JP2010174843A - Exhaust passage structure of internal combustion engine - Google Patents

Exhaust passage structure of internal combustion engine Download PDF

Info

Publication number
JP2010174843A
JP2010174843A JP2009021209A JP2009021209A JP2010174843A JP 2010174843 A JP2010174843 A JP 2010174843A JP 2009021209 A JP2009021209 A JP 2009021209A JP 2009021209 A JP2009021209 A JP 2009021209A JP 2010174843 A JP2010174843 A JP 2010174843A
Authority
JP
Japan
Prior art keywords
exhaust passage
exhaust
low temperature
combustion gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021209A
Other languages
Japanese (ja)
Other versions
JP5275062B2 (en
Inventor
Motoyuki Takahashi
元幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009021209A priority Critical patent/JP5275062B2/en
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to CN2012101531494A priority patent/CN102678365A/en
Priority to CN201210153657.2A priority patent/CN102661208B/en
Priority to CN201210154057.8A priority patent/CN102678218B/en
Priority to CN2012101535673A priority patent/CN102661182A/en
Priority to KR1020100004240A priority patent/KR101279331B1/en
Priority to CN201010003754A priority patent/CN101818700A/en
Publication of JP2010174843A publication Critical patent/JP2010174843A/en
Priority to KR1020110127006A priority patent/KR101202626B1/en
Priority to KR1020120137662A priority patent/KR101338778B1/en
Priority to KR1020120137664A priority patent/KR101259332B1/en
Application granted granted Critical
Publication of JP5275062B2 publication Critical patent/JP5275062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the flow resistance of combustion gas in a low temperature chamber, and to enhance scavenging efficiency. <P>SOLUTION: The exhaust passage structure of an internal combustion engine includes a main valve performing the exhaustion of combustion gas in a cylinder, a high temperature exhaust passage for discharging high temperature combustion gas to the outside, the low temperature chamber 14 for introducing low temperature combustion gas, a low temperature exhaust passage 15 for discharging combustion gas in the low temperature chamber to the outside, and an auxiliary valve for switching a flow of combustion gas between the high temperature exhaust passage and the low temperature exhaust passage. The low temperature chamber has a cross sectional area with a spiral shape becoming gradually wider in the turning direction of combustion gas from a prescribed position as a starting point SP to an inlet of the low temperature exhaust passage. Furthermore, the auxiliary valve has a straight cylindrical shape and has a skirt formed at a tip thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気通路構造に関する。   The present invention relates to an exhaust passage structure for an internal combustion engine.

内燃機関、例えば、2サイクルのユニフロー型ディーゼル機関では、排気弁箱に1つの排気弁(以下、主弁という)が組み込まれ、この主弁を開閉させて、排気レシーバ(排気集合部)に燃焼ガス(排気ガス)を排気すると共に、掃気も行っている。この掃気は、シリンダライナ内壁に設けられた掃気口より掃気が導入されることにより行われる。また、この排気弁箱には、主弁とは別の副弁と、この副弁を介して分離される高温室と低温室とが設けられている。   In an internal combustion engine, for example, a two-cycle uniflow type diesel engine, one exhaust valve (hereinafter referred to as a main valve) is incorporated in an exhaust valve box, and the main valve is opened and closed, and combustion is performed in an exhaust receiver (exhaust collecting portion). While exhausting gas (exhaust gas), scavenging is also performed. This scavenging is performed by introducing scavenging from a scavenging port provided on the inner wall of the cylinder liner. Further, the exhaust valve box is provided with a sub valve different from the main valve, and a high temperature chamber and a low temperature chamber separated through the sub valve.

そして、主弁の開弁初期(排気の初期)に、シリンダから高い圧力と高い温度の燃焼ガスが高温室に導入され、当該高温室から高温の燃焼ガスを排気するための高温排気通路を通して、排気レシーバ(外部)へ排出される。また、主弁の開弁中期から閉弁するまで(排気の中期から後期)の間に、シリンダ内の残余の燃焼ガスが低温室に導入され、当該低温室から低温ガスを排気するための低温排気通路を通して外部に排出される(例えば、特許文献1参照)。   Then, at the initial opening of the main valve (the initial stage of exhaust), high pressure and high temperature combustion gas is introduced from the cylinder into the high temperature chamber, and through the high temperature exhaust passage for exhausting high temperature combustion gas from the high temperature chamber, It is discharged to the exhaust receiver (outside). In addition, the remaining combustion gas in the cylinder is introduced into the low temperature chamber during the period from the middle opening to the closing of the main valve (mid to late exhaust), and the low temperature for exhausting the low temperature gas from the low temperature chamber. It is discharged outside through the exhaust passage (see, for example, Patent Document 1).

したがって、低温室には、掃気ポートで造成された強いスワールを持った旋回流が導かれる。なお、高温室に導かれる高温の排気ガスは排気初期のため、特に強いスワールは伴っていない。   Therefore, a swirl flow having a strong swirl created at the scavenging port is guided to the low temperature chamber. The high-temperature exhaust gas introduced into the high-temperature chamber is not accompanied by a particularly strong swirl because it is in the early stage of exhaust.

内燃機関の吸気装置として、コレクタとエンジンヘッドとの間に位置する独立吸気管に、リーン燃焼時やアイドルや低温時に閉じる補助弁と、燃料噴射弁と、補助弁をバイパスしてコレクタと燃料噴射弁の噴射口の両側とを結ぶ真直ぐな通路とを設け、これらにより吸気通路の形成を容易にした発明が開示されている(例えば、特許文献2参照)。   As an intake device for an internal combustion engine, an independent intake pipe located between the collector and the engine head has an auxiliary valve that closes at the time of lean combustion, idle, or low temperature, a fuel injection valve, and the auxiliary valve bypassing the auxiliary valve and fuel injection An invention has been disclosed in which a straight passage that connects both sides of the injection port of the valve is provided, thereby facilitating the formation of the intake passage (see, for example, Patent Document 2).

実開平02−145617号公報(図1)Japanese Utility Model Publication No. 02-145617 (FIG. 1) 特開2002−364472号公報(2−3頁、図2)JP 2002-364472 A (page 2-3, FIG. 2)

従来の排気弁箱の排気通路の構造は、例えば図4に示すように、低温室8が排気弁箱5の排気口5aと同心的に形成され、主弁の開弁中期から閉弁までの間にシリンダから排気弁箱5の排気口5aを通して低温室8に導入された低温の燃焼ガスは、低温排気通路9の出口9aの中心と低温室8の中心とを結ぶ中心線Lに対して、矢印A〜Hの流線で示すように、強いスワール(旋回流)を伴って低温排気通路9へと流れる。図4において、流線の長さが、その位置における燃焼ガスの流速を示している。   The structure of the exhaust passage of the conventional exhaust valve box is, for example, as shown in FIG. 4, in which the low temperature chamber 8 is formed concentrically with the exhaust port 5a of the exhaust valve box 5, and from the middle valve opening to the closing of the main valve. The low-temperature combustion gas introduced into the low temperature chamber 8 through the exhaust port 5a of the exhaust valve box 5 between the cylinder and the center line L connecting the center of the outlet 9a of the low temperature exhaust passage 9 and the center of the low temperature chamber 8 between them. As indicated by the flow lines indicated by arrows A to H, it flows into the low temperature exhaust passage 9 with a strong swirl (swirl flow). In FIG. 4, the length of the streamline indicates the flow velocity of the combustion gas at that position.

しかしながら、矢印A〜Hの流線で示すように、燃焼ガスの流速は、矢印Aの流線から矢印Hの流線まで徐々に速くなっており、矢線Hで最大流速を得ているが、矢印A〜Gの流線で示す排気弁箱5の排気口5aの周囲では、極めて遅くなっている。   However, as indicated by the flow lines indicated by arrows A to H, the flow velocity of the combustion gas gradually increases from the flow line indicated by the arrow A to the flow line indicated by the arrow H. In the vicinity of the exhaust port 5a of the exhaust valve box 5 indicated by the flow lines of arrows A to G, it is extremely slow.

即ち、低温室8内の燃焼ガスの流れ抵抗が大きいために、低温室8から低温排気通路9に排出される燃焼ガスの流れが悪くなり、排気通路9の出口9aの断面積に見合った流量の排気がなされず、掃気効率が極めて悪いという問題を発生させている。   That is, since the flow resistance of the combustion gas in the low temperature chamber 8 is large, the flow of the combustion gas discharged from the low temperature chamber 8 to the low temperature exhaust passage 9 is deteriorated, and the flow rate corresponding to the cross-sectional area of the outlet 9a of the exhaust passage 9 The exhaust gas is not exhausted and the scavenging efficiency is extremely poor.

これは、低温室8が排気弁箱5の排気口5aと同心的に形成されているために、低温排気通路9の出口9aの中心とシリンダ5の排気口5aの低温室8内における中心とを結ぶ中心線Lに対して左右対称となり、これにより、低温室8から低温排気通路9への燃焼ガスの流れが悪くなると考えられる。   This is because the low temperature chamber 8 is formed concentrically with the exhaust port 5a of the exhaust valve box 5, so that the center of the outlet 9a of the low temperature exhaust passage 9 and the center of the exhaust port 5a of the cylinder 5 in the low temperature chamber 8 are It is considered that the flow of combustion gas from the low temperature chamber 8 to the low temperature exhaust passage 9 is deteriorated with respect to the center line L connecting the two.

この一方、特許文献1に開示されている吸気装置は、吸気通路の構成を簡単にするものであり、本願発明のように、主弁の開弁中期から閉弁するまでの間にシリンダ内の残余の燃焼ガスが低温室から低温排気通路を経て排気レシーバへと排出され、シリンダの掃気ポートで造成された強いスワールを伴った掃気が低温室へ導かれる発明に関するものではない。   On the other hand, the intake device disclosed in Patent Document 1 simplifies the configuration of the intake passage, and as in the present invention, the intake valve in the cylinder during the period from the middle valve opening to the closing of the main valve. The invention does not relate to an invention in which the remaining combustion gas is discharged from the low temperature chamber through the low temperature exhaust passage to the exhaust receiver, and the scavenging with strong swirl created at the scavenging port of the cylinder is guided to the low temperature chamber.

本発明は、このような問題を解決するためになされたもので、低温室における燃焼ガスの流れ抵抗を低減し、掃気ポートで造成された強いスワールを伴う掃気の流れ形態を阻害することがなく排気して、掃気効率を著しく高めることができる、内燃機関の排気通路構造を提供することを課題とする。   The present invention has been made to solve such a problem, and reduces the flow resistance of the combustion gas in the low-temperature chamber and does not hinder the flow pattern of the scavenging gas with the strong swirl formed at the scavenging port. It is an object of the present invention to provide an exhaust passage structure for an internal combustion engine that can be exhausted to significantly increase scavenging efficiency.

上記の課題を解決するために、本発明が採用する手段は、シリンダ内の燃焼ガスの排気を行う主弁と、排気弁箱内に設けられてシリンダから主弁を介して排出された高温の燃焼ガスを外部へ排出する高温排気通路と、排気弁箱内に設けられてシリンダから主弁を介して排出された低温の燃焼ガスを導入する低温室と、排気弁箱内に設けられて低温室内の燃焼ガスを外部へ排出する低温排気通路と、排気弁箱内に設けられて高温排気通路と低温排気通路への燃焼ガスの流れを切り替える副弁とを備えた内燃機関の排気通路構造において、低温室は、所定位置を起点として低温排気通路の入口までの断面積が燃焼ガスの旋回方向に徐々に広くなる渦巻き形状をなしていることにある。   In order to solve the above-mentioned problems, the means employed by the present invention includes a main valve for exhausting combustion gas in the cylinder, and a high-temperature exhaust valve provided in the exhaust valve box and discharged from the cylinder through the main valve. A high-temperature exhaust passage that discharges combustion gas to the outside, a low-temperature chamber that is provided in the exhaust valve box and introduces low-temperature combustion gas discharged from the cylinder through the main valve, and a low-temperature chamber that is provided in the exhaust valve box In an exhaust passage structure of an internal combustion engine comprising a low temperature exhaust passage for exhausting indoor combustion gas to the outside, and a sub valve provided in an exhaust valve box for switching the flow of combustion gas to the high temperature exhaust passage and the low temperature exhaust passage The low temperature chamber has a spiral shape in which the cross-sectional area from the predetermined position to the inlet of the low temperature exhaust passage gradually increases in the swirling direction of the combustion gas.

主弁の開弁中期以降にシリンダから排出された燃焼ガスは、低温室に導入され、低温室から低温排気通路を通して外部へ排出される。低温室の形状を、所定位置を起点として低温排気通路の入口までの断面積が燃焼ガスの旋回方向に徐々に広くなる渦巻き形状とすることで、掃気口からの掃気により造成されて強いスワールを伴った燃焼ガスを、スワールを阻害することなく低温室に導くことが可能となり、燃焼ガスの流れ抵抗を大幅に低減することができる。この結果、低温排気通路の断面積に見合った流量の燃焼ガスを円滑に排出することができ、掃気効率が著しく向上する。   Combustion gas exhausted from the cylinder after the middle of the main valve opening is introduced into the low temperature chamber and is discharged to the outside through the low temperature exhaust passage from the low temperature chamber. The shape of the low greenhouse is a spiral shape in which the cross-sectional area from the predetermined position to the inlet of the low temperature exhaust passage gradually widens in the swirling direction of the combustion gas, creating a strong swirl by scavenging from the scavenging port The accompanying combustion gas can be guided to the low temperature chamber without inhibiting the swirl, and the flow resistance of the combustion gas can be greatly reduced. As a result, the combustion gas having a flow rate corresponding to the cross-sectional area of the low temperature exhaust passage can be discharged smoothly, and the scavenging efficiency is significantly improved.

上記内燃機関の排気通路構造において、低温室と低温排気通路の入口は、異なる曲率半径の曲面で滑らかに連設されていることが望ましい。このように、低温室と低温排気通路の入口を異なる曲率半径の曲面で滑らかに連設することにより、低温室から低温排気通路に排出させる排気ガスの流れ抵抗をさらに低減することができる。   In the exhaust passage structure of the internal combustion engine, it is desirable that the inlet of the low temperature chamber and the low temperature exhaust passage are smoothly connected with curved surfaces having different radii of curvature. As described above, the flow resistance of the exhaust gas discharged from the low temperature chamber to the low temperature exhaust passage can be further reduced by smoothly connecting the low temperature chamber and the inlet of the low temperature exhaust passage with curved surfaces having different curvature radii.

上記内燃機関の排気通路構造において、起点は、低温排気通路の出口の中心とシリンダの排気口の低温室内における中心とを結ぶ中心線から燃焼ガスの旋回方向に所定角度だけずれた位置であることが望ましい。このように、低温室の渦巻き形状の起点を低温排気通路の出口の中心とシリンダの排気口の低温室内における中心とを結ぶ中心線から、燃焼ガスの旋回方向に所定角度だけずれた位置に設定することにより、低温室内に導入した燃焼ガスの流れをより円滑にして低温排気通路に導くことが可能となる。   In the exhaust passage structure of the internal combustion engine, the starting point is a position shifted by a predetermined angle in the swirling direction of the combustion gas from a center line connecting the center of the outlet of the low temperature exhaust passage and the center of the exhaust port of the cylinder in the low temperature chamber. Is desirable. In this way, the starting point of the spiral shape of the low temperature chamber is set at a position shifted by a predetermined angle in the swirling direction of the combustion gas from the center line connecting the center of the outlet of the low temperature exhaust passage and the center of the cylinder exhaust port in the low temperature chamber. By doing so, the flow of the combustion gas introduced into the low temperature chamber can be more smoothly guided to the low temperature exhaust passage.

上記内燃機関の排気通路構造において、低温室は、起点から低温排気通路の入口まで順次大きくなる異なる曲率半径の曲面により形成されていることが望ましい。このように、低温室を起点から低温排気通路の入口まで順次大きくなる異なる曲率半径の曲面により形成することにより、低温排気通路の入口に向ってその断面積が徐々に大きくなる渦巻き状の排気通路を形成することができ、燃焼ガスのスワールをさらに阻害しない排気通路を形成することができる。   In the exhaust passage structure of the internal combustion engine, it is preferable that the low temperature chamber is formed by curved surfaces having different radii of curvature that gradually increase from the starting point to the inlet of the low temperature exhaust passage. Thus, by forming the low temperature chamber with curved surfaces having different radii of curvature that gradually increase from the starting point to the inlet of the low temperature exhaust passage, a spiral exhaust passage whose cross-sectional area gradually increases toward the inlet of the low temperature exhaust passage. And an exhaust passage that does not further inhibit the swirl of the combustion gas can be formed.

上記内燃機関の排気通路構造において、低温室は、起点から低温排気通路の入口まで滑らかに大きくなることが望ましい。このように、低温室の渦巻状をなす内壁面を起点から低温排気通路の入口まで滑らかに大きくなるように形成することにより、導入された燃焼ガスの流れ抵抗を小さくすることができ、燃焼ガスを低温排気通路に一段と円滑に排出することができる。   In the exhaust passage structure of the internal combustion engine, it is desirable that the low temperature chamber is smoothly enlarged from the starting point to the inlet of the low temperature exhaust passage. Thus, the flow resistance of the introduced combustion gas can be reduced by forming the spiral inner wall surface of the low temperature chamber so as to increase smoothly from the starting point to the inlet of the low temperature exhaust passage. Can be discharged more smoothly into the low temperature exhaust passage.

上記内燃機関の排気通路構造において、副弁は、直円筒体形状をなすと共に先端にスカート部が形成されていることが望ましい。   In the exhaust passage structure of the internal combustion engine, it is desirable that the sub-valve has a right cylindrical shape and a skirt portion is formed at the tip.

又は、上記の課題を解決するために、本発明が採用する他の手段は、シリンダ内の燃焼ガスの排気を行う主弁と、排気弁箱内に設けられてシリンダから主弁を介して排出された高温の燃焼ガスを外部へ排出する高温排気通路と、排気弁箱内に設けられてシリンダから主弁を介して排出された低温の燃焼ガスを外部へ排出する低温排気通路と、排気弁箱内に設けられて高温排気通路と低温排気通路への燃焼ガスの流れを切り替える副弁とを備えた内燃機関の排気通路構造において、副弁は、直円筒体形状をなすと共に先端にスカート部が形成されていることにある。   Alternatively, in order to solve the above-mentioned problems, the other means employed by the present invention include a main valve that exhausts combustion gas in the cylinder and an exhaust valve box that is provided in the exhaust valve box and discharges from the cylinder through the main valve. A high-temperature exhaust passage that discharges the generated high-temperature combustion gas to the outside, a low-temperature exhaust passage that is provided in the exhaust valve box and discharges the low-temperature combustion gas discharged from the cylinder through the main valve to the outside, and an exhaust valve In an exhaust passage structure of an internal combustion engine that is provided in a box and includes a high-temperature exhaust passage and a secondary valve that switches the flow of combustion gas to the low-temperature exhaust passage, the secondary valve has a straight cylindrical shape and a skirt portion at the tip Is that it is formed.

このように、直円筒形状をなす副弁の先端にスカート部を形成することにより、シリンダヘッドの排気口から排出された燃焼ガスを低温室に、スワールを阻害することなくスムーズに導くことが可能となり、燃焼ガスの低温室への掃気効率が著しく向上する。   In this way, by forming a skirt at the tip of the sub-valve that has a right cylindrical shape, the combustion gas discharged from the exhaust port of the cylinder head can be smoothly guided to the low temperature chamber without hindering swirl. Thus, the scavenging efficiency of the combustion gas into the low temperature chamber is significantly improved.

上記内燃機関の排気通路構造において、副弁の内径は、排気弁箱の排気口と略同径とされることが望ましい。このように、副弁の内径を排気弁箱の排気口と略同径とすることにより、排気弁箱の排気口から排出された燃焼ガスを低温室に、より円滑に排出させることが可能となり、掃気効率がさらに向上する。   In the exhaust passage structure of the internal combustion engine, it is desirable that the inner diameter of the sub valve is substantially the same as the exhaust port of the exhaust valve box. Thus, by making the inner diameter of the auxiliary valve substantially the same as the exhaust port of the exhaust valve box, the combustion gas discharged from the exhaust port of the exhaust valve box can be discharged more smoothly into the low temperature chamber. , Scavenging efficiency is further improved.

上記内燃機関の排気通路構造において、スカート部は、後端の外径が先端の外径よりも大径の截頭円錐筒体形状をなしていることが望ましい。このように、副弁のスカート部の後端の外径を先端の外径よりも大径の截頭円錐筒体形状とすることにより、排気弁箱の排気口に対向して、先端から後端に拡径するように傾斜する外周面を有するスカート部が形成され、このスカート部の傾斜外周面によって排気弁箱の排気口から排出された燃焼ガスを、より円滑に低温室に導くことが可能となり、掃気効率が一段と向上する。   In the exhaust passage structure of the internal combustion engine, it is desirable that the skirt portion has a truncated conical cylinder shape in which the outer diameter of the rear end is larger than the outer diameter of the tip. In this way, the outer diameter of the rear end of the skirt portion of the secondary valve is formed in the shape of a truncated conical cylinder having a larger diameter than the outer diameter of the front end, so that it faces the exhaust port of the exhaust valve box and is rearward from the front end. A skirt portion having an outer peripheral surface inclined so as to expand at the end is formed, and the inclined outer peripheral surface of the skirt portion can guide combustion gas discharged from the exhaust port of the exhaust valve box more smoothly to the low temperature chamber. This is possible, and the scavenging efficiency is further improved.

上記内燃機関の排気通路構造において、スカート部は、先端の外径が前記シリンダヘッドの排気口よりも小径とされると共に後端の外周面が排気弁箱の排気口の内周面に摺接可能とされることが望ましい。スカート部の先端の外径を排気弁箱の排気口よりも小径とし、かつ後端の外周面をシリンダヘッドの排気口の内周面に摺接可能とすることにより、スカート部を排気弁箱の排気口に円滑に挿入させることが可能になる。また、スカート部の後端外周面を排気口に摺接させることで、排気口と直円筒形状の副弁との隙間を塞ぐことができる。これにより、シリンダヘッドの排気口から排出される燃焼ガスを、漏れなく低温室に導くことが可能となる。   In the exhaust passage structure of the internal combustion engine, the skirt portion has an outer diameter at the front end smaller than the exhaust port of the cylinder head, and an outer peripheral surface at the rear end is in sliding contact with an inner peripheral surface of the exhaust port of the exhaust valve box. It is desirable to be possible. By making the outer diameter of the tip of the skirt part smaller than the exhaust port of the exhaust valve box and making the outer peripheral surface of the rear end slidably contact the inner peripheral surface of the exhaust port of the cylinder head, It can be smoothly inserted into the exhaust port. Moreover, the clearance gap between an exhaust port and a right cylindrical cylindrical subvalve can be block | closed by making the rear-end outer peripheral surface of a skirt part slide-contact with an exhaust port. As a result, the combustion gas discharged from the exhaust port of the cylinder head can be guided to the low temperature chamber without leakage.

上記内燃機関の排気通路構造において、スカート部は、外周面が副弁の直径方向に対して所定の角度をなしていることが望ましい。このように、スカート部の外周面を直円筒形状をなす副弁の直径方向に対して所定の角度をなすように形成することにより、排気弁箱の排気口に対向して先端から後端に拡径するように傾斜する外周面を適切な角度にすることができ、排気弁箱の排気口から排出された燃焼ガスをより円滑に低温室に導くことが可能となり、さらに掃気効率が向上する。   In the exhaust passage structure of the internal combustion engine, it is desirable that the outer peripheral surface of the skirt portion forms a predetermined angle with respect to the diameter direction of the auxiliary valve. In this way, by forming the outer peripheral surface of the skirt so as to form a predetermined angle with respect to the diameter direction of the sub-valve having a right cylindrical shape, the exhaust valve box faces the exhaust port from the front end to the rear end. The outer peripheral surface inclined so as to expand the diameter can be set to an appropriate angle, and the combustion gas discharged from the exhaust port of the exhaust valve box can be more smoothly guided to the low temperature chamber, and the scavenging efficiency is further improved. .

以上のように、本発明の内燃機関の排気通路構造は、シリンダ内の燃焼ガスの排気を行う主弁と、排気弁箱内に設けられてシリンダから主弁を介して排出された高温の燃焼ガスを外部へ排出する高温排気通路と、排気弁箱内に設けられてシリンダから主弁を介して排出された低温の燃焼ガスを導入する低温室と、排気弁箱内に設けられて低温室内の燃焼ガスを外部へ排出する低温排気通路と、排気弁箱内に設けられて高温排気通路と低温排気通路への燃焼ガスの流れを切り替える副弁とを備えた内燃機関の排気通路構造において、低温室は、所定位置を起点として低温排気通路の入口までの断面積が燃焼ガスの旋回方向に徐々に広くなる渦巻き形状をなしている。   As described above, the exhaust passage structure of the internal combustion engine according to the present invention includes the main valve that exhausts the combustion gas in the cylinder, and the high-temperature combustion that is provided in the exhaust valve box and is discharged from the cylinder through the main valve. A high-temperature exhaust passage for discharging gas to the outside, a low-temperature chamber provided in the exhaust valve box for introducing low-temperature combustion gas discharged from the cylinder through the main valve, and a low-temperature chamber provided in the exhaust valve box In the exhaust passage structure of the internal combustion engine, comprising a low-temperature exhaust passage for discharging the combustion gas to the outside, and a sub valve provided in the exhaust valve box for switching the flow of the combustion gas to the high-temperature exhaust passage and the low-temperature exhaust passage, The low greenhouse has a spiral shape in which the cross-sectional area from a predetermined position to the inlet of the low temperature exhaust passage gradually increases in the swirling direction of the combustion gas.

又は、本発明の内燃機関の排気通路構造は、シリンダ内の燃焼ガスの排気を行う主弁と、排気弁箱内に設けられてシリンダから主弁を介して排出された高温の燃焼ガスを外部へ排出する高温排気通路と、排気弁箱内に設けられてシリンダから主弁を介して排出された低温の燃焼ガスを外部へ排出する低温排気通路と、排気弁箱内に設けられて高温排気通路と低温排気通路への燃焼ガスの流れを切り替える副弁とを備えた内燃機関の排気通路構造において、副弁は、直円筒体形状をなすと共に先端にスカート部が形成されている。   Alternatively, the exhaust passage structure of the internal combustion engine of the present invention includes a main valve that exhausts the combustion gas in the cylinder, and a high-temperature combustion gas that is provided in the exhaust valve box and discharged from the cylinder through the main valve to the outside. A high-temperature exhaust passage that discharges to the outside, a low-temperature exhaust passage that is provided in the exhaust valve box and discharges low-temperature combustion gas discharged from the cylinder through the main valve to the outside, and a high-temperature exhaust that is provided in the exhaust valve box In an exhaust passage structure of an internal combustion engine that includes a passage and a subvalve that switches the flow of combustion gas to the low temperature exhaust passage, the subvalve has a shape of a straight cylinder and a skirt portion at the tip.

したがって、低温室における燃焼ガスの流れ抵抗を低減し、掃気ポートで造成された強いスワールを伴う掃気の流れ形態を阻害することなく排気して、掃気効率を著しく高めることができるという優れた効果を奏する。   Therefore, the flow resistance of the combustion gas in the low temperature chamber is reduced, and the scavenging flow with strong swirl created at the scavenging port is exhausted without hindering the flow, so that the scavenging efficiency can be significantly improved. Play.

本発明の一実施形態に係る内燃機関の排気通路構造を適用したディーゼル機関の排気弁箱の要部断面図である。It is principal part sectional drawing of the exhaust valve box of the diesel engine to which the exhaust passage structure of the internal combustion engine which concerns on one Embodiment of this invention is applied. 図1に示した排気弁箱の矢線II−IIに沿う要部断面図である。It is principal part sectional drawing in alignment with the arrow II-II of the exhaust valve box shown in FIG. 図2に示した低温室と低温排気通路における燃焼ガスの流れを模式的に示した説明図である。It is explanatory drawing which showed typically the flow of the combustion gas in the low temperature chamber and low temperature exhaust passage which were shown in FIG. 従来の排気通路構造における低温室と低温排気通路における燃焼ガスの流れを模式的に示した説明図である。It is explanatory drawing which showed typically the flow of the combustion gas in the low temperature chamber and low temperature exhaust passage in the conventional exhaust passage structure.

本発明の内燃機関の排気通路構造の発明を実施するための形態を、図1及び2を参照して詳細に説明する。   A mode for carrying out the invention of an exhaust passage structure for an internal combustion engine according to the present invention will be described in detail with reference to FIGS.

図1は、本発明に係る内燃機関の排気通路構造を適用した排気弁箱の要部断面図である。図1に示すように、排気弁箱11は、シリンダブロック1の弁座2に装着されており、主弁21と、排気弁箱11内に設けられた高温室12と、高温室12に連通する高温排気通路13と、低温室14と、低温室14と連通する低温排気通路15とを備え、さらに、高温室12及び高温排気通路13の側と、低温室14及び低温排気通路15の側との燃焼ガスの流れを切り替える副弁25を備えている。   FIG. 1 is a sectional view of an essential part of an exhaust valve box to which an exhaust passage structure for an internal combustion engine according to the present invention is applied. As shown in FIG. 1, the exhaust valve box 11 is mounted on the valve seat 2 of the cylinder block 1, and communicates with the main valve 21, the high temperature chamber 12 provided in the exhaust valve box 11, and the high temperature chamber 12. A high temperature exhaust passage 13, a low temperature chamber 14, and a low temperature exhaust passage 15 communicating with the low temperature chamber 14. Further, the high temperature chamber 12 and the high temperature exhaust passage 13 side, and the low temperature chamber 14 and the low temperature exhaust passage 15 side. And a sub valve 25 for switching the flow of the combustion gas.

また、主弁21の開弁動作を行わせる図示しない油圧シリンダと、油圧シリンダブロック30に設けられて副弁25の切り替え動作を行なう複数の、例えば3本の油圧シリンダ31と、主弁21の弁ステム22の上部に固定されて主弁21の復旧動作を行わせる図示しない空気ピストンと、副弁25の弁ステム26の上部に固定されて副弁25の復旧動作を行わせる空気ピストン29と、主弁21の空気ピストンと副弁25の空気ピストン29を収容して空気圧を付与するための空気ばね室36を形成するケーシング35とを備えた構成とされる。   Further, a hydraulic cylinder (not shown) that opens the main valve 21, a plurality of, for example, three hydraulic cylinders 31 that are provided in the hydraulic cylinder block 30 and perform the switching operation of the sub valve 25, and the main valve 21 An air piston (not shown) that is fixed to the upper portion of the valve stem 22 to perform the recovery operation of the main valve 21, and an air piston 29 that is fixed to the upper portion of the valve stem 26 of the subvalve 25 to perform the recovery operation of the subvalve 25. The casing includes a casing 35 that houses an air piston of the main valve 21 and an air piston 29 of the sub-valve 25 and forms an air spring chamber 36 for applying air pressure.

この排気弁箱11は、一例として、2サイクルのユニフロー型ディーゼル機関に適用した場合を示している。この2サイクルのユニフロー型ディーゼル機関においては、シリンダライナ側壁に吸気口(掃気口)があり、主弁21は排気及び掃気を行なう。   As an example, the exhaust valve box 11 is applied to a two-cycle uniflow diesel engine. In this two-cycle uniflow type diesel engine, there is an intake port (scavenging port) on the side wall of the cylinder liner, and the main valve 21 performs exhaust and scavenging.

主弁21の開弁動作は、高圧の油圧によって動作する前記油圧シリンダが弁ステム22を図中下方に押動することにより行われる。また、その閉弁動作(復旧動作)は、弁ステム22に取り付けられた前記空気ピストンが、弁ステム22を図中上方に引き上げることにより行われる。即ち、前記空気ピストンの下方に形成された空気ばね室36内の空気圧が、主弁21の閉弁動作の作動源となっている。   The valve opening operation of the main valve 21 is performed by pushing the valve stem 22 downward in the figure by the hydraulic cylinder that is operated by high pressure oil pressure. The valve closing operation (recovery operation) is performed by the air piston attached to the valve stem 22 pulling up the valve stem 22 upward in the drawing. That is, the air pressure in the air spring chamber 36 formed below the air piston is the operating source for the valve closing operation of the main valve 21.

副弁25の切り替え動作は、油圧シリンダブロック30に設けられた複数の油圧シリンダ31が高圧の油圧によって動作して、空気ピストン29を図中上方に押動することにより行われる。また、その復旧動作は、油圧シリンダ31の油圧を逃がし、空気ピストン29により弁ステム26を図中下方に押動することにより行われる。即ち、空気ピストン29の上方に形成された空気ばね室36内の空気圧が、副弁25の復旧動作の作動源となっている。   The switching operation of the sub valve 25 is performed by operating a plurality of hydraulic cylinders 31 provided in the hydraulic cylinder block 30 by high pressure oil pressure to push the air piston 29 upward in the drawing. Further, the recovery operation is performed by releasing the hydraulic pressure of the hydraulic cylinder 31 and pushing the valve stem 26 downward in the figure by the air piston 29. That is, the air pressure in the air spring chamber 36 formed above the air piston 29 serves as an operating source for the recovery operation of the sub valve 25.

図2に示すように、低温室14は、低温排気通路15の出口15aの中心と排気口11aの中心線の低温室14内における中心Oを結ぶ中心線Lに対して、非対称形状の渦巻き形状に形成されている。低温室14の所定位置に、この渦巻きの起点SPが設定されている。   As shown in FIG. 2, the low temperature chamber 14 has an asymmetric spiral shape with respect to a center line L that connects the center of the outlet 15 a of the low temperature exhaust passage 15 and the center O of the center line of the exhaust port 11 a in the low temperature chamber 14. Is formed. The starting point SP of the spiral is set at a predetermined position in the low greenhouse 14.

起点SPは、低温室14と低温排気通路15の入口との一側の連設部15bよりも僅かに低温室14側に位置しており、排気口11aの中心線の低温室14内における中心Oを中心として、低温排気通路15の中心線Lから若干渦巻き方向、即ち、中心線Lから図示左回りに所定の角度θ1 ずれた位置に設けられている。   The starting point SP is located slightly on the low temperature chamber 14 side than the connecting portion 15b on one side of the low temperature chamber 14 and the inlet of the low temperature exhaust passage 15, and the center line in the low temperature chamber 14 of the center line of the exhaust port 11a. Centered around O, the low-temperature exhaust passage 15 is provided at a position slightly deviating from the center line L in a spiral direction, that is, at a predetermined angle θ1 from the center line L counterclockwise in the figure.

この内燃機関では、主弁の開弁中期から閉弁までの間にシリンダから排気弁箱11の排気口11aを通して低温室14に導入された低温の燃焼ガスは、低温排気通路15の出口15aの中心と低温室14の中心とを結ぶ中心線Lに対して、図2の図示上方から見て、反時計回りの強いスワール(旋回流)を伴って低温室14へと流れ込む。   In this internal combustion engine, the low-temperature combustion gas introduced into the low-temperature chamber 14 from the cylinder through the exhaust port 11a of the exhaust valve box 11 during the period from the middle valve opening to the closing of the main valve is discharged from the outlet 15a of the low-temperature exhaust passage 15. With respect to the center line L connecting the center and the center of the low temperature chamber 14, it flows into the low temperature chamber 14 with a strong counterclockwise swirl (swirl flow) as viewed from above in FIG. 2.

すなわち、低温室14は、所定位置を起点SPとして低温排気通路15の入口までの断面積、より詳細には、起点SPから低温排気通路15との他側の連設部15cまでの断面積が、燃焼ガスの旋回方向に、低温排気通路15に向かって徐々に広くなる渦巻き形状をなしている。換言すれば、低温室14は、図2の図示上方から見て、右回りにその径が徐々に狭まっていく右渦巻き形状に形成される。   That is, the low-temperature chamber 14 has a cross-sectional area from the predetermined position as the starting point SP to the inlet of the low-temperature exhaust passage 15, more specifically, a cross-sectional area from the starting point SP to the low-temperature exhaust passage 15 and the connecting portion 15 c on the other side. In the swirling direction of the combustion gas, a spiral shape gradually widening toward the low temperature exhaust passage 15 is formed. In other words, the low temperature chamber 14 is formed in a right spiral shape whose diameter gradually decreases clockwise as viewed from above in FIG.

低温室14は、起点SPから低温排気通路15との連設部15cまでが異なる曲率半径R2 ,R3 ,R4 の曲面により形成されており、これらの曲率半径は、R4 >R3 >R2 とされ、起点SPから低温室14と低温排気通路15の入口との連設部15cまで順次大きくなり、かつ滑らかに連設されている。   The low greenhouse 14 is formed of curved surfaces having different radii of curvature R2, R3, and R4 from the starting point SP to the connecting portion 15c with the low temperature exhaust passage 15, and these radii of curvature satisfy R4> R3> R2. From the starting point SP to the continuous portion 15c between the low temperature chamber 14 and the inlet of the low temperature exhaust passage 15, the size gradually increases and is connected smoothly.

また、低温室14と低温排気通路15の入口との連設部15b,15cは、曲率半径R1 ,R5 の曲面でそれぞれ滑らかに連設されている。例えば、角度θ1 は約45°〜90°、渦巻き形状を形成する曲率半径R2 〜R4 は、低温排気通路15の出口15aの内径径D0 の約0.5〜2.0倍とされる。   The connecting portions 15b and 15c between the low temperature chamber 14 and the inlet of the low temperature exhaust passage 15 are smoothly connected with curved surfaces having curvature radii R1 and R5, respectively. For example, the angle θ1 is about 45 ° to 90 °, and the radii of curvature R2 to R4 forming the spiral shape are about 0.5 to 2.0 times the inner diameter D0 of the outlet 15a of the low temperature exhaust passage 15.

副弁25は、直円筒形状をなし、その外径が排気弁箱11の排気口11aよりも僅かに小径とされ、その内径(副弁内径)D1 が弁座2の排気口2aと略同径とされる。尚、排気弁箱11の排気口11aは、弁座2の排気口2aよりも大径とされる。副弁25は、その内周面が弁ステム26の外周面に、複数の板状の輻(スポーク)25aにより連設されている。シリンダ3から主弁21を介して排出された燃焼ガスは、これらの輻25aの間を通して高温室12内に排出される。   The sub-valve 25 has a right cylindrical shape, and its outer diameter is slightly smaller than the exhaust port 11a of the exhaust valve box 11, and its inner diameter (sub-valve inner diameter) D1 is substantially the same as the exhaust port 2a of the valve seat 2. The diameter. The exhaust port 11 a of the exhaust valve box 11 has a larger diameter than the exhaust port 2 a of the valve seat 2. The sub-valve 25 has an inner peripheral surface connected to the outer peripheral surface of the valve stem 26 by a plurality of plate-like radii (spokes) 25a. The combustion gas discharged from the cylinder 3 through the main valve 21 is discharged into the high temperature chamber 12 through the radiation 25a.

副弁25には、先端に後端(図中上端)から先端(図中下端)に向って縮径するスカート部25bが形成される。スカート部25bは、後端の外径(スカート部外径)D2 が先端の内径(スカート部内径)D3 よりも大径の截頭円錐筒体形状(円錐台形状)をなしており、直円筒形状をなす副弁25の直径方向に対する外周面の角度は、θ2 とされる。そして、後端の外径D2 は、副弁25の外径よりも大径とされ、先端の外径は副弁25の内径D1 よりも小径とされる。   The auxiliary valve 25 is formed with a skirt portion 25b whose diameter is reduced from the rear end (upper end in the figure) toward the front end (lower end in the figure) at the front end. The skirt portion 25b has a truncated conical cylindrical shape (conical frustum shape) in which the outer diameter (skirt outer diameter) D2 of the rear end is larger than the inner diameter (skirt inner diameter) D3 of the tip. The angle of the outer peripheral surface with respect to the diametrical direction of the sub-valve 25 having a shape is θ2. The outer diameter D2 of the rear end is larger than the outer diameter of the sub valve 25, and the outer diameter of the front end is smaller than the inner diameter D1 of the sub valve 25.

スカート部25bの後端の外周面は、直円筒形状をなす副弁25の外周面と平行な面をなし、先端の開口部の内周面は、直円筒形状をなす副弁25の内周面と平行な面をなしている。従って、スカート部25bの先端の外周面が開口部の内周面と前記角度θ2 をなす稜(ナイフエッヂ)をなしており、先端の内径D3 と外径D4 は略同径となる。   The outer peripheral surface of the rear end of the skirt portion 25b is a surface parallel to the outer peripheral surface of the sub-valve 25 having a right cylindrical shape, and the inner peripheral surface of the opening at the tip is the inner periphery of the sub-valve 25 having a right cylindrical shape. The surface is parallel to the surface. Accordingly, the outer peripheral surface of the tip of the skirt portion 25b forms a ridge (knife edge) that forms the angle θ2 with the inner peripheral surface of the opening, and the inner diameter D3 and the outer diameter D4 of the tip are substantially the same.

また、スカート部25bの先端の外径D4 は、排気弁箱11の排気口11aよりも僅かに小径をなし、後端の外周面は、2点鎖線で示すように、排気弁箱11の排気口11aの内周面に摺接可能とされる。そして、直円筒形状をなす副弁25の先端が、スカート部25bの内周面の略中央部に連設されている。   The outer diameter D4 of the front end of the skirt portion 25b is slightly smaller than the exhaust port 11a of the exhaust valve box 11, and the outer peripheral surface of the rear end is exhausted from the exhaust valve box 11 as shown by a two-dot chain line. It can be slidably contacted with the inner peripheral surface of the mouth 11a. And the front-end | tip of the subvalve 25 which makes a right cylindrical shape is provided in a row by the substantially center part of the internal peripheral surface of the skirt part 25b.

例えば、主弁21のバルブフェース21aの直径をDvとした場合、副弁25の内径D1 とDvの比D1 /Dvは約0.9〜1.2、スカート部25bの後端の外径D2 とDvの比D2 /Dvは約1.0〜1.3、スカート部25bの先端の内径D3 とDvの比D3 /Dvは約0.7〜1.0とされる。   For example, when the diameter of the valve face 21a of the main valve 21 is Dv, the ratio D1 / Dv between the inner diameter D1 and Dv of the sub valve 25 is about 0.9 to 1.2, and the outer diameter D2 of the rear end of the skirt portion 25b. The ratio D2 / Dv of the skirt portion 25b is about 1.0 to 1.3, and the ratio D3 / Dv of the inner diameter D3 to the tip Dv of the skirt portion 25b is about 0.7 to 1.0.

図1において、副弁25は、主弁21が開弁し始めた初期(排気の初期)において、空気ピストン29により2点鎖線で示す位置に切り替えられており、スカート部25bが排気弁箱11の排気口11a内に挿入され、かつ後端の外周面が排気口11aの内周面に摺接し、弁座2の排気口2aを通してシリンダ3と連通する。   In FIG. 1, the sub valve 25 is switched to the position indicated by the two-dot chain line by the air piston 29 at the initial stage when the main valve 21 starts to open (the initial stage of exhaust), and the skirt portion 25 b has the exhaust valve box 11. The outer peripheral surface of the rear end is in sliding contact with the inner peripheral surface of the exhaust port 11 a and communicates with the cylinder 3 through the exhaust port 2 a of the valve seat 2.

そして、副弁25が板状の輻25の間を通してシリンダ3と高温室12とを連通させると共に、その円筒部により低温室14を閉塞する。これにより、シリンダ3内の高温高圧の燃焼ガスが高温室12に排出され、高温室12から高温排気通路13へ排出される。   The auxiliary valve 25 allows the cylinder 3 and the high temperature chamber 12 to communicate with each other through the plate-shaped radiation 25 and closes the low temperature chamber 14 by the cylindrical portion. Thereby, the high-temperature and high-pressure combustion gas in the cylinder 3 is discharged to the high-temperature chamber 12 and is discharged from the high-temperature chamber 12 to the high-temperature exhaust passage 13.

副弁25は、主弁21の開弁の中期から後期(閉弁)までの間、空気弁29が油圧シリンダ31により実線で示す位置に押し上げられて低温室14側に切り替えられる。これにより、高温室12が閉塞される。そして、低温室14がシリンダ3に連通されてシリンダ3内の残余の燃焼ガスが、排気弁箱11の排気口11aから低温室14へ排出される。   The auxiliary valve 25 is switched to the low temperature chamber 14 side by the air valve 29 being pushed up to the position indicated by the solid line by the hydraulic cylinder 31 from the middle stage to the latter stage (closed valve) of the main valve 21. Thereby, the high temperature chamber 12 is closed. The low temperature chamber 14 is communicated with the cylinder 3, and the remaining combustion gas in the cylinder 3 is discharged from the exhaust port 11 a of the exhaust valve box 11 to the low temperature chamber 14.

この燃焼ガスは、副弁25の先端に設けられたスカート部25bの傾斜している外周面に沿って、低温室14内へ円滑に導かれる。これにより、シリンダ3から排出された燃焼ガスが低温室14に良好に導入される。   The combustion gas is smoothly guided into the low temperature chamber 14 along the inclined outer peripheral surface of the skirt portion 25b provided at the tip of the sub valve 25. Thereby, the combustion gas discharged from the cylinder 3 is satisfactorily introduced into the low temperature chamber 14.

図2に示すように、低温室14は、起点SPから低温排気通路15の入口との連設部15cまで、燃焼ガスの旋回方向に断面積が徐々に広くなる渦巻き形状をなして、しかも滑らかな曲面に形成される一方、低温排気通路15の入口との連設部15b,15cが滑らかに形成されていることにより、低温室14内における燃焼ガスの流れ抵抗が大幅に低減されて、燃焼ガスが低温排気通路15へ円滑に流れる。   As shown in FIG. 2, the low temperature chamber 14 has a spiral shape in which the cross-sectional area gradually increases in the swirling direction of the combustion gas from the starting point SP to the connecting portion 15 c with the inlet of the low temperature exhaust passage 15, and is smooth. On the other hand, since the connecting portions 15b and 15c connected to the inlet of the low temperature exhaust passage 15 are formed smoothly, the flow resistance of the combustion gas in the low temperature chamber 14 is greatly reduced, and combustion is performed. The gas flows smoothly into the low temperature exhaust passage 15.

この結果、シリンダ3の掃気ポートで造成された強いスワールを阻害することなく、シリンダ3から低温室14に排出された燃焼ガスを低温排気通路15に排出することが可能となる。この結果、低温排気通路15の断面積に見合った流量の燃焼ガスを円滑に排出させることができ、掃気効率が著しく向上する。   As a result, the combustion gas discharged from the cylinder 3 to the low temperature chamber 14 can be discharged to the low temperature exhaust passage 15 without hindering the strong swirl created at the scavenging port of the cylinder 3. As a result, the combustion gas having a flow rate corresponding to the cross-sectional area of the low temperature exhaust passage 15 can be smoothly discharged, and the scavenging efficiency is significantly improved.

図3は、図2に示す低温室14及び低温排気通路15内における燃焼ガスの流れの一例を示すものである。図1に示すシリンダ3から排気弁箱11の排出口11aを通して低温室14内に導入された燃焼ガスは、渦巻き形状の内壁面14aに沿って、矢印で示す流線A〜Hのように流れて、低温排気通路15へ排出される。   FIG. 3 shows an example of the flow of combustion gas in the low temperature chamber 14 and the low temperature exhaust passage 15 shown in FIG. The combustion gas introduced into the low temperature chamber 14 from the cylinder 3 shown in FIG. 1 through the exhaust port 11a of the exhaust valve box 11 flows along the spiral inner wall surface 14a as indicated by streamlines A to H indicated by arrows. And is discharged to the low temperature exhaust passage 15.

この流線A〜Hの長さは、その位置における燃焼ガスの流速を表している。図3から明らかなように、燃焼ガスの流速は、図4で示した従来の内燃機関の排気通路構造に比し、排気弁箱11の排出口11aの全周に亘って一様となり、その結果平均流速が速くなり、燃焼ガスの排出流量が大幅に増加するものである。   The length of the streamlines A to H represents the flow velocity of the combustion gas at that position. As apparent from FIG. 3, the flow velocity of the combustion gas is uniform over the entire circumference of the exhaust port 11a of the exhaust valve box 11 as compared with the exhaust passage structure of the conventional internal combustion engine shown in FIG. As a result, the average flow velocity is increased, and the discharge flow rate of the combustion gas is greatly increased.

本発明の内燃機関の排気通路構造は、上述した一実施の形態に係る2サイクルのユニフロー型ディーゼル機関の排気通路に限定されるものではなく、主弁と副弁とを有する内燃機関であれば、どのような形式の内燃機関であっても、その排気通路に対して実施することが可能である。   The exhaust passage structure of the internal combustion engine of the present invention is not limited to the exhaust passage of the two-cycle uniflow type diesel engine according to the above-described embodiment, and may be an internal combustion engine having a main valve and a sub valve. Any type of internal combustion engine can be applied to the exhaust passage.

1 シリンダブロック
2 弁座
2a 排気口
3 シリンダ
5 排気弁箱
5a 排気口
8 低温室
8a 内壁面
9 低温排気通路
9a 出口
11 排気弁箱
11a 排気口
12 高温室
13 高温排気通路
14 低温室
14a 内壁面
15 低温排気通路
15a 低温排気通路出口
15b,15c 低温室と低温排気通路との連設部
21 主弁
21a バルブフェース
22 弁ステム
25 副弁
25a 輻(スポーク)
25b スカート部
26 弁ステム
29 空気ピストン
30 油圧シリンダブロック
31 油圧シリンダ
35 ケーシング
36 空気ばね室
L 低温排気通路の中心線
Dv バルブフェースの直径
D0 低温排気通路の出口内径
D1 副弁の内径
D2 スカート部の後端の外径
D3 スカート部の先端の内径
R1 ,R5 低温室と低温排気通路の連設部の曲率半径
R2 〜R4 低温室の渦巻き形状を形成する曲率半径
SP 低温室の渦巻き形状の起点
O 中心
θ1 低温室の渦巻きの起点の低温排気通路の中心線に対する角
θ2 副弁のスカート部の外周面の直径方向に対する角
DESCRIPTION OF SYMBOLS 1 Cylinder block 2 Valve seat 2a Exhaust port 3 Cylinder 5 Exhaust valve box 5a Exhaust port 8 Low greenhouse 8a Inner wall surface 9 Low temperature exhaust passage 9a Outlet 11 Exhaust valve box 11a Exhaust port 12 High greenhouse 13 High temperature exhaust passage 14 Low greenhouse 14a Inner wall surface 15 Low-temperature exhaust passage 15a Low-temperature exhaust passage outlets 15b and 15c Connecting portion 21 between low greenhouse and low-temperature exhaust passage 21 Main valve 21a Valve face 22 Valve stem 25 Sub valve 25a Radiation (spoke)
25b Skirt portion 26 Valve stem 29 Air piston 30 Hydraulic cylinder block 31 Hydraulic cylinder 35 Casing 36 Air spring chamber L Center line Dv of low-temperature exhaust passage Valve face diameter D0 Outlet inner diameter D1 of low-temperature exhaust passage D1 Inner diameter D2 of sub-valve Rear outer diameter D3 Inner diameters R1, R5 of the skirt part Curvature radius R2 to R4 of the connecting part of the low temperature greenhouse and the low temperature exhaust passage Curvature radius SP which forms the spiral shape of the low greenhouse The origin O of the spiral shape of the low greenhouse Center θ 1 Angle of the vortex origin of the cold chamber with respect to the center line of the low temperature exhaust passage θ 2 Angle with respect to the diameter direction of the outer peripheral surface of the skirt portion of the auxiliary valve

Claims (11)

シリンダ(3)内の燃焼ガスの排気を行う主弁(21)と、排気弁箱(11)内に設けられて前記シリンダから前記主弁を介して排出された高温の燃焼ガスを外部へ排出する高温排気通路(13)と、前記排気弁箱内に設けられて前記シリンダから前記主弁を介して排出された低温の燃焼ガスを導入する低温室(14)と、前記排気弁箱内に設けられて前記低温室内の燃焼ガスを外部へ排出する低温排気通路(15)と、前記排気弁箱内に設けられて前記高温排気通路と前記低温排気通路への前記燃焼ガスの流れを切り替える副弁(25)とを備えた内燃機関の排気通路構造において、前記低温室(14)は、所定位置を起点(SP)として前記低温排気通路の入口までの断面積が前記燃焼ガスの旋回方向に徐々に広くなる渦巻き形状をなしていることを特徴とする内燃機関の排気通路構造。   A main valve (21) for exhausting the combustion gas in the cylinder (3) and a high-temperature combustion gas provided in the exhaust valve box (11) and exhausted from the cylinder via the main valve are discharged to the outside. A high-temperature exhaust passage (13), a low-temperature chamber (14) provided in the exhaust valve box and introducing a low-temperature combustion gas discharged from the cylinder through the main valve, and the exhaust valve box A low-temperature exhaust passage (15) provided to discharge the combustion gas in the low-temperature chamber to the outside, and a sub-portion provided in the exhaust valve box for switching the flow of the combustion gas to the high-temperature exhaust passage and the low-temperature exhaust passage. In the exhaust passage structure of the internal combustion engine provided with the valve (25), the cold chamber (14) has a cross-sectional area from the predetermined position as a starting point (SP) to the inlet of the cold exhaust passage in the swirling direction of the combustion gas. A spiral shape that gradually widens An exhaust passage structure for an internal combustion engine, characterized in that there. 前記低温室(14)と前記低温排気通路(15)の入口は、異なる曲率半径(R1 ,R5 )の曲面で滑らかに連設されていることを特徴とする請求項1に記載の内燃機関の排気通路構造。   The internal combustion engine according to claim 1, wherein the cold chamber (14) and the inlet of the cold exhaust passage (15) are smoothly connected with curved surfaces having different radii of curvature (R1, R5). Exhaust passage structure. 前記起点(SP)は、前記低温排気通路(15)の出口(15a)の中心と前記シリンダ(3)の排気口(2a)の前記低温室(14)内における中心(O)とを結ぶ中心線から前記燃焼ガスの前記旋回方向に所定角度(θ1 )だけずれた位置であることを特徴とする請求項1又は2に記載の内燃機関の排気通路構造。   The starting point (SP) is a center connecting the center of the outlet (15a) of the low temperature exhaust passage (15) and the center (O) of the exhaust port (2a) of the cylinder (3) in the low temperature chamber (14). The exhaust passage structure for an internal combustion engine according to claim 1 or 2, wherein the exhaust passage structure is located at a position deviated from a line by a predetermined angle (θ1) in the swirling direction of the combustion gas. 前記低温室(14)は、前記起点(SP)から前記低温排気通路(15)の入口まで順次大きくなる異なる曲率半径(R2 ,R3 ,R4 )の曲面により形成されていることを特徴とする請求項1ないし3のいずれかに記載の内燃機関の排気通路構造。   The low temperature chamber (14) is formed by curved surfaces having different radii of curvature (R2, R3, R4) that gradually increase from the starting point (SP) to the inlet of the low temperature exhaust passage (15). Item 4. An exhaust passage structure for an internal combustion engine according to any one of Items 1 to 3. 前記低温室(14)は、前記起点(SP)から前記低温排気通路(15)の入口まで滑らかに大きくなることを特徴とする請求項1ないし4のいずれかに記載の内燃機関の排気通路構造。   The exhaust passage structure for an internal combustion engine according to any one of claims 1 to 4, wherein the low temperature chamber (14) smoothly increases from the starting point (SP) to an inlet of the low temperature exhaust passage (15). . 前記副弁(25)は、直円筒体形状をなすと共に先端にスカート部(25b)が形成されていることを特徴とする請求項1ないし5に記載の内燃機関の排気通路構造。   The exhaust passage structure for an internal combustion engine according to any one of claims 1 to 5, wherein the auxiliary valve (25) has a shape of a right cylindrical body and a skirt portion (25b) is formed at a tip thereof. シリンダ(3)内の燃焼ガスの排気を行う主弁(21)と、排気弁箱(11)内に設けられて前記シリンダから前記主弁を介して排出された高温の燃焼ガスを外部へ排出する高温排気通路(13)と、前記排気弁箱内に設けられて前記シリンダから前記主弁を介して排出された低温の燃焼ガスを外部へ排出する低温排気通路(15)と、前記排気弁箱内に設けられて前記高温排気通路と前記低温排気通路への前記燃焼ガスの流れを切り替える副弁(25)とを備えた内燃機関の排気通路構造において、前記副弁(25)は、直円筒体形状をなすと共に先端にスカート部(25b)が形成されていることを特徴とする内燃機関の排気通路構造。   A main valve (21) for exhausting the combustion gas in the cylinder (3) and a high-temperature combustion gas provided in the exhaust valve box (11) and exhausted from the cylinder via the main valve are discharged to the outside. A high-temperature exhaust passage (13), a low-temperature exhaust passage (15) provided in the exhaust valve box and exhausting low-temperature combustion gas discharged from the cylinder through the main valve to the outside, and the exhaust valve In the exhaust passage structure of the internal combustion engine, which is provided in a box and includes an auxiliary valve (25) for switching the flow of the combustion gas to the high temperature exhaust passage and the low temperature exhaust passage, the auxiliary valve (25) An exhaust passage structure for an internal combustion engine characterized by having a cylindrical shape and a skirt (25b) formed at the tip. 前記副弁(25)の内径(D1 )は、前記排気弁箱(11)の排気口(11a)と略同径とされることを特徴とする請求項6又は7に記載の内燃機関の排気通路構造。   The exhaust gas of an internal combustion engine according to claim 6 or 7, wherein an inner diameter (D1) of the auxiliary valve (25) is substantially the same diameter as an exhaust port (11a) of the exhaust valve box (11). Passage structure. 前記スカート部(25b)は、後端の外径(D2 )が先端の外径(D4 )よりも大径の截頭円錐筒体形状をなしていることを特徴とする請求項6ないし8のいずれかに記載の内燃機関の排気通路構造。   9. The skirt portion (25b) has a truncated conical cylindrical shape having an outer diameter (D2) at the rear end larger than an outer diameter (D4) at the front end. An exhaust passage structure for an internal combustion engine according to any one of the above. 前記スカート部(25b)は、先端の外径(D4 )が前記排気弁箱(11)の排気口(11a)よりも小径とされると共に後端の外周面が前記排気弁箱の前記排気口の内周面に摺接可能とされることを特徴とする請求項6ないし9のいずれかに記載の内燃機関の排気通路構造。   The skirt portion (25b) has an outer diameter (D4) at its front end smaller than the exhaust port (11a) of the exhaust valve box (11) and an outer peripheral surface at the rear end of the exhaust valve box. The exhaust passage structure for an internal combustion engine according to any one of claims 6 to 9, wherein the exhaust passage structure can be slidably contacted with an inner peripheral surface of the internal combustion engine. 前記スカート部(25b)は、外周面が副弁25の直径方向に対して所定の角度(θ2 )をなしていることを特徴とする請求項6ないし10のいずれかに記載の内燃機関の排気通路構造。   The exhaust gas of an internal combustion engine according to any one of claims 6 to 10, wherein the outer peripheral surface of the skirt portion (25b) forms a predetermined angle (θ2) with respect to the diameter direction of the auxiliary valve 25. Passage structure.
JP2009021209A 2009-01-19 2009-02-02 Exhaust passage structure of internal combustion engine Active JP5275062B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2009021209A JP5275062B2 (en) 2009-02-02 2009-02-02 Exhaust passage structure of internal combustion engine
CN201210153657.2A CN102661208B (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
CN201210154057.8A CN102678218B (en) 2009-01-19 2010-01-18 structure of exhaust gas separation device of internal combustion engine
CN2012101535673A CN102661182A (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
KR1020100004240A KR101279331B1 (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
CN201010003754A CN101818700A (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
CN2012101531494A CN102678365A (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
KR1020110127006A KR101202626B1 (en) 2009-01-19 2011-11-30 Structure of exhaust gas separation device of internal combustion engine
KR1020120137662A KR101338778B1 (en) 2009-01-19 2012-11-30 Structure of exhaust gas separation device of internal combustion engine
KR1020120137664A KR101259332B1 (en) 2009-01-19 2012-11-30 Structure of exhaust gas separation device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021209A JP5275062B2 (en) 2009-02-02 2009-02-02 Exhaust passage structure of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010174843A true JP2010174843A (en) 2010-08-12
JP5275062B2 JP5275062B2 (en) 2013-08-28

Family

ID=42706036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021209A Active JP5275062B2 (en) 2009-01-19 2009-02-02 Exhaust passage structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP5275062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019364A (en) * 2011-07-12 2013-01-31 Mitsui Eng & Shipbuild Co Ltd Internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781456U (en) * 1980-11-07 1982-05-20
JPS63289204A (en) * 1987-05-21 1988-11-25 Mitsui Eng & Shipbuild Co Ltd Intake and exhaust structure for internal combustion engine
JPH0161419U (en) * 1987-10-13 1989-04-19
JPH02145617U (en) * 1989-05-16 1990-12-11
JPH0476935U (en) * 1990-11-20 1992-07-06
JP2008248720A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Oil supply device for intake/exhaust valve stem of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781456U (en) * 1980-11-07 1982-05-20
JPS63289204A (en) * 1987-05-21 1988-11-25 Mitsui Eng & Shipbuild Co Ltd Intake and exhaust structure for internal combustion engine
JPH0161419U (en) * 1987-10-13 1989-04-19
JPH02145617U (en) * 1989-05-16 1990-12-11
JPH0476935U (en) * 1990-11-20 1992-07-06
JP2008248720A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Oil supply device for intake/exhaust valve stem of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019364A (en) * 2011-07-12 2013-01-31 Mitsui Eng & Shipbuild Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP5275062B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
KR101794524B1 (en) Fluid flow acceleration apparatus for internal-combustion engine
JP2009057830A (en) Port of internal combustion engine and method of manufacturing port
KR100983001B1 (en) The apparatus for preventing backward stream of exhaust gas of the internal combustion engine and boiler
KR20060038317A (en) Exhaust for automobile
KR100769700B1 (en) Apparatus for preventing flowing backward of exhaust gas
JP5275062B2 (en) Exhaust passage structure of internal combustion engine
CN101495736B (en) Four-cycle internal combustion engine
CN208934767U (en) A kind of crankcase ventilation valve
JP4969852B2 (en) 4-cycle internal combustion engine
JP5350823B2 (en) Exhaust passage structure of internal combustion engine
JP5755960B2 (en) Internal combustion engine
KR100929692B1 (en) Exhaust gas backflow prevention device of internal combustion engine and boiler
JP2008088959A (en) Intake device for internal combustion engine
TWI725479B (en) Spark ignition type 2-valve engine, engine unit and vehicle
TWI734140B (en) Spark ignition engine and vehicle
CN110296019B (en) Internal combustion engine with novel air inlet channel
CN211422762U (en) Natural gas engine combustion chamber
US6953018B2 (en) Valve arrangement for a combustion engine
CN207673451U (en) A kind of cylinder cover of petrol engine
JP2010275988A (en) Valve device for internal combustion engine
CN206723583U (en) Operated pneumatic valve slow closing device
JPH0914047A (en) Exhaust port structure of engine
JP3142951U (en) Cylinder valve structure
US20050098138A1 (en) Diesel four cycle, 1 poppet valve, modified head, piston and valves
KR200374553Y1 (en) Exhaust for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350