transmission side optical signal transmission / reception device 5, the control light sources 51 to 52, the signal light and control light electronic control device 50, and the termination side optical signal transmission / reception devices 514, 523, and 524 are electronic. Although there is a connection with the circuit, the optical signal transmission path and the optical path switching device portion can perform optical path switching transmission of the optical signal without using any electrical signal.
In particular, when the termination-side optical signal transmission / reception devices 514, 523, and 524 are passive optical sensors that do not use electrical signals, the control-light transmission-side optical signal transmission / reception device 5, the control light sources 51 to 52, the signal light, and the control An optical signal transmission / reception system that does not use any electrical signal can be constructed except for the portion of the optical electronic control unit 10.
Secondly, the time required for optical path switching is within 10 milliseconds when using a round beam type one-to-two optical control type optical path switching device, and a ring beam type one-to-two optical control type optical path switching device is used. In some cases, it can be within 250 microseconds.

〔第3の実施形態〕
図10〜図12を参照して本発明の第3の実施形態に係る制御光波長多重方式の光路切替型光信号送受信装置およびその光路切替方法を説明する。
[Third Embodiment]
With reference to FIGS. 10 to 12, a description will be given of an optical path switching type optical signal transmission / reception apparatus and its optical path switching method of the control light wavelength multiplexing system according to the third embodiment of the present invention.

第3の実施形態に係る光路切替型光信号送受信装置は、本発明の第1の実施形態で説明された当該装置において、第1段目および第2段目の1対7対応光制御型光路切替装置にて選択された光路の接続先の一部を、次段への接続ではなく、光信号送受信装置へ直接的に接続するものである。   The optical path switching type optical signal transmission / reception device according to the third embodiment is the same as the one-to-seven correspondence optical control type optical path of the first stage and the second stage in the device described in the first embodiment of the present invention. A part of the connection destination of the optical path selected by the switching device is not directly connected to the next stage but directly connected to the optical signal transmitting / receiving device.

図10は、第3の実施形態に係る光路切替型光信号送受信装置における第1段目光路切替装置の構成の一例を示し、図11は第3の実施形態の光路切替型光信号送受信装置において7組未満の組数で用いられる第2段目光路切替装置の1組について構成の一例を示し、図12は第3の実施形態の光路切替型光信号送受信装置において49組未満の組数で用いられる第3段目光路切替装置の1組について構成を示している。   FIG. 10 shows an example of the configuration of the first-stage optical path switching device in the optical path switching type optical signal transmission / reception device according to the third embodiment, and FIG. 11 shows the optical path switching type optical signal transmission / reception device of the third embodiment. An example of the configuration of one set of the second-stage optical path switching device used in the number of groups less than 7 is shown, and FIG. 12 shows the number of groups less than 49 in the optical path switching type optical signal transmitting / receiving device of the third embodiment. The configuration of one set of third-stage optical path switching devices used is shown.

以下、第3の実施形態の光路切替型光信号送受信装置およびその光路切替方法を説明する。なお、装置を構成する個々の部品の詳細については第1の実施形態の場合と全く同等であるので、その説明は省略する。   The optical path switching type optical signal transmitting / receiving apparatus and the optical path switching method thereof according to the third embodiment will be described below. Note that details of the individual components constituting the apparatus are exactly the same as those in the first embodiment, and a description thereof will be omitted.

第3の実施形態の光路切替型光信号送受信装置は、光ファイバー等からなる光路6001の一端に接続された1つの光信号送受信装置6と、多数の光路6206,6207,7205,7206,7207,8201〜8207等の終端に接続された複数の光信号送受信装置646,647,745,746,747,8301〜8307等との接続を、複数の、多段に組み合わされた光制御型光路切替装置によって切り替える。   The optical path switching type optical signal transmission / reception apparatus of the third embodiment includes one optical signal transmission / reception apparatus 6 connected to one end of an optical path 6001 made of an optical fiber or the like, and a large number of optical paths 6206, 6207, 7205, 7206, 7207, 8201. The connection with a plurality of optical signal transmission / reception devices 646, 647, 745, 746, 747, 8301-8307, etc. connected to the end of ˜8207, etc. is switched by a plurality of light control type optical path switching devices combined in multiple stages. .

ここで「光路」とは空間、光ファイバー、または光導波路等の光伝送経路のことである。前述の光制御型光路切替装置を駆動し、信号光の光路を予め選択された特定の組合せに切り替えるための複数の波長の制御光は、複数の制御光光源61〜66,71〜76,81〜86から選択的に発振される。光路の両端にある光信号送受信装置6および光信号送受信装置646,647,745,746,747,8301〜8307等との信号光のやり取りに同期するよう信号光および制御光の電子制御装置60から信号光および制御光の電子制御配線601通じて送られる制御電子信号によって複数の制御光光源61〜66,71〜76,81〜86の明滅の組合せが選択される。   Here, the “optical path” means an optical transmission path such as a space, an optical fiber, or an optical waveguide. A plurality of control light sources 61 to 66, 71 to 76, 81 are used as the control light having a plurality of wavelengths for driving the light control type optical path switching device described above to switch the optical path of the signal light to a specific combination selected in advance. ~ 86 are selectively oscillated. From the optical control device 60 for signal light and control light so as to be synchronized with the exchange of signal light between the optical signal transmission / reception device 6 and the optical signal transmission / reception devices 646, 647, 745, 746, 747, 8301-8307, etc. at both ends of the optical path. A combination of blinking of the plurality of control light sources 61 to 66, 71 to 76, 81 to 86 is selected by a control electronic signal sent through the electronic control wiring 601 of the signal light and the control light.

複数の制御光光源61〜66,71〜76,81〜86からの複数の波長の制御光6061〜6066,7071〜7076,8081〜8086と、光路6001を正方向および逆方向に進む信号光とは、合波器600によって合波される。合波された信号光と制御光は、共通の1筋の光路6100を進行し、分波器610にて、信号光6101および第1段目光路切替用の制御光6161〜6166の各々と、第2段目および第3段目の光路切替用の制御光の一群6300に分波される。   Control light 6061 to 6066, 7071 to 7076, and 8081 to 8086 having a plurality of wavelengths from the plurality of control light sources 61 to 66, 71 to 76, and 81 to 86, and signal light traveling in the forward direction and the reverse direction on the optical path 6001 Are multiplexed by a multiplexer 600. The combined signal light and control light travel on a common optical path 6100, and in the demultiplexer 610, each of the signal light 6101 and the control light 6161 to 6166 for switching the first-stage optical path, The light beams are demultiplexed into a group 6300 of control light for switching the optical paths of the second and third stages.

分波器610にて独立に分波された信号光6101は第1段目の1対7対応光制御型光路切替装置620の中心の光ファイバー・コア(図5の符号400に相当する)に接続される。また、分波器610にて波長別に分波された第1段目光路切替用の制御光6161〜6166の各々は、第1段目の1対7対応光制御型光路切替装置620の周辺の光ファイバー・コア(図5の符号401〜406に相当する)に接続される。第1段目光路切替用の制御光光源61〜66に対応した制御光6161〜6166の明滅に応じて、信号光6101は第1段目の1対7対応光制御型光路切替装置620の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光6201〜6207のいずれかとして第2段目または第1段目の光信号送受信装置、例えば2基の光信号送受信装置646,647に進む。   The signal light 6101 separately demultiplexed by the demultiplexer 610 is connected to the optical fiber core (corresponding to reference numeral 400 in FIG. 5) in the center of the first-stage one-to-seven-corresponding optical control type optical path switching device 620. Is done. In addition, each of the first-stage optical path switching control lights 6161 to 6166 that are demultiplexed by the wavelength by the demultiplexer 610 is the vicinity of the first-stage one-to-seven corresponding light control type optical path switching apparatus 620. It is connected to an optical fiber core (corresponding to reference numerals 401 to 406 in FIG. 5). In response to the flickering of the control lights 6161 to 6166 corresponding to the control light sources 61 to 66 for the first stage optical path switching, the signal light 6101 is 7 of the light control type optical path switching apparatus 620 corresponding to the first stage 7. The optical path is switched to one of the two outgoing-side optical fiber cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and the second-stage or first-stage optical signal is used as one of the signal lights 6201 to 6207. Proceed to the transmitting / receiving device, for example, two optical signal transmitting / receiving devices 646, 647.

ここで、分波器610で分波された第2段目および第3段目の光路切替用の制御光の一群6300は分配器630によって、第1段目の1対7対応光制御型光路切替装置620の光路切替数7から第1段目の光信号送受信装置の基数、第3の実施形態の場合、例えば2を差し引いた数、すなわち、第3の実施形態の場合、例えば5に分岐される。   Here, a group 6300 of control light for switching the second- and third-stage optical paths demultiplexed by the demultiplexer 610 is supplied to the first-stage one-to-seven-corresponding optical path by the distributor 630. In the third embodiment, for example, the number obtained by subtracting 2 from the optical path switching number 7 of the switching device 620, that is, the number obtained by subtracting 2, for example, in the case of the third embodiment, for example, the number is branched to 5. Is done.

分波器610で分波された第2段目および第3段目の光路切替用の制御光の一群6300は分配器630によって、例えば制御光群6301〜6305の5つのビームに等分され、さらに、例えば5基の合波器641〜645によって、信号光6201〜6205と合波され、第2段目への光路6411,6421,6431,6441,6451等を進む。第2段目への光路または第1段目の光信号送受信装置への切替は、第1段目の制御光光源61〜66のいずれかが点灯する6通りに加え、全てが消灯状態の1通りの合計7通りが選択される。   A group 6300 of control light for switching optical paths of the second and third stages demultiplexed by the demultiplexer 610 is equally divided into, for example, five beams of control light groups 6301 to 6305 by the distributor 630. Further, for example, the signal beams 6201 to 6205 are multiplexed by five multiplexers 641 to 645, and travel along the optical paths 6411, 6421, 6431, 6441, 6451 to the second stage. The optical path to the second stage or the switching to the first stage optical signal transmission / reception device is 1 in which all of the control light sources 61 to 66 of the first stage are turned on, and all are turned off. A total of 7 streets are selected.

第2段目への光路、例えば光路6411〜6451を進む光の内容は、光路切替された信号光と例えば5分割された制御光群であり、それぞれ同等である。そこで、以下の説明は、図11に示すように、例えば5系統の光路の1つである6411が接続する第2段目の装置について述べる。他の光路についても、以下同様にして第2段目以降の光路切替が行われる。   The contents of the light that travels along the optical path to the second stage, for example, the optical paths 6411 to 6451, are the signal light whose optical path has been switched and the control light group that is divided into five, for example, and is equivalent to each other. Therefore, in the following description, as shown in FIG. 11, for example, a second stage apparatus to which 6411 which is one of five optical paths is connected will be described. The other optical paths are switched in the same way for the second and subsequent stages.

一筋の光路6411を進む信号光および制御光群は、分波器710にて、信号光7101および第2段目光路切替用の制御光7171〜7176の各々と、第3段目光路切替用の制御光の一群7300に分波される。   The signal light and the control light group traveling along a single optical path 6411 are separated by the branching filter 710 from the signal light 7101 and each of the second-stage optical path switching control lights 7171 to 7176 and the third-stage optical path switching. It is demultiplexed into a group of control lights 7300.

分波器710にて独立に分波された信号光7101は、第2段目の1対7対応光制御型光路切替装置720の中心の光ファイバー・コア(図5の符号400に相当する)に接続される。また、分波器710にて波長別に分波された第2段目光路切替用の制御光7171〜7176の各々は、第2段目の1対7対応光制御型光路切替装置720の周辺の光ファイバー・コア(図5の符号401〜406に相当する)に接続される。第2段目光路切替用の制御光源71〜76に対応した制御光7171〜7176の明滅に応じて、信号光7101は第2段目の1対7対応光制御型光路切替装置720の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光7201〜7207のいずれかとして第3段目への合波器、例えば741〜744の4基、または、第2段目の光信号送受信装置745〜747の3基へと進行する。   The signal light 7101 independently demultiplexed by the demultiplexer 710 is supplied to the optical fiber core (corresponding to reference numeral 400 in FIG. 5) at the center of the second-stage one-to-seven corresponding light control type optical path switching device 720. Connected. In addition, each of the second-stage optical path switching control lights 7171 to 7176 that are demultiplexed by the wavelength by the demultiplexer 710 is provided around the second-stage one-to-seven-corresponding optical control type optical path switching apparatus 720. It is connected to an optical fiber core (corresponding to reference numerals 401 to 406 in FIG. 5). In response to the blinking of the control lights 7171 to 7176 corresponding to the control light sources 71 to 76 for the second stage optical path switching, the signal light 7101 is seven of the light control type optical path switching device 720 corresponding to the second stage one-to-seven. The optical path is switched to any one of the output side optical fiber cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and any one of the signal lights 7201 to 7207 is a multiplexer to the third stage, for example, 741 to 741 It progresses to 4 units | sets of 744, or 3 units | sets of the optical signal transmission / reception apparatus 745-747 of a 2nd step | stage.

ここで、分波器710で分波された第3段目光路切替用の制御光の一群7300は分配器730によって、例えば制御光群7301〜7304の4つのビームに等分され、さらに、4基の合波器741〜744によって、信号光7201〜7204と合波され、第3段目への光路、例えば信号光7411,7421,7431,7441を進む。第3段目の光路または第2段目の光信号送受信装置745〜747への切替は、第2段目の制御光光源71〜76のいずれかが点灯する6通りに加え、全てが消灯状態の1通りの合計7通りが選択される。   Here, the group 7300 of control light for switching the third stage optical path demultiplexed by the demultiplexer 710 is equally divided into, for example, four beams of control light groups 7301 to 7304 by the distributor 730, and further 4 The optical signals are combined with the signal lights 7201 to 7204 by the basic multiplexers 741 to 744 and travel on the optical path to the third stage, for example, the signal lights 7411, 7421, 7431 and 7441. Switching to the third-stage optical path or the second-stage optical signal transmission / reception devices 745 to 747 is all in the off state in addition to six ways in which any of the second-stage control light sources 71 to 76 is turned on. A total of 7 types are selected.

第2段目の1対7対応光制御型光路切替装置720と同等のものが例えば5基設けられ、各々で7方向の光路切替が行われる。従って、第1段目に続く第2段目では、7掛ける例えば5、すなわち35通りの光路が合計12個の制御光光源の明滅の組合せで選択的され、切り替えられる。   For example, five devices equivalent to the second-stage one-to-seven-corresponding light control type optical path switching device 720 are provided, and optical paths are switched in seven directions each. Accordingly, in the second stage following the first stage, for example, 5 times, that is, 35 optical paths multiplied by 7, are selectively switched by a combination of blinking of a total of 12 control light sources.

第3段目への例えば35系統の光路を進む光の内容は、光路切替された信号光と合計35分割された制御光群であり、同等である。そこで、以下の説明は、図12に示すように、複数の光路の1つである7411が接続する第3段目の装置について述べる。他の光路についても、以下同様にして第3段目の光路切替が行われる。   The content of the light that travels through, for example, 35 optical paths to the third stage is the control light group divided into a total of 35 with the signal light whose optical path has been switched, and is equivalent. Therefore, in the following description, as shown in FIG. 12, a third-stage apparatus to which 7411 which is one of a plurality of optical paths is connected will be described. For the other optical paths, the third-stage optical path switching is performed in the same manner.

一筋の光路7411を進む信号光および制御光群は、分波器810にて、信号光8101および第3段目光路切替用の制御光8181〜8186の各々に分波される。   The signal light and control light group traveling along a single optical path 7411 are demultiplexed by the demultiplexer 810 into the signal light 8101 and the control light 8181 to 8186 for switching the third-stage optical path.

分波器810にて独立に分波された信号光8101は第3段目の1対7対応光制御型光路切替装置820の中心の光ファイバー・コア(図5の符号400に相当する)に接続される。また、分波器810にて波長別に分波された第3段目光路切替用の制御光8181〜8186の各々は、第3段目の1対7対応光制御型光路切替装置820の周辺の光ファイバー・コア(図5の符号401〜406に相当する)に接続される。第3段目光路切替用の制御光源81〜86に対応した制御光8181〜8186の明滅に応じて、信号光8101は第3段目の1対7対応光制御型光路切替装置820の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光8201〜8207のいずれかとして各々、終端の光信号送受信装置8301〜8307に進む。   The signal light 8101 independently demultiplexed by the demultiplexer 810 is connected to the optical fiber core (corresponding to reference numeral 400 in FIG. 5) in the center of the third-stage one-to-seven-corresponding optical control type optical path switching device 820. Is done. In addition, each of the third-stage optical path switching control lights 8181 to 8186 that are demultiplexed by the wavelength by the demultiplexer 810 is provided around the third-stage one-to-seven-corresponding optical control type optical path switching apparatus 820. It is connected to an optical fiber core (corresponding to reference numerals 401 to 406 in FIG. 5). In response to the blinking of the control lights 8181 to 8186 corresponding to the control light sources 81 to 86 for the third stage optical path switching, the signal light 8101 is seven of the third-stage one-to-seven corresponding light control type optical path switching device 820. The optical path is switched to any one of the output-side optical fiber cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and each of the signal lights 8201 to 8207 proceeds to the terminal optical signal transmitting / receiving devices 8301 to 8307, respectively. .

前述した第3の実施形態に係る光路切替型光信号送受信装置および光路切替方法によれば、第1の実施形態の場合と同様の効果を得ることができる。   According to the optical path switching type optical signal transmitting / receiving apparatus and the optical path switching method according to the third embodiment described above, the same effects as in the case of the first embodiment can be obtained.

〔第4の実施形態〕
図13〜図14を参照して本発明の第4の実施形態に係る制御光波長多重方式の光路切替型光信号送受信装置およびその光路切替方法を説明する。
[Fourth Embodiment]
With reference to FIGS. 13 to 14, a description will be given of an optical path switching type optical signal transmission / reception apparatus and its optical path switching method of the control light wavelength multiplexing system according to the fourth embodiment of the present invention.

第4の実施形態に係る光路切替型光信号送受信装置は、本発明の第1の実施形態で説明された当該装置において、第1段目の1対7対応光制御型光路切替装置にて選択された光路を各々、第2段目においては1対2対応光制御型光路切替装置にて2方向に切り替え、合計14基の光信号送受信装置へ接続するものである。第4の実施形態においては、第1段目に1対7対応光制御型光路切替装置を設け、第2段目に1対2対応光制御型光路切替装置を設置した場合を例示したが、各段における光路切替方向の数に特に制約はない。例えば、第1段目に1対2対応光制御型光路切替装置を設け、第2段目に1対7対応光制御型光路切替装置を設け、さらに、第3段目に1対2対応光制御型光路切替装置を設けても良い。   The optical path switching type optical signal transmission / reception apparatus according to the fourth embodiment is selected by the first-stage one-to-seven corresponding optical control type optical path switching apparatus in the apparatus described in the first embodiment of the present invention. Each of the optical paths is switched in two directions by a one-to-two correspondence optical control type optical path switching device in the second stage, and connected to a total of 14 optical signal transmission / reception devices. In the fourth embodiment, a case where a 1-to-7 correspondence light control type optical path switching device is provided in the first stage and a 1-to-2 correspondence light control type optical path switching device is installed in the second stage is illustrated. There is no particular limitation on the number of optical path switching directions in each stage. For example, a 1 to 2 compatible light control type optical path switching device is provided in the first stage, a 1 to 7 compatible light control type optical path switching device is provided in the second stage, and a 1 to 2 compatible light is provided in the third stage. A control type optical path switching device may be provided.

図13は、第4の実施形態に係る光路切替型光信号送受信装置における第1段目光路切替装置の構成の一例を示し、図14は第4の実施形態の光路切替型光信号送受信装置において7組用いられる第2段目光路切替装置の1組について構成の一例を示している。   FIG. 13 shows an example of the configuration of the first-stage optical path switching device in the optical path switching type optical signal transmission / reception device according to the fourth embodiment, and FIG. 14 shows the optical path switching type optical signal transmission / reception device of the fourth embodiment. An example of the configuration of one set of second-stage optical path switching devices used in seven sets is shown.

以下、第4の実施形態の光路切替型光信号送受信装置およびその光路切替方法を説明する。なお、装置を構成する個々の部品の詳細については第1の実施形態の場合と全く同等であるので、その説明は省略する。   The optical path switching type optical signal transmitting / receiving apparatus and the optical path switching method thereof according to the fourth embodiment will be described below. Note that details of the individual components constituting the apparatus are exactly the same as those in the first embodiment, and a description thereof will be omitted.

第4の実施形態の光路切替型光信号送受信装置は、光ファイバー等からなる光路9001の一端に接続された1つの光信号送受信装置9と、多数の光路9611〜9612等の終端に接続された複数の光信号送受信装置971〜972等との接続を、複数の、多段に組み合わされた光制御型光路切替装置によって切り替える。   The optical path switching type optical signal transmission / reception apparatus of the fourth embodiment includes one optical signal transmission / reception apparatus 9 connected to one end of an optical path 9001 made of an optical fiber and the like, and a plurality of optical signal transmission / reception apparatuses connected to the ends of a large number of optical paths 9611 to 9612 and the like. The optical signal transmission / reception devices 971 to 972 and the like are switched by a plurality of light control type optical path switching devices combined in multiple stages.

ここで「光路」とは空間、光ファイバー、または光導波路等の光伝送経路のことである。前述の光制御型光路切替装置を駆動し、信号光の光路を予め選択された特定の組合せに切り替えるための複数の波長の制御光は、第1段目光路切替用の制御光光源91〜96および第2段目光路切替用の制御光光源97から選択的に発振される。光路の両端にある光信号送受信装置9および光信号送受信装置971〜972等との信号光のやり取りに同期するよう信号光および制御光の電子制御装置90から信号光および制御光の電子制御配線901通じて送られる制御電子信号によって複数の制御光光源91〜96および97の明滅の組合せが選択される。   Here, the “optical path” means an optical transmission path such as a space, an optical fiber, or an optical waveguide. The control light sources 91 to 96 for switching the first-stage optical path are used as the control light having a plurality of wavelengths for driving the light control type optical path switching device described above and switching the optical path of the signal light to a specific combination selected in advance. The light is selectively oscillated from the control light source 97 for switching the second stage optical path. Signal light and control light electronic control wiring 901 from the signal light and control light electronic control device 90 so as to be synchronized with the exchange of signal light with the optical signal transmission / reception device 9 and the optical signal transmission / reception devices 971 to 972 at both ends of the optical path. The blinking combination of the plurality of control light sources 91-96 and 97 is selected by the control electronic signal sent through.

複数の制御光光源91〜96および97からの複数の波長の制御光9011〜9016および9021と、光路9001を正方向および逆方向に進む信号光とは、合波器900によって合波される。合波された信号光と制御光は、共通の1筋の光路9100を進行し、分波器910にて、信号光9101および第1段目光路切替用の制御光9111〜9116の各々と、第2段目の光路切替用の制御光9300に分波される。   The control light 9011 to 9016 and 9021 having a plurality of wavelengths from the control light sources 91 to 96 and 97 and the signal light traveling in the forward direction and the reverse direction on the optical path 9001 are combined by the multiplexer 900. The combined signal light and control light travel on a common optical path 9100, and in the demultiplexer 910, each of the signal light 9101 and the control light 9111 to 9116 for switching the first-stage optical path, It is demultiplexed into the control light 9300 for switching the optical path in the second stage.

分波器910にて独立に分波された信号光9101は第1段目の1対7対応光制御型光路切替装置920の中心の光ファイバー・コア(図5の符号400に相当する)に接続される。また、分波器910にて波長別に分波された第1段目光路切替用の制御光9111〜9116の各々は、第1段目の1対7対応光制御型光路切替装置920の周辺の光ファイバー・コア(図5の符号401〜406に相当する)に接続される。第1段目光路切替用の制御光光源91〜96に対応した制御光9111〜9116の明滅に応じて、信号光9101は第1段目の1対7対応光制御型光路切替装置920の7本の出射側光ファイバー・コア(図6の符号421〜426,420に相当する)のいずれかに光路切替され、信号光9201〜9207のいずれかとして第2段目に進む。   The signal light 9101 separately demultiplexed by the demultiplexer 910 is connected to the optical fiber core (corresponding to reference numeral 400 in FIG. 5) at the center of the first-stage one-to-seven-corresponding optical path switching device 920. Is done. In addition, each of the first-stage optical path switching control lights 9111 to 9116 demultiplexed according to the wavelength by the demultiplexer 910 is provided around the first-stage one-to-seven corresponding light control type optical path switching apparatus 920. It is connected to an optical fiber core (corresponding to reference numerals 401 to 406 in FIG. 5). In response to the flickering of the control lights 9111 to 9116 corresponding to the control light sources 91 to 96 for the first stage optical path switching, the signal light 9101 is 7 of the 1 to 7 correspondence light control type optical path switching apparatus 920 of the first stage. The optical path is switched to one of the two outgoing-side optical fiber cores (corresponding to reference numerals 421 to 426 and 420 in FIG. 6), and proceeds to the second stage as one of the signal lights 9201 to 9207.

ここで、分波器910で分波された第2段目の光路切替用の制御光9300は分配器930によって制御光群9301〜9307の7つのビームに等分され、さらに、7基の合波器941〜947によって、上記の信号光9201〜9207と合波され、第2段目への光路9411,9421,9431,9441,9451,9461,9471を進む。第2段目の光路への切替は、第1段目の制御光光源91〜96のいずれかが点灯する6通りに加え、全てが消灯した状態の1通りの合計7通りが選択される。   Here, the second-stage optical path switching control light 9300 demultiplexed by the demultiplexer 910 is equally divided into seven beams of the control light groups 9301 to 9307 by the distributor 930, and further, seven combined lights are combined. The signal beams 9201 to 9207 are combined by the wavers 941 to 947 and travel on the optical paths 9411, 9421, 9431, 9441, 9451, 9461 and 9471 to the second stage. For the switching to the second-stage optical path, in addition to six ways in which any one of the first-stage control light sources 91 to 96 is turned on, a total of seven ways are selected in which all are turned off.

第2段目への光路、例えば光路9411〜9471を進む光の内容は、光路切替された信号光と例えば7分割された制御光であり、それぞれ同等である。そこで、以下の説明は、図14に示すように、7系統の光路の1つである9411が接続する第2段目の装置について述べる。他の光路についても、以下同様にして第2段目の光路切替が行われる。   The contents of the light that travels along the optical path to the second stage, for example, the optical paths 9411 to 9471, are the signal light whose optical path has been switched and the control light that has been divided into seven, for example, which are the same. Therefore, in the following description, as shown in FIG. 14, a second-stage apparatus to which 9411 that is one of seven optical paths is connected will be described. For the other optical paths, the second-stage optical path switching is performed in the same manner.

一筋の光路9411を進む信号光および制御光は、分波器950にて、信号光9501および第2段目光路切替用の制御光9511に分波される。   The signal light and control light traveling along a single optical path 9411 are demultiplexed by the demultiplexer 950 into signal light 9501 and control light 9511 for second-stage optical path switching.

分波器950にて独立に分波された信号光9501および第2段目光路切替用の制御光9511は、第2段目の1対2対向光制御型光路切替装置960の信号光ポートおよび制御光ポートに各々接続される。第2段目光路切替用の制御光光源97に対応した制御光9511の明滅に応じて、信号光9501は第2段目の1対2対応光制御型光路切替装置960にて直進する光路9611または光路変更された光路9612のいずれかに光路切替される。制御光9511の光源97が点灯し光路切替が行われた場合、信号光は光路9612を通じて光信号送受信装置972に接続され、光信号送受信装置9と光信号送受装置972との間で光信号の送受信が行われる。   The signal light 9501 and the second-stage optical path switching control light 9511 that are independently demultiplexed by the demultiplexer 950 are the signal light ports of the second-stage one-to-two facing light control type optical path switching device 960 and Each is connected to a control light port. In response to the blinking of the control light 9511 corresponding to the control light source 97 for switching the second stage optical path, the signal light 9501 travels straight in the one-to-two correspondence light control type optical path switching device 960 in the second stage. Alternatively, the optical path is switched to one of the optical paths 9612 whose optical path has been changed. When the light source 97 of the control light 9511 is turned on and the optical path is switched, the signal light is connected to the optical signal transmitting / receiving apparatus 972 through the optical path 9612, and the optical signal is transmitted between the optical signal transmitting / receiving apparatus 9 and the optical signal transmitting / receiving apparatus 972. Transmission / reception is performed.

制御光9511の光源97が点灯しない場合、信号光は光路9611を通じて光信号送受信装置971に接続され、光信号送受信装置9と光信号送受装置971との間で光信号の送受信が行われる。   When the light source 97 of the control light 9511 is not turned on, the signal light is connected to the optical signal transmitting / receiving device 971 through the optical path 9611, and the optical signal is transmitted / received between the optical signal transmitting / receiving device 9 and the optical signal transmitting / receiving device 971.

このようにして、第1段目用の制御光光源91〜96の明滅に応じて、第1段目の1対7対応光制御型光路切替装置910によって7方向に光路切替された信号光の光路が9411〜9471が各々、第2段目用の制御光光源97の明滅に応じて、第2段目の1対2対応光制御型光路切替装置950などによって2方向に光路切替され、光信号素受信装置9と、合計14基の光信号送受信装置971,972などとの光路が切り替えられ、光信号の送受信が行われる。   In this way, in response to the blinking of the control light sources 91 to 96 for the first stage, the signal light whose optical path has been switched in seven directions by the first-stage one-to-seven corresponding light control type optical path switching device 910 is used. Each of the optical paths 9411 to 9471 is switched in two directions by the second-stage one-to-two light control type optical path switching device 950 or the like according to the blinking of the control light source 97 for the second stage, and the light The optical path between the signal receiving device 9 and a total of 14 optical signal transmission / reception devices 971, 972 and the like is switched, and optical signals are transmitted and received.

前述した第4の実施形態に係る光路切替型光信号送受信装置および光路切替方法によれば、第1の実施形態の場合と同様の効果を得ることができる。   According to the optical path switching type optical signal transmitting / receiving apparatus and the optical path switching method according to the fourth embodiment described above, the same effects as in the case of the first embodiment can be obtained.

以上の実施形態で説明された構成および配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また各構成の組成(材質)等については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。   The configurations and arrangement relationships described in the above embodiments are merely schematically shown to the extent that the present invention can be understood and implemented, and the composition (material) and the like of each configuration are merely examples. Therefore, the present invention is not limited to the described embodiments, and can be variously modified without departing from the scope of the technical idea shown in the claims.

本発明に係る制御光波長多重方式の光路切替型光信号送受信装置等は、例えば工場内に設けられた複数の光ファイバーセンサーを適宜切り替えて測定する温度センシングシステム、構造物に密着して取り付けられた複数の光ファイバードップラーセンサーを切り替えて測定することによって構造物の特定位置の変形や破断を検知する光ファイバーセンシングシステム、放射性物質取り扱いないし貯蔵場所の所定位置に設けられた複数の光ファイバー型シンチレーターを切り替えて測定することによって特定位置の放射線強度を監視する光ファイバーセンシングシステム、コンピュータサーバとクライアントマシン間の情報送受信を全光で行う光情報伝送システム等に利用される   The optical path switching type optical signal transmission / reception device or the like of the control light wavelength multiplexing system according to the present invention is attached in close contact with a temperature sensing system or a structure that switches and measures a plurality of optical fiber sensors provided in a factory, for example. Switch between multiple fiber optic Doppler sensors to measure deformation and breakage of a specific position of the structure, switch between multiple fiber optic scintillators installed at predetermined locations in the radioactive material handling or storage location It is used in optical fiber sensing systems that monitor the radiation intensity at a specific location, optical information transmission systems that transmit and receive information between a computer server and a client machine with all light, etc.

1,5,6,9 光信号送受信装置、
10 信号光および制御光の電子制御装置、
11〜16 第1段目光路切替用の制御光光源、
21〜26 第2段目光路切替用の制御光光源、
31〜36 第3段目光路切替用の制御光光源、
40 信号光透過・制御光吸収層、
43 光学平板44に設けられた穴、
44 光学平板、
45〜49 集光レンズ、
47 熱レンズ形成素子、
50 信号光および制御光の電子制御装置、
51 第1段目光路切替用の制御光光源、
52 第2段目光路切替用の制御光光源、
55 光路切替方式光信号送受信装置の単位装置、
60 信号光および制御光の電子制御装置、
61〜66 第1段目光路切替用の制御光光源、
71〜76 第2段目光路切替用の制御光光源、
81〜86 第3段目光路切替用の制御光光源、
90 信号光および制御光の電子制御装置、
91〜96 第1段目光路切替用の制御光光源、
97 第2段目光路切替用の制御光光源、
100,141〜147,241〜247 合波器、
101 信号光および制御光の電子制御配線、
110,210,310 分波器、
120,220,320 光制御式光路切替装置、
130,230 分配器、
400 7芯光ファイバー440の中心コア、
401〜406 7芯光ファイバー440の周辺コア、
410 中心コア400のクラッド、
411〜416 7芯光ファイバー440の周辺クラッド、
420 7芯光ファイバー450の中心コア、
421〜426 7芯光ファイバー450の周辺コア、
430 中心コア420のクラッド、
431〜436 7芯光ファイバー450の周辺クラッド、
440 制御光出射側7芯光ファイバー、
441 7芯光ファイバー440のフェルール、
442,452 接着剤、
450 信号光受光側7芯光ファイバー、
451 7芯光ファイバー450のフェルール、
500,513 合波器、
501 信号光および制御光の電子制御配線、
511,521 分波器、
512,522 光制御式光路切替装置、
514,523,524 信号光送受信装置、
600,641〜645,741〜744 合波器、
601 信号光および制御光の電子制御配線、
610,710,810 分波器、
620,720,820 光制御式光路切替装置、
630,730 分配器、
646,647,745〜747 光信号送受信装置、
900,941〜947 合波器、
901 信号光および制御光の電子制御配線、
910,950 分波器、
920 1対7対応の光制御式光路切替装置、
930 分配器、
960 1対2対応の光制御式光路切替装置、
971,972 信号光送受信装置、
1001 信号光およびその光路、
1011〜1016 第1段目光路切替用の制御光およびその光路、
1021〜1026 第2段目光路切替用の制御光およびその光路
1031〜1036 第3段目光路切替用の制御光およびその光路
1100 信号光と全制御光とが合波された光およびその光路、
1101 分波された第1段目における光路切替前の信号光およびその光路、
1111〜1116 異なる波長毎に分波された第1段目光路切替用の個々の制御光およびその光路、
1201〜1207 第1段目光路切替された信号光およびその光路、
1300 分波された第2段目以降用の制御光およびその光路、
1301〜1307 分配された第2段目以降用の制御光およびその光路、
1411,1421,1431、1441,1451,1461,1471 第1段目で光路切替された信号光と分波・分配された第2段目以降光路切替用の制御光とが合波された光およびその光路、
2101 分波された第2段目における光路切替前の信号光およびその光路、
2121〜2126 異なる波長毎に分波された第2段目光路切替用の個々の制御光およびその光路、
2201〜2207 第2段目光路切替された信号光およびその光路、
2300 分波された第3段目以降用の制御光およびその光路、
2301〜2307 分配された第3段目以降用の制御光およびその光路、
2411,2421,2431,2441,2451,2461,2471 第2段目で光路切替された信号光と分波・分配された第3段目光路切替用の制御光とが合波された光およびその光路、
3101 分波された第3段目における光路切替前の信号光およびその光路、
3131〜3136 分波された第3段目光路切替用の制御光およびその光路、
3201〜3207 第3段目光路切替された信号光およびその光路、
3301〜3307 光信号送受信装置、
4001 制御光の進行方向、
4010,4020 制御光出射側7芯光ファイバー440の周辺コア401,402から各々出射した制御光、
4100 制御光出射側7芯光ファイバー440の中心コア400から出射した信号光、
4200 制御光出射側7芯光ファイバー440の中心コア400から出射し、直進して信号光受光側7芯光ファイバー450の中心コア420へ入射する信号光、
4201,4202 熱レンズ形成素子47によって光路変更された信号光、
5001 信号光およびその光路、
5011 第1段目光路切替用の制御光およびその光路、
5012 第2段目光路切替用の制御光およびその光路、
5100 信号光と全制御光とが合波された光およびその光路、
5101 分波された第1段目における光路切替前の信号光およびその光路、
5110 分波された第2段目以降用の制御光およびその光路、
5111 1対2対応光制御型光路切替装置を直進する信号光およびその光路、
5112 1対2対応光制御型光路切替装置で光路変更
された信号光およびその光路、
5151 分波された第1段目光路切替用の制御光およびその光路、
5200 第1段目で光路切替された信号光(直進)と分波・分配された第2段目以降の光路切替用の制御光とが合波された光およびその光路、
5201 分波された第2段目における光路切替前の信号光およびその光路、
5252 分波された第2段目(最終段)の制御光およびその光路、
5211 第2段目光路切替された信号光およびその光路(直進)、
5212 第2段目光路切替された信号光およびその光路(光路変更)、
6001 信号光およびその光路、
6061〜6066 第1段目光路切替用の制御光およびその光路、
6100 信号光と全制御光とが合波された光およびその光路、
6101 分波された第1段目における光路切替前の信号光およびその光路、
6161〜6166 異なる波長毎に分波された第1段目光路切替用の個々の制御光およびその光路、
6201〜6207 第1段目光路切替された信号光およびその光路、
6300 分波された第2段目以降用の制御光およびその光路、
6301〜6305 分配された第2段目以降用の制御光およびその光路、
6411,6421,6431,6441,6451 第1段目で光路切替され第2段目に進む信号光と分波・分配された第2段目以降光路切替用の制御光とが合波された光およびその光路、
7071〜7076 第2段目光路切替用の制御光およびその光路
7101 分波された第2段目における光路切替前の信号光およびその光路、
7171〜7176 異なる波長毎に分波された第2段目光路切替用の個々の制御光およびその光路、
7201〜7207 第2段目光路切替された信号光およびその光路、
7300 分波された第3段目以降用の制御光およびその光路、
7301〜7304 分配された第3段目以降用の制御光およびその光路、
7411,7421,7431,7441 第2段目で光路切替され第3段目へ進信号光と分波・分配された第3段目光路切替用の制御光とが合波された光およびその光路、
8081,8082,8083,8084,8035,8036 第3段目光路切替用の制御光およびその光路
8101 分波された第3段目における光路切替前の信号光およびその光路、
8181〜8186 分波された第3段目光路切替用の制御光およびその光路、
8201〜8207 第3段目光路切替された信号光およびその光路、
8301〜8307 光信号送受信装置、
9001 信号光およびその光路、
9011〜9016 第1段目光路切替用の制御光およびその光路、
9021 第2段目光路切替用の制御光およびその光路、
9100 信号光と全制御光とが合波された光およびその光路、
9101 分波された第1段目における光路切替前の信号光およびその光路、
9111〜9116 異なる波長毎に分波された第1段目光路切替用の個々の制御光およびその光路、
9201〜9207 第1段目光路切替された信号光およびその光路、
9300 分波された第2段目以降用の制御光およびその光路、
9301〜9307 分配された第2段目以降用の制御光およびその光路、
9411,9421,9431、9441,9451,9461,9471 第1段目で光路切替された信号光と分波・分配された第2段目以降光路切替用の制御光とが合波された光およびその光路、
9501 分波された第2段目における光路切替前の信号光およびその光路、
9511 分波された第2段目光路切替用の制御光およびその光路、
9611 第2段目光路切替された信号光およびその光路(直進)、
9612 第2段目光路切替された信号光およびその光路(光路変更)。
1, 5, 6, 9 optical signal transmitting and receiving device,
10 Electronic control device for signal light and control light,
11-16 Control light source for first stage optical path switching,
21-26 control light source for second stage optical path switching,
31-36 Third-stage optical path switching control light source,
40 Signal light transmission / control light absorption layer,
43 Holes provided in the optical flat plate 44,
44 optical plate,
45-49 condenser lens,
47 thermal lens forming element,
50. Electronic control device for signal light and control light,
51 control light source for first stage optical path switching,
52 control light source for second stage optical path switching,
55 Optical path switching unit optical signal transmitter / receiver unit device,
60 Electronic control device for signal light and control light,
61-66 control light source for first stage optical path switching,
71-76 control light source for second stage optical path switching,
81-86 Third-stage optical path switching control light source,
90 Electronic control device for signal light and control light,
91-96 Control light source for first stage optical path switching,
97 control light source for second stage optical path switching,
100, 141-147, 241-247 multiplexer,
101 Electronic control wiring of signal light and control light,
110, 210, 310 duplexer,
120, 220, 320 light control type optical path switching device,
130,230 distributor,
400 7 core optical fiber 440 central core,
401-406 Peripheral core of 7-core optical fiber 440,
410 Cladding of the central core 400,
411 to 416 7-core optical fiber 440 peripheral cladding,
420 The central core of a seven-core optical fiber 450,
421-426 peripheral cores of 7-core optical fiber 450,
430 Cladding of the central core 420,
431-436 Perimeter cladding of 7-core optical fiber 450,
440 control light exit side 7-core optical fiber,
441 Ferrule of 7-core optical fiber 440,
442, 452 adhesive,
450 Signal light receiving side 7-core optical fiber,
451 Ferrule of 7-core optical fiber 450,
500,513 multiplexer,
501 Electronic control wiring for signal light and control light,
511, 521 duplexer,
512, 522 light control type optical path switching device,
514, 523, 524 signal light transmitting and receiving device,
600, 641-645, 741-744 multiplexer,
601 Electronic control wiring for signal light and control light,
610, 710, 810 duplexer,
620, 720, 820 light control type optical path switching device,
630,730 distributor,
646, 647, 745-747 optical signal transmitting / receiving device,
900, 941-947 multiplexer,
901 Electronic control wiring for signal light and control light,
910, 950 duplexer,
920 1-to-7 correspondence light control type optical path switching device,
930 distributor,
960 light control type optical path switching device corresponding to 1 to 2,
971, 972 signal light transmission / reception device,
1001 Signal light and its optical path,
1011-1016 Control light for switching the first stage optical path and its optical path,
1021 to 1026 Control light for second-stage optical path switching and its optical path 1031 to 1036 Control light for third-stage optical path switching and its optical path 1100 Light combined with signal light and all control light and its optical path,
1101 Signal light before optical path switching in the first stage after being demultiplexed and its optical path,
1111 to 1116 Individual control lights for switching the first-stage optical path that are demultiplexed for different wavelengths and the optical paths thereof,
1201-1207 The first stage optical path switched signal light and its optical path,
Control light for the second and subsequent stages separated by 1300 and its optical path,
1301-1307 Control light for the second and subsequent stages distributed and its optical path,
1411, 1421, 1431, 1441, 1451, 1461, 1471 Light obtained by combining the signal light whose optical path has been switched in the first stage and the control light for switching the optical path after the second stage, which has been demultiplexed and distributed, and Its optical path,
2101 signal light before optical path switching in the second stage after being demultiplexed and its optical path,
2121 to 2126 Individual control light for switching the second stage optical path, which is demultiplexed for each different wavelength, and its optical path,
2201 to 2207 Second-stage optical path switched signal light and its optical path,
Control light for the third and subsequent stages after 2300 demultiplexing and its optical path,
2301 to 2307 distributed control light for the third and subsequent stages and its optical path,
2411, 2421, 2431, 2441, 2451, 2461, 2471 Light obtained by combining the signal light switched in the second stage with the control light for switching the third stage optical path separated and distributed, and Optical path,
3101 signal light before the optical path switching in the third stage demultiplexed and its optical path,
3131-3136 Control light for switching the third-stage optical path that has been demultiplexed and its optical path,
3201 to 3207 Third-stage optical path switched signal light and its optical path,
3301-3307 optical signal transmitting / receiving device,
4001 Direction of travel of control light,
4010, 4020 The control light emitted from the peripheral cores 401, 402 of the control light emission side seven-core optical fiber 440,
4100 Signal light emitted from the central core 400 of the control light emission side seven-core optical fiber 440,
4200 Signal light which is emitted from the central core 400 of the control light emitting side seven-core optical fiber 440, goes straight and enters the central core 420 of the signal light receiving side seven-core optical fiber 450,
4201, 4202 Signal light whose optical path is changed by the thermal lens forming element 47,
5001 Signal light and its optical path,
5011 control light for first-stage optical path switching and its optical path,
5012 Control light for switching the second stage optical path and its optical path,
5100 Light obtained by combining signal light and all control light and its optical path;
5101 signal light before optical path switching in the first stage after being demultiplexed and its optical path,
5110 Control light for the second and subsequent stages after being demultiplexed and its optical path,
5111 signal light that goes straight through the one-to-two light control type optical path switching device and its optical path,
5112 signal light whose optical path has been changed by the one-to-two optical control type optical path switching device and its optical path,
5151 demultiplexed first stage optical path switching control light and its optical path,
5200: light in which the optical path is switched in the first stage (straight forward) and the optical path switching control light in the second and subsequent stages separated and distributed, and its optical path;
5201 signal light before optical path switching in the second stage after being demultiplexed and its optical path,
5252 demultiplexed second stage (final stage) control light and its optical path,
5211 Second-stage optical path switched signal light and its optical path (straight),
5212 Second-stage optical path switched signal light and its optical path (optical path change),
6001 Signal light and its optical path,
6061-6066 control light for first stage optical path switching and its optical path,
6100 Light obtained by combining signal light and all control light and its optical path;
6101 signal light before optical path switching in the first stage after being demultiplexed and its optical path,
6161-6166 Individual control light for switching the first-stage optical path that is demultiplexed for each different wavelength and its optical path,
6201-6207 First-stage optical path switched signal light and its optical path,
6300 Control light for the second and subsequent stages after being demultiplexed and its optical path,
6301 to 6305 distributed control light for the second and subsequent stages and its optical path,
6411, 6421, 6431, 6441, 6451 Light in which the optical path is switched in the first stage and the signal light traveling to the second stage is combined with the control light for switching the optical path after the second stage that has been demultiplexed / distributed And its optical path,
7071 to 7076 Control light for second-stage optical path switching and its optical path 7101 Signal light before optical path switching in the second stage demultiplexed and its optical path,
7171-7176 Individual control light for switching the second stage optical path, which is demultiplexed for each different wavelength, and its optical path,
7201-7207 Second-stage optical path switched signal light and its optical path,
7300 Control light for the third and subsequent stages separated and its optical path,
7301-7304 Control light for the third and subsequent stages distributed and its optical path,
7411, 7421, 7431, 7441 Light in which the optical path is switched in the second stage and the advance signal light and the demultiplexed / distributed control light for switching the third stage optical path are combined to the third stage, and the optical path ,
8081, 8082, 8083, 8084, 8035, 8036 Control light for switching the third stage optical path and its optical path 8101 The signal light before the optical path switching in the third stage divided and its optical path,
8181-8186 demultiplexed third stage optical path switching control light and its optical path,
8201-8207 Third-stage optical path switched signal light and its optical path,
8301-8307 Optical signal transmitting / receiving apparatus,
9001 Signal light and its optical path,
9011 to 9016 Control light for first-stage optical path switching and its optical path,
9021 Control light for switching the second stage optical path and its optical path,
9100 Light obtained by combining signal light and all control light and its optical path;
9101 signal light before optical path switching in the first stage after being demultiplexed and its optical path,
9111 to 9116 Individual control light for switching the first-stage optical path, which is demultiplexed for each different wavelength, and its optical path,
9201 to 9207 The first-stage optical path switched signal light and its optical path,
9300 Control light for the second and subsequent stages separated and its optical path,
9301 to 9307 The distributed control light for the second and subsequent stages and its optical path,
9411, 9421, 9431, 9441, 9451, 9461, 9471 Light obtained by combining the signal light whose optical path has been switched in the first stage and the control light for switching the optical path after the second stage, which has been demultiplexed and distributed, and Its optical path,
9501 signal light before the optical path switching in the second stage, and its optical path,
9511 Control light for second-stage optical path switching that has been demultiplexed and its optical path,
9611 Second-stage optical path switched signal light and its optical path (straight),
9612 Second-stage optical path switched signal light and its optical path (optical path change).

Claims (15)

Nを1以上の整数としかつMを2以上の整数とするとき、波長の異なるN個の制御光を用いて、光制御方式により、前記制御光とは波長の異なる1種類以上の信号光の光路を、(N+1)個の異なる方向へ切り替えるM段階の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置される1以上の光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
KをM×Nとするとき、K種類の波長の前記制御光を出力するK個の制御光光源と、
送信側の前記光信号送受信装置と前記制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
K種類の波長の前記制御光と前記信号光を混合して出力する合波器と、
を備え、
M段階の前記光制御型光路切替装置の各段階で、
前段の合波器から出力される前記信号光と前記制御光を同一経路で伝搬させる光路と、
Lを1以上でかつM以下の整数とするとき、L段目の前記光制御型光路切替装置を制御するためのN種類の波長の前記制御光を、L段目以降の光制御型光路切替装置を制御するための波長の制御光および前記信号光と分離する分波器と、
RLを0以上でかつ(N+1)以下の整数とするとき、L段目の前記光制御型光路切替装置で光路切替された前記信号光の光路に接続されるRL個の受信側の前記光信号送受信装置と、
前記分波器で分離された、L段目以降の前記光制御型光路切替装置を制御するための波長を有する前記制御光を((N+1)−RL)個に分配する分配器と、
L段目の前記光制御型光路切替装置で(N+1)個の異なる方向に光路が切り替えられ、L段目以降への光路を進む信号光の各々と、((N+1)−RL)個に分配された、L段目以降の光制御型光路切替装置を制御するための波長の前記制御光を混合して光路に導くための合波器と、を備える、
ことを特徴とする光路切替型光信号送受信装置。
When N is an integer greater than or equal to 1 and M is an integer greater than or equal to 2, N control lights having different wavelengths are used to control one or more types of signal light having different wavelengths from the control light by an optical control method. An optical path switching type optical signal transmission / reception apparatus including an M-stage optical control type optical path switching apparatus that switches an optical path to (N + 1) different directions,
One or more optical signal transmitting and receiving devices arranged on the transmitting side;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
When K is M × N, K control light sources that output the control light of K types of wavelengths;
An electronic control device for controlling the operation of the optical signal transmission / reception device on the transmission side and the control light source via an electronic control wiring;
A multiplexer that mixes and outputs the control light of K types of wavelengths and the signal light;
With
At each stage of the light control type optical path switching device of M stages,
An optical path for propagating the signal light and the control light output from a previous-stage multiplexer on the same path;
When L is an integer greater than or equal to 1 and less than or equal to M, the control light of N types of wavelengths for controlling the light control type optical path switching device of the L stage is used as the light control type optical path switching of the L stage and thereafter. A wavelength control light for controlling the device and a branching filter that separates the signal light;
When RL is an integer greater than or equal to 0 and less than or equal to (N + 1), the RL reception-side optical signals connected to the optical path of the signal light whose optical path has been switched by the light control type optical path switching device in the L-th stage A transceiver device;
A splitter that splits the control light having a wavelength for controlling the optical control type optical path switching device in the L-th stage and later separated by the duplexer into ((N + 1) −RL) pieces;
The optical path is switched in the (N + 1) different directions by the light control type optical path switching device in the L-th stage, and each of the signal lights traveling on the optical path to the L-th stage and thereafter is distributed to ((N + 1) -RL). A multiplexer for mixing the control light having a wavelength for controlling the light control type optical path switching device in the L-th stage and thereafter and guiding it to the optical path,
An optical path switching type optical signal transmission / reception device.
Nを6とし、Mを3とし、Kを18とし、Lを1〜3のうちいずれかの整数とし、RLを0〜7のいずれかの整数とし、かつ前記信号光を1種類であるとするとき、前記光制御型光路切替装置は3段階で構成されることを特徴とする請求項1記載の光路切替型光信号送受信装置。   N is 6, M is 3, K is 18, L is any integer from 1 to 3, RL is any integer from 0 to 7, and the signal light is one kind 2. The optical path switching type optical signal transmitting / receiving apparatus according to claim 1, wherein the optical control type optical path switching apparatus comprises three stages. Pを2以上の整数とするとき、前記M段階の光制御型光路切替装置の各々は1対P対応光制御型光路切替装置であることを特徴とする請求項1または2記載の光路切替型光信号送受信装置。   3. The optical path switching type according to claim 1, wherein when P is an integer of 2 or more, each of the M-stage optical control type optical path switching apparatuses is a one-to-P compatible optical control type optical path switching apparatus. Optical signal transmitter / receiver. 前記Pは2または7であることを特徴とする請求項3記載の光路切替型光信号送受信装置。   4. The optical path switching type optical signal transmitting / receiving apparatus according to claim 3, wherein P is 2 or 7. 1対7対応の前記光制御型光路切替装置は、信号光透過・制御光吸収層を有する熱レンズ形成素子を含み、制御光出射側および信号光受光側の前記光路は7芯光ファイバーであることを特徴とする請求項4記載の光路切替型光信号送受信装置。   The light control type optical path switching device corresponding to 1: 7 includes a thermal lens forming element having a signal light transmission / control light absorption layer, and the optical paths on the control light emitting side and the signal light receiving side are 7-core optical fibers. The optical path switching type optical signal transmitting / receiving apparatus according to claim 4. 前記信号光は、1500〜1600nmの範囲に含まれる波長の光であり、
前記制御光は、1260〜1400nmの範囲に含まれる波長の光であり、5nm毎に波長の異なる光を波長多重で用いる、
ことを特徴とする請求項1記載の光路切替型光位信号送受装置。
The signal light is light having a wavelength included in a range of 1500 to 1600 nm,
The control light is light having a wavelength included in a range of 1260 to 1400 nm, and light having a different wavelength is used in wavelength multiplexing every 5 nm.
The optical path switching type light level signal transmitting / receiving apparatus according to claim 1.
各段階毎、波長の異なる6個の制御光を用いて、光制御方式により、前記制御光とは波長の異なる1種類の信号光の光路を7個の異なる方向へ切り替える3段階の1対7対応の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置され、前記信号光を出力する光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
各段階毎、6種類の波長の前記制御光を出力する6個の制御光光源と、
送信側の前記光信号送受信装置と前記制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
6種類の波長の前記制御光と1種類の前記信号光を混合して出力する合波器と、
を備え、
3段階の前記光制御型光路切替装置のうち第1段目と第2段目の段階で、
前段の合波器から出力される前記信号光と前記制御光を同一経路で伝搬させる光路と、
当該段階の前記光制御型光路切替装置を制御するための6種類の波長の前記制御光を、当該段階以降の前記光制御型光路切替装置を制御するための波長の前記制御光および前記信号光と分離する分波器と、
前記分波器で分離された、後段の前記光制御型光路切替装置を制御するための波長を有する前記制御光を7個に分配する分配器と、
当該段階での前記光制御型光路切替装置で7個の異なる方向に光路が切り替えられ、さらに後段への光路を進む信号光の各々と、7個に分配された、当該段階の前記光制御型光路切替装置を制御するための波長の前記制御光を混合して光路に導くための7個の合波器と、を備え、
3段階の前記光制御型光路切替装置のうち第3段目の段階で、
前段の合波器から出力される前記信号光と前記制御光を同一経路で伝搬させる光路と、
当該段階の前記光制御型光路切替装置を制御するための6種類の波長の前記制御光を前記信号光と分離する分波器と、を備え、
当該段階での前記光制御型光路切替装置で、前記分波器から出力される6種類の波長の前記制御光を用いて、7個の異なる方向に光路が切り替えられ、これらの7個の光路のそれぞれに前記光信号送受信装置が接続される、
ことを特徴とする光路切替型光信号送受信装置。
At each stage, six control lights having different wavelengths are used, and a three-stage one-to-seven method for switching the optical path of one type of signal light having a wavelength different from that of the control light in seven different directions by an optical control method. An optical path switching type optical signal transmission / reception device comprising a corresponding optical control type optical path switching device,
An optical signal transmitting / receiving device arranged on the transmission side and outputting the signal light;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
6 control light sources that output the control light of 6 different wavelengths for each stage;
An electronic control device for controlling the operation of the optical signal transmission / reception device on the transmission side and the control light source via an electronic control wiring;
A multiplexer that mixes and outputs the six types of control light and one type of the signal light;
With
Among the three stages of the light control type optical path switching device, in the first stage and the second stage,
An optical path for propagating the signal light and the control light output from a previous-stage multiplexer on the same path;
The control light of six types of wavelengths for controlling the light control type optical path switching device at the stage, the control light and the signal light of wavelengths for controlling the light control type optical path switching apparatus at the stage and thereafter. A duplexer that separates
A distributor for distributing the control light having a wavelength for controlling the light control type optical path switching device in the subsequent stage, separated by the branching filter, to seven;
The light control type optical path switching device at the relevant stage switches the optical path in seven different directions, and further distributes the signal light that travels along the optical path to the subsequent stage, and the light control type at the relevant stage. 7 multiplexers for mixing the control light having a wavelength for controlling the optical path switching device and guiding it to the optical path,
Of the three-stage light control type optical path switching device, in the third stage,
An optical path for propagating the signal light and the control light output from a previous-stage multiplexer on the same path;
A demultiplexer for separating the control light of six types of wavelengths from the signal light for controlling the light control type optical path switching device at the stage,
In the optical control type optical path switching device at this stage, the optical paths are switched in seven different directions by using the control light of six types of wavelengths output from the duplexer, and these seven optical paths The optical signal transmitting / receiving device is connected to each of
An optical path switching type optical signal transmission / reception device.
各段階毎、波長の異なる2つの制御光を用いて、光制御方式により、前記制御光とは波長の異なる1種類の信号光の光路を2つの異なる方向へ切り替える2段階の1対2対応の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置され、前記信号光を出力する光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
各段階毎、2種類の波長の前記制御光を出力する2個の制御光光源と、
送信側の前記光信号送受信装置と前記制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
2種類の波長の前記制御光と1種類の前記信号光を混合して出力する合波器と、を備え、
2段階の前記光制御型光路切替装置の各段階で、
前段の合波器から出力される前記信号光と前記制御光を同一経路で伝搬させる光路と、
当該段階の前記光制御型光路切替装置を制御するための前記制御光を、後段の前記光制御型光路切替装置を制御するための波長の前記制御光および前記信号光と分離する分波器と、
当該段階の前記光制御型光路切替装置で2個の異なる方向に光路が切り替えられ、さらに後段への光路を進む信号光と、分配された、後段の前記光制御型光路切替装置を制御するための波長の前記制御光を混合して光路に導くための合波器と、を備える、
ことを特徴とする光路切替型光信号送受信装置。
Two-stage one-to-two correspondence that switches the optical path of one type of signal light having a wavelength different from that of the control light in two different directions using two control lights having different wavelengths for each stage. An optical path switching type optical signal transmission / reception device including an optical control type optical path switching device,
An optical signal transmitting / receiving device arranged on the transmission side and outputting the signal light;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
Two control light sources that output the control light of two types of wavelengths for each stage;
An electronic control device for controlling the operation of the optical signal transmission / reception device on the transmission side and the control light source via an electronic control wiring;
A multiplexer that mixes and outputs the control light of two types of wavelengths and one type of the signal light,
At each stage of the light control type optical path switching device in two stages,
An optical path for propagating the signal light and the control light output from the previous-stage multiplexer on the same path;
A demultiplexer for separating the control light for controlling the light control type optical path switching device at the stage from the control light and the signal light having a wavelength for controlling the light control type optical path switching device at the subsequent stage; ,
In order to control the light control type optical path switching device in the subsequent stage, and the signal light that is switched in the two different directions by the light control type optical path switching apparatus in the stage and further travels the optical path to the subsequent stage. A multiplexer for mixing the control light having a wavelength of
An optical path switching type optical signal transmission / reception device.
各段階毎、波長の異なる6個の制御光を用いて、光制御方式により、前記制御光とは波長の異なる1種類の信号光の光路を7個の異なる方向へ切り替える3段階の1対7対応の光制御型光路切替装置を備える光路切替型光信号送受信装置であって、
送信側に配置され、前記信号光を出力する光信号送受信装置と、
受信側に配置される1以上の光信号送受信装置と、
各段階毎、6種類の波長の前記制御光を出力する6個の制御光光源と、
送信側の前記光信号送受信装置と前記制御光光源の動作を電子制御配線を介して制御する電子制御装置と、
6種類の波長の前記制御光と1種類の前記信号光を混合して出力する合波器と、
を備え、
3段階の前記光制御型光路切替装置のうち1段目と2段目の段階で、
前段の合波器から出力される前記信号光と前記制御光を同一経路で伝搬させる光路と、
当該段階の前記光制御型光路切替装置を制御するための6種類の波長の前記制御光を、当該段階以降の前記光制御型光路切替装置を制御するための波長の前記制御光および前記信号光と分離する分波器と、
前記分波器で分離された、後段の前記光制御型光路切替装置を制御するための波長を有する前記制御光を7より小さい数で分配する分配器と、
前記光制御型光路切替装置で光路切替された前記信号光の一部の光路に接続される1以上の受信側の前記光信号送受信装置と、
前記光制御型光路切替装置で7個の異なる方向に光路が切り替えられ、さらに後段への光路を進む信号光の各々と、後段の前記光制御型光路切替装置を制御するための波長の前記制御光を混合して光路に導くための複数の合波器と、を備える、
ことを特徴とする光路切替型光信号送受信装置。
At each stage, six control lights having different wavelengths are used, and a three-stage one-to-seven method for switching the optical path of one type of signal light having a wavelength different from that of the control light in seven different directions by an optical control method. An optical path switching type optical signal transmission / reception device comprising a corresponding optical control type optical path switching device,
An optical signal transmitting / receiving device arranged on the transmission side and outputting the signal light;
One or more optical signal transmitting and receiving devices arranged on the receiving side;
6 control light sources that output the control light of 6 different wavelengths for each stage;
An electronic control device for controlling the operation of the optical signal transmission / reception device on the transmission side and the control light source via an electronic control wiring;
A multiplexer that mixes and outputs the six types of control light and one type of the signal light;
With
Of the three-stage light control type optical path switching device, the first stage and the second stage,
An optical path for propagating the signal light and the control light output from a previous-stage multiplexer on the same path;
The control light of six types of wavelengths for controlling the light control type optical path switching device at the stage, the control light and the signal light of wavelengths for controlling the light control type optical path switching apparatus at the stage and thereafter. A duplexer that separates
A distributor for distributing the control light having a wavelength for controlling the optical control type optical path switching device in the subsequent stage, separated by the duplexer, in a number smaller than 7;
One or more receiving-side optical signal transmitting and receiving apparatuses connected to a part of the optical path of the signal light whose optical path is switched by the optical control type optical path switching apparatus;
The optical path is switched in seven different directions by the light control type optical path switching device, and further, the control of the wavelength for controlling each of the signal light traveling on the optical path to the subsequent stage and the optical control type optical path switching device in the subsequent stage A plurality of multiplexers for mixing light and guiding it to the optical path,
An optical path switching type optical signal transmission / reception device.
前記信号光は1500〜1600nmの範囲に含まれる波長の光であり
前記制御光は、1260〜1400nmの範囲に含まれる波長の光であり、5nm毎に波長の異なる光を波長多重で用いる、
ことを特徴とする請求項7〜9のいずれか1項に記載の光路切替型光位信号送受装置。
The signal light is light having a wavelength included in a range of 1500 to 1600 nm, and the control light is light having a wavelength included in a range of 1260 to 1400 nm, and light having different wavelengths is used in a wavelength multiplexing manner every 5 nm.
The optical path switching type optical signal transmission / reception device according to any one of claims 7 to 9.
Nを1以上の整数としかつMを2以上の整数とするとき、波長の異なるN個の制御光を用いて、光制御方式により、前記制御光とは波長の異なる1種類以上の信号光の光路を、(N+1)個の異なる方向へ切り替える光制御型光路切替装置をM段階組み合わせる光路切替方法であって、
KをM×Nとするとき、K種類の波長の制御光光源を、前記信号光の目的とする光路に導くために所定時間で明滅させ、
前記M段階の各段階で、
前記信号光と前記制御光とを同一の光路で伝搬させ、
K種類の波長の制御光を混合して前記光路に導き、
Lを1以上であってM以下の整数とするとき、L段目の前記光制御型光路切替装置を制御するためのN種類の波長の制御光を、L段目以降の前記光制御型光路切替装置を制御するための波長の制御光および前記信号光と分波し、
L段目の前記光制御型光路切替装置を制御するためのN種類の波長の制御光のいずれか1つの波長の制御光を点灯することによってL段目の信号光の光路をN種類の方向のいずれか1つに切り替え、
前記分波された、L段目以降の前記光制御型光路切替装置を制御するための波長の制御光を(N+1)個に分配し、
RLを0以上かつ(N+1)以下の整数として、L段目で光路切替された信号光の光路をRL個の光信号送受信装置に接続して送受信を行わせ、
L段目の前記光制御型光路切替装置でN種類の方向に光路が切替られた信号光の各々と、((N+1)−RL)個に分配された、L段目以降の前記光制御型光路切替装置を制御するための波長の前記制御光を合波して次段への光路に導き、
送信側の光信号送受信装置と受信側の光信号送受信装置と間の光路を選択的に切替接続させる、
ことを特徴とする光信号の光路切替方法。
When N is an integer greater than or equal to 1 and M is an integer greater than or equal to 2, N control lights having different wavelengths are used to control one or more types of signal light having different wavelengths from the control light by an optical control method. An optical path switching method that combines light control type optical path switching devices that switch an optical path in (N + 1) different directions in M stages,
When K is M × N, the control light source of K types of wavelengths is blinked in a predetermined time in order to guide the signal light to the target optical path of the signal light,
In each of the M stages,
Propagating the signal light and the control light in the same optical path,
Mixing control lights of K types of wavelengths and introducing them to the optical path,
When L is an integer greater than or equal to 1 and less than or equal to M, control light of N types of wavelengths for controlling the light control type optical path switching device in the L stage is used as the light control type optical path after the L stage. Demultiplexing the control light of the wavelength for controlling the switching device and the signal light,
By turning on the control light of any one of the N types of control lights for controlling the light control type optical path switching device of the L stage, the optical path of the L stage signal light is changed to N types of directions. Switch to one of the
Distributing the control light having a wavelength for controlling the optical control type optical path switching device after the L-stage after the demultiplexing to (N + 1) pieces,
RL is an integer greater than or equal to 0 and less than or equal to (N + 1), and the optical path of the signal light whose optical path has been switched in the L-th stage is connected to RL optical signal transmitting and receiving apparatuses to perform transmission and reception.
Each of the signal light whose optical paths are switched in N types of directions by the light control type optical path switching device of the L stage and the light control type after the L stage distributed to ((N + 1) −RL). Combining the control light of the wavelength for controlling the optical path switching device and leading it to the optical path to the next stage,
Selectively switching and connecting the optical path between the optical signal transmission / reception device on the transmission side and the optical signal transmission / reception device on the reception side,
An optical signal switching method for an optical signal.
Nを6とし、Mを3とし、Kを18とし、Lを1〜3のうちいずれかの整数とし、RLを0〜7のいずれかの整数とし、かつ前記信号光を1種類であるとするとき、前記光制御型光路切替装置は3段階の構成を有することを特徴とする請求項11記載の光信号の光路切替方法。   N is 6, M is 3, K is 18, L is any integer from 1 to 3, RL is any integer from 0 to 7, and the signal light is one kind The method of claim 11, wherein the light control type optical path switching device has a three-stage configuration. Pを2以上の整数とするとき、前記M段階の光制御型光路切替装置の各々は1対Pの対応関係で光路を切り替えることを特徴とする請求項11または12記載の光信号の光路切替方法。   13. The optical path switching of an optical signal according to claim 11 or 12, wherein each of the M-stage optical control type optical path switching devices switches an optical path in a one-to-P correspondence relationship when P is an integer of 2 or more. Method. 前記Pは2または7であることを特徴とする請求項13記載の光信号の光路切替方法。   14. The optical signal path switching method according to claim 13, wherein P is 2 or 7. 前記信号光は、1500〜1600nmの範囲に含まれる波長の光であり、
前記制御光は、1260〜1400nmの範囲に含まれる波長の光であり、5nm毎に波長の異なる光を波長多重で用いる、
ことを特徴とする請求項11記載の光信号の光信号の光路切替方法。
The signal light is light having a wavelength included in a range of 1500 to 1600 nm,
The control light is light having a wavelength included in a range of 1260 to 1400 nm, and light having a different wavelength is used in wavelength multiplexing every 5 nm.
12. The method of switching an optical path of an optical signal according to claim 11.
JP2009020482A 2009-01-30 2009-01-30 Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method Active JP5071870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020482A JP5071870B2 (en) 2009-01-30 2009-01-30 Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020482A JP5071870B2 (en) 2009-01-30 2009-01-30 Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method

Publications (2)

Publication Number Publication Date
JP2010176008A true JP2010176008A (en) 2010-08-12
JP5071870B2 JP5071870B2 (en) 2012-11-14

Family

ID=42707026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020482A Active JP5071870B2 (en) 2009-01-30 2009-01-30 Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method

Country Status (1)

Country Link
JP (1) JP5071870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798465B2 (en) 2009-04-16 2014-08-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Optical path switching signal transmission/reception apparatus and corresponding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664962B (en) * 2016-07-28 2020-01-24 南京理工大学 Integrated control method of optical fiber sensing system based on FPGA

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337988A (en) * 1998-05-25 1999-12-10 Asahi Glass Co Ltd Optical switch
JP2001119347A (en) * 1999-08-09 2001-04-27 Nippon Telegr & Teleph Corp <Ntt> Optical communication node and optical communication system
JP2004109892A (en) * 2002-09-20 2004-04-08 National Institute Of Advanced Industrial & Technology Optical path switching apparatus and method for switching optical path
JP2004222012A (en) * 2003-01-16 2004-08-05 Yokogawa Electric Corp Light route control unit
JP2005234356A (en) * 2004-02-20 2005-09-02 Dainichiseika Color & Chem Mfg Co Ltd Optical control system optical path switching type light signal transmission apparatus and method for switching light signal optical path
JP2007225827A (en) * 2006-02-22 2007-09-06 National Institute Of Advanced Industrial & Technology Optical path switching method and optical path switching device
JP2008083095A (en) * 2006-09-25 2008-04-10 National Institute Of Advanced Industrial & Technology Vector control type optical path switching method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337988A (en) * 1998-05-25 1999-12-10 Asahi Glass Co Ltd Optical switch
JP2001119347A (en) * 1999-08-09 2001-04-27 Nippon Telegr & Teleph Corp <Ntt> Optical communication node and optical communication system
JP2004109892A (en) * 2002-09-20 2004-04-08 National Institute Of Advanced Industrial & Technology Optical path switching apparatus and method for switching optical path
JP2004222012A (en) * 2003-01-16 2004-08-05 Yokogawa Electric Corp Light route control unit
JP2005234356A (en) * 2004-02-20 2005-09-02 Dainichiseika Color & Chem Mfg Co Ltd Optical control system optical path switching type light signal transmission apparatus and method for switching light signal optical path
JP2007225827A (en) * 2006-02-22 2007-09-06 National Institute Of Advanced Industrial & Technology Optical path switching method and optical path switching device
JP2008083095A (en) * 2006-09-25 2008-04-10 National Institute Of Advanced Industrial & Technology Vector control type optical path switching method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798465B2 (en) 2009-04-16 2014-08-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Optical path switching signal transmission/reception apparatus and corresponding method

Also Published As

Publication number Publication date
JP5071870B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
CN104734800B (en) A kind of optical multiplexer and transmitting optical device
US9712239B2 (en) Method and apparatus for multiplexed optical communication system using spatial domain multiplexing (SDM) and orbital angular momentum of photon (OAM) multiplexing with wavelength division multiplexing (WDM)
AU2014235949B2 (en) Wavelength selective switch having integrated channel monitor
JP5710499B2 (en) Optical engine for point-to-point communication
TWI416237B (en) Optical path switching type optical signal transmission / reception apparatus and relevent opitical signal transmission / reception method
EP3615995B1 (en) Polarization insensitive micro ring modulator
US9225454B1 (en) Aggregation and de-agreggation of bandwidth within data centers using passive optical elements
CN108370279B (en) Photoelectric exchanger
SE9703107D0 (en) Arrangement and method relating to optical transmission
WO2022170829A1 (en) Photonic integrated chip, light emitting assembly, and optical transceiver module
JP6304030B2 (en) Optical transmitter and optical communication device
Zhang et al. 4 OAM x 4 WDM optical switching based on an innovative integrated tunable OAM multiplexer
US11831353B2 (en) Integrated multi-channel photonics transmitter chip having variable power dividers
AU2012101920A4 (en) System and method for synchronizing light pulses at a selected location
JP5071870B2 (en) Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method
Aboketaf et al. Hybrid OTDM and WDM for multicore optical communication
WO2022166824A1 (en) Pumping light source, optical amplification system, roadm, and pumping light providing method
JPH0918423A (en) Optical connecting element and optical connector
US10718899B2 (en) Optical device, wavelength division multiplexing transmitter, wavelength division multiplexing receiver, and wavelength division multiplexing transmission and receiving system
KR100611818B1 (en) Transmission system and optical module for bi-directional communication in wavelength division multiplexing
EP1018814A2 (en) Optical communication apparatus
US6816643B2 (en) Wavelength tunable demultiplexing filter device, wavelength tunable multiplexing filter device, and wavelength routing device
JP5579817B2 (en) Optical-optical serial-parallel converter for multi-wavelength optical signals
CN205643773U (en) Optical add -drop multiplexer based on beam splitter and two -way type
JP5579818B2 (en) Optical-optical serial-parallel converter for multi-wavelength optical signals

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5071870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250