JP2010175498A - Airlight spectral intensity gauge - Google Patents

Airlight spectral intensity gauge Download PDF

Info

Publication number
JP2010175498A
JP2010175498A JP2009021288A JP2009021288A JP2010175498A JP 2010175498 A JP2010175498 A JP 2010175498A JP 2009021288 A JP2009021288 A JP 2009021288A JP 2009021288 A JP2009021288 A JP 2009021288A JP 2010175498 A JP2010175498 A JP 2010175498A
Authority
JP
Japan
Prior art keywords
single wavelength
scattered light
spm
data
atmospheric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021288A
Other languages
Japanese (ja)
Other versions
JP5158806B2 (en
Inventor
Unpei Nagashima
雲兵 長嶋
Tomoo Aoyama
智夫 青山
Junko Kanbe
順子 神部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009021288A priority Critical patent/JP5158806B2/en
Publication of JP2010175498A publication Critical patent/JP2010175498A/en
Application granted granted Critical
Publication of JP5158806B2 publication Critical patent/JP5158806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an airlight spectral intensity gauge for measuring quantity, particle configuration and component of SPM. <P>SOLUTION: This gauge includes a single wavelength measuring part for measuring predefined wavelength of the airlight, a controller which controls attitude of the single wavelength measuring part and uses an equatorial telescope to change depression angle with a given azimuth and measure the airlight, then controls for computing signal value of the airlight associated with the depression angle, an amplifier which can set the gain for amplifying the signal value output from a light-receiving element of the single wavelength measuring part, an A/D signal converter which converts output of the signal value amplified by the amplifier into digital data, a data processor which performs data processing for calculating quantities on physical property values of SPM to the digital data converted by the A/D signal converter, a data storage unit for storing the processed data by associating the data with depression angle of the equatorial telescope, and an output processor which outputs spatial distribution of SPM based on the data stored in the data storage unit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、大気汚染物質のうち浮遊粒子状物質(Suspended Particulate Matter;SPM)の量とSPMの粒子形状と成分を遠隔,非接触で測定する大気散乱光スペクトル強度計測器に関するものである。   The present invention relates to an atmospheric scattered light spectrum intensity measuring device that remotely and non-contact measures the amount of suspended particulate matter (SPM) among air pollutants and the shape and components of SPM particles.

この種の技術として、例えば、特許文献1に示されるように、大気中に浮遊する微粒子などの個数、粒径分布などを遠隔において計測するリモートパーティクルカウンター装置が知られている。   As this type of technology, for example, as shown in Patent Document 1, a remote particle counter device that remotely measures the number of fine particles floating in the atmosphere, the particle size distribution, and the like is known.

リモートパーティクルカウンター装置は、パルスレーザー、レーザー出射光学系、散乱光の集光光学系、散乱光の検出部である高速ゲート機能を有するCCDカメラ等の高感度2次元光検出器及び制御計測系を具備し、レーザー出射地点より遠方にある大気中の浮遊微粒子からのレーザー照射によって生じた微粒子個々からの後方散乱光を画像として検出することで、大気中に浮遊する微粒子等の個数、粒径分布等を遠隔において計測できるように構成されているものである。   The remote particle counter device is a high-sensitivity two-dimensional photodetector such as a pulse laser, a laser emission optical system, a scattered light condensing optical system, a CCD camera having a high-speed gate function as a scattered light detection unit, and a control measurement system. The number and particle size distribution of fine particles suspended in the atmosphere by detecting backscattered light from individual fine particles generated by laser irradiation from airborne fine particles in the atmosphere far from the laser emission point. Etc. can be measured remotely.

また、特許文献2に示されるように、複数の大気汚染物質の濃度を測定し、データを集積、解析するための大気汚染物質測定システムおよびそのシステムに使用するセンサ装置が開発されている。このセンサ装置においては、SPMの測定は、空気採取口から外気を取り込み空気流通路に設けられた光散乱測定方式のセンサ(市販の「デジタル粉塵計」)によって、SPMの濃度の測定を行う。   Also, as disclosed in Patent Document 2, an air pollutant measuring system for measuring the concentration of a plurality of air pollutants, collecting and analyzing data, and a sensor device used in the system have been developed. In this sensor device, the SPM is measured by taking the outside air from the air sampling port and measuring the SPM concentration by a light scattering measurement type sensor (commercially available “digital dust meter”) provided in the air flow passage.

大気汚染物質,SPMを非接触かつ遠方から計測する手段として、これまでの技術で利用できる現実的な手法としては、次のようなセンサ装置および方法が利用できる。これらの特徴および欠点について説明すると、
(1)3色分解カメラを利用する方法:
実現例;デジタルカメラ(単板式カメラ),3板式カメラ
特徴;市販品があり、低価格であり、可搬性がある。SPM量の空間分布の測定が可能である。
欠点;光量測定分解能が8ビット(2=256)程度で小さい。SPM形状,成分測定は困難である。波長370[nm]以下と650[nm]以上の観測は不可能である。
As a means for measuring air pollutants and SPM from a distance and from a distance, the following sensor devices and methods can be used as a practical technique that can be used in the conventional technology. To explain these features and drawbacks:
(1) Method using a three-color separation camera:
Realization example: Digital camera (single-plate camera), 3-plate camera Features: There are commercial products, low cost, and portability. The spatial distribution of the SPM amount can be measured.
Disadvantages: The light measurement resolution is as small as 8 bits (2 8 = 256). SPM shape and component measurement are difficult. Observation of wavelengths below 370 [nm] and above 650 [nm] is impossible.

(2)スペクトルカメラを利用する方法:
実現例;試作品レベル
特徴;SPM量の分布を高精度で測定できる。SPM成分の空間分布の測定も可能である。
欠点;非常に高価であり、可搬性に難点がある。測定時間と操作にも難点がある。波長350[nm]以下と1[μm]以上の測定は難しい。波長350[nm]〜1.7[μm]を計測するにはスーパーアポクロマート・レンズが必要となる。
(2) Method using spectrum camera:
Realization example; prototype level Features; SPM amount distribution can be measured with high accuracy. It is also possible to measure the spatial distribution of SPM components.
Disadvantages: Very expensive and difficult to carry. There are also difficulties in measuring time and operation. Measurements with wavelengths of 350 [nm] or less and 1 [μm] or more are difficult. A super apochromat lens is required to measure wavelengths of 350 [nm] to 1.7 [μm].

(3)スペクトロメータ(分光器)を利用する方法:
実現例;CCDスペクトロメータ
特徴;SPM量およびSPM成分を高精度に測定できる。波長200[nm]〜1.7[μm]の測定が可能である。
欠点;高価であり、別途光学系が必要である。可搬性は小であり、空間分布の測定は不可能である。測定時間が長く、回折格子の交換が必要となる。酸化性物質を非接触で測定するにはUV領域の光の強度を測定する必要がある。
(3) Method using a spectrometer (spectrometer):
Implementation example: CCD spectrometer Features: SPM amount and SPM component can be measured with high accuracy. Measurement of wavelengths from 200 [nm] to 1.7 [μm] is possible.
Disadvantages: expensive and requires a separate optical system. The portability is small and the spatial distribution cannot be measured. The measurement time is long and the diffraction grating needs to be replaced. In order to measure an oxidizing substance in a non-contact manner, it is necessary to measure the intensity of light in the UV region.

特開2004−233078号公報JP 2004-233078 A 特開平11−281757号公報JP-A-11-281757

従来から、大気研究の一環として、デジタル粉塵計などを用いて、SPM観測が行われているが、空中のSPM量およびSPM成分を測定することは、十分な精度では観測できていない。   Conventionally, as part of atmospheric research, SPM observation has been performed using a digital dust meter or the like, but measuring the amount of SPM and SPM components in the air has not been observed with sufficient accuracy.

大気中のSPMを観測するにはライダー(航空機からの観測)が最適であり、アジアの地上ライダー網は構築されつつある。しかし、観測点は現在も不十分である。ライダーは個人的に導入できるものではなく、保守経費も要する。粉塵計では高度数kmのSPMは計測できない。さらに、観測可能な粒子径の問題もある。また、バルーンを上げて観測する場合には、バルーンを上げるために申請と専門業者の介入が必要となる。したがって、現状において、数kmのSPMを多点観測する手段は無いに等しい。大気中のPMの観測には光学的測定が適している。   Riders (observation from aircraft) are the best for observing SPM in the atmosphere, and an Asian ground rider network is being built. However, the observation points are still insufficient. Riders cannot be introduced personally and require maintenance costs. The dust meter cannot measure SPM at an altitude of several kilometers. There is also a problem of observable particle size. In addition, when observing with a balloon raised, application and specialist intervention are required to raise the balloon. Therefore, at present, there is no means for multipoint observation of several kilometers of SPM. Optical measurement is suitable for observing PM in the atmosphere.

したがって、本発明の目的は、簡易な装置構成による光学的測定により大気汚染物質のうちSPMの量とSPMの粒子形状と成分を遠隔かつ非接触で測定するための大気散乱光スペクトル強度計測器を提供することにある。   Accordingly, an object of the present invention is to provide an atmospheric scattered light spectrum intensity measuring device for remotely and non-contactly measuring the amount of SPM and the shape and composition of SPM among atmospheric pollutants by optical measurement with a simple apparatus configuration. It is to provide.

上記の目的を達成するため、本発明による大気散乱光スペクトル強度計測器においては、月光を利用して、SPMによる月光スペクトル変化を、光学感度を高くしたデジタルカメラにより捉えるようにして、空気中のSPMを測定する。月光は、期間も限定され気象条件にも影響されるが、費用もかからず、かつ宇宙から大気を透過する有用な光源として利用できる。大気中を通過する月光には、大気中の様々な物質の情報が含まれている。その中の情報として、空中のSPM特性を測定する。   In order to achieve the above object, in the atmospheric scattered light spectrum intensity measuring device according to the present invention, the change in the moonlight spectrum due to the SPM is captured by the digital camera with high optical sensitivity using the moonlight. Measure SPM. Although moonlight is limited in time and affected by weather conditions, it is not expensive and can be used as a useful light source that penetrates the atmosphere from space. Moonlight passing through the atmosphere contains information on various substances in the atmosphere. As information, the SPM characteristic in the air is measured.

具体的に、本発明による大気散乱光スペクトル強度計測器は、大気散乱光の平行光成分を受光する所定長のフードの端部に設けられた狭帯域干渉フィルタを介して受光素子により大気散乱光を受光し、当該大気散乱光の所定波長を測定する単波長測定部と、前記単波長測定部が複数設けられ、複数の単波長測定部の姿勢を制御して、赤道儀により方位を一定として俯角を変化させて大気散乱光を測定し当該俯角に対応した大気散乱光の信号値を得るために前記単波長測定部に対する制御を行う制御部と、前記単波長測定部の受光素子から出力された信号値を増幅する増幅率が設定可能な増幅器と、前記増幅器により増幅された信号値の出力をデジタルデータに変換するアナログ・デジタル信号変換器と、前記アナログ・デジタル信号変換器により変換されたデジタルデータに対してSPMの物性値に関する量を計算するデータ処理を行うデータ処理装置と、データ処理されたデータに対して赤道儀の俯角に対応させてデータを格納するデータ記憶装置と、データ格納装置に格納されたデータに基づいてSPMの空間分布を出力する出力処理装置とを備えることを特徴とするものである。   Specifically, the atmospheric scattered light spectrum intensity measuring device according to the present invention is configured such that atmospheric scattered light is received by a light receiving element via a narrowband interference filter provided at an end of a hood having a predetermined length that receives a parallel light component of atmospheric scattered light. And a plurality of the single wavelength measurement units are provided, and the orientation of the plurality of single wavelength measurement units is controlled, and the azimuth is fixed by the equator A control unit that controls the single wavelength measuring unit to measure the atmospheric scattered light by changing the depression angle and obtain a signal value of the atmospheric scattered light corresponding to the depression angle, and is output from the light receiving element of the single wavelength measuring unit. An amplifier capable of setting an amplification factor for amplifying the signal value, an analog-digital signal converter for converting the output of the signal value amplified by the amplifier into digital data, and the analog-digital signal converter Data processing apparatus for performing data processing for calculating the quantity related to the physical property value of the SPM for the digital data converted by data, and a data storage apparatus for storing the data corresponding to the depression angle of the equatorial mount for the data processed data And an output processing device that outputs the spatial distribution of the SPM based on the data stored in the data storage device.

また、本発明の大気散乱光スペクトル強度計測器において、前記単波長測定部は、大気散乱光を入射する窓が一方の端部に設けられたフードと、前記フードの他方の端部に設けられた狭帯域干渉フィルタと、前記フードを介して大気散乱光からの平行光を受光する受光素子と、壁面に受光窓が設けられ前記受光窓から測定光を受光する受光素子を収納する冷却用の筺体と、前記筺体に設けられた前記受光素子を冷却する電子冷却素子と、前記筺体内を真空にする真空ポンプとを備えることを特徴とするものである。   Further, in the atmospheric scattered light spectrum intensity measuring device of the present invention, the single wavelength measuring unit is provided with a hood provided with a window through which atmospheric scattered light is incident at one end, and at the other end of the hood. A narrow band interference filter, a light receiving element that receives parallel light from atmospheric scattered light through the hood, and a cooling light that houses a light receiving element that is provided with a light receiving window on the wall surface and that receives measurement light from the light receiving window. The apparatus includes a casing, an electronic cooling element that cools the light receiving element provided in the casing, and a vacuum pump that evacuates the casing.

本発明の大気散乱光スペクトル強度計測器は、1つの形態として、3個の単波長計測部が設けられ、それぞれの単波長計測部が測定する所定波長は430nm,520nm,630nmであり、データ処理装置は、それぞれの単波長計測部が測定した信号値の比を演算して、SPMの物性値に関する量を計算することを特徴とするものである。   The atmospheric scattered light spectrum intensity measuring instrument of the present invention is provided with three single wavelength measuring units as one form, and the predetermined wavelengths measured by the single wavelength measuring units are 430 nm, 520 nm, and 630 nm, respectively. The apparatus is characterized by calculating a ratio of signal values measured by each single wavelength measuring unit to calculate an amount related to a physical property value of the SPM.

また、本発明の大気散乱光スペクトル強度計測器は、別の形態として、4個の単波長計測部が設けられ、それぞれの単波長計測部が測定する所定波長は380nm,430nm,520nm,630nm(または380nm,520nm,630nm,760nm)であり、データ処理装置は、それぞれの単波長計測部が測定した信号値の比を演算して、SPMの物性値として、水蒸気に関する量および酸性化成分に関する量を計算することを特徴とするものである。   In addition, the atmospheric scattered light spectrum intensity measuring instrument of the present invention is provided with four single wavelength measuring units as another form, and the predetermined wavelengths measured by the single wavelength measuring units are 380 nm, 430 nm, 520 nm, and 630 nm ( Or 380 nm, 520 nm, 630 nm, 760 nm), and the data processing device calculates the ratio of the signal values measured by the respective single wavelength measuring units, and as the physical property value of SPM, the amount related to water vapor and the amount related to acidifying component It is characterized by calculating.

更に別の形態として、本発明の大気散乱光スペクトル強度計測器は、2個の単波長計測部が設けられ、それぞれの単波長計測部が測定する所定波長は480nm,630nmであり、それぞれの単波長計測部には偏光フィルタを設けて、それぞれの単波長計測部が偏光強度を測定し、データ処理装置は、それぞれの単波長計測部が測定した信号値の比を演算して、SPMの粒子の非球体性に関する量を計算することを特徴とするものである。   As yet another form, the atmospheric scattered light spectrum intensity measuring instrument of the present invention is provided with two single wavelength measuring units, and the predetermined wavelengths measured by the single wavelength measuring units are 480 nm and 630 nm, respectively. The wavelength measuring unit is provided with a polarizing filter, and each single wavelength measuring unit measures the polarization intensity, and the data processing device calculates the ratio of the signal values measured by each single wavelength measuring unit to obtain SPM particles. It is characterized by calculating a quantity related to the non-sphericity of.

このような特徴を有する本発明による大気散乱光スペクトル強度計測器によれば、高感度な受光素子を利用して、月光スペクトル変化を高感度な受光素子により撮影することにより、SPMの測定を行う。月光は期間も限定され気象条件にも影響されるが費用もかからず、かつ宇宙から大気を透過する有用な光源として利用できる。このため、地上で月光スペクトルを測定することにより、大気中を通過する月光に含まれている大気中の様々な物質の情報を光学的測定により取り出すことができる。太陽光も月光と同様であるが、あまりにも強烈なため受光素子を劣化させる恐れがあり、取り扱いが難しい。このため、本発明の大気散乱光スペクトル強度計測器においては、主として月光による空の散乱光(色相)を利用して測定する。これにより、簡易な装置構成による光学的測定によって、大気汚染物質のうちSPMの量とSPMの粒子形状と成分を遠隔かつ非接触で測定することができる大気散乱光スペクトル強度計測器が提供される。   According to the atmospheric scattered light spectrum intensity measuring instrument according to the present invention having such characteristics, the SPM is measured by photographing the change of the moonlight spectrum with the highly sensitive light receiving element using the highly sensitive light receiving element. . Moonlight is limited in duration and affected by weather conditions, but it is not expensive and can be used as a useful light source that penetrates the atmosphere from space. Therefore, by measuring the moonlight spectrum on the ground, information on various substances in the atmosphere contained in the moonlight passing through the atmosphere can be extracted by optical measurement. Sunlight is the same as moonlight, but it is so intense that it may deteriorate the light receiving element and is difficult to handle. For this reason, in the atmospheric scattered light spectrum intensity measuring device of the present invention, the measurement is performed mainly using the sky scattered light (hue) by moonlight. This provides an atmospheric scattered light spectrum intensity measuring device capable of remotely and non-contactly measuring the amount of SPM and the particle shape and component of SPM among the air pollutants by optical measurement with a simple apparatus configuration. .

本発明の大気散乱光スペクトル強度計測器を構成する要素である単波長用測定部の構成を示す断面図である。It is sectional drawing which shows the structure of the measurement part for single wavelengths which is an element which comprises the atmospheric scattered light spectrum intensity | strength measuring device of this invention. 本発明の大気散乱光スペクトル強度計測器のSPM散乱光強度測定部の構成を説明する図である。It is a figure explaining the structure of the SPM scattered light intensity | strength measurement part of the atmospheric scattered light spectrum intensity | strength measuring device of this invention. 本発明の大気散乱光スペクトル強度計測器において信号増幅,データ変換,データ処理,データ記録を行う電気系統の構成を説明する図である。It is a figure explaining the structure of the electric system which performs signal amplification, data conversion, data processing, and data recording in the atmospheric scattered light spectrum intensity measuring device of this invention. 地上付近を霧(一種のSPM)が覆っている様子が撮影された大気撮影画像を示す図である。It is a figure which shows the air | atmosphere picked-up image image | photographed that a fog (a kind of SPM) has covered the ground vicinity. 図4の大気撮影画像を縦線に沿って下から上にデジタイズし、Pb,Pg,Pr値のデータを得て、AD(Pg)/AD(Pr),AD(Pb)/AD(Pr)値と図4のピクセル番号対応を示した図である。4 is digitized from bottom to top along the vertical line to obtain data of Pb, Pg, and Pr values, and AD (Pg) / AD (Pr), AD (Pb) / AD (Pr) It is the figure which showed the value and the pixel number correspondence of FIG.

以下、本発明を実施するための形態について説明する。図1は、本発明の大気散乱光スペクトル強度計測器を構成する要素である単波長用測定部の構成を示す断面図である。図1に示すように、単波長用測定部100は、窓部101を有するフード102、断熱材により構成される本体部の筐体103、筐体103の測定光の入射部に取り付けられる狭帯域干渉フィルタを用いたフィルタ部104,本体部103に設けられる受光素子105,受光素子105を冷却する電子冷却素子106,受光素子105からの電気信号を取り出すコネクタ部107,電子冷却素子106を駆動するための電気信号線108から構成されている。コネクタ部107には受光素子105により測定した光信号をアナログ信号として取り出すための信号線109が接続される。この信号線109は、後述するように、大気散乱光スペクトル強度計測器のデータ処理部に接続されて、計測した光信号のアナログ信号が送出されて、正規化のために所定の増幅率で増幅され、アナログ・デジタル変換器に入力されて、デジタルデータに変換されて、データ処理がなされる。   Hereinafter, modes for carrying out the present invention will be described. FIG. 1 is a cross-sectional view showing the configuration of a single wavelength measuring unit which is an element constituting the atmospheric scattered light spectrum intensity measuring device of the present invention. As shown in FIG. 1, the single-wavelength measuring unit 100 includes a hood 102 having a window portion 101, a main body housing 103 formed of a heat insulating material, and a narrow band attached to a measuring light incident portion of the housing 103. A filter unit 104 using an interference filter, a light receiving element 105 provided in the main body unit 103, an electronic cooling element 106 for cooling the light receiving element 105, a connector unit 107 for taking out an electric signal from the light receiving element 105, and the electronic cooling element 106 are driven. For this purpose. The connector 107 is connected to a signal line 109 for taking out an optical signal measured by the light receiving element 105 as an analog signal. As will be described later, this signal line 109 is connected to the data processing unit of the atmospheric scattered light spectrum intensity measuring device, and an analog signal of the measured optical signal is sent out and amplified at a predetermined amplification factor for normalization. Then, it is input to an analog / digital converter, converted into digital data, and data processing is performed.

このように、単波長測定部100は、大気散乱光を入射する窓部101が一方の端部に設けられたフード102と、フード102の他方の端部に設けられた狭帯域干渉フィルタのフィルタ部104と、フード102を介して大気散乱光からの平行光を受光する受光素子105と、壁面に受光窓が設けられ前記受光窓から測定光を受光する受光素子105を収納する冷却用の筺体103と、筺体103に設けられた受光素子105を冷却する電子冷却素子106とを備えた構成とされており、さらに、筐体103に入り込んだ塵などを除くために筺体103内を真空にする真空ポンプが備えられた構成となっている。   As described above, the single wavelength measuring unit 100 includes the hood 102 in which the window 101 for entering the atmospheric scattered light is provided at one end, and the narrowband interference filter provided at the other end of the hood 102. A cooling housing that houses a light receiving element 105 that receives parallel light from atmospheric scattered light via a hood 102, a light receiving window provided on the wall surface, and that receives the measuring light from the light receiving window. 103 and an electronic cooling element 106 that cools the light receiving element 105 provided in the housing 103, and the interior of the housing 103 is evacuated to remove dust and the like that has entered the housing 103. It has a configuration equipped with a vacuum pump.

図2は、本発明の大気散乱光スペクトル強度計測器のSPM散乱光強度測定部の構成を説明する図である。図2に示すように、1つの態様として、大気散乱光スペクトル強度計測器のSPM散乱光強度測定部は、第1の単波長測定部110と、第2の単波長測定部120と、第3の単波長測定部130の3個の単波長測定部が用いられて、これらの3個の単波長測定部が平行に束ねられて、方位制御部140の駆動機構と固定され、駆動機構の制御により所定の方向からの大気散乱光を受光できる構造とされる。図示されないが、方位制御部140は、赤道儀の制御機構により受光する方位(俯角)を、制御信号により制御されるように構成されている。   FIG. 2 is a diagram illustrating the configuration of the SPM scattered light intensity measuring unit of the atmospheric scattered light spectrum intensity measuring device of the present invention. As shown in FIG. 2, as one aspect, the SPM scattered light intensity measuring unit of the atmospheric scattered light spectrum intensity measuring device includes a first single wavelength measuring unit 110, a second single wavelength measuring unit 120, and a third The three single wavelength measuring units of the single wavelength measuring unit 130 are used, and these three single wavelength measuring units are bundled in parallel and fixed to the driving mechanism of the azimuth control unit 140 to control the driving mechanism. Thus, the structure can receive atmospheric scattered light from a predetermined direction. Although not shown, the azimuth control unit 140 is configured so that the azimuth (angle of depression) received by the equator control mechanism is controlled by a control signal.

このようにして、SPM散乱光強度測定部の単波長測定部100は、大気散乱光の平行光成分を受光する所定長のフードの端部に設けられた狭帯域干渉フィルタを介して受光素子により大気散乱光を受光し、大気散乱光の所定波長を測定する。複数の単波長測定部が設けられたSPM散乱光強度測定部では、方位制御部が、複数の単波長測定部の姿勢を制御して、赤道儀により方位を一定として俯角を変化させて大気散乱光を測定し当該俯角に対応した大気散乱光の信号値を得るための制御を行う。   In this way, the single-wavelength measuring unit 100 of the SPM scattered light intensity measuring unit uses the light receiving element via the narrowband interference filter provided at the end of the hood having a predetermined length that receives the parallel light component of the atmospheric scattered light. Atmospheric scattered light is received, and a predetermined wavelength of the atmospheric scattered light is measured. In the SPM scattered light intensity measurement unit provided with a plurality of single wavelength measurement units, the azimuth control unit controls the attitude of the plurality of single wavelength measurement units and changes the depression angle with the azimuth being constant by the equatorial mount, thereby scattering the atmosphere Control is performed to measure the light and obtain a signal value of atmospheric scattered light corresponding to the depression angle.

SPM散乱光強度測定部は、SPM量の測定には、例えば、3個のそれぞれの単波長測定部100のフィルタ部104として、次のような所定波長の狭帯域干渉フィルタが用いられて、それぞれの波長のスペクトルを計測する。すなわち、波長λb=430[nm],波長λg=520[nm],波長λr=630[nm]の3波長の狭帯域干渉フィルタが用いられ、それぞれのスペクトルが計測される。計測値は、それぞれ第1の単波長測定部100、第2の単波長測定部120、第3の単波長測定部130から、その計測された波長毎にPr信号,Pg信号,Pb信号として出力される。   The SPM scattered light intensity measurement unit uses, for example, the following narrowband interference filters with predetermined wavelengths as the filter units 104 of the three single wavelength measurement units 100 for measuring the amount of SPM. The spectrum of the wavelength of is measured. That is, a narrowband interference filter having three wavelengths of wavelength λb = 430 [nm], wavelength λg = 520 [nm], and wavelength λr = 630 [nm] is used, and each spectrum is measured. The measured values are output as Pr signals, Pg signals, and Pb signals for the measured wavelengths from the first single wavelength measuring unit 100, the second single wavelength measuring unit 120, and the third single wavelength measuring unit 130, respectively. Is done.

図3は、本発明の大気散乱光スペクトル強度計測器において信号増幅,データ変換,データ処理,データ記録を行う処理装置本体部の電気系統の構成を説明する図である。SPM散乱光強度測定部(図2)から出力された計測された波長毎のPr信号,Pg信号,Pb信号が、処理装置本体部(図3)に入力されて、後述するように、データ処理が行われる。   FIG. 3 is a diagram for explaining the configuration of the electrical system of the processing unit main body that performs signal amplification, data conversion, data processing, and data recording in the atmospheric scattered light spectrum intensity measuring instrument of the present invention. The Pr signal, Pg signal, and Pb signal for each measured wavelength output from the SPM scattered light intensity measurement unit (FIG. 2) are input to the processing device main unit (FIG. 3), and data processing is performed as described later. Is done.

処理装置本体部は、図3に示すように、それぞれの計測スペクトル毎の増幅器201,202,203と、アナログ・デジタル変換器204,205,206と、計測データのデータ処理を行うデータ処理装置207と、データ処理装置から出力されたデータを格納する記憶装置208から構成されており、増幅器201,202,203のそれぞれの増幅率を制御する信号Ir,Ig,Ibは、標準光源により測定前に設定されて、それぞれの増幅器201,202,203に供給される。アナログ・デジタル変換器204,205,206は、増幅器201,202,203により増幅されたPr信号,Pg信号,Pb信号の信号値の出力をデジタルデータに変換する。変換されたデジタルデータは、データ処理装置207に入力されて一時的に記憶されて、後述するように、所定のデータ処理が行われて、SPM量及び成分などが測定され、データ処理の結果データは、記憶装置208に格納される。記憶装置208には、データ処理されたデータに対して赤道儀の俯角に対応させてデータを格納されており、図示されない出力処理装置により、データ格納装置に格納されたデータに基づいてSPMの空間分布が出力される。   As shown in FIG. 3, the processing device main unit includes amplifiers 201, 202, and 203 for each measurement spectrum, analog / digital converters 204, 205, and 206, and a data processing device 207 that performs measurement data processing. And a storage device 208 for storing data output from the data processing device. The signals Ir, Ig, and Ib for controlling the amplification factors of the amplifiers 201, 202, and 203 are measured by a standard light source before measurement. It is set and supplied to each amplifier 201, 202, 203. The analog / digital converters 204, 205, and 206 convert the output of the Pr, Pg, and Pb signal values amplified by the amplifiers 201, 202, and 203 into digital data. The converted digital data is input to the data processing device 207 and temporarily stored. As will be described later, predetermined data processing is performed, and the SPM amount and components are measured. Is stored in the storage device 208. The storage device 208 stores data corresponding to the depression angle of the equatorial mount with respect to the data processed, and an SPM space based on the data stored in the data storage device by an output processing device (not shown). Distribution is output.

次に、本発明の大気散乱光スペクトル強度計測器を作製する場合の具体的な実施例について説明する。単波長光用測定部100については、次のような仕様で作成する。フード102に設ける窓部101は、合成水晶のウィンドウ(平行板フィルタ)を用いる。直径をD1,窓と光学受光素子面までの距離をLとし、受光素子の有効径をD2とすると、画角θ[rad]は、
θ=2tan−1{0.5(D1+D2)/L}
となる。このようなフード102のみの単波長光用測定部100では、屈折/反射光学系を持たないため,窓部101の透過性が測定可能波長領域を決定する。フィルタ基板,電子受光素子の窓板にも配意する。光学ガラスBK7を用いると、測定可能波長領域は350[nm]〜1.5[μm]である。
Next, specific examples in the case of producing the atmospheric scattered light spectrum intensity measuring device of the present invention will be described. The single wavelength light measuring unit 100 is created with the following specifications. The window portion 101 provided in the hood 102 uses a synthetic crystal window (parallel plate filter). When the diameter is D1, the distance between the window and the optical light receiving element surface is L, and the effective diameter of the light receiving element is D2, the angle of view θ [rad] is
θ = 2 tan −1 {0.5 (D1 + D2) / L}
It becomes. Since the single wavelength light measuring unit 100 having only the hood 102 does not have a refractive / reflective optical system, the transmittance of the window unit 101 determines the measurable wavelength region. Pay attention to the filter substrate and the window plate of the electron detector. When the optical glass BK7 is used, the measurable wavelength region is 350 [nm] to 1.5 [μm].

フィルタ部104は、狭帯域干渉フィルタ(誘電体多層膜バンドパスフィルター)を用いる。フィルタ基板は窓と同一素材を用いる。θ<3[deg]とする。偏光を測定する場合は上記フィルタに偏光フィルタを重ねる。受光素子を冷却して、受光素子の熱雑音を減らすための電子冷却素子106としては、ペルチェ素子などを用いる。   The filter unit 104 uses a narrow band interference filter (dielectric multilayer film band pass filter). The filter substrate uses the same material as the window. Let θ <3 [deg]. When measuring polarized light, a polarizing filter is placed on the filter. As the electronic cooling element 106 for cooling the light receiving element and reducing the thermal noise of the light receiving element, a Peltier element or the like is used.

受光素子105としてはCCDを用いる。測定する波長により、次のような種類の受光素子を使い分ける。
(a)波長200〜1000[nm]用には、シリコン・フォトダイオード(UV高感度型,可視光高感度型)を用いる。
(b)波長1〜1.7[μm]用には、InGaAsフォトダイオードを用いる。
A CCD is used as the light receiving element 105. Depending on the wavelength to be measured, the following types of light receiving elements are used properly.
(A) For a wavelength of 200 to 1000 [nm], a silicon photodiode (UV high sensitivity type, visible light high sensitivity type) is used.
(B) An InGaAs photodiode is used for a wavelength of 1 to 1.7 [μm].

このような単波長用測定部をN本(複数本)平行に束ねて、SPM散乱光強度測定部を構成する。
3つの単波長用測定部(N=3)を用いる場合について説明する。それぞれの単波長用測定部の信号線Pに添字r,g,bを付け区別する。単波長用測定部の信号線Pr,Pg,Pbはアナログ信号線である。N本の単波長測定部のユニットは、方位制御部140により赤道儀に付けられ空の任意の位置の画角θの光量を計測する。
赤道儀は方位を一定にして,俯角0〜180[deg]まで連続的に動かし,俯角に対応したPr,Pg,Pb信号値を得る。
Such single wavelength measuring units are bundled in parallel with N (plurality) to constitute an SPM scattered light intensity measuring unit.
A case where three measurement units for single wavelength (N = 3) are used will be described. Subscripts r, g, and b are added to the signal lines P of the single wavelength measuring units to distinguish them. The signal lines Pr, Pg, and Pb of the single wavelength measuring unit are analog signal lines. The units of N single wavelength measuring units measure the amount of light at an angle of view θ at an arbitrary position in the sky attached to the equator by the azimuth control unit 140.
The equator is continuously moved from a depression angle of 0 to 180 [deg] with a constant azimuth, and Pr, Pg, and Pb signal values corresponding to the depression angle are obtained.

単波長用測定部の信号線Pr,Pg,Pbからのアナログ信号は、信号値が3個の独立した増幅器201〜203により増幅され,アナログ・デジタル信号変換器(AD)204〜206によりデジタルデータに変換器されて、16ビット以上のデジタルデータとなる。増幅器201〜203のIr,Tg,Ib端子は増幅率を調整することを示す。増幅率は標準光源により測定前に決定する。増幅率が極端に相違する場合,それぞれの単波長測定部において高精度化のためフィルタ部104には補色フィルタを追加する。最小の増幅率と補色フィルタの最大の吸光位置を接近させる。   The analog signals from the signal lines Pr, Pg, and Pb of the single-wavelength measuring unit are amplified by three independent amplifiers 201 to 203, and converted to digital data by analog / digital signal converters (AD) 204 to 206. Is converted into digital data of 16 bits or more. The Ir, Tg, and Ib terminals of the amplifiers 201 to 203 indicate that the amplification factor is adjusted. The amplification factor is determined before measurement with a standard light source. When the amplification factors are extremely different, a complementary color filter is added to the filter unit 104 for high accuracy in each single wavelength measurement unit. The minimum amplification factor and the maximum absorption position of the complementary color filter are brought close to each other.

単波長用測定部の信号線Pr,Pg,Pbからの信号は、デジタルデータに変換されて3種類のデジタル信号値となり、データ処理装置207により演算されて,後述するように、AD(Pg)/AD(Pr),AD(Pb)/AD(Pr)などのSPMの物性に関する量が計算される。計算された結果のデータは、データ処理装置207に内臓されたタイマ(T)の値(時刻)を付加して、記憶装置208に記憶される。ここで付加されたタイマ値の時刻は赤道儀の俯角に対応しており、SPMの空間分布を作成するための指標となる。ここでの演算処理の除算は、フォトダイオードの入射光の非線形応答性を補正するための演算である。データ処理装置207において、複雑な非線形関数計算Q{}を行う場合には、例えば、Q{AD(Pg),q0,q1,…}Q{AD(Pr),q0,q1,…}とする演算を行う。ここでq0,q1,…は非線形関数の非線形性を定めるパラメータである。   Signals from the signal lines Pr, Pg, and Pb of the single wavelength measuring unit are converted into digital data to become three types of digital signal values, which are calculated by the data processing device 207 and, as will be described later, AD (Pg) A quantity related to the physical property of SPM such as / AD (Pr), AD (Pb) / AD (Pr) is calculated. The calculated result data is stored in the storage device 208 with the value (time) of the timer (T) built in the data processing device 207 added thereto. The time of the timer value added here corresponds to the depression angle of the equator, and serves as an index for creating the spatial distribution of the SPM. The division of the calculation process here is a calculation for correcting the nonlinear response of the incident light of the photodiode. In the data processing device 207, when performing complex nonlinear function calculation Q {}, for example, Q {AD (Pg), q0, q1,...} Q {AD (Pr), q0, q1,. Perform the operation. Here, q0, q1,... Are parameters that determine the nonlinearity of the nonlinear function.

本発明の大気散乱光スペクトル強度計測器によって、SPM量と成分を測定する場合には、SPM散乱光強度測定部は3個の単波長測定部を用いる。それぞれの単波長用測定部は、波長λb=430[nm],波長λg=520[nm],波長λr=630[nm]の狭帯域干渉フィルタが用いられ、それぞれの単波長用測定部により、スペクトル信号値Pb,Pg,Pr値を得る。データ処理装置では、比AD(Pg)/AD(Pr),AD(Pb)/AD(Pr)を計算して、記録する。   When measuring the amount and component of SPM with the atmospheric scattered light spectrum intensity measuring instrument of the present invention, the SPM scattered light intensity measuring unit uses three single wavelength measuring units. Each single-wavelength measuring unit uses a narrowband interference filter having a wavelength λb = 430 [nm], a wavelength λg = 520 [nm], and a wavelength λr = 630 [nm]. Spectral signal values Pb, Pg, Pr values are obtained. In the data processing apparatus, the ratios AD (Pg) / AD (Pr) and AD (Pb) / AD (Pr) are calculated and recorded.

本発明の大気散乱光スペクトル強度計測器によって、SPM量と水蒸気,酸化性成分を測定する場合には、SPM散乱光強度測定部に4個の単波長測定部を用いる。それぞれの単波長用測定部においては、波長λuv=287[nm],波長λb=430[nm],波長λg=550[nm],波長λir=930[nm]の狭帯域干渉フィルタが用いられ、それぞれの単波長用測定部により、スペクトル信号値Puv,Pb,Pg,Pir値を得る。水蒸気に関する量をAD(Pb)/AD(Pg),AD(Pir)/AD(Pg)の演算により求める。酸化性成分に関する量をAD(Puv)/AD(Pg)の演算により求める。   When measuring the amount of SPM, water vapor, and oxidizing component with the atmospheric scattered light spectrum intensity measuring instrument of the present invention, four single wavelength measuring units are used for the SPM scattered light intensity measuring unit. In each single wavelength measuring unit, a narrowband interference filter having a wavelength λuv = 287 [nm], a wavelength λb = 430 [nm], a wavelength λg = 550 [nm], and a wavelength λir = 930 [nm] is used. Spectral signal values Puv, Pb, Pg, and Pir values are obtained by the single wavelength measuring units. The amount of water vapor is determined by calculating AD (Pb) / AD (Pg), AD (Pir) / AD (Pg). The amount relating to the oxidizing component is obtained by calculating AD (Puv) / AD (Pg).

本発明の大気散乱光スペクトル強度計測器によって、SPM粒子の形状に関する量を測定する場合には、SPM散乱光強度測定部は2個の単波長測定部を用いる。それぞれの単波長用測定部は、波長λg=480[nm],波長λr=630[nm]の狭帯域干渉フィルタが用いられ、かつ波長λgのフィルタについては偏光フィルタを使用して、P偏光,S偏光の強度を測定する。それぞれの単波長用測定部によって、信号値Pg(P),Pg(S),Pr値を得る。データ処理装置により、粒子の非球体性に関する量を、
AD(Pg(P))/AD(Pr) − AD(Pg(S))/AD(Pr)
を計算することにより得る。
When measuring the quantity related to the shape of SPM particles with the atmospheric scattered light spectrum intensity measuring instrument of the present invention, the SPM scattered light intensity measuring unit uses two single wavelength measuring units. Each single-wavelength measurement unit uses a narrowband interference filter with a wavelength λg = 480 [nm] and a wavelength λr = 630 [nm], and a polarization filter is used for the filter with the wavelength λg, The intensity of S-polarized light is measured. Signal values Pg (P), Pg (S), and Pr values are obtained by the respective single wavelength measuring units. The amount of non-sphericity of the particles is measured by the data processor.
AD (Pg (P)) / AD (Pr) -AD (Pg (S)) / AD (Pr)
Is obtained by calculating

また、本発明の大気散乱光スペクトル強度計測器によって、SPM粒子径に関する量を測定する場合には、SPM散乱光強度測定部は2個の単波長測定部を用いる。それぞれの単波長用測定部は、干渉フィルタとして、波長λr=600〜640[nm],波長λir(n)=700〜1700[nm]のフィルタが用いられ。信号値Pr,Pir(n)を得る。データ処理装置により、SPM粒子径に関する量を、
AD(Pir(n))/AD(Pr)=f(λν
の計算により得る。ここで、fは関数である。SPM散乱光強度の波長依存性νは粒子径に関する経験値(オングストローム係数)である。
Moreover, when measuring the quantity regarding an SPM particle diameter with the atmospheric scattered light spectrum intensity | strength measuring device of this invention, an SPM scattered light intensity | strength measurement part uses two single wavelength measurement parts. Each single wavelength measuring unit uses a filter having a wavelength λr = 600 to 640 [nm] and a wavelength λir (n) = 700 to 1700 [nm] as an interference filter. Signal values Pr, Pir (n) are obtained. Using a data processor, the amount related to the SPM particle size
AD (Pir (n)) / AD (Pr) = f (λ ν )
It is obtained by calculating Here, f is a function. The wavelength dependence ν of the SPM scattered light intensity is an empirical value (angstrom coefficient) regarding the particle diameter.

このようにして、大気散乱光スペクトル強度計測器によって測定したSPMに関する各データは、赤道儀の向けられた方向の跡(trace)についての分布計測になっているので、SPM塊の存在と性質が明らかになる。また、この測定を定時間隔で行うとSPM塊の性質の時間変化あるいは太陽光の照射角度による散乱光の相違が明らかになる。これにより、遠方よりSPM塊の情報が得られ,大気汚染の状況が実時間で分かる。   In this way, each data related to the SPM measured by the atmospheric scattered light spectrum intensity measuring instrument is a distribution measurement of traces in the direction in which the equator is directed. It becomes clear. Further, when this measurement is performed at regular intervals, the difference in the scattered light due to the temporal change in the properties of the SPM mass or the irradiation angle of sunlight becomes clear. As a result, SPM mass information can be obtained from a distance, and the status of air pollution can be known in real time.

本発明による大気散乱光スペクトル強度計測器によって、SPMに関係する量の測定例とついて説明する。図4は、地上付近を霧(一種のSPM)が覆っている様子が撮影された大気撮影画像を示す図であり、図5は、図4の縦の黄色線部分を下から上にデジタイズし、Pb,Pg,Pr値を得て、AD(Pg)/AD(Pr),AD(Pb)/AD(Pr)値と図4のピクセル番号対応を示した図である。   An example of measuring the amount related to SPM by the atmospheric scattered light spectrum intensity measuring device according to the present invention will be described. FIG. 4 is a view showing an air-photographed image in which fog (a kind of SPM) is covered near the ground, and FIG. 5 is a diagram in which the vertical yellow line portion of FIG. 4 is digitized from the bottom to the top. , Pb, Pg, Pr values are obtained, and AD (Pg) / AD (Pr), AD (Pb) / AD (Pr) values and the pixel number correspondence of FIG. 4 are shown.

図4および図5を参照すると、図5よりP線以下の低空の霧が水滴のみからなる霧ではなく青,緑光を吸収する物質を含む汚染された霧であることがわかる。水滴のみから構成される霧ならば白くなっており、信号値Pb〜Pg〜Prはほぼ等しくなっている。すなわち、b/r,g/r比が約1である。その霧の背景に青空があると、この比はb/r>1となる。   Referring to FIGS. 4 and 5, it can be seen from FIG. 5 that the low-level mist below the P-line is not a mist consisting solely of water droplets but a contaminated mist containing substances that absorb blue and green light. If the mist is composed only of water droplets, it is white, and the signal values Pb to Pg to Pr are substantially equal. That is, the ratio b / r, g / r is about 1. If there is a blue sky behind the fog, this ratio is b / r> 1.

100 単波長用測定部
101 窓部
102 フード
103 筐体
104 フィルタ部
105 受光素子
106 電子冷却素子
107 コネクタ部
108 電気信号線
109 信号線
110 第1の単波長測定部
120 第2の単波長測定部
130 第3の単波長測定部
140 方位制御部(赤道儀)
201,202,203 増幅器
204,205,206 アナログ・デジタル変換器
207 データ処理装置
208 記憶装置
DESCRIPTION OF SYMBOLS 100 Single wavelength measuring part 101 Window part 102 Hood 103 Case 104 Filter part 105 Light receiving element 106 Electronic cooling element 107 Connector part 108 Electric signal line 109 Signal line 110 First single wavelength measuring part 120 Second single wavelength measuring part 130 Third single wavelength measuring unit 140 Direction control unit (equator)
201, 202, 203 Amplifiers 204, 205, 206 Analog to digital converter 207 Data processing device 208 Storage device

Claims (5)

大気散乱光の平行光成分を受光する所定長のフードの端部に設けられた狭帯域干渉フィルタを介して受光素子により大気散乱光を受光し、当該大気散乱光の所定波長を測定する単波長測定部と、
前記単波長測定部が複数設けられ、複数の単波長測定部の姿勢を制御して、赤道儀により方位を一定として俯角を変化させて大気散乱光を測定し当該俯角に対応した大気散乱光の信号値を得るために前記単波長測定部に対する制御を行う制御部と、
前記単波長測定部の受光素子から出力された信号値を増幅する増幅率が設定可能な増幅器と、
前記増幅器により増幅された信号値の出力をデジタルデータに変換するアナログ・デジタル信号変換器と、
前記アナログ・デジタル信号変換器により変換されたデジタルデータに対してSPMの物性値に関する量を計算するデータ処理を行うデータ処理装置と、
データ処理されたデータに対して赤道儀の俯角に対応させてデータを格納するデータ記憶装置と、
データ格納装置に格納されたデータに基づいてSPMの空間分布を出力する出力処理装置と
を備えることを特徴とする大気散乱光スペクトル強度計測器。
A single wavelength that receives atmospheric scattered light by a light receiving element through a narrowband interference filter provided at the end of a predetermined hood that receives the parallel light component of atmospheric scattered light and measures the predetermined wavelength of the atmospheric scattered light A measuring section;
A plurality of the single wavelength measuring units are provided, and the attitude of the plurality of single wavelength measuring units is controlled to measure the atmospheric scattered light by changing the depression angle with the azimuth being fixed by the equatorial mount, and the atmospheric scattered light corresponding to the depression angle is measured. A control unit that controls the single wavelength measurement unit to obtain a signal value;
An amplifier capable of setting an amplification factor for amplifying the signal value output from the light receiving element of the single wavelength measuring unit;
An analog / digital signal converter for converting the output of the signal value amplified by the amplifier into digital data;
A data processing device for performing data processing for calculating an amount related to a physical property value of SPM with respect to digital data converted by the analog-digital signal converter;
A data storage device for storing data corresponding to the depression angle of the equatorial mount with respect to the processed data;
An atmospheric scattering light spectrum intensity measuring device comprising: an output processing device that outputs a spatial distribution of SPM based on data stored in a data storage device.
請求項1に記載の大気散乱光スペクトル強度計測器において、
前記単波長測定部は、
大気散乱光を入射する窓が一方の端部に設けられたフードと、
前記フードの他方の端部に設けられた狭帯域干渉フィルタと、
前記フードを介して大気散乱光からの平行光を受光する受光素子と、
壁面に受光窓が設けられ前記受光窓から測定光を受光する受光素子を収納する冷却用の筺体と、
前記筺体に設けられた前記受光素子を冷却する電子冷却素子と、
を備える
ことを特徴とする大気散乱光スペクトル強度計測器。
In the atmospheric scattered light spectrum intensity measuring instrument according to claim 1,
The single wavelength measuring unit is
A hood provided with a window for incident atmospheric scattered light at one end;
A narrowband interference filter provided at the other end of the hood;
A light receiving element that receives parallel light from the atmospheric scattered light through the hood;
A cooling housing housing a light receiving element provided with a light receiving window on the wall surface and receiving measurement light from the light receiving window;
An electronic cooling element for cooling the light receiving element provided in the housing;
An atmospheric scattered light spectrum intensity measuring device comprising:
請求項1に記載の大気散乱光スペクトル強度計測器において、
3個の単波長計測部が設けられ、
それぞれの単波長計測部が測定する所定波長は430nm,520nm,630nmであり、
データ処理装置はそれぞれの単波長計測部が測定した信号値の比を演算して、SPMの物性値に関する量を計算する
ことを特徴とする大気散乱光スペクトル強度計測器。
In the atmospheric scattered light spectrum intensity measuring instrument according to claim 1,
Three single wavelength measuring units are provided,
The predetermined wavelengths measured by the single wavelength measuring units are 430 nm, 520 nm, and 630 nm,
The data processing apparatus calculates an amount related to a physical property value of the SPM by calculating a ratio of signal values measured by the respective single wavelength measuring units, and an atmospheric scattered light spectrum intensity measuring device.
請求項1に記載の大気散乱光スペクトル強度計測器において、
4個の単波長計測部が設けられ、
それぞれの単波長計測部が測定する所定波長は287nm,430nm,520nm,630nmであり、
データ処理装置は、それぞれの単波長計測部が測定した信号値の比を演算して、SPMの物性値として、水蒸気に関する量および酸性化成分に関する量を計算する
ことを特徴とする大気散乱光スペクトル強度計測器。
In the atmospheric scattered light spectrum intensity measuring instrument according to claim 1,
Four single wavelength measuring units are provided,
The predetermined wavelengths measured by the single wavelength measuring units are 287 nm, 430 nm, 520 nm, and 630 nm,
The data processing apparatus calculates a ratio of signal values measured by each single wavelength measuring unit, and calculates an amount related to water vapor and an amount related to an acidifying component as a physical property value of SPM. Strength measuring instrument.
請求項1に記載の大気散乱光スペクトル強度計測器において、
2個の単波長計測部が設けられ、
それぞれの単波長計測部が測定する所定波長は480nm,630nmであり、
それぞれの単波長計測部には偏光フィルタを設けて、それぞれの単波長計測部が偏光強度を測定し、
データ処理装置は、それぞれの単波長計測部が測定した信号値の比を演算して、SPMの粒子の非球体性に関する量を計算する
ことを特徴とする大気散乱光スペクトル強度計測器。
In the atmospheric scattered light spectrum intensity measuring instrument according to claim 1,
Two single wavelength measuring units are provided,
The predetermined wavelengths measured by the single wavelength measuring units are 480 nm and 630 nm,
Each single wavelength measurement unit is provided with a polarizing filter, and each single wavelength measurement unit measures the polarization intensity,
The data processing apparatus calculates an amount related to the non-sphericity of SPM particles by calculating a ratio of signal values measured by the single wavelength measuring units, and measures the spectral intensity of scattered light spectrum.
JP2009021288A 2009-02-02 2009-02-02 Atmospheric scattered light spectrum intensity measuring instrument Expired - Fee Related JP5158806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021288A JP5158806B2 (en) 2009-02-02 2009-02-02 Atmospheric scattered light spectrum intensity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021288A JP5158806B2 (en) 2009-02-02 2009-02-02 Atmospheric scattered light spectrum intensity measuring instrument

Publications (2)

Publication Number Publication Date
JP2010175498A true JP2010175498A (en) 2010-08-12
JP5158806B2 JP5158806B2 (en) 2013-03-06

Family

ID=42706603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021288A Expired - Fee Related JP5158806B2 (en) 2009-02-02 2009-02-02 Atmospheric scattered light spectrum intensity measuring instrument

Country Status (1)

Country Link
JP (1) JP5158806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557848B1 (en) * 2015-06-23 2015-10-06 (주)삼원씨앤지 Measuring apparatus of Particulate Matter for airconditioner
CN108387492A (en) * 2017-11-13 2018-08-10 苏州宏瑞净化科技有限公司 Photometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118549U (en) * 1987-01-23 1988-08-01
JPH05288669A (en) * 1992-04-13 1993-11-02 Ushio Inc Particle detecting system
JPH10307134A (en) * 1997-05-07 1998-11-17 Seitai Hikarijoho Kenkyusho:Kk Extremely weak light measurement method and device
JPH1123450A (en) * 1997-07-09 1999-01-29 Mitsubishi Heavy Ind Ltd Method and equipment for detecting gas concentration
JP2003042943A (en) * 2001-08-01 2003-02-13 Japan Atom Energy Res Inst Spectrometry for high-speed signal
JP2003315267A (en) * 2002-04-24 2003-11-06 Nippon Steel Corp Method for monitoring dust

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118549U (en) * 1987-01-23 1988-08-01
JPH05288669A (en) * 1992-04-13 1993-11-02 Ushio Inc Particle detecting system
JPH10307134A (en) * 1997-05-07 1998-11-17 Seitai Hikarijoho Kenkyusho:Kk Extremely weak light measurement method and device
JPH1123450A (en) * 1997-07-09 1999-01-29 Mitsubishi Heavy Ind Ltd Method and equipment for detecting gas concentration
JP2003042943A (en) * 2001-08-01 2003-02-13 Japan Atom Energy Res Inst Spectrometry for high-speed signal
JP2003315267A (en) * 2002-04-24 2003-11-06 Nippon Steel Corp Method for monitoring dust

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557848B1 (en) * 2015-06-23 2015-10-06 (주)삼원씨앤지 Measuring apparatus of Particulate Matter for airconditioner
CN108387492A (en) * 2017-11-13 2018-08-10 苏州宏瑞净化科技有限公司 Photometer

Also Published As

Publication number Publication date
JP5158806B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US7511274B2 (en) Infrared radiation sources, sensors and source combinations, and methods of manufacture
US4678332A (en) Broadband spectrometer with fiber optic reformattor
US6888141B2 (en) Radiation sensor with photo-thermal gain
US10965889B2 (en) Thermal imager that analyzes temperature measurement calculation accuracy
US20070152153A1 (en) Compact emissivity and temperature measuring infrared detector
US20150022809A1 (en) Split Field Spectral Imager
WO2012177740A2 (en) Thermal imager that analyzes temperature measurement calculation accuracy
WO2011002272A1 (en) Air pollution measuring and warning system
CN106123915B (en) A kind of pneumatic degraded image recovery system based on direct point spread function
US20210140878A1 (en) Spectrometer device
JP2008014939A (en) Solar radiation measurement system, and program for measuring solar radiation
CN107101962A (en) The ultraviolet imagery telemetering equipment and method of multicomponent pollution sources contamination gas scapus concentration
US20060146330A1 (en) Color measurements of ambient light
JPS5873829A (en) Radiation measuring instrument
Kuhn et al. Towards imaging of atmospheric trace gases using Fabry–Pérot interferometer correlation spectroscopy in the UV and visible spectral range
JP5158806B2 (en) Atmospheric scattered light spectrum intensity measuring instrument
RU2290614C1 (en) Two-channel spectral ratio pyrometer
Chamberland et al. High-performance field-portable imaging radiometric spectrometer technology for hyperspectral imaging applications
CN107810395B (en) Infrared imaging detector
JP5576162B2 (en) Quantum infrared gas concentration meter
US7115893B1 (en) Chemical agent sensor having a stationary linear fringe interferometer
Thériault et al. A novel infrared hyperspectral imager for passive standoff detection of explosives and explosive precursors
KR101539005B1 (en) Apparatus and method for measuring plasma electronic temperature using image sensor
RU2814742C1 (en) System for infrared remote diagnostics of water contamination with oil products
US11099077B1 (en) Background subtracted spectrometer for airborne infrared radiometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees