JP2010173168A - Resin melt-welding method - Google Patents
Resin melt-welding method Download PDFInfo
- Publication number
- JP2010173168A JP2010173168A JP2009018040A JP2009018040A JP2010173168A JP 2010173168 A JP2010173168 A JP 2010173168A JP 2009018040 A JP2009018040 A JP 2009018040A JP 2009018040 A JP2009018040 A JP 2009018040A JP 2010173168 A JP2010173168 A JP 2010173168A
- Authority
- JP
- Japan
- Prior art keywords
- region
- welding
- resin
- laser beam
- planned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 222
- 229920005989 resin Polymers 0.000 title claims abstract description 217
- 239000011347 resin Substances 0.000 title claims abstract description 217
- 238000000034 method Methods 0.000 title claims abstract description 50
- 230000003287 optical effect Effects 0.000 claims abstract description 43
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 239000000112 cooling gas Substances 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 239000002470 thermal conductor Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920006065 Leona® Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- YDLQKLWVKKFPII-UHFFFAOYSA-N timiperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCC(N2C(NC3=CC=CC=C32)=S)CC1 YDLQKLWVKKFPII-UHFFFAOYSA-N 0.000 description 2
- 229950000809 timiperone Drugs 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/114—Single butt joints
- B29C66/1142—Single butt to butt joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
- B29C65/1638—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1654—Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
- B29C65/1661—Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8253—Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/001—Joining in special atmospheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/001—Joining in special atmospheres
- B29C66/0012—Joining in special atmospheres characterised by the type of environment
- B29C66/0014—Gaseous environments
- B29C66/00141—Protective gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/116—Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
- B29C66/1162—Single bevel to bevel joints, e.g. mitre joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/124—Tongue and groove joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/349—Cooling the welding zone on the welding spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/522—Joining tubular articles
- B29C66/5221—Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/65—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91411—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91441—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
- B29C66/91443—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91641—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
- B29C66/91643—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
- B29C66/91645—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91931—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91931—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
- B29C66/91933—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91951—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/934—Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
- B29C66/93451—Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/939—Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/939—Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
- B29C66/9392—Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges in explicit relation to another variable, e.g. speed diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1677—Laser beams making use of an absorber or impact modifier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/737—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
- B29C66/7377—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
- B29C66/73775—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
- B29C66/73776—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline the to-be-joined areas of both parts to be joined being crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Laser Beam Processing (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、樹脂部材同士を溶着して樹脂溶着体を製造する樹脂溶着方法に関する。 The present invention relates to a resin welding method for manufacturing a resin welded body by welding resin members together.
上記技術分野における従来の樹脂溶着方法として、一方の樹脂部材と他方の樹脂部材とを溶着するための溶着予定領域に沿ってレーザ光を照射して、溶着予定領域において一方の樹脂部材及び他方の樹脂部材を溶融させることにより、樹脂部材同士を溶着する方法が知られている。 As a conventional resin welding method in the above technical field, a laser beam is irradiated along a planned welding region for welding one resin member and the other resin member, and the first resin member and the other resin member are irradiated in the planned welding region. A method of welding resin members together by melting the resin members is known.
ところで、レーザ光に対して吸収性を有する樹脂部材においては、図15に示されるように、樹脂部材のレーザ光入射面でレーザ光の吸収光量が最も多くなり、レーザ光入射面からの距離が大きくなるに従って(すなわち、樹脂部材の内部に行くに従って)レーザ光の吸収光量が徐々に少なくなる。そのため、レーザ光に対して吸収性を有する樹脂部材同士を突き合わせて溶着する場合などには、レーザ光入射面及びその近傍の内部領域におけるレーザ光の照射領域中心部に入熱過多による損傷(気泡、白濁、焼損等)が生じることがある。 By the way, in the resin member having absorptivity with respect to the laser beam, as shown in FIG. 15, the amount of absorbed light of the laser beam is the largest on the laser beam incident surface of the resin member, and the distance from the laser beam incident surface is As it increases (that is, as it goes into the resin member), the amount of absorbed laser light gradually decreases. For this reason, when resin members having absorbability with respect to the laser beam are welded to each other, damage due to excessive heat input (bubbles) at the center of the laser beam irradiation area in the laser beam incident surface and the inner area in the vicinity thereof , Cloudiness, burnout, etc.) may occur.
そのような損傷を防止するための樹脂溶着方法として、特許文献1には、樹脂部材のレーザ光入射面に冷媒を供給しつつレーザ光の照射を行う方法が記載されている。 As a resin welding method for preventing such damage, Patent Document 1 describes a method of irradiating a laser beam while supplying a coolant to a laser beam incident surface of a resin member.
しかしながら、特許文献1記載の樹脂溶着方法にあっては、樹脂部材のレーザ光入射面における損傷の発生は防止し得るものの、レーザ光入射面近傍の内部領域における損傷の発生までを防止することは困難である。 However, in the resin welding method described in Patent Document 1, although the occurrence of damage on the laser light incident surface of the resin member can be prevented, it is possible to prevent the occurrence of damage in the internal region near the laser light incident surface. Have difficulty.
そこで、本発明は、このような事情に鑑みてなされたものであり、溶着予定領域において入熱過多による損傷の発生を確実に防止することができる樹脂溶着方法を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a resin welding method capable of reliably preventing the occurrence of damage due to excessive heat input in the planned welding region.
上記目的を達成するために、本発明に係る樹脂溶着方法は、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着して樹脂溶着体を製造する樹脂溶着方法であって、溶着予定領域が中心線を有する環形状の領域である場合において、溶着予定領域の一部分が照射領域であり、且つ光軸に対して垂直な断面形状が少なくとも溶着予定領域のレーザ光入射側端部において環形状であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射することにより、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着することを特徴とする。 In order to achieve the above object, a resin welding method according to the present invention is a resin welding method in which a first resin member and a second resin member are welded along a planned welding region to produce a resin welded body. When the planned welding region is a ring-shaped region having a center line, a part of the planned welding region is an irradiation region, and a cross-sectional shape perpendicular to the optical axis is at least the laser beam incident side of the planned welding region By irradiating the laser beam to the welding planned area while rotating the welding target area relatively plural times around the center line with respect to the laser beam having an annular shape at the end, the first resin member and the second resin member The resin member is welded along the planned welding region.
この樹脂溶着方法においては、中心線を有する環形状の溶着予定領域の一部分が照射領域であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射する。これにより、溶着予定領域の一部分に対してレーザ光が断続的に照射されることになるので、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材の分解温度(損傷(気泡、白濁、焼損等)が生じる温度)を越えるような急激な温度上昇を防止することができる。しかも、光軸に対して垂直なレーザ光の断面形状が溶着予定領域のレーザ光入射側端部において環形状であるため、溶着予定領域のレーザ光入射側端部及びその近傍におけるレーザ光の照射領域中心部に入熱過多による損傷が生じるのを防止することができる。よって、この樹脂溶着方法によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することが可能となる。 In this resin welding method, with respect to the laser beam in which a part of the ring-shaped planned welding region having a center line is an irradiation region, the laser beam is rotated while rotating the welding planned region relatively a plurality of times around the center line. Irradiate the area to be welded. As a result, the laser beam is intermittently irradiated to a part of the planned welding region, so that the decomposition temperature (damage (bubbles, white turbidity) of the resin member can be obtained by one irradiation of the laser beam to the part of the planned welding region. , A rapid temperature rise exceeding the temperature at which burning, etc. occurs) can be prevented. Moreover, since the cross-sectional shape of the laser beam perpendicular to the optical axis is a ring shape at the laser beam incident side end of the planned welding region, the laser beam irradiation at the laser beam incident side end of the planned welding region and its vicinity It is possible to prevent damage caused by excessive heat input at the center of the region. Therefore, according to this resin welding method, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region.
また、溶着予定領域の一部分における温度プロファイルのピーク値が、第1の樹脂部材の溶融温度及び第2の樹脂部材の溶融温度のうち高い方の溶融温度と、第1の樹脂部材の分解温度及び第2の樹脂部材の分解温度のうち低い方の分解温度との間に、複数現れるように、レーザ光に対して溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射することが好ましい。このような制御により、溶着予定領域において樹脂部材に損傷が生じるのを防止しつつ、溶着予定領域において樹脂部材を十分に溶融させることができる。なお、温度プロファイルのピーク値とは、時間(横軸)と温度(縦軸)との関係を示すグラフの極大値を意味する。 Further, the peak value of the temperature profile in a part of the planned welding region has a higher melting temperature between the melting temperature of the first resin member and the melting temperature of the second resin member, the decomposition temperature of the first resin member, and While rotating the planned welding region relatively several times around the center line with respect to the laser beam so as to appear in a plurality between the lower decomposition temperatures of the decomposition temperatures of the second resin member, It is preferable to irradiate the area to be welded. By such control, the resin member can be sufficiently melted in the planned welding region while preventing the resin member from being damaged in the planned welding region. The peak value of the temperature profile means the maximum value of a graph showing the relationship between time (horizontal axis) and temperature (vertical axis).
また、溶着予定領域おいてレーザ光が収束するようにレーザ光を溶着予定領域に照射することが好ましい。この場合、光吸収によって減衰する光密度が補われて、溶着予定領域のレーザ光入射側からその反対側に至る溶着予定領域の全領域で樹脂部材を十分に溶融させることができる。 Moreover, it is preferable to irradiate a laser beam to a welding planned area so that a laser beam may converge in a welding planned area | region. In this case, the light density attenuated by light absorption is compensated, and the resin member can be sufficiently melted in the entire region of the planned welding region from the laser beam incident side to the opposite side of the planned welding region.
或いは、溶着予定領域おいてレーザ光が発散するようにレーザ光を溶着予定領域に照射することが好ましい。この場合、樹脂部材が入熱過多の状態になるのを抑制して、溶着予定領域の全領域で樹脂部材を適度に溶融させることができる。 Or it is preferable to irradiate a laser beam to a welding plan area so that a laser beam may diverge in a welding plan area. In this case, it is possible to moderately melt the resin member in the entire region to be welded while suppressing the resin member from being in a state of excessive heat input.
また、少なくともレーザ光入射側端部においてレーザ光の照射領域が第1の樹脂部材と第2の樹脂部材とを跨ぐようにレーザ光を溶着予定領域に照射することが好ましい。樹脂部材同士の突合せ部にはレーザ光入射側に段差や隙間等が生じていることが多く、これらの段差や隙間等がレーザ光を散乱させるなどして入熱過多による損傷を生じさせる原因となり易いものの、溶着予定領域のレーザ光入射側端部において環形状のレーザ光を第1の樹脂部材と第2の樹脂部材とに跨らせることで、段差や隙間等に対するレーザ光の照射量が少なくなり、その結果、段差や隙間等に起因した入熱過多による損傷の発生を抑制することができる。 Moreover, it is preferable to irradiate a laser beam planned area | region so that the irradiation area | region of a laser beam may straddle the 1st resin member and the 2nd resin member at least in the laser beam incident side edge part. There are many steps or gaps on the laser light incident side at the abutting part between the resin members, and these steps or gaps cause damage due to excessive heat input by scattering the laser light. Although it is easy, the amount of laser light applied to the step, gap, etc. can be reduced by straddling the ring-shaped laser light between the first resin member and the second resin member at the laser light incident side end of the region to be welded. As a result, it is possible to suppress the occurrence of damage due to excessive heat input caused by steps or gaps.
また、溶着予定領域に対してレーザ光入射側とその反対側(レーザ光出射側)との間においてレーザ光の照射領域を相対的に移動させる場合には、レーザ光入射側からその反対側に向かってレーザ光の照射領域を相対的に移動させることが好ましい。樹脂部材が溶融すると、溶融部分では、散乱因子の減少によりレーザ光の拡散透過率が上昇するため、レーザ光入射側からその反対側に向かってレーザ光の照射領域を相対的に移動させることで、レーザ光入射面からより深い部分にまでレーザ光を到達させ、レーザ光入射面からより深い部分を溶融させることができる。 In addition, when the irradiation region of the laser beam is relatively moved between the laser beam incident side and the opposite side (laser beam emission side) with respect to the planned welding region, the laser beam incident side is moved to the opposite side. It is preferable to move the irradiation region of the laser light relatively. When the resin member is melted, the diffuse transmittance of the laser beam increases due to the decrease in the scattering factor in the melted part. Therefore, the irradiation region of the laser beam is moved relatively from the laser beam incident side to the opposite side. The laser light can reach a deeper part from the laser light incident surface, and the deeper part from the laser light incident surface can be melted.
また、溶着予定領域に冷却ガスを吹き付けながらレーザ光を溶着予定領域に照射することが好ましい。或いは、レーザ光を透過する熱伝導体を溶着予定領域に対してレーザ光入射側に配置し、熱伝導体をヒートシンクとしてレーザ光を溶着予定領域に照射することが好ましい。これらの場合、冷却ガス又はヒートシンクである熱伝導体が樹脂部材のレーザ光入射側端部から熱を奪うため、溶着予定領域のレーザ光入射側端部及びその近傍におけるレーザ光の照射領域中心部に入熱過多による損傷が生じるのをより確実に防止することができる。 In addition, it is preferable to irradiate the planned welding region with laser light while spraying a cooling gas on the planned welding region. Alternatively, it is preferable that a heat conductor that transmits laser light is disposed on the laser light incident side with respect to the region to be welded, and the region to be welded is irradiated with the heat conductor as a heat sink. In these cases, the heat conductor, which is a cooling gas or a heat sink, takes heat away from the laser light incident side end of the resin member, so that the laser light incident side end of the region to be welded and the center of the laser light irradiation region in the vicinity thereof It is possible to more reliably prevent damage due to excessive heat input.
本発明に係る樹脂溶着方法は、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着して樹脂溶着体を製造する樹脂溶着方法であって、溶着予定領域が中心線を有する環形状の領域である場合において、溶着予定領域の一部分が照射領域であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射することにより、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着することを特徴とする。 A resin welding method according to the present invention is a resin welding method for manufacturing a resin welded body by welding a first resin member and a second resin member along a planned welding region, the planned welding region being a center line. In the case of a ring-shaped region having a portion, the laser beam is projected to be welded while rotating the welding planned region relatively a plurality of times around the center line with respect to the laser beam in which a portion of the planned welding region is an irradiation region. By irradiating, the first resin member and the second resin member are welded along the planned welding region.
この樹脂溶着方法においては、中心線を有する環形状の溶着予定領域の一部分が照射領域であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射する。これにより、溶着予定領域の一部分に対してレーザ光が断続的に照射されることになるので、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。よって、この樹脂溶着方法によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することが可能となる。 In this resin welding method, with respect to the laser beam in which a part of the ring-shaped planned welding region having a center line is an irradiation region, the laser beam is rotated while rotating the welding planned region relatively a plurality of times around the center line. Irradiate the area to be welded. As a result, the laser beam is intermittently irradiated to a part of the planned welding region, so that the laser beam is rapidly irradiated to the part of the planned welding region so as to exceed the decomposition temperature of the resin member. Temperature rise can be prevented. Therefore, according to this resin welding method, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region.
本発明によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することができる。 According to the present invention, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region.
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
[First Embodiment]
図1は、本発明に係る樹脂溶着方法の第1の実施形態に用いられる集光光学系の構成図である。図1に示されるように、集光光学系1は、レーザ光Lの光源LS側から順に、コリメート用レンズ2、集光用レンズ3及び円錐凹状のアキシコンレンズ4が光軸OA上に配置されて構成されている。この集光光学系1をレーザ光Lが通過すると、光軸OAに対して垂直なレーザ光Lの断面形状は、集光スポットFSに対して光源LS側で円環形状となり、集光スポットFSに対して光源LSと反対側で中実円形状となる。 FIG. 1 is a configuration diagram of a condensing optical system used in the first embodiment of the resin welding method according to the present invention. As shown in FIG. 1, the condensing optical system 1 includes a collimating lens 2, a condensing lens 3, and a conical concave axicon lens 4 arranged on the optical axis OA in order from the light source LS side of the laser light L. Has been configured. When the laser light L passes through the condensing optical system 1, the cross-sectional shape of the laser light L perpendicular to the optical axis OA becomes an annular shape on the light source LS side with respect to the condensing spot FS, and the condensing spot FS. On the other hand, a solid circular shape is formed on the side opposite to the light source LS.
図2は、図1の集光光学系を通過したレーザ光の集光スポット到達前の光強度プロファイルを示すグラフである。図2に示されるように、レーザ光Lの光強度プロファイルは、集光スポットFS到達前において、ガウシアン分布やトップハット分布のレーザ光の光強度プロファイルとは逆に、中央部の光強度が周囲部の光強度よりも低いものとなっている。なお、図2の光強度プロファイルは、光軸OA及びレーザ光Lの進行方向と直交する方向にレーザ光Lの光強度を積分した場合である。 FIG. 2 is a graph showing a light intensity profile of the laser light that has passed through the condensing optical system of FIG. 1 before reaching the condensing spot. As shown in FIG. 2, the light intensity profile of the laser light L has a light intensity profile at the center portion that is opposite to the light intensity profile of the laser light with the Gaussian distribution or the top hat distribution before reaching the condensing spot FS. It is lower than the light intensity of the part. 2 is a case where the light intensity of the laser light L is integrated in a direction orthogonal to the optical axis OA and the traveling direction of the laser light L.
以上のように構成された集光光学系1を用いた樹脂溶着方法について説明する。まず、図3及び4に示されるように、円筒状の樹脂部材(第1の樹脂部材)5及び樹脂部材(第2の樹脂部材)6(サイズ:外径60mm、厚さ(壁厚)4mmの円筒状、材料:旭化成ケミカルズ株式会社製66ナイロン レオナ(登録商標)14G33)を準備し、中心線CLを略一致させて、樹脂部材5の底面5aと樹脂部材6の底面6aとを突き合わせる。この状態で、樹脂部材5,6同士の突合せ部(ここでは、底面5a,6a)に沿って、中心線CLを有する円環形状の溶着予定領域Rを設定する。なお、樹脂部材5,6は、レーザ光Lに対して半吸収性を有している(オリヱント化学工業株式会社製のeBIND(登録商標) ACW(登録商標)-9871という色素を用いて吸光度0.2となるように着色した樹脂部材を使用した)。 A resin welding method using the condensing optical system 1 configured as described above will be described. First, as shown in FIGS. 3 and 4, a cylindrical resin member (first resin member) 5 and a resin member (second resin member) 6 (size: outer diameter 60 mm, thickness (wall thickness) 4 mm. Cylinder, material: 66 nylon Leona (registered trademark) 14G33 manufactured by Asahi Kasei Chemicals Co., Ltd.), the center line CL is substantially matched, and the bottom surface 5a of the resin member 5 and the bottom surface 6a of the resin member 6 are abutted. . In this state, an annular welding planned region R having a center line CL is set along the abutting portion (here, the bottom surfaces 5a and 6a) between the resin members 5 and 6. The resin members 5 and 6 are semi-absorbable with respect to the laser beam L (the absorbance is 0 using a dye called eBIND (registered trademark) ACW (registered trademark) -9871 manufactured by Orient Chemical Industries, Ltd.). The resin member colored so as to be 2 was used).
続いて、突き合わされた状態を保持しながら樹脂部材5,6を中心線CL回りに回転させる。そして、光軸OAが中心線CLと略直交し、且つ光軸OAが樹脂部材5,6同士の突合せ部を通る状態で、樹脂部材5の内部(内周面5bと外周面5cとの間の部分)及び樹脂部材6の内部(内周面6bと外周面6cとの間の部分)に集光スポットFSを合わせてレーザ光Lを照射すると共に、レーザ光Lの照射領域である溶着予定領域Rの一部分に、空気や窒素等の冷却ガスGを吹き付ける。これにより、レーザ光Lに対して溶着予定領域Rが中心線CL回りに複数回回転させられながら、レーザ光Lが溶着予定領域Rに照射されることになる。その結果、溶着予定領域Rにおいて樹脂部材5,6が溶融・再固化し、溶着予定領域Rに沿って樹脂部材5,6同士が溶着されて樹脂溶着体が製造される。なお、冷却ガスGの吹付け方向は、溶着予定領域Rに対して平行でも垂直でもよいし、或いはレーザ光Lの光軸OAと同軸方向でもよい。 Subsequently, the resin members 5 and 6 are rotated around the center line CL while maintaining the abutted state. Then, in the state where the optical axis OA is substantially orthogonal to the center line CL and the optical axis OA passes through the butted portion between the resin members 5 and 6, the inside of the resin member 5 (between the inner peripheral surface 5b and the outer peripheral surface 5c). ) And the inside of the resin member 6 (the portion between the inner peripheral surface 6b and the outer peripheral surface 6c), the focused spot FS is aligned and irradiated with the laser light L, and a welding schedule which is an irradiation region of the laser light L A cooling gas G such as air or nitrogen is sprayed on a part of the region R. As a result, the laser beam L is irradiated onto the planned welding region R while the planned welding region R is rotated around the center line CL a plurality of times. As a result, the resin members 5 and 6 are melted and re-solidified in the planned welding region R, and the resin members 5 and 6 are welded along the planned welding region R to produce a resin welded body. Note that the blowing direction of the cooling gas G may be parallel to or perpendicular to the welding planned region R, or may be coaxial with the optical axis OA of the laser light L.
ここで、レーザ光Lの照射に際しては、レーザ光Lは、溶着予定領域Rにおいて収束している。そして、光軸OAに対して垂直なレーザ光Lの断面形状は、溶着予定領域Rにおいて円環形状であり、その環状レーザ光の中抜け部(中心の非照射領域)は、レーザ光入射側端部R1において樹脂部材5と樹脂部材6との境界を跨いでいる。つまり、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5と樹脂部材6とを跨いでいる(換言すれば、樹脂部材5と樹脂部材6とに掛け渡されている)。なお、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5,6を溶融させ得るエネルギ密度を有している。 Here, when the laser beam L is irradiated, the laser beam L converges in the planned welding region R. The cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the welding planned region R, and the hollow portion (the central non-irradiation region) of the annular laser beam is on the laser beam incident side. The boundary between the resin member 5 and the resin member 6 is straddled at the end R1. That is, the laser beam L straddles the resin member 5 and the resin member 6 in the planned welding region R (in other words, is stretched between the resin member 5 and the resin member 6). The laser beam L has an energy density that can melt the resin members 5 and 6 in the welding planned region R.
また、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射するに際しては、次のように回転速度やレーザ光Lの強度を制御する。すなわち、レーザ光Lの照射領域である溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5の溶融温度及び樹脂部材6の溶融温度のうち高い方の溶融温度と、樹脂部材5の分解温度及び樹脂部材6の分解温度のうち低い方の分解温度との間に、複数現れるようにする。 When the laser beam L is irradiated to the welding region R while rotating the welding region R relative to the laser beam L around the center line CL a plurality of times, the rotation speed and the laser beam are as follows. Control the intensity of L. That is, the peak value of the temperature profile in a part of the planned welding region R, which is the irradiation region of the laser light L, of the melting temperature of the resin member 5 and the melting temperature of the resin member 6, A plurality of values appear between the decomposition temperature and the lower decomposition temperature of the resin member 6.
図5は、溶着予定領域の一部分における温度プロファイルを示すグラフである。図5に示されるように、レーザ光Lの照射領域である溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5,6の溶融温度(200℃)と樹脂部材5,6の分解温度(300℃)との間に複数現れるのは、レーザ光Lに対する溶着予定領域Rの回転数が50rpmの場合及び100rpmの場合である。 FIG. 5 is a graph showing a temperature profile in a part of the planned welding region. As shown in FIG. 5, the peak value of the temperature profile in a part of the welding planned region R that is the irradiation region of the laser light L is the melting temperature (200 ° C.) of the resin members 5 and 6 and the decomposition of the resin members 5 and 6. A plurality of occurrences between the temperature (300 ° C.) and the temperature of the welding scheduled region R with respect to the laser beam L are 50 rpm and 100 rpm.
レーザ光Lに対する溶着予定領域Rの回転数が5rpmの場合、10rpmの場合及び20rpmの場合には、溶着予定領域Rの一部分にレーザ光Lが照射される1回当たりの時間が相対的に長くなるため、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材5,6の分解温度(300℃)を越えるような急激な温度上昇が生じてしまう。これに対し、レーザ光Lに対する溶着予定領域Rの回転数が50rpmの場合及び100rpmの場合には、溶着予定領域Rの一部分にレーザ光Lが照射される1回当たりの時間が相対的に短くなるため、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材5,6の分解温度(300℃)を越えるような急激な温度上昇が生じない。従って、樹脂部材5,6の溶融温度(200℃)と樹脂部材5,6の分解温度(300℃)との間の温度を長く維持して、溶着予定領域Rにおいて樹脂部材5,6に損傷が生じるのを防止しつつ、溶着予定領域Rにおいて樹脂部材5,6を十分に溶融させることができる。 When the number of rotations of the planned welding region R with respect to the laser beam L is 5 rpm, in the case of 10 rpm and 20 rpm, the time per one time that the laser beam L is irradiated to a part of the planned welding region R is relatively long. For this reason, a rapid temperature rise that exceeds the decomposition temperature (300 ° C.) of the resin members 5 and 6 occurs by one-time irradiation of the laser beam to a part of the planned welding region. On the other hand, when the number of rotations of the planned welding region R with respect to the laser beam L is 50 rpm and 100 rpm, the time per one time that the laser beam L is irradiated to a part of the planned welding region R is relatively short. Therefore, a rapid increase in temperature that does not exceed the decomposition temperature (300 ° C.) of the resin members 5 and 6 does not occur by a single irradiation of the laser beam to a part of the planned welding region. Therefore, the temperature between the melting temperature (200 ° C.) of the resin members 5 and 6 and the decomposition temperature (300 ° C.) of the resin members 5 and 6 is maintained long, and the resin members 5 and 6 are damaged in the welding region R. It is possible to sufficiently melt the resin members 5 and 6 in the welding planned region R while preventing the occurrence of the above.
以上説明したように、集光光学系1を用いた樹脂溶着方法においては、図4に示されるように、中心線CLを有する円環形状の溶着予定領域Rの一部分が照射領域であるレーザ光Lに対して、溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。これにより、溶着予定領域Rの一部分に対してレーザ光Lが断続的に照射されることになるので、溶着予定領域Rの一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。しかも、光軸OAに対して垂直なレーザ光Lの断面形状が溶着予定領域Rにおいて円環形状であるため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。集光光学系1を用いた樹脂溶着方法によれば、溶着予定領域Rにおいて入熱過多による損傷の発生を確実に防止することが可能となる。 As described above, in the resin welding method using the condensing optical system 1, as shown in FIG. 4, the laser beam in which a part of the annular welding planned region R having the center line CL is an irradiation region. The laser beam L is irradiated to the welding region R while rotating the welding region R relatively a plurality of times around the center line CL. As a result, the laser beam L is intermittently applied to a part of the planned welding region R, so that the decomposition temperature of the resin member may be exceeded by a single irradiation of the laser beam to a part of the planned welding region R. A rapid temperature rise can be prevented. Moreover, since the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the planned welding region R, the irradiation of the laser beam L in the laser beam incident side end R1 of the planned welding region R and in the vicinity thereof. It is possible to prevent damage caused by excessive heat input at the center of the region. According to the resin welding method using the condensing optical system 1, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region R.
図6は、本発明に係る樹脂溶着方法の第1の実施形態によって製造された樹脂溶着体における溶着部分の断面写真を示す図である。図6に示されるように、溶着予定領域Rにおいては、溶着予定領域Rのレーザ光入射側端部R1及びその近傍に入熱過多による損傷が生じることなく、樹脂部材5と樹脂部材6とが溶融痕11部分で確実に溶着されている。 FIG. 6 is a view showing a cross-sectional photograph of a welded portion in the resin welded body manufactured by the first embodiment of the resin welding method according to the present invention. As shown in FIG. 6, in the planned welding region R, the resin member 5 and the resin member 6 are not damaged by excessive heat input at the laser light incident side end R <b> 1 and the vicinity thereof in the planned welding region R. It is surely welded at the melting mark 11 part.
また、溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5の溶融温度及び樹脂部材6の溶融温度のうち高い方の溶融温度と、樹脂部材5の分解温度及び樹脂部材6の分解温度のうち低い方の分解温度との間に、複数現れるように、レーザ光Lに対して溶着予定領域Rを中心線回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。このような制御により、溶着予定領域Rにおいて樹脂部材5,6に損傷が生じるのを防止しつつ、溶着予定領域Rにおいて樹脂部材5,6を十分に溶融させることができる。その結果、溶融した樹脂の混ざり合いが促進されるので、溶融した樹脂が再固化した際には、強固な溶着が実現される。 In addition, the higher one of the melting temperature of the resin member 5 and the melting temperature of the resin member 6, the decomposition temperature of the resin member 5, and the decomposition of the resin member 6 are the peak values of the temperature profile in a part of the planned welding region R. The laser beam L is projected to the welding region R while rotating the welding region R relative to the laser beam L a plurality of times around the center line so that a plurality of temperatures appear between the lower decomposition temperature of the temperatures. Irradiate. By such control, the resin members 5 and 6 can be sufficiently melted in the planned welding region R while preventing the resin members 5 and 6 from being damaged in the planned welding region R. As a result, mixing of the melted resin is promoted, so that when the melted resin is re-solidified, strong welding is realized.
図7は、レーザ光に対する溶着予定領域の回転に伴って溶融部分が進行する様子を示す断面図である。図7に示されるように、樹脂部材5,6が結晶性樹脂からなる場合には、光散乱によってレーザ光Lが内部に到達し難いものの、樹脂部材5,6が溶融すると、溶融部分12では、散乱因子の減少によりレーザ光Lの拡散透過率が上昇する。そのため、溶着予定領域Rにレーザ光Lが照射される度に、レーザ光入射面からより深い部分にまでレーザ光Lが到達して溶融部分12が進行することになる。従って、レーザ光入射面からより深い部分を溶融させることができる。 FIG. 7 is a cross-sectional view illustrating a state in which a melted portion proceeds with rotation of a welding planned region with respect to laser light. As shown in FIG. 7, when the resin members 5 and 6 are made of a crystalline resin, the laser beam L is difficult to reach inside due to light scattering, but when the resin members 5 and 6 are melted, The diffusion transmittance of the laser light L increases due to the decrease of the scattering factor. Therefore, every time the laser beam L is irradiated to the welding planned region R, the laser beam L reaches a deeper portion from the laser beam incident surface, and the melted portion 12 advances. Therefore, a deeper part from the laser light incident surface can be melted.
また、溶着予定領域Rおいてレーザ光Lが収束するようにレーザ光Lを溶着予定領域Rに照射するので、光吸収によって減衰する光密度が補われて、溶着予定領域Rのレーザ光入射側からその反対側に至る全領域で樹脂部材5,6を十分に溶融させることができる。しかも、損傷が生じ易い溶着予定領域Rのレーザ光入射側端部R1において、レーザ光Lのエネルギ密度を抑えることができる。 Further, since the laser beam L is irradiated onto the planned welding region R so that the laser beam L converges in the planned welding region R, the light density attenuated by light absorption is compensated for, and the laser beam incident side of the planned welding region R The resin members 5 and 6 can be sufficiently melted in the entire region extending from to the opposite side. In addition, the energy density of the laser beam L can be suppressed at the laser beam incident side end R1 of the planned welding region R where damage is likely to occur.
また、レーザ光入射側端部R1においてレーザ光Lの照射領域が樹脂部材5と樹脂部材6とを跨ぐようにレーザ光Lを溶着予定領域Rに照射するため、樹脂部材5,6間の段差や隙間等に対するレーザ光Lの照射量が少なくなり、その結果、樹脂部材5,6間の段差や隙間等に起因した入熱過多による損傷の発生を抑制することができる。図8は、樹脂部材同士の突合せ部の拡大断面図である。図8に示されるように、樹脂部材5,6の成形精度がそれ程高くないことに起因して、樹脂部材5,6同士の突合せ部にはレーザ光入射側に段差や隙間等が生じていることが多く、これらの段差や隙間等がレーザ光Lを散乱させるなどして入熱過多による損傷を生じさせる原因となり易い。従って、レーザ光Lが溶着予定領域Rのレーザ光入射側端部R1において樹脂部材5と樹脂部材6とを跨ぐようにレーザ光Lの照射を行う樹脂溶着方法は、樹脂部材5,6同士を突き合わせその突合せ部に沿って溶着予定領域Rを設定した場合に特に有効である。 Further, since the laser beam L is irradiated to the welding region R so that the irradiation region of the laser beam L straddles the resin member 5 and the resin member 6 at the laser beam incident side end R1, the step between the resin members 5 and 6 is performed. As a result, it is possible to suppress the occurrence of damage due to excessive heat input caused by steps or gaps between the resin members 5 and 6. FIG. 8 is an enlarged cross-sectional view of a butt portion between resin members. As shown in FIG. 8, due to the fact that the molding accuracy of the resin members 5 and 6 is not so high, a step or a gap or the like is generated on the laser light incident side at the butt portion between the resin members 5 and 6. In many cases, these steps, gaps, and the like are likely to cause damage due to excessive heat input by scattering the laser beam L or the like. Therefore, the resin welding method of irradiating the laser beam L so that the laser beam L straddles the resin member 5 and the resin member 6 at the laser beam incident side end R1 of the planned welding region R is the resin members 5 and 6 are bonded together. This is particularly effective when the welding planned region R is set along the butted portion.
また、溶着予定領域Rに冷却ガスGを吹き付けながらレーザ光Lを溶着予定領域Rに照射する。これにより、冷却ガスGが樹脂部材5,6のレーザ光入射側端部から熱を奪うため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのをより確実に防止することができる。
[第2の実施形態]
Further, the laser beam L is irradiated to the planned welding region R while spraying the cooling gas G to the planned welding region R. As a result, the cooling gas G removes heat from the laser light incident side end portions of the resin members 5 and 6, so that the laser light incident side end portion R <b> 1 of the planned welding region R and the laser beam L irradiation central portion in the vicinity thereof. Damage due to excessive heat input can be prevented more reliably.
[Second Embodiment]
図9は、本発明に係る樹脂溶着方法の第2の実施形態に用いられる集光光学系の構成図である。図9に示されるように、集光光学系10は、レーザ光Lの光源LS側から順に、コリメート用レンズ2、集光用レンズ3及び円錐凸状のアキシコンレンズ7が光軸OA上に配置されて構成されている。この集光光学系10をレーザ光Lが通過すると、光軸OAに対して垂直なレーザ光Lの断面形状は、集光スポットFSに対して光源LS側で中実円形状となり、集光スポットFSに対して光源LSと反対側で円環形状となる。レーザ光Lの光強度プロファイルは、集光スポットFS到達後において、ガウシアン分布やトップハット分布のレーザ光の光強度プロファイルとは逆に、中央部の光強度が周囲部の光強度よりも低いものとなっている(図2参照)。 FIG. 9 is a configuration diagram of a condensing optical system used in the second embodiment of the resin welding method according to the present invention. As shown in FIG. 9, the condensing optical system 10 includes a collimating lens 2, a condensing lens 3, and a conical convex axicon lens 7 on the optical axis OA in order from the light source LS side of the laser light L. Arranged and configured. When the laser light L passes through the condensing optical system 10, the cross-sectional shape of the laser light L perpendicular to the optical axis OA becomes a solid circular shape on the light source LS side with respect to the condensing spot FS. It has an annular shape on the side opposite to the light source LS with respect to the FS. The light intensity profile of the laser beam L has a light intensity profile at the center lower than that of the surrounding area, contrary to the light intensity profile of the laser beam having a Gaussian distribution or top hat distribution after reaching the condensing spot FS. (See FIG. 2).
以上のように構成された集光光学系10を用いた樹脂溶着方法について説明する。まず、図10及び11に示されるように、円筒状の樹脂部材5,6(サイズ:外径60mm、厚さ(壁厚)4mmの円筒状、材料:旭化成ケミカルズ株式会社製66ナイロン レオナ(登録商標)14G33)を準備し、中心線CLを略一致させて、樹脂部材5の底面5aと樹脂部材6の底面6aとを突き合わせる。この状態で、レーザ光Lに対して透過性を有する材料(例えば、ガラス等)からなる熱伝導体8で樹脂部材5の外周面5c及び樹脂部材6の外周面6cを覆い、樹脂部材5,6同士の突合せ部(ここでは、底面5a,6a)に沿って、中心線CLを有する円環形状の溶着予定領域Rを設定する。なお、樹脂部材5,6は、レーザ光Lに対して半吸収性を有している(オリヱント化学工業株式会社製のeBIND(登録商標) ACW(登録商標)-9871という色素を用いて吸光度0.2となるように着色した樹脂部材を使用した)。 A resin welding method using the condensing optical system 10 configured as described above will be described. First, as shown in FIGS. 10 and 11, cylindrical resin members 5 and 6 (size: cylindrical shape having an outer diameter of 60 mm and a thickness (wall thickness) of 4 mm, material: 66 nylon Leona manufactured by Asahi Kasei Chemicals Corporation (registered) Trademark) 14G33), the center line CL is substantially matched, and the bottom surface 5a of the resin member 5 and the bottom surface 6a of the resin member 6 are abutted. In this state, the outer peripheral surface 5c of the resin member 5 and the outer peripheral surface 6c of the resin member 6 are covered with a heat conductor 8 made of a material that is transmissive to the laser light L (for example, glass or the like). A ring-shaped welding scheduled region R having a center line CL is set along the abutting portions (here, the bottom surfaces 5a and 6a) between the six. The resin members 5 and 6 are semi-absorbable with respect to the laser beam L (the absorbance is 0 using a dye called eBIND (registered trademark) ACW (registered trademark) -9871 manufactured by Orient Chemical Industries, Ltd.). The resin member colored so as to be 2 was used).
続いて、突き合わされた状態を保持しながら樹脂部材5,6及び熱伝導体8を中心線CL回りに回転させる。そして、光軸OAが中心線CLと略直交し、且つ光軸OAが樹脂部材5,6同士の突合せ部を通る状態で、樹脂部材5の外周面5c及び樹脂部材6の外周面6cよりも外側(レーザ光Lの進行方向の後側)に集光スポットFSを合わせてレーザ光Lを照射する。これにより、レーザ光Lに対して溶着予定領域Rが中心線CL回りに複数回回転させられながら、レーザ光Lが熱伝導体8を透過して溶着予定領域Rに照射されることになる。その結果、溶着予定領域Rにおいて樹脂部材5,6が溶融・再固化し、溶着予定領域Rに沿って樹脂部材5,6同士が溶着されて樹脂溶着体が製造される。 Subsequently, the resin members 5 and 6 and the heat conductor 8 are rotated around the center line CL while maintaining the abutted state. Then, in a state where the optical axis OA is substantially orthogonal to the center line CL and the optical axis OA passes through the butted portion between the resin members 5 and 6, the outer peripheral surface 5 c of the resin member 5 and the outer peripheral surface 6 c of the resin member 6. The laser beam L is irradiated with the focused spot FS on the outside (the rear side in the traveling direction of the laser beam L). As a result, the laser beam L passes through the thermal conductor 8 and is irradiated to the welding region R while the welding region R is rotated around the center line CL a plurality of times with respect to the laser beam L. As a result, the resin members 5 and 6 are melted and re-solidified in the planned welding region R, and the resin members 5 and 6 are welded along the planned welding region R to produce a resin welded body.
ここで、レーザ光Lの照射に際しては、レーザ光Lは、溶着予定領域Rにおいて発散している。そして、光軸OAに対して垂直なレーザ光Lの断面形状は、溶着予定領域Rにおいて円環形状であり、その環状レーザ光の中抜け部(中心の非照射領域)は、レーザ光入射側端部R1において樹脂部材5と樹脂部材6との境界を跨いでいる。つまり、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5と樹脂部材6とを跨いでいる(換言すれば、樹脂部材5と樹脂部材6とに掛け渡されている)。なお、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5,6を溶融させ得るエネルギ密度を有している。 Here, when the laser beam L is irradiated, the laser beam L is diverged in the planned welding region R. The cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the welding planned region R, and the hollow portion (the central non-irradiation region) of the annular laser beam is on the laser beam incident side. The boundary between the resin member 5 and the resin member 6 is straddled at the end R1. That is, the laser beam L straddles the resin member 5 and the resin member 6 in the planned welding region R (in other words, is stretched between the resin member 5 and the resin member 6). The laser beam L has an energy density that can melt the resin members 5 and 6 in the welding planned region R.
また、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射するに際しては、次のように回転速度やレーザ光Lの強度を制御する。すなわち、レーザ光Lの照射領域である溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5の溶融温度及び樹脂部材6の溶融温度のうち高い方の溶融温度と、樹脂部材5の分解温度及び樹脂部材6の分解温度のうち低い方の分解温度との間に、複数現れるようにする。 When the laser beam L is irradiated to the welding region R while rotating the welding region R relative to the laser beam L around the center line CL a plurality of times, the rotation speed and the laser beam are as follows. Control the intensity of L. That is, the peak value of the temperature profile in a part of the planned welding region R, which is the irradiation region of the laser light L, of the melting temperature of the resin member 5 and the melting temperature of the resin member 6, A plurality of values appear between the decomposition temperature and the lower decomposition temperature of the resin member 6.
以上説明したように、集光光学系10を用いた樹脂溶着方法においては、図11に示されるように、中心線CLを有する円環形状の溶着予定領域Rの一部分が照射領域であるレーザ光Lに対して、溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。これにより、溶着予定領域Rの一部分に対してレーザ光Lが断続的に照射されることになるので、溶着予定領域Rの一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。しかも、光軸OAに対して垂直なレーザ光Lの断面形状が溶着予定領域Rにおいて円環形状であるため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。集光光学系10を用いた樹脂溶着方法によれば、溶着予定領域Rにおいて入熱過多による損傷の発生を確実に防止することが可能となる。 As described above, in the resin welding method using the condensing optical system 10, as shown in FIG. 11, the laser beam in which a part of the annular welding planned region R having the center line CL is an irradiation region. The laser beam L is irradiated to the welding region R while rotating the welding region R relatively a plurality of times around the center line CL. As a result, the laser beam L is intermittently applied to a part of the planned welding region R, so that the decomposition temperature of the resin member may be exceeded by a single irradiation of the laser beam to a part of the planned welding region R. A rapid temperature rise can be prevented. Moreover, since the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the planned welding region R, the irradiation of the laser beam L in the laser beam incident side end R1 of the planned welding region R and in the vicinity thereof. It is possible to prevent damage caused by excessive heat input at the center of the region. According to the resin welding method using the condensing optical system 10, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region R.
図12は、本発明に係る樹脂溶着方法の第2の実施形態によって製造された樹脂溶着体における溶着部分の断面写真を示す図である。図12に示されるように、溶着予定領域Rにおいては、溶着予定領域Rのレーザ光入射側端部R1及びその近傍に入熱過多による損傷が生じることなく、樹脂部材5と樹脂部材6とが溶融痕11部分で確実に溶着されている。 FIG. 12 is a view showing a cross-sectional photograph of a welded portion in the resin welded body manufactured by the second embodiment of the resin welding method according to the present invention. As shown in FIG. 12, in the planned welding region R, the resin member 5 and the resin member 6 are not damaged by excessive heat input at the laser light incident side end R <b> 1 and the vicinity thereof in the planned welding region R. It is surely welded at the melting mark 11 part.
また、溶着予定領域Rおいてレーザ光Lが発散するようにレーザ光Lを溶着予定領域Rに照射するので、樹脂部材5,6が入熱過多の状態になるのを抑制して、溶着予定領域Rの全領域で樹脂部材5,6を適度に溶融させることができる。しかも、光学系の構成を単純化したり、ワーキングディスタンスを稼いだりすることができる。このようなレーザ光Lの照射は、レーザ光入射面から深い部分を溶融させたくない場合に有効である。 In addition, since the laser beam L is applied to the planned welding region R so that the laser beam L diverges in the planned welding region R, it is possible to suppress the resin members 5 and 6 from being overheated and to be welded. The resin members 5 and 6 can be appropriately melted in the entire region R. Moreover, it is possible to simplify the configuration of the optical system and earn a working distance. Such irradiation of the laser beam L is effective when it is not desired to melt a deep portion from the laser beam incident surface.
また、レーザ光Lを透過する熱伝導体8を溶着予定領域Rに対してレーザ光入射側に配置し、熱伝導体8をヒートシンクとしてレーザ光Lを溶着予定領域Rに照射する。これにより、熱伝導体8が樹脂部材5,6のレーザ光入射側端部から熱を奪うため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのをより確実に防止することができる。 Further, the thermal conductor 8 that transmits the laser beam L is disposed on the laser beam incidence side with respect to the planned welding region R, and the laser beam L is irradiated to the planned welding region R using the thermal conductor 8 as a heat sink. Thereby, since the heat conductor 8 takes heat from the laser light incident side end portions of the resin members 5 and 6, the laser light incident side end portion R1 of the planned welding region R and the central portion of the irradiation region of the laser light L in the vicinity thereof. It is possible to more reliably prevent damage due to excessive heat input.
本発明は、上述した実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
例えば、図13に示されるように、レーザ光Lの光軸OA方向において、樹脂部材5,6を溶融させ得るレーザ光Lのエネルギ密度の範囲(レーザ光Lの照射領域)よりも、溶着予定領域Rが広い場合(すなわち、溶着予定領域Rがレーザ光入射面から深さ方向に広い場合)などには、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、溶着予定領域Rに対してレーザ光入射側とその反対側との間においてレーザ光Lの照射領域を相対的に移動させればよい。この場合、次の理由により、レーザ光入射側からその反対側に向かってレーザ光Lの照射領域を相対的に移動させることが好ましい。つまり、樹脂部材5,6が溶融すると、溶融部分では、散乱因子の減少によりレーザ光Lの拡散透過率が上昇するため、レーザ光入射側からその反対側に向かってレーザ光Lの照射領域を相対的に移動させれば、レーザ光入射面からより深い部分にまでレーザ光Lを到達させ、レーザ光入射面からより深い部分を溶融させることができるからである。 For example, as shown in FIG. 13, in the optical axis OA direction of the laser beam L, welding is planned to be performed more than the energy density range (irradiation region of the laser beam L) of the laser beam L that can melt the resin members 5 and 6. When the region R is wide (that is, when the region to be welded R is wide in the depth direction from the laser light incident surface), the region to be welded R relative to the laser light L is relatively plural times around the center line CL. What is necessary is just to relatively move the irradiation region of the laser beam L between the laser beam incident side and the opposite side with respect to the welding planned region R while rotating. In this case, it is preferable to relatively move the irradiation region of the laser light L from the laser light incident side toward the opposite side for the following reason. That is, when the resin members 5 and 6 are melted, the diffusion transmittance of the laser light L increases due to the decrease of the scattering factor in the melted portion, so that the irradiation region of the laser light L from the laser light incident side to the opposite side is changed. This is because if the laser beam is moved relatively, the laser beam L can reach a deeper portion from the laser beam incident surface, and a deeper portion from the laser beam incident surface can be melted.
また、上記実施形態は、溶着予定領域Rにおける樹脂部材5,6の突合せ面5a,6aが光軸OAに略平行であり且つ中心線CLに略垂直である場合であったが、図14(a)に示されるように、溶着予定領域Rにおける樹脂部材5,6の突合せ面5a,6aが光軸OAに略垂直であり且つ中心線CLに略平行である場合や、図14(b)に示されるように、溶着予定領域Rにおける樹脂部材5,6の突合せ面5a,6aが光軸OA及び中心線CLに略平行である場合がある。 In the above-described embodiment, the butted surfaces 5a and 6a of the resin members 5 and 6 in the planned welding region R are substantially parallel to the optical axis OA and substantially perpendicular to the center line CL. As shown in a), when the butted surfaces 5a and 6a of the resin members 5 and 6 in the planned welding region R are substantially perpendicular to the optical axis OA and substantially parallel to the center line CL, FIG. As shown in FIG. 6, the butting surfaces 5a and 6a of the resin members 5 and 6 in the planned welding region R may be substantially parallel to the optical axis OA and the center line CL.
また、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させることができれば、集光光学系1を中心線CL回りに回転させてもよいし、集光光学系1及び樹脂部材5,6の両方を中心線CL回りに回転させてもよい。 Further, if the planned welding region R can be rotated relative to the laser beam L a plurality of times around the center line CL, the condensing optical system 1 may be rotated around the center line CL, or the condensing optics. Both the system 1 and the resin members 5 and 6 may be rotated around the center line CL.
また、光軸OAに対して垂直なレーザ光Lの断面形状が少なくとも溶着予定領域Rのレーザ光入射側端部R1において環形状であれば、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。更に、レーザ光Lが少なくとも溶着予定領域Rのレーザ光入射側端部R1において樹脂部材5と樹脂部材6とを跨いでいれば、樹脂部材5,6間の段差や隙間等に起因した入熱過多による損傷の発生を抑制することができる。 If the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is at least a ring shape at the laser beam incident side end R1 of the planned welding region R, the laser beam incident side end R1 of the planned welding region R and It is possible to prevent damage due to excessive heat input at the center of the irradiation region of the laser light L in the vicinity thereof. Furthermore, if the laser beam L straddles the resin member 5 and the resin member 6 at least at the laser beam incident side end R1 of the welding planned region R, heat input caused by a step or a gap between the resin members 5 and 6 or the like. The occurrence of damage due to excess can be suppressed.
また、光軸OAに対して垂直なレーザ光Lの断面形状が照射領域において環形状でなく、例えば中実円形状であっても、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射することで、溶着予定領域Rにおいて入熱過多による損傷の発生を防止して、樹脂部材5,6を溶着予定領域Rに沿って確実に溶着することが可能となる。 In addition, even if the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is not a ring shape in the irradiation region, for example, a solid circular shape, the welding region R around the center line CL around the laser beam L. By irradiating the welding region R with the laser beam L while being rotated a plurality of times relatively, the occurrence of damage due to excessive heat input in the welding region R is prevented, and the resin members 5 and 6 are bonded to the region. It is possible to reliably weld along R.
5…樹脂部材(第1の樹脂部材)、6…樹脂部材(第2の樹脂部材)、8…熱伝導体、L…レーザ光、OA…光軸、CL…中心線、R…溶着予定領域。 DESCRIPTION OF SYMBOLS 5 ... Resin member (1st resin member), 6 ... Resin member (2nd resin member), 8 ... Thermal conductor, L ... Laser beam, OA ... Optical axis, CL ... Center line, R ... Plane welding area .
Claims (9)
前記溶着予定領域が中心線を有する環形状の領域である場合において、前記溶着予定領域の一部分が照射領域であり、且つ光軸に対して垂直な断面形状が少なくとも前記溶着予定領域のレーザ光入射側端部において環形状であるレーザ光に対して、前記溶着予定領域を前記中心線回りに相対的に複数回回転させながら、前記レーザ光を前記溶着予定領域に照射することにより、前記第1の樹脂部材と前記第2の樹脂部材とを前記溶着予定領域に沿って溶着することを特徴とする樹脂溶着方法。 A resin welding method for manufacturing a resin welded body by welding a first resin member and a second resin member along a planned welding region,
When the planned welding region is a ring-shaped region having a center line, a part of the planned welding region is an irradiation region, and a cross-sectional shape perpendicular to the optical axis is at least incident on the laser welding region. By irradiating the planned welding region with the laser beam while rotating the planned welding region relatively a plurality of times around the center line with respect to the ring-shaped laser beam at the side end, the first A resin welding method comprising welding the resin member and the second resin member along the planned welding region.
前記溶着予定領域が中心線を有する環形状の領域である場合において、前記溶着予定領域の一部分が照射領域であるレーザ光に対して、前記溶着予定領域を前記中心線回りに相対的に複数回回転させながら、前記レーザ光を前記溶着予定領域に照射することにより、前記第1の樹脂部材と前記第2の樹脂部材とを前記溶着予定領域に沿って溶着することを特徴とする樹脂溶着方法。 A resin welding method for manufacturing a resin welded body by welding a first resin member and a second resin member along a planned welding region,
In the case where the planned welding region is a ring-shaped region having a center line, the welding planned region is relatively rotated around the center line a plurality of times with respect to laser light in which a part of the planned welding region is an irradiation region. A resin welding method characterized by welding the first resin member and the second resin member along the planned welding area by irradiating the planned welding area with the laser beam while rotating. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009018040A JP5368814B2 (en) | 2009-01-29 | 2009-01-29 | Resin welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009018040A JP5368814B2 (en) | 2009-01-29 | 2009-01-29 | Resin welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010173168A true JP2010173168A (en) | 2010-08-12 |
JP5368814B2 JP5368814B2 (en) | 2013-12-18 |
Family
ID=42704588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009018040A Active JP5368814B2 (en) | 2009-01-29 | 2009-01-29 | Resin welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5368814B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013203052A (en) * | 2012-03-29 | 2013-10-07 | Toyo Seikan Co Ltd | Method for sealing container and lid by laser welding |
JP2015110345A (en) * | 2015-02-27 | 2015-06-18 | 浜松ホトニクス株式会社 | Method for joining dissimilar material |
IT201600118515A1 (en) * | 2016-11-25 | 2018-05-25 | Vincenzo Tagliaferri | New process for making joints of polymeric material or polymeric material with other materials. |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588253B2 (en) * | 2010-07-21 | 2014-09-10 | 浜松ホトニクス株式会社 | Resin welding method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004535961A (en) * | 2001-07-28 | 2004-12-02 | ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | Method for sealing pharmaceutical capsules for inhalation and their sealing device |
JP2007253416A (en) * | 2006-03-22 | 2007-10-04 | Hamamatsu Photonics Kk | Joining method of resin member |
-
2009
- 2009-01-29 JP JP2009018040A patent/JP5368814B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004535961A (en) * | 2001-07-28 | 2004-12-02 | ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | Method for sealing pharmaceutical capsules for inhalation and their sealing device |
JP2007253416A (en) * | 2006-03-22 | 2007-10-04 | Hamamatsu Photonics Kk | Joining method of resin member |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013203052A (en) * | 2012-03-29 | 2013-10-07 | Toyo Seikan Co Ltd | Method for sealing container and lid by laser welding |
US9550596B2 (en) | 2012-03-29 | 2017-01-24 | Toyo Seikan Group Holdings, Ltd. | Method of sealing containers and lids by melt adhesion by laser |
JP2015110345A (en) * | 2015-02-27 | 2015-06-18 | 浜松ホトニクス株式会社 | Method for joining dissimilar material |
IT201600118515A1 (en) * | 2016-11-25 | 2018-05-25 | Vincenzo Tagliaferri | New process for making joints of polymeric material or polymeric material with other materials. |
Also Published As
Publication number | Publication date |
---|---|
JP5368814B2 (en) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5030871B2 (en) | Resin welding method | |
US9821409B2 (en) | Laser cutting method | |
TWI740827B (en) | Laser processing apparatus and use thereof, method for processing workpiece by using laser beam and optical component for combining and aligning laser beam | |
KR101162028B1 (en) | Glass welding method and glass layer fixing method | |
JP2008262876A (en) | Lamp tool for vehicle | |
KR20090094113A (en) | Laser-beam welding device comprising an optical means for converting the laser beam into an annular laser beam and a corresponding laser-beam welding method | |
JP5368814B2 (en) | Resin welding method | |
KR20100035164A (en) | Laser beam welding device and method | |
JP5030872B2 (en) | Resin welding method | |
KR20120035229A (en) | Glass welding method and glass layer fixing method | |
KR20120104978A (en) | Glass welding method and glass layer fixing method | |
JP5642493B2 (en) | Laser cutting apparatus and laser cutting method | |
CN103476535B (en) | Method for laser welding | |
CN109070271A (en) | The laser spot welding of stacked aluminium workpiece | |
JP2007021505A (en) | Laser radiating nozzle device of laser beam machine, and air blowing method using the same | |
JP5588253B2 (en) | Resin welding method | |
WO2011155016A1 (en) | Resin welding method | |
JP6109638B2 (en) | Overlay welding apparatus and overlay welding system | |
WO2011074072A1 (en) | Method of welding resin | |
HU226696B1 (en) | Method for shaping components using electromagnetic radiation | |
WO2018096786A1 (en) | Pulley joining method and joining structure | |
JP7386118B2 (en) | Welding method and welding equipment | |
JP4584683B2 (en) | Condensing head for laser welding | |
JP5646235B2 (en) | Resin welding method and resin welding apparatus | |
JP5341237B2 (en) | Resin welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111031 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5368814 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |