JP2010172225A - Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell - Google Patents

Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell Download PDF

Info

Publication number
JP2010172225A
JP2010172225A JP2009016246A JP2009016246A JP2010172225A JP 2010172225 A JP2010172225 A JP 2010172225A JP 2009016246 A JP2009016246 A JP 2009016246A JP 2009016246 A JP2009016246 A JP 2009016246A JP 2010172225 A JP2010172225 A JP 2010172225A
Authority
JP
Japan
Prior art keywords
tex19
gene
stem cell
expression
expression level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009016246A
Other languages
Japanese (ja)
Inventor
Ryoko Araki
荒木良子
Masumi Abe
安倍真澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2009016246A priority Critical patent/JP2010172225A/en
Publication of JP2010172225A publication Critical patent/JP2010172225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To elucidate functions and molecular bases of Tex19, especially functions in spermatogonial stem cell and to utilize the functions in various fields. <P>SOLUTION: The method for deciding or detecting pluripotency or differentiation postency in stem cells is based on the variation in amount of expression of Tex19 gene in the stem cells. The detection marker of spermatogenesis ability in spermatogonial stem cells includes an expression product of Tex19 gene. The Tex19 knockout animal exhibits male sterility. The method for screening a substance for treating male sterility uses the Tex19 knockout animal. The stem cell strain has destroyed Tex19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、幹細胞におけるTex19遺伝子の発現量の変動に基づき該幹細胞での多能性又は分化能を判定又は検出する方法、Tex19遺伝子の発現産物から成る、精原幹細胞における精子形成能の検出マーカー、雄性不稔性を示すTex19ノックアウト動物、該Tex19ノックアウト動物を用いる雄性不稔治療用物質をスクリーニングする方法、及び、Tex19が破壊されている幹細胞株等に関する。   The present invention relates to a method for determining or detecting pluripotency or differentiation ability in a stem cell based on a variation in the expression level of the Tex19 gene in a stem cell, a detection marker for spermatogenic ability in a spermatogonial stem cell, comprising an expression product of the Tex19 gene The present invention relates to a Tex19 knockout animal exhibiting male sterility, a method for screening a substance for treating male sterility using the Tex19 knockout animal, a stem cell line in which Tex19 is disrupted, and the like.

これまでに胚幹細胞(ES)と生殖幹細胞との密接な関係が示されている。生殖幹細胞は自発的に多能性幹細胞に変換することが可能な組織幹細胞である(Kanatsu-Shinohara et al., 2004)。 更に、多能性周期(Pan and Thonpson, 2007; Wang et al., 2006)に属する遺伝子であるNanog, Oct3/4(POUドメイン、class5転写因子1: Pou5f1)は生殖細胞系列でも発現することがよく知られている (Chambers et al., 2007; Yoshimizu et al, 1999)。   So far, a close relationship between embryonic stem cells (ES) and germline stem cells has been shown. Germ stem cells are tissue stem cells that can spontaneously convert to pluripotent stem cells (Kanatsu-Shinohara et al., 2004). Furthermore, Nanog, Oct3 / 4 (POU domain, class5 transcription factor 1: Pou5f1), a gene belonging to the pluripotent cycle (Pan and Thonpson, 2007; Wang et al., 2006), can also be expressed in the germline. Well known (Chambers et al., 2007; Yoshimizu et al, 1999).

Tex19(Testis Expressed gene 19)遺伝子は、初め精原細胞と卵巣特異的遺伝子として特定された(非特許文献1)。最近、2種類のTex19パラログである、Tex19(Tex19.1)及び理研cDNA 4921530G0遺伝子(Tex19.2)がマウスゲノムで報告された。Tex19.1はマウス及びヒトの胚幹細胞で発現している(非特許文献2)。更に、該遺伝子の発現は胎児の早期発生段階、即ち、1細胞期から胚盤胞までの間、及び未受精の卵母細胞において認められる。更に、Tex19遺伝子及びOct3/4の発現プロファイルは非常に類似していることが示されている。更に、Tex19ノックアウトマウスが雄性不妊を示し、減数分裂時に異常を示すことが報告された(非特許文献3)。   Tex19 (Testis Expressed gene 19) gene was first identified as a spermatogonia and ovary-specific gene (Non-patent Document 1). Recently, two Tex19 paralogs, Tex19 (Tex19.1) and the RIKEN cDNA 4921530G0 gene (Tex19.2) have been reported in the mouse genome. Tex19.1 is expressed in mouse and human embryonic stem cells (Non-patent Document 2). Furthermore, the expression of the gene is observed in the early developmental stages of the fetus, ie from the 1 cell stage to the blastocyst, and in unfertilized oocytes. Furthermore, the expression profiles of Tex19 gene and Oct3 / 4 have been shown to be very similar. Furthermore, it has been reported that Tex19 knockout mice show male infertility and show abnormalities during meiosis (Non-patent Document 3).

Wang, P. J., McCarrey, J. R., Yang, F. and Page, D. C. (2001). An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27, 422-426.Wang, P. J., McCarrey, J. R., Yang, F. and Page, D. C. (2001). An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27, 422-426. Kuntz, S., Kieffer, E., Bianchetti, L., Lamoureux, N., Fuhrmann, G. and Viville, S. (2008). Tex19, a mammalian-specific protein with a restricted expression in pluripotent stem cells and germ line. Stem Cells. 26,734-744. Epub 2007.Kuntz, S., Kieffer, E., Bianchetti, L., Lamoureux, N., Fuhrmann, G. and Viville, S. (2008) .Tex19, a mammalian-specific protein with a restricted expression in pluripotent stem cells and germ line. Stem Cells. 26,734-744. Epub 2007. Ollinger R, Childs AJ, Burgess HM, Speed RM, Lundegaard PR, Reynolds N, Gray NK, Cooke HJ, Adams IR. (2008) Deletion of the pluripotency-associated Tex19.1 gene causes activation of endogenous retroviruses and defective spermatogenesis in mice.PLoS Genet. 4, e1000199.Ollinger R, Childs AJ, Burgess HM, Speed RM, Lundegaard PR, Reynolds N, Gray NK, Cooke HJ, Adams IR. (2008) Deletion of the pluripotency-associated Tex19.1 gene causes activation of endogenous retroviruses and defective spermatogenesis in mice .PLoS Genet. 4, e1000199.

精子形成は、種を維持する為に必要であり、精原幹細胞(Spermatogenial stem cells:SSCs)は極めて高い活性を有している為に発生生物学者の多大な関心を引いてきた。これまでに、SSCで発現されているいくつかの遺伝子が同定されている(Buaas et al., 2004; Costoyaetal.,2004; Naughton et al., 2006; Raverotet al., 2005;Yoshida et al., 2004)が、SSCsにおけるそれらの機能の分子的基礎は未だ理解されていない。 Spermatogenesis is necessary to maintain the species, and Spermatogenial stem cells (SSCs) have been of great interest and have been of great interest to developmental biologists. So far, several genes expressed in SSC have been identified (Buaas et al., 2004; Costoyaetal., 2004; Naughton et al., 2006; Raverotet al., 2005; Yoshida et al., 2004) but the molecular basis of their function in SSCs is not yet understood.

そこで、本発明の主な目的は、Tex19の機能及び分子的基礎、特に、精原幹細胞における機能を解明し、様々な分野での利用に資することである。   Therefore, the main object of the present invention is to elucidate the function and molecular basis of Tex19, particularly the function in spermatogonial stem cells, and to contribute to use in various fields.

本発明者はTex19ノックアウトマウスを作製し、Tex19遺伝子の成体SSCsにおける特異的発現及びその機能を解明した。本発明は、かかる新たな知見に基づき完成したものである。 The present inventor created a Tex19 knockout mouse and elucidated the specific expression and function of the Tex19 gene in adult SSCs. The present invention has been completed based on such new findings.

即ち、本発明は以下の各態様に係るものである。
[態様1]幹細胞におけるTex19遺伝子の発現量の変動を測定することにより、該幹細胞の多能性又は分化能を判定又は検出する方法。
[態様2](1)幹細胞に被検物質を接触させる工程、及び(2)該幹細胞におけるTex19遺伝子の発現量の変動を測定する工程を含む、該幹細胞の多能性を維持若しくは阻害する物質、又は、該幹細胞の分化能を増大若しくは阻害する物質をスクリーニングする方法。
[態様3]Tex19遺伝子の発現量の変動を該遺伝子のmRNAの発現量に基づき測定することを特徴とする、態様1又は2記載の方法。
[態様4]Tex19遺伝子の発現量の変動をHiCEP法に基づき作製される遺伝子発現プロファイルから求めることを特徴とする、態様1又は2記載の方法。
[態様5]Tex19遺伝子の発現量の変動をTex19遺伝子のmRNAの発現量をPCRで測定することを特徴とする、態様1〜4のいずれか一項に記載の方法。
[態様6]Tex19遺伝子の発現量の変動を該遺伝子産物(蛋白質)の発現量に基づき測定することを特徴とする、態様1又は2記載の方法。
[態様7]Tex19蛋白質の発現量をウェスタンブロット法で測定することを特徴とする、態様6記載の方法。
[態様8]幹細胞が精原幹細胞又は胚性幹細胞である、態様1〜7のいずれか一項に記載の方法。
[態様9]幹細胞がiPS細胞株である、態様1〜7のいずれか一項に記載の方法。
[態様10]Tex19遺伝子の発現産物から成る、精原幹細胞における精子形成能の検出マーカー。
[態様11]Tex19遺伝子の発現産物が、該遺伝子のmRNA,cDNA,若しくは、それらの部分塩基配列を含む核酸分子、又は、該遺伝子がコードする蛋白質又はその部分ポリペプチドである、態様10記載の検出マーカー。
[態様12]態様1〜11のいずれか一項に記載のスクリーニング方法に用いるスクリーニングキットであって、Tex19遺伝子の発現産物と特異的に反応する化合物を含む該キット。
[態様13]雄性不稔性を示すTex19ノックアウト動物。
[態様14]精子形成不全(異常)を示すTex19ノックアウト動物。
[態様15]Tex19遺伝子座位にβ−ガラクトシダーゼ遺伝子が挿入されている、態様13又は14に記載のTex19ノックアウト動物。
[態様16]Tex19ノックアウトマウスである、態様14記載のTex19ノックアウト動物。
[態様17](1)態様12〜15のいずれか一項に記載のTex19ノックアウト動物に被検物質を投与する工程、及び(2)該ノックアウト動物の精子形成を検出する工程を含む、雄性不稔性、精子形成不全(異常)又は精原幹細胞の分化停止(低下)に関連する疾患に対する治療薬をスクリーニングする方法。
[態様18]Tex19が破壊されている幹細胞株。
[態様19]Tex19が破壊されているES細胞株。
[態様20]Tex19が破壊されているマウスES細胞株。
[態様21]Tex19が破壊されているiPS細胞株。
That is, the present invention relates to the following aspects.
[Aspect 1] A method for determining or detecting the pluripotency or differentiation ability of a stem cell by measuring a change in the expression level of the Tex19 gene in the stem cell.
[Aspect 2] A substance that maintains or inhibits the pluripotency of the stem cell, comprising (1) a step of bringing a test substance into contact with the stem cell, and (2) a step of measuring a change in the expression level of the Tex19 gene in the stem cell Or a method for screening for a substance that increases or inhibits the differentiation ability of the stem cells.
[Aspect 3] The method according to Aspect 1 or 2, wherein the variation in the expression level of the Tex19 gene is measured based on the expression level of mRNA of the gene.
[Aspect 4] The method according to Aspect 1 or 2, wherein the variation in the expression level of the Tex19 gene is determined from a gene expression profile produced based on the HiCEP method.
[Aspect 5] The method according to any one of Aspects 1 to 4, wherein the variation in the expression level of the Tex19 gene is measured by PCR with respect to the expression level of the mRNA of the Tex19 gene.
[Aspect 6] The method according to Aspect 1 or 2, wherein the variation in the expression level of the Tex19 gene is measured based on the expression level of the gene product (protein).
[Aspect 7] The method according to Aspect 6, wherein the expression level of Tex19 protein is measured by Western blotting.
[Aspect 8] The method according to any one of Aspects 1 to 7, wherein the stem cell is a spermatogonial stem cell or an embryonic stem cell.
[Aspect 9] The method according to any one of Aspects 1 to 7, wherein the stem cell is an iPS cell line.
[Aspect 10] A marker for detecting spermatogenesis in spermatogonial stem cells, comprising an expression product of the Tex19 gene.
[Aspect 11] The aspect 10 according to Aspect 10, wherein the expression product of the Tex19 gene is a nucleic acid molecule containing the mRNA, cDNA, or a partial base sequence thereof, or a protein encoded by the gene or a partial polypeptide thereof. Detection marker.
[Aspect 12] A screening kit for use in the screening method according to any one of Aspects 1 to 11, comprising a compound that specifically reacts with an expression product of the Tex19 gene.
[Aspect 13] A Tex19 knockout animal showing male sterility.
[Aspect 14] A Tex19 knockout animal showing spermatogenesis deficiency (abnormal).
[Aspect 15] The Tex19 knockout animal according to Aspect 13 or 14, wherein a β-galactosidase gene is inserted at the Tex19 gene locus.
[Aspect 16] The Tex19 knockout animal according to Aspect 14, which is a Tex19 knockout mouse.
[Aspect 17] (1) A step of administering a test substance to the Tex19 knockout animal according to any one of aspects 12 to 15, and (2) a step of detecting spermatogenesis in the knockout animal. A method of screening for a therapeutic agent for a disease associated with fertility, spermatogenesis dysfunction (abnormality), or spermatogonial stem cell differentiation arrest (decrease).
[Aspect 18] A stem cell line in which Tex19 is disrupted.
[Aspect 19] An ES cell line in which Tex19 is disrupted.
[Aspect 20] A mouse ES cell line in which Tex19 is disrupted.
[Aspect 21] An iPS cell line in which Tex19 is disrupted.

本発明方法により、Tex19が成体精子形成における原生殖細胞及び幹細胞に発現しており、その機能として、多能性には関与せず、精原幹細胞における分化、即ち、精子形成に関与していることが明らかとなった。   According to the method of the present invention, Tex19 is expressed in primordial germ cells and stem cells in adult spermatogenesis, and its function is not involved in pluripotency but is involved in differentiation in spermatogonial stem cells, that is, spermatogenesis. It became clear.

(A)ES細胞において、LIFを培地から除去した後の、Tex19, Oct3/4 及びNanog のmRNAの相対量を示す。(B)In situ ハイブリダイゼーションで検出したTex19の生殖細胞における発現を以下に示す。各写真におけるスケールバーの大きさは50μmである。(A) shows the relative amounts of Tex19, Oct3 / 4 and Nanog mRNA after removing LIF from the medium in ES cells. (B) The expression of Tex19 detected by in situ hybridization in germ cells is shown below. The size of the scale bar in each photograph is 50 μm. (A)マウスTex19の目標破壊の構図を示す。サザンハイブリダーゼーションに用いた各プローブの位置及び認識部位、あら日に、検出領域を示してある。ORFはTex19の読み取り枠を示す。(B)サザンハイブリダーゼーションの結果を示す。尚、ゲノムDNAはApaLIで消化した。(C)ノックアウトマウスの尾を用いたゲノムタイピングである。(D)1週齢雄性マウス(Tex19+/+, Tex19+/-及びTex19-/-)の精巣から調製した抽出物を用いた、ウェスタンブロットの結果を示す。(E)Tex19ノックアウトマウスの雄(8週零)における精巣の大きさを較べたものである。各種のマウスのデータの平均値は図中の水平バーで示されている。(F)Tex19ノックアウトマウスの成体(1、8、及び20週零)の精巣の組織学及び免疫組織化学分析の結果を示す。精原細胞、伸長した精子細胞、及び、セルトリ細胞は、夫々、黒矢印、黒矢じり、及び、白矢印で示されている。スケールバーは100μmである。(G)1週零及び8週零のTex19ノックアウトマウスの精巣の半定量的PCR分析の結果を示す。(「N.T. 」は検査せず)(A) Composition of target destruction of mouse Tex19 is shown. The position of each probe used for Southern hybridization, the recognition site, and the detection area are shown on the other day. ORF indicates the reading frame of Tex19. (B) shows the result of Southern hybridization. Genomic DNA was digested with ApaLI. (C) Genomic typing using the tail of a knockout mouse. (D) shows the results of Western blotting using extracts prepared from testis of 1 week old male mice (Tex19 + / + , Tex19 +/− and Tex19 − / − ). (E) Testis size in males of Tex19 knockout mice (8 weeks zero). The average value of the data of various mice is indicated by a horizontal bar in the figure. (F) Results of histology and immunohistochemical analysis of testis of adult Tex19 knockout mice (zero at 1, 8, and 20 weeks) are shown. Spermatogonia, elongated sperm cells, and Sertoli cells are indicated by black arrows, black arrowheads, and white arrows, respectively. The scale bar is 100 μm. (G) shows the results of semi-quantitative PCR analysis of the testis of week 1 and week 0 Tex19 knockout mice. ("NT" is not inspected) (A)精巣細胞のHE染色の結果を示す。(B)精巣細胞におけるCAGプロモーターの調節下で構成的に発現されるGFPの結果を示す。(C)セルトリ細胞のマーカーであるGATA1に対する抗体によるセルトリ細胞の免疫組織学分析の結果を示す。(A) shows the results of testicular cell HE staining. (B) shows the results of GFP constitutively expressed under the control of the CAG promoter in testis cells. (C) shows the results of an immunohistological analysis of Sertoli cells with an antibody against GATA1, which is a Sertoli cell marker. (A)8週齢のマウスの精巣を抗PLAZF抗体及び抗Tex19抗体を用いて二重染色した免疫組織化学的分析の結果を示す。(B)FACSでソートされたLacZ陽性細胞におけるマーカー遺伝子の発現プロファイルを示す。縦軸は、mRNAの相対量「発現(LacZ陽性細胞)/発現(LacZ陰性細胞)」を示す。(A) shows the results of immunohistochemical analysis in which 8-week-old mouse testis was double-stained using anti-PLAZF antibody and anti-Tex19 antibody. (B) Marker gene expression profile in LacZ positive cells sorted by FACS. The vertical axis represents the relative amount of mRNA “expression (LacZ positive cells) / expression (LacZ negative cells)”. 8週齢のTex19+/- マウス及びTex19-/- マウスの精巣からFACSによって取得したLacZ陽性細胞を用いた定量的RNA分析の結果を示す。The result of the quantitative RNA analysis using the LacZ positive cell acquired by FACS from the testis of 8-week-old Tex19 +/− mouse and Tex19 − / − mouse is shown. (A)各種ES細胞のサザンブロットハイブリダイゼーション分析の結果を示す。(B)リアルタイムPCR分析による、各種ES細胞におけるTex19転写物の発現の結果を示す。(C)リアルタイムPCR分析による、多能性ES細胞及び分化ES細胞のマーカーの転写物の発現の結果を示す。R1:Tex19+/+, No.14: Tex19-/-, No.15: Tex19-/-(A) shows the results of Southern blot hybridization analysis of various ES cells. (B) shows the results of expression of Tex19 transcripts in various ES cells by real-time PCR analysis. (C) shows the results of expression of marker transcripts of pluripotent ES cells and differentiated ES cells by real-time PCR analysis. R1: Tex19 + / + , No.14: Tex19 -/- , No.15: Tex19 -/- .

Tex19遺伝子はヒト及びマウス等の哺乳類に特異的である遺伝子である。マウス及びヒトの胚幹細胞及び精原細胞等で発現することが知られている。因みに、ヒト及びマウスのTex19遺伝子の塩基配列は、夫々、GenBank Accession No.:AK093086及びGenBank Accession No. NM_028602として公的機関の各データベースから容易に入手可能である。 The Tex19 gene is a gene that is specific to mammals such as humans and mice. It is known to be expressed in mouse and human embryonic stem cells and spermatogonia. Incidentally, the base sequences of human and mouse Tex19 genes can be easily obtained from databases of public institutions as GenBank Accession No .: AK093086 and GenBank Accession No. NM_028602, respectively.

本発明方法は、Tex19が成体精子形成における原生殖細胞及び幹細胞に発現しており、その機能として、精原幹細胞における分化、即ち、精子形成に関与することに基づき、幹細胞におけるTex19遺伝子の発現量の変動を測定することにより、該幹細胞の多能性又は分化能を判定又は検出するものである。上記遺伝子の発現量の変動(増加、減少)は、該遺伝子の発現の任意の段階において、例えば、該遺伝子のmRNA又はその蛋白質の発現量に基づき、当業者に公知の任意の方法で半定量的又は定量的に測定することが出来る。   In the method of the present invention, Tex19 is expressed in primordial germ cells and stem cells in adult spermatogenesis, and as a function thereof, the expression level of Tex19 gene in stem cells is based on differentiation in spermatogonial stem cells, that is, spermatogenesis. By measuring the fluctuations in the above, the pluripotency or differentiation ability of the stem cells is determined or detected. The variation (increase or decrease) in the expression level of the gene is semi-quantified by any method known to those skilled in the art based on, for example, the expression level of the mRNA or the protein of the gene at any stage of the gene expression. Can be measured quantitatively or quantitatively.

即ちTex19遺伝子の発現量が減少した場合には分化能が喪失又は減少したものであると判定される。 That is, when the expression level of the Tex19 gene decreases, it is determined that the differentiation ability is lost or decreased.

従って、該遺伝子の発現量は、このような公知の情報に基づき設計したプライマーを用いるHICEP法、逆転写PCR(RT−PCR)、リアルタイムRT−PCR、又は競合的PCR、マイクロアレイチップ(DNAチップ)等の当業者に公知の任意の定量的方法で定量的に測定することが出来る。或いは、電気泳動後に染色等の適当な手段で可視化したcDNAを検出すること、又はノーザンブロット法によっても半定量的に測定することが可能である。一方、該遺伝子の蛋白質の発現は、例えば、その蛋白質に対する抗体を用いるウェスタンブロット法又は固相酵素免疫測定法(ELISA)で定量的に測定することが出来る。   Therefore, the expression level of the gene is determined by the HICEP method using primers designed based on such known information, reverse transcription PCR (RT-PCR), real-time RT-PCR, competitive PCR, microarray chip (DNA chip) It can be quantitatively measured by any quantitative method known to those skilled in the art. Alternatively, the cDNA visualized by an appropriate means such as staining after electrophoresis can be detected, or semi-quantitatively measured by Northern blotting. On the other hand, protein expression of the gene can be quantitatively measured, for example, by Western blotting using an antibody against the protein or solid-phase enzyme immunoassay (ELISA).

「幹細胞」とは、潜在的にどのような体細胞にも分化できる多分化能を有する細胞である。本発明の各種方法で使用される幹細胞の種類及び由来等に特に制限はないが、マウス、サル、ヒトなどの哺乳動物由来の精原幹細胞、例えば、成体由来の精巣由来の精原幹細胞、又は、胚性幹細胞(ES細胞:個体になり得る全分化能を有する細胞)を挙げることが出来る。   “Stem cells” are pluripotent cells that can potentially differentiate into any somatic cell. The type and origin of stem cells used in the various methods of the present invention are not particularly limited, but spermatogonial stem cells derived from mammals such as mice, monkeys, humans, for example, spermatogonial stem cells derived from adult testis, or And embryonic stem cells (ES cells: cells having total differentiation potential that can be individuals).

更に、Oct3/4, Sox2, Nanog, Klp4, 及びC-Myc, Lin28 等の遺伝子群から選択された一種又は数種の遺伝子を用いる組み換え、又は、それら遺伝子産物も若しくは適当な化合物を作用させることによって、体細胞を人工的に初期化することによって得られる人工多能性幹細胞(iPS:Induced Pluripotent Stem Cell)も本明細書における「幹細胞」含まれる。 Furthermore, recombination using one or several genes selected from the gene groups such as Oct3 / 4, Sox2, Nanog, Klp4, and C-Myc, Lin28, etc., or their gene products or appropriate compounds are allowed to act. Thus, an induced pluripotent stem cell (iPS: Induced Pluripotent Stem Cell) obtained by artificially reprogramming somatic cells is also included in the “stem cell” herein.

本発明のスクリーニング方法で使用する幹細胞としては、経済的及び効率的観点からは既に樹立されて入手容易な適当な幹細胞株を使用することが好ましい。これに対して、「体細胞」とは、多細胞生物における生殖細胞以外の全ての種類の細胞を意味する。 As a stem cell used in the screening method of the present invention, it is preferable to use an appropriate stem cell line that has already been established and is easily available from the viewpoint of economy and efficiency. In contrast, “somatic cells” mean all types of cells other than germ cells in multicellular organisms.

本発明のスクリーニング方法は、既に記載したTex19の機能に基づき、幹細胞の多能性の維持(増大)若しくは阻害(減少)、又は分化能を増大(分化の促進)若しくは阻害(減少)する物質をスクリーニングするものである。従って、該幹細胞におけるTex19遺伝子の発現量の変動を測定することが可能な任意の方法で実施することが出来る。一例として、(1)幹細胞に被検物質を接触させる工程、及び(2)該幹細胞におけるTex19遺伝子の発現量の変動を測定する工程を含む、該幹細胞の多能性を維持若しくは阻害する物質、又は、該幹細胞の分化能を増大若しくは阻害する物質をスクリーニングする方法、を挙げることが出来る。   The screening method of the present invention comprises a substance that maintains (increases) or inhibits (decreases) stem cell pluripotency or increases (promotes differentiation) or inhibits (decreases) differentiation ability based on the Tex19 function described above. To be screened. Therefore, it can be carried out by any method capable of measuring the variation in the expression level of the Tex19 gene in the stem cells. As an example, a substance that maintains or inhibits the pluripotency of the stem cell, comprising (1) a step of bringing a test substance into contact with the stem cell, and (2) a step of measuring a change in the expression level of the Tex19 gene in the stem cell. Alternatively, a method of screening for a substance that increases or inhibits the differentiation ability of the stem cell can be mentioned.

その結果、Tex19遺伝子の発現量が減少した場合には、該被検物質は該幹細胞の分化能の阻害(減少)という作用・機能を有していると考えられる。 As a result, when the expression level of the Tex19 gene decreases, the test substance is considered to have an action / function of inhibiting (decreasing) the differentiation ability of the stem cells.

従って、Tex19遺伝子の発現産物は、精原幹細胞における精子形成能の検出マーカーとして有用なものである。該発現産物は当業者に公知の任意の形態又は分子でありえる。例えば、該遺伝子の発現産物とは、該遺伝子のmRNA,cDNA,若しくは、それらの部分塩基配列を含む核酸分子、又は、該遺伝子がコードする蛋白質を含む。 Therefore, the expression product of Tex19 gene is useful as a marker for detecting spermatogenic ability in spermatogonial stem cells. The expression product can be in any form or molecule known to those skilled in the art. For example, the expression product of the gene includes mRNA, cDNA, or a nucleic acid molecule containing a partial base sequence thereof, or a protein encoded by the gene.

Tex19遺伝子の発現産物の発現量の測定は、測定方法・原理に応じて、定量的、半定量的、又は定性的であり得る。尚、発現量を変動させる物質の選択は、例えば、被検物質の非存在下でのTex19遺伝子の発現産物の発現量との比較をすることにより実施することが出来る。 The measurement of the expression level of the expression product of the Tex19 gene can be quantitative, semi-quantitative, or qualitative depending on the measurement method and principle. The selection of the substance that varies the expression level can be performed by, for example, comparing with the expression level of the expression product of the Tex19 gene in the absence of the test substance.

例えば、Tex19遺伝子のmRNA(又は、cDNA)は、例えば、該遺伝子の塩基配列に基づき適宜設計したプライマー又はプローブを使用したRT−PCR法、リアルタイム逆転写PCR(リアルタイムRT−PCR)等の各種定量的PCR法、HiCEP法、並びに各種のマイクロアレイ(DNAチップ)法等の当業者に公知の方法で増幅・検出することが出来る。PCR法で増幅された核酸分子の検出・同定は、その塩基配列を直接決定する方法(シークエンス法)、又は電気泳動との組み合わせ等、適当な方法で行うことが出来る。尚、HiCEP法の具体的な工程は、例えば、WO02/48352及びWO2005/118791に詳細に記載されている。 For example, mRNA (or cDNA) of the Tex19 gene is determined by various quantifications such as RT-PCR using a primer or probe appropriately designed based on the nucleotide sequence of the gene, real-time reverse transcription PCR (real-time RT-PCR), etc. Amplification and detection can be carried out by methods known to those skilled in the art, such as selective PCR, HiCEP, and various microarray (DNA chip) methods. Detection and identification of nucleic acid molecules amplified by the PCR method can be performed by an appropriate method such as a method for directly determining the base sequence (sequence method) or a combination with electrophoresis. The specific steps of the HiCEP method are described in detail in, for example, WO02 / 48352 and WO2005 / 118791.

上記のプライマー又はプローブの塩基配列は、鋳型との特異的な結合が可能となるような塩基数、例えば、15−40塩基、より具体的には、15−25塩基程度を有することが好ましく、更には、プライマー内でヘアピン構造をとったり、センス鎖とアンチセンス鎖とが互いにアニーリングしないような塩基配列とすることも重要である。例えば、OligoTM(National Bioscience Inc.製)のような市販のプライマー設計用のソフトウェアを使用することも可能である。 The base sequence of the primer or probe preferably has a number of bases that enables specific binding to the template, for example, 15-40 bases, more specifically, about 15-25 bases, Furthermore, it is also important to have a base sequence that does not have a hairpin structure in the primer or that the sense strand and the antisense strand do not anneal with each other. For example, commercially available primer design software such as Oligo ™ (National Bioscience Inc.) can be used.

Tex19遺伝子がコードする蛋白質の産生量は、当業者に公知の任意の方法で測定することが可能である。例えば、適当な抗体を用いたウェスタンブロット等の免疫染色及びEIA等の各種の免疫学的特異反応を利用する方法、エドマン法を用いた気相シークエンサー等ペプチドのアミノ酸配列分析法、更には、MALDI−TOF/MS及びESI Q−TOF/MS法等に代表される質量分析によって検出することが出来る。   The production amount of the protein encoded by the Tex19 gene can be measured by any method known to those skilled in the art. For example, a method using immunostaining such as Western blot using an appropriate antibody and various immunological specific reactions such as EIA, an amino acid sequence analysis method for peptides such as a gas phase sequencer using Edman method, and MALDI -It can detect by mass spectrometry represented by TOF / MS and ESI Q-TOF / MS method.

上記の方法の中でも、ウェスタンブロット法及びEIA等の酵素免疫測定法等の、該蛋白質に特異的な抗体との抗原抗体反応によって該白質の発現量を測定する検査方法が好適である。このような抗体には、酵素、放射性同位体蛍光色素、及び金属原子等の当業者に公知の各種の標識物質で標識されているものも含まれる。 Among the above methods, a test method for measuring the expression level of the white matter by an antigen-antibody reaction with an antibody specific for the protein, such as Western blotting and enzyme immunoassay such as EIA, is preferable. Such antibodies include those labeled with various labeling substances known to those skilled in the art, such as enzymes, radioisotope fluorescent dyes, and metal atoms.

従って、上記抗体は、該蛋白質又はその適当な部分ポリペプチド(ペプチド断片)又はそれらの各種誘導体又は複合体等を抗原物質又は免疫原として用いて、当業者に公知の適当な方法で調製することが可能である。例えば、ポリクローナル抗体の場合には、マウス、ラット、ウサギ、ヤギ、ニワトリ等の適当な動物に投与し、その抗血清から調製することが可能である。或いは、モノクローナル抗体作成法(「単クローン抗体」、長宗香明、寺田弘共著、廣川書店、1990年; "Monoclonal Antibody" James W. Goding, third edition, Academic Press, 1996)等に記載の公知の細胞融合を用いる方法でモノクローナル抗体として調製することも可能である。 Therefore, the above antibody should be prepared by an appropriate method known to those skilled in the art using the protein or an appropriate partial polypeptide (peptide fragment) thereof or various derivatives or complexes thereof as an antigenic substance or immunogen. Is possible. For example, in the case of a polyclonal antibody, it can be administered to an appropriate animal such as a mouse, rat, rabbit, goat or chicken and prepared from the antiserum. Alternatively, known methods described in the monoclonal antibody production method (“monoclonal antibody”, Kamei Nagamune, Hiroaki Terada, Yodogawa Shoten, 1990; “Monoclonal Antibody” James W. Goding, third edition, Academic Press, 1996) It is also possible to prepare a monoclonal antibody by a method using cell fusion.

スクリーニングに使用する細胞は、その目的等に応じて当業者に公知の任意のものを使用することができるが、ヒト治療用に使用する薬剤をスクリーニングする場合には、治療対象となる臓器又は組織由来のヒト由来の幹細胞を標的細胞として使用することが好ましい。   As cells used for screening, any cells known to those skilled in the art can be used depending on the purpose and the like. However, when a drug used for human treatment is screened, an organ or tissue to be treated It is preferable to use human-derived stem cells derived as target cells.

本発明のスクリーニング方法に使用されるキットは、測定対象又は測定原理等に応じて、適当な構成をとることが出来る。該キットは、その構成要素として、例えば、上記蛋白質に特異的な抗体、各種の二次抗体(標識抗体)、上記のmRNA(cDNA)の増幅用プライマー及びDNAチップ等で使用するハイブリダイゼーション用のプローブ(例えば、10〜100個程度の連続した塩基配列から成る)のような、Tex19遺伝子の発現産物と特異的に反応する化合物を含む。更に、上記キットには、その構成・使用目的などに応じて、当業者に公知の他の要素又は成分、例えば、各種試薬、酵素、緩衝液、反応プレート(容器)等が含まれる。尚、PCR反応後の検出を容易にするために、これらプライマーの少なくともいずれかの末端に、当業者に公知の任意の蛍光物質等の標識物質が結合していることが好ましい。例えば、適当な蛍光物質として、6−カルボキシフルオレッセイン(FAM)、4,7,2’,4’,5’,7’−ヘキサクロロー6−カルボキシフルオレッセイン(HEX)、NED(アプライドシステムズジャパン社)及び6−カルボキシ−X−ローダミン(Rox)等を挙げることが出来る。 The kit used in the screening method of the present invention can have an appropriate configuration depending on the measurement object or measurement principle. The kit includes, for example, antibodies specific for the above proteins, various secondary antibodies (labeled antibodies), primers for amplification of the above mRNA (cDNA), DNA chips, and the like for hybridization. A compound that specifically reacts with the expression product of the Tex19 gene, such as a probe (for example, consisting of about 10 to 100 consecutive base sequences) is included. Further, the kit includes other elements or components known to those skilled in the art, such as various reagents, enzymes, buffers, reaction plates (containers), and the like, depending on the configuration and purpose of use. In order to facilitate detection after the PCR reaction, it is preferable that a labeling substance such as an arbitrary fluorescent substance known to those skilled in the art is bound to at least one end of these primers. For example, suitable fluorescent substances include 6-carboxyfluorescein (FAM), 4,7,2 ′, 4 ′, 5 ′, 7′-hexachloro-6-carboxyfluorescein (HEX), NED (Applied Systems Japan) And 6-carboxy-X-rhodamine (Rox).

以上の各測定に使用する材料及び器具・装置などは当業者に容易に入手可能であり、各測定操作の手順・条件等は、使用する器具・装置に添付のマニュアルに従うか、又は、使用する細胞の種類等のその他条件に応じて適宜設定することが出来る。   The materials, instruments, and devices used for each of the above measurements are readily available to those skilled in the art, and the procedures and conditions for each measurement operation follow or use the manual attached to the instruments and devices to be used. It can set suitably according to other conditions, such as a kind of cell.

本発明者において、Tex19ノックアウト動物、特に、ホモ接合体であるTex19ノックアウト動物は、雄性不稔性、精子形成不全(異常)又は精原幹細胞の分化が停止(低下)していることが見出された。かかるTex19ノックアウト動物の一例として、実施例に記載されているように、Tex19遺伝子座位にβ−ガラクトシダーゼ遺伝子が挿入されているTex19ノックアウト動物を挙げることが出来る。このノックアウト動物では、フローサイトメトリーによって、LacZ陽性細胞をソートすることにより、Tex19遺伝子に代わってβ−ガラクトシダーゼ遺伝子が発現している細胞を容易に選択回収することが出来る。 In the present inventors, Tex19 knockout animals, particularly Tex19 knockout animals that are homozygotes, have been found that male sterility, spermatogenic dysplasia (abnormal), or spermatogonial stem cell differentiation has stopped (reduced). It was done. An example of such a Tex19 knockout animal is a Tex19 knockout animal in which a β-galactosidase gene is inserted at the Tex19 gene locus as described in Examples. In this knockout animal, cells expressing a β-galactosidase gene instead of the Tex19 gene can be easily selected and collected by sorting LacZ positive cells by flow cytometry.

更に、このようなTex19ノックアウト動物を利用することによって、例えば、Tex19ノックアウト動物に被検物質を投与する工程、及び(2)該ノックアウト動物の精子形成を検出する工程によって、雄性不稔性、精子形成不全(異常)又は精原幹細胞の分化停止(低下)に関連する疾患に対する治療薬となり得る物質をスクリーニングことが可能となる。 Furthermore, by using such a Tex19 knockout animal, for example, by administering a test substance to the Tex19 knockout animal, and (2) detecting spermatogenesis in the knockout animal, male sterility, sperm It becomes possible to screen for substances that can be therapeutic agents for diseases associated with dysplasia (abnormality) or spermatogonial stem cell differentiation arrest (decrease).

本発明は、又、Tex19が破壊されている幹細胞株、特に、マウスES細胞株及びiPS細胞株に係る。これら各幹細胞は当業者に公知の方法で作製することが出来る。これらの幹細胞は、多能性は維持しながら、雄性不稔性、精子形成不全(異常)又は精原幹細胞の分化が停止(低下)している、という特性を有するものである。 The present invention also relates to stem cell lines in which Tex19 is disrupted, particularly mouse ES cell lines and iPS cell lines. Each of these stem cells can be prepared by methods known to those skilled in the art. These stem cells have the characteristics that male sterility, spermatogenesis dysfunction (abnormality), or differentiation of spermatogonial stem cells is stopped (reduced) while maintaining pluripotency.

以下、実施例に基づき本発明を更に詳細に説明するが、これらの実施例は本発明の技術的範囲を何等限定するものではない。当業者であれば、本明細書の記載に基づき、本発明の技術的範囲を逸脱せずに、多くの変形及び修飾を実施することが可能である。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, these Examples do not limit the technical scope of this invention at all. A person skilled in the art can make many variations and modifications based on the description of the present specification without departing from the technical scope of the present invention.

以下に、本実施例で使用した主な実験操作方法を記載する。他に特に記載のない限り、各実験条件及びその他の実験操作は当業者に公知の適当な方法で実施した。   The main experimental operation methods used in this example are described below. Unless otherwise noted, each experimental condition and other experimental procedures were performed by appropriate methods known to those skilled in the art.

リアルタイムPCR
リアルタイムPCRは常法で実施した。即ち、ES細胞からRNeasy mini kit (Qiagen, Hilden, Germany) で全RNAを調製し、これらをDNase(Invitrogen/)で処理し、SuperScriptIII (Invitrogen, Carlsbad, CA)を用いて、一本鎖cDNAを合成し、Ex taq (Takara Bio, Otsu, Japan)を用いてPCRを実施した。反応にはオリゴd(T)18 プライマーを使用した。リアルタイムPCRは、SYBER GREEN PCR MASTER MIX (Applied Biosysteems, Foster City, CA) 、又は、Quantitect SYBER-PCR kit (Qiagen)を用いて行い、ABI PRISM 7700(Applied Biosysteems)で分析した。各試料の結果は、グリッセルアルデヒド3リン酸脱水素酵素(GAPDH)の発現レベルに対して標準化した。PCR条件は、95.0℃で10分間、95.0℃で15秒間を50サイクル、60.0℃で30秒間、及び、78.0℃で40秒間であった。
Real-time PCR
Real-time PCR was performed by a conventional method. Specifically, total RNA was prepared from ES cells using RNeasy mini kit (Qiagen, Hilden, Germany), treated with DNase (Invitrogen /), and single-stranded cDNA was obtained using SuperScript III (Invitrogen, Carlsbad, CA). Synthesis and PCR was performed using Ex taq (Takara Bio, Otsu, Japan). Oligo d (T) 18 primer was used for the reaction. Real-time PCR was performed using SYBER GREEN PCR MASTER MIX (Applied Biosysteems, Foster City, Calif.) Or Quantitect SYBER-PCR kit (Qiagen) and analyzed with ABI PRISM 7700 (Applied Biosysteems). The results for each sample were normalized to the expression level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PCR conditions were 95.0 ° C. for 10 minutes, 95.0 ° C. for 15 seconds for 50 cycles, 60.0 ° C. for 30 seconds, and 78.0 ° C. for 40 seconds.

尚、このリアルタイムPCRに使用した各プライマーのヌクレオチド配列は以下のとおりである。
Tex19:
センス:GAGCAAGAGGTTGCCTGTTC (配列番号1)
アンチセンス:CCATAACACCCACCACACAA (配列番号2)
Oct3/4:
センス:TCTTTCCACCAGGCCCCCGGCTC (配列番号3)
アンチセンス:TGCGGGCGGACATGGGGAGATCC (配列番号4)
Nanog:
センス:TAGGCTTTGGAGACAGTGAG (配列番号5)
アンチセンス:TCGAGAGTAGCCACCATATC (配列番号6)
Plzf:
センス:TGTACATGAGGGGCAGATGA (配列番号7)
アンチセンス:CACGAAATGAAGTGGGTGTG (配列番号8)
Ret:
センス:ATCCACACCTTCGGACTCAC (配列番号9)
アンチセンス:AACCCAGTGCTAGTGCCATC (配列番号10)
Ngn3:
センス:GGCCCATAGATGATGTTCGT (配列番号11)
アンチセンス:ACACGGGAGACAAGTTGGAG (配列番号12)
Calmegin:
センス:ACCTGAGGACTGGAGTGACG (配列番号13)
アンチセンス:TCTGGGTTGGGAATCTTCTG (配列番号14)
Oppo1:
センス:TCGGCTGGAGCTATTTCATT (配列番号15)
アンチセンス:GACTCCTGGCTGTTCTCCTG (配列番号16)
Rex1:
センス:GCAAGGCCAGTCCAGAATAC (配列番号17)
アンチセンス:CTTCTCGCAGCCATCAAAAG (配列番号18)
Laminin B1:
センス:AGGCAGTACATTCAGGACCG (配列番号19)
アンチセンス:GTAGGGCATGAGAACAAGCG (配列番号20)
The nucleotide sequence of each primer used in this real-time PCR is as follows.
Tex19:
Sense: GAGCAAGAGGTTGCCTGTTC (SEQ ID NO: 1)
Antisense: CCATAACACCCACCACACAA (SEQ ID NO: 2)
Oct3 / 4:
Sense: TCTTTCCACCAGGCCCCCGGCTC (SEQ ID NO: 3)
Antisense: TGCGGGCGGACATGGGGAGATCC (SEQ ID NO: 4)
Nanog:
Sense: TAGGCTTTGGAGACAGTGAG (SEQ ID NO: 5)
Antisense: TCGAGAGTAGCCACCATATC (SEQ ID NO: 6)
Plzf:
Sense: TGTACATGAGGGGCAGATGA (SEQ ID NO: 7)
Antisense: CACGAAATGAAGTGGGTGTG (SEQ ID NO: 8)
Ret:
Sense: ATCCACACCTTCGGACTCAC (SEQ ID NO: 9)
Antisense: AACCCAGTGCTAGTGCCATC (SEQ ID NO: 10)
Ngn3:
Sense: GGCCCATAGATGATGTTCGT (SEQ ID NO: 11)
Antisense: ACACGGGAGACAAGTTGGAG (SEQ ID NO: 12)
Calmegin:
Sense: ACCTGAGGACTGGAGTGACG (SEQ ID NO: 13)
Antisense: TCTGGGTTGGGAATCTTCTG (SEQ ID NO: 14)
Oppo1:
Sense: TCGGCTGGAGCTATTTCATT (SEQ ID NO: 15)
Antisense: GACTCCTGGCTGTTCTCCTG (SEQ ID NO: 16)
Rex1:
Sense: GCAAGGCCAGTCCAGAATAC (SEQ ID NO: 17)
Antisense: CTTCTCGCAGCCATCAAAAG (SEQ ID NO: 18)
Laminin B1:
Sense: AGGCAGTACATTCAGGACCG (SEQ ID NO: 19)
Antisense: GTAGGGCATGAGAACAAGCG (SEQ ID NO: 20)

ゲノムタイピング及びIn situ ハイブリダイゼーション
マウスTex19遺伝子cDNA(GenBank Accession Ni. NM_028602)の第1320-1704番目のヌクレオチドに相当する385bpのDNA断片をpGEMT-Easy ベクター(Promega, Madison, USA)にサブクローニングし、DIG RNA Labeling Mix (Roche, Basel, Switzerland) を用いて、以下のヌクレオチド配列を有する2種類のセンス及びアンチセンスRNAプライマーを作製しゲノムタイピングに使用した。尚、In situ ハイブリダイゼーションは当業者に公知の方法(Hoshino et al., 1999)で実施した。
Genomic typing and in situ hybridization A 385 bp DNA fragment corresponding to nucleotides 1320-1704 of mouse Tex19 gene cDNA (GenBank Accession Ni. NM_028602) was subcloned into pGEMT-Easy vector (Promega, Madison, USA), and DIG Using RNA Labeling Mix (Roche, Basel, Switzerland), two types of sense and antisense RNA primers having the following nucleotide sequences were prepared and used for genome typing. In situ hybridization was performed by a method known to those skilled in the art (Hoshino et al., 1999).

作製したノックアウトマウスのゲノタイプは以下のプライマーP1及びP2(野生型対立遺伝子)、並びに、プライマーP3及びP4(変異型対立遺伝子)を用いたPCRで決定した(図2、C)。ここで、P1〜P4はゲノタイプ決定に使用した以下に記載のヌクレオチド配列を有するプライマーを示す。
P1(センス): CTTAGCTGCAGACAGACTTCTTGAC (配列番号21)
P2(アンチセンス): GTAGCATCTGTGATAAACAGCCTCTC(配列番号22)
P3(センス): GATTGAACAAGATGGATTGCACGCAGGTTC(配列番号23)
P4(アンチセンス): CTAAAAGCACTGGTTACTCTCCTAGAGG(配列番号24)
The genotype of the prepared knockout mouse was determined by PCR using the following primers P1 and P2 (wild type allele) and primers P3 and P4 (mutant allele) (FIG. 2, C). Here, P1 to P4 represent primers having the following nucleotide sequences used for genotype determination.
P1 (sense): CTTAGCTGCAGACAGACTTCTTGAC (SEQ ID NO: 21)
P2 (antisense): GTAGCATCTGTGATAAACAGCCTCTC (SEQ ID NO: 22)
P3 (sense): GATTGAACAAGATGGATTGCACGCAGGTTC (SEQ ID NO: 23)
P4 (antisense): CTAAAAGCACTGGTTACTCTCCTAGAGG (SEQ ID NO: 24)

抗マウスTex19抗体の作製
MBL(Ina,Japan)を使用して、マウスTex19のアミノ酸配列における326-351番目のアミノ酸から成る合成ペプチドでラビットを免疫して抗血清を取得した。
ウェスタンブロット法
1週齢雄性マウス(Tex19+/+, Tex19+/-及びTex19-/-)の精巣から調製した抽出物を溶解緩衝液(10% グリセロール、5% ドデシル硫酸マトリウム、50 mM DTT、62.5 mM Tris-HCl, pH6.8)中で沸騰処理し、10% SDS-PAGE 上で電気泳動させ、その後、タンパク質をImmunobilon PVDF 膜(Millipore, Bedford, MA) に電気的に移動させた。膜を0.1 % Tween 20含有のTris 緩衝食塩水(TBST)で洗浄した。5%非脂肪ミルク含有TBSTで膜を1時間ブロック処理し、第一次抗体として上記のラビット抗マウスTex19ポリクローナル抗体と共に、4℃で一晩インキュベートした。尚、第一次抗体は全て、3%ウシ血清アルブミン含有TBSTで1000倍に希釈して使用した。この第一次抗体による処理後、膜をTBSTで3回洗浄し、1000倍に希釈した、抗ラビットIgG−西洋ワサビペルオキシダーゼ(HRP)結合体 (DAKO, Glostrup, Denmark) と反応させた。これら第二次抗体との反応は室温で1時間おこなった。その後、膜をTBSTで3回洗浄し、SuperSignal West Dura Extended duration substrate 試薬(PIERCE, Rockford, IL)を用いてシグナルを検出した。定量的測定はLightCapture(AE-6960, ATTO, Tokyo, Japan)を用いて実施した。
Production of anti-mouse Tex19 antibody
Using MBL (Ina, Japan), rabbits were immunized with a synthetic peptide consisting of amino acids 326 to 351 in the amino acid sequence of mouse Tex19 to obtain antiserum.
Western blotting Extracts prepared from testis of 1-week-old male mice (Tex19 + / + , Tex19 +/- and Tex19 -/- ) were dissolved in lysis buffer (10% glycerol, 5% sodium dodecyl sulfate, 50 mM DTT, 62.5 mM Tris-HCl, pH 6.8) and electrophoresed on 10% SDS-PAGE, after which the protein was transferred electrically to an Immunobilon PVDF membrane (Millipore, Bedford, Mass.). The membrane was washed with Tris buffered saline (TBST) containing 0.1% Tween 20. Membranes were blocked with TBST containing 5% non-fat milk for 1 hour and incubated overnight at 4 ° C. with the above rabbit anti-mouse Tex19 polyclonal antibody as the primary antibody. All primary antibodies were diluted 1000 times with TBST containing 3% bovine serum albumin. After treatment with this primary antibody, the membrane was washed 3 times with TBST and reacted with an anti-rabbit IgG-horseradish peroxidase (HRP) conjugate (DAKO, Glostrup, Denmark) diluted 1000-fold. The reaction with these secondary antibodies was carried out at room temperature for 1 hour. Thereafter, the membrane was washed 3 times with TBST, and the signal was detected using SuperSignal West Dura Extended duration substrate reagent (PIERCE, Rockford, IL). Quantitative measurement was performed using LightCapture (AE-6960, ATTO, Tokyo, Japan).

組織学分析
精巣試料をBouin固定液で固定しパラフィンに包埋した。それを3μm切片に切断しワックスを除去し、ヘマトキシリン及びエオシンで染色(HE染色)した。
Histological analysis Testis samples were fixed with Bouin fixative and embedded in paraffin. It was cut into 3 μm sections to remove wax, and stained with hematoxylin and eosin (HE staining).

免疫組織学分析
免疫組織化学分析においては、精巣試料を4%パラホルムアルデヒドで4℃、一晩固定し、OCT化合物(Sakura Finetek, Tokyo, Japan)に埋め込み、クライオスタットミクロームを用いて10μm切片に切断した。一次抗体として、抗GATA1抗体 (Santa Cruz, Heidelberg, Germany)、抗PLZF抗体(Santa Cruz, Heidelberg, Germany)及び上記の抗Tex19抗体を2μg/mlの濃度で使用した。上記の各抗体の検出には、夫々、Alexa Fluor 488抗ラット 、Alexa Fluor 488抗マウス、及び、Alexa Fluor 594抗ラビット(Molecular Probes)を500倍希釈で使用した。
Immunohistochemical analysis In immunohistochemical analysis, testis samples were fixed overnight with 4% paraformaldehyde at 4 ° C, embedded in OCT compound (Sakura Finetek, Tokyo, Japan), and cryostat microme was used. Cut into 10 μm sections. As primary antibodies, anti-GATA1 antibody (Santa Cruz, Heidelberg, Germany), anti-PLZF antibody (Santa Cruz, Heidelberg, Germany) and the above anti-Tex19 antibody were used at a concentration of 2 μg / ml. For the detection of each of the above antibodies, Alexa Fluor 488 anti-rat, Alexa Fluor 488 anti-mouse, and Alexa Fluor 594 anti-rabbit (Molecular Probes) were used at a 500-fold dilution.

RT−PCR分析
Superscript III (Invitroge) 及びEx taq (Takara Bio Otsu, Japan) を用いて、1本鎖cDNA合成及びPCRを夫々実施した。26,30,34及び38回のことなるサイクル数におけるPCR産物を2.0 %アガロースゲルに載せ、対数期における反応を分析できるようした。各遺伝子のPCRに使用したプライマーのヌクレオチド配列は上記のリアルタイムPCRに使用したものと同じである。尚、GDNF遺伝子については以下のプライマーを使用した。
RT-PCR analysis
Single-strand cDNA synthesis and PCR were performed using Superscript III (Invitroge) and Ex taq (Takara Bio Otsu, Japan), respectively. PCR products at different numbers of cycles of 26, 30, 34 and 38 were loaded on a 2.0% agarose gel so that the reaction in log phase could be analyzed. The nucleotide sequences of the primers used for PCR of each gene are the same as those used for the above real-time PCR. For the GDNF gene, the following primers were used.

GDNFセンス: GACTGGGAAGTGGAGCTACG(配列番号25)
GDNFアンチセンス:TGCTGAGTTCTCCAGGGATT(配列番号26)
GDNF sense: GACTGGGAAGTGGAGCTACG (SEQ ID NO: 25)
GDNF antisense: TGCTGAGTTCTCCAGGGATT (SEQ ID NO: 26)

フローサイトメトリー分析
精巣細胞を1mg/mlのコラゲナーゼ(IV型, Sigma, St. Louis, MO)で15分間消化し、0.25% トリプシン/0.04% EDTAで37℃、10分間消化して個々の細胞から成る懸濁液を調製した。FluoRecepter LAcZ Flow Cytometry Kit (Invitrogen) 及びFACSAria (BD, Franklin Lakes, NJ) を使用してLac-Z 陽性細胞をソートした。
Flow cytometric analysis Testicular cells were digested with 1 mg / ml collagenase (type IV, Sigma, St. Louis, MO) for 15 minutes and digested with 0.25% trypsin / 0.04% EDTA at 37 ° C. for 10 minutes from individual cells. A suspension was prepared. Lac-Z positive cells were sorted using FluoRecepter LAcZ Flow Cytometry Kit (Invitrogen) and FACSAria (BD, Franklin Lakes, NJ).

トランスクリプトーム分析
HiCEP法を用いて行った(Fukumura et al., 2003)。ここで、HiCEP法は、制限酵素DNA断片長多型(RFLP)とポリメラーゼ連鎖反応(PCR)に基づき開発された遺伝子発現プロファイル法であり、PCR産物の電気泳動から得られる移動距離とピークのデータから、ある条件下における特定の細胞における遺伝子の発現パターン、公知及び未知遺伝子の発現の有無、それらの発現量等に関する情報から成る遺伝子発現プロファイルを得、それらに基づき、遺伝子発現頻度の解析及び各遺伝子の同定をする方法である。このHiCEP法では、擬陽性シグナルを2%以下にすることが可能であり、その結果、存在率の高い4塩基認識制限酵素を使用することにより、80%という非常に高いカバー率(全発現転写物の中で観察可能な転写物の割合)を達成することが出来、更に、1.2倍までの発現差を検出することも可能である。
Transcriptome analysis was performed using the HiCEP method (Fukumura et al., 2003). Here, the HiCEP method is a gene expression profiling method developed based on restriction enzyme DNA fragment length polymorphism (RFLP) and polymerase chain reaction (PCR), and data on migration distance and peak obtained from electrophoresis of PCR products. To obtain a gene expression profile consisting of information on gene expression patterns in specific cells under certain conditions, presence / absence of expression of known and unknown genes, expression level thereof, etc. This is a method for identifying genes. In this HiCEP method, a false positive signal can be reduced to 2% or less. As a result, by using a 4-base recognition restriction enzyme having a high abundance, a very high coverage rate of 80% (total expression transcript) The ratio of observable transcripts can be achieved, and it is also possible to detect expression differences up to 1.2 times.

HiCEP法に関する条件及び使用する装置等は、国際公開02/48352号パンフレット及び国際公開2005/118791号パンフレットの記載を参照することが出来る。尚、得られた遺伝子発現プロファイルは、当業者に公知の解析ソフトウェア、例えば、GeneScan(登録商標)(アプライドバイオシステムズジャパン社)を使用して解析することが出来る。尚、上記の基本的特徴を有している限り、更なる技術的改良又は変更が加えられた方法であっても、本明細書中の「HiCEP法」に含まれるものである。 For the conditions related to the HiCEP method and the equipment used, the descriptions in WO 02/48352 and WO 2005/118791 can be referred to. The obtained gene expression profile can be analyzed using analysis software known to those skilled in the art, for example, GeneScan (registered trademark) (Applied Biosystems Japan). In addition, as long as it has the above basic features, even a method to which further technical improvement or change is added is included in the “HiCEP method” in this specification.

具体的には、SuperScriptIII First Strand Synthesis System (Invitrogen, Carlsbad, CA)を用いて、該製造者のプロトコールに従い、5.0μl 反応容量で一本鎖DNAを合成した。50 mM Biotin-d(T)18 (0.25μl), 10 mM dNTP(0.25μl)及び2μl RNA溶液を慎重に混合し、その後、65℃で5分間インキュベートした。直ちに、氷上で3分間冷やした。製造者マニュアルに記載されている緩衝混合液2.5μlを加えて十分に混合し、50℃で60分間維持し、その後、85℃で5分間維持した。これらの全ての操作は200μl試験管内で実施した。この一本鎖DNA合成後の反応工程は、上記文献に記載のとおりに実施した。修正点としては、既報告にあるエタノール沈殿工程に代えて、磁気ビーズ技術(Dinabeads M-280 Streptavidin; Veritas, Oslo, Norway)を使用したことである。 Specifically, single-stranded DNA was synthesized in a 5.0 μl reaction volume using the SuperScript III First Strand Synthesis System (Invitrogen, Carlsbad, Calif.) According to the manufacturer's protocol. 50 mM Biotin-d (T) 18 (0.25 μl), 10 mM dNTP (0.25 μl) and 2 μl RNA solution were carefully mixed and then incubated at 65 ° C. for 5 minutes. Immediately cooled on ice for 3 minutes. 2.5 μl of the buffer mixture described in the manufacturer's manual was added and mixed well, maintained at 50 ° C. for 60 minutes, and then maintained at 85 ° C. for 5 minutes. All these operations were performed in 200 μl test tubes. The reaction step after the synthesis of the single-stranded DNA was performed as described in the above document. As a correction, the magnetic bead technology (Dinabeads M-280 Streptavidin; Veritas, Oslo, Norway) was used in place of the ethanol precipitation process already reported.

実施例1: Tex19の発現
未分化のES細胞である、E14細胞(ノックアウトマウス作出用に世界中で最も広く使用されているES細胞株の一つ。エジンバラ大学のDr. M Hooper 研究室にて保管され、希望により分与可能)、TT2細胞(C57BL/6系統のマウスとCBA系統のマウスとのF1雑種から採取されたES細胞。 当時GIBCOより購入したものを使用した。現在理研BRCより入手可能)、及び、R1細胞(129X1/SvJ 系統のマウスと 129S1系統のマウスとのF1雑種から採取されたES細胞。トロント大学のA.Nagy博士より分与可能)の培地から、白血球阻害因子(LIF)を除いた結果、発現量が減少する(down-regulated)遺伝子を、定量的リアルタイムPCRにより同定した。
尚、各細胞は、まず、5% KSR (GIBCO), 6 mM L-glutamine, 100 μM 2-mercaptoethanol (2-ME) 及び500 unitsのLIF (CHEMICON, Temecula, CA) を添加したKO-DMEM (GIBCO, Gaithersburg, MD) で培養した後、培地からLIFを除去した。
その結果、上記の3種類の全てのES細胞において、発現量が減少した遺伝子として、Oct3/4 及びNanog (Chambers et al., 2003;Mitsui et al., 2003; Niwa t al, 2000)に加えて、更にTex19が同定された。TT2細胞に関する結果を図1Aに示す。
更に、Tex19は生殖細胞での発現が確認されている(Wang et al., 2001)ことに鑑みて、以上の結果は、Tex19, Oct3/4 及びNanogの発現プロファイルが極めて類似していることを示している。
Example 1: Expression of Tex19 Undifferentiated ES cells, E14 cells (one of the most widely used ES cell lines in the world for the production of knockout mice. In Dr. M Hooper laboratory of University of Edinburgh TT2 cells (ES cells collected from F1 hybrids of C57BL / 6 mice and CBA mice. Used from GIBCO at that time. Currently available from RIKEN BRC) And leukocyte inhibitory factor (available from Dr. A. Nagy, University of Toronto) from R1 cells (ES cells collected from F1 hybrids of 129X1 / SvJ and 129S1 mice). As a result of excluding (LIF), genes whose expression level was down-regulated were identified by quantitative real-time PCR.
Each cell was first prepared with KO-DMEM (CHEMICON, Temecula, CA) supplemented with 5% KSR (GIBCO), 6 mM L-glutamine, 100 μM 2-mercaptoethanol (2-ME) and 500 units LIF (CHEMICON, Temecula, CA). After culturing in GIBCO, Gaithersburg, MD), LIF was removed from the medium.
As a result, in addition to Oct3 / 4 and Nanog (Chambers et al., 2003; Mitsui et al., 2003; Niwa t al, 2000) as genes with decreased expression levels in all three types of ES cells described above. Tex19 was further identified. The results for TT2 cells are shown in FIG. 1A.
Furthermore, considering that Tex19 is expressed in germ cells (Wang et al., 2001), the above results indicate that the expression profiles of Tex19, Oct3 / 4 and Nanog are very similar. Show.

次に、Tex19の生殖細胞における発現をIn situ ハイブリダイゼーションで検出した。その結果、胎生12.5 日から成体に至るまで、基底膜における少数の細胞(全精巣細胞の約0.1%)においてTex19の発現が確認された(図1B)。このTex19陽性細胞の数は、最も初期の精原細胞であるAシグナル(As)型の精原細胞の数(Tegelenbosch and de Rooij, 1993)に近く、Tex19が成体精子形成における原生殖細胞及び幹細胞に発現していることを示唆している。   Next, Tex19 expression in germ cells was detected by in situ hybridization. As a result, expression of Tex19 was confirmed in a small number of cells in the basement membrane (about 0.1% of all testis cells) from embryonic day 12.5 to adulthood (FIG. 1B). The number of Tex19 positive cells is close to the number of spermatogonia of the A signal (As) type, which is the earliest spermatogonia (Tegelenbosch and de Rooij, 1993), and Tex19 is a progenitor cell and stem cell in adult spermatogenesis. It is suggested that it is expressed.

実施例2: Tex19ノックアウトマウスの作製
インビボにおけるTex19の機能を明らかにする目的で、Tex19のノックアウトマウスを当業者に公知の方法で作製した(Nagy et al., 2002)。尚、図2、Aに例示された基本構造を有する3種類のTex19ノックアウト構築物を用いて、5つの独立したノックアウトマウス系を作製した。ノックアウトマウス作製の実験計画は放射線医学総合研究所の動物使用委員会に承認されたものである。5系統のノックアウトマウスのうち2系統は本件に記載したコンストラクトから独立にES細胞を得た。更に、β-geo部分をEGFPおよびDsRed2に置き換えたノックアウトマウスをそれぞれ1系統、2系統作成した。
Example 2 Generation of Tex19 Knockout Mice In order to clarify the function of Tex19 in vivo, Tex19 knockout mice were generated by methods known to those skilled in the art (Nagy et al., 2002). In addition, five independent knockout mouse systems were prepared using three types of Tex19 knockout constructs having the basic structure illustrated in FIG. The experimental design for creating knockout mice was approved by the Animal Use Committee of the National Institute of Radiological Sciences. Two of the five knockout mice obtained ES cells independently from the construct described in this case. Further, knockout mice in which the β-geo part was replaced with EGFP and DsRed2 were prepared in one line and two lines, respectively.

マウスTex19遺伝子の目標破壊
351個のアミノ酸から成るマウスTex19遺伝子の読み取り枠(ORF)のN末端の46個のアミノ酸だけを残して、該Tex19遺伝子の殆ど全てを、理化学研究所CDB(神戸、日本)の丹羽氏から提供されたIRES(Internal ribosome entry site)−β-geo (β−ガラクトシダーゼ及びネオマイシン耐性コード遺伝子)カセット(Mountford et al., 1994)で置き換えてTex19ノックアウトコンストラクトを作製した。その構図を図2、Aに示す。
The target disruption of mouse Tex19 gene, leaving only the 46 amino acids at the N-terminus of the reading frame (ORF) of the mouse Tex19 gene consisting of 351 amino acids, almost all of the Tex19 gene was transferred to RIKEN CDB (Kobe, Japan The Tex19 knockout construct was prepared by replacing the IRES (Internal ribosome entry site) -β-geo (β-galactosidase and neomycin resistance encoding gene) cassette (Mountford et al., 1994) provided by Mr. Niwa. The composition is shown in FIG.

作製したノックアウトマウスにおけるTex19遺伝子の破壊はサザンハイブリダーゼーションで確認した。
ES細胞のサザンハイブリダイゼーションは当業者に公知の方法に従い、以下のヌクレオチド配列を有するプローブを用いて実施した(図2、B)。
プローブ(配列番号27):a agctcagaca ttccccaggg ccctggggac tgtgaagagc aagaggttgc ctgttctgag cagctcaggg gaacagttgg tccaggactt gagggggcat cttgaacatc ctgtgagctt atgaacctca gagggaagtc tggcatgttc gtgtcagtgt tcagtgtttg gtaggtgagg cctagctgta tgtttagctg tatggagtgt tgtgtggtgg gtgttatggg ggctccggtc acagatctac gtatgtatgg actctgaggc actagttgac cttactgtca taggggtcat atgcttactg tcttagggtc aagatacctg attttagggt tcactgtttt tgttgtttta ctttgttcgt tactcgtgct cctt
The disruption of the Tex19 gene in the prepared knockout mice was confirmed by Southern hybridization.
Southern hybridization of ES cells was performed using a probe having the following nucleotide sequence according to a method known to those skilled in the art (FIG. 2, B).
Probe (SEQ ID NO 27): a agctcagaca ttccccaggg ccctggggac tgtgaagagc aagaggttgc ctgttctgag cagctcaggg gaacagttgg tccaggactt gagggggcat cttgaacatc ctgtgagctt atgaacctca gagggaagtc tggcatgttc gtgtcagtgt tcagtgtttg gtaggtgagg cctagctgta tgtttagctg tatggagtgt tgtgtggtgg gtgttatggg ggctccggtc acagatctac gtatgtatgg actctgaggc actagttgac cttactgtca taggggtcat atgcttactg tcttagggtc aagatacctg attttagggt tcactgtttt tgttgtttta ctttgttcgt tactcgtgct cctt

更に、野生型マウス及びノックアウトマウスについてのPCRを用いてゲノムタイピングを行った(図2、C). Furthermore, genome typing was performed using PCR for wild type and knockout mice (FIG. 2, C).

実施例3: Tex19ノックアウトマウスにおけるTex19の発現の有無の確認
更に、ノックアウトマウスにおけるTex19発現の有無をウェスタンブロット法を用いて確認した。その結果、Tex19-/-マウスにおいて、Tex19の発現が消滅していることが確認された(図2、D)。
Example 3: Confirmation of the presence or absence of Tex19 expression in Tex19 knockout mice Further, the presence or absence of Tex19 expression in knockout mice was confirmed by Western blotting. As a result, it was confirmed that the expression of Tex19 disappeared in Tex19 − / − mice (FIG. 2, D).

実施例4: Tex19ノックアウトマウスの表現型
こうして作製したTex19ノックアウトマウスは、以下の表1に示されるように、正常な表現型を有する成体に成長したが、その全ての系において雄は不稔性であった。又、Tex19-/-ノックアウトマウスの雄(8週零)では精巣の大きさにかなりの減少が見られた(図2、E)。以上の結果は、Tex19が多能性には関与せず、精子形成に関与していることを示すものである。
Example 4: Phenotype of Tex19 Knockout Mice Tex19 knockout mice generated in this way grew to adults with a normal phenotype as shown in Table 1 below, but in all of the strains males were sterile. Met. In Tex19 − / − knockout mice (8 weeks zero), there was a considerable decrease in testicular size (FIG. 2, E). The above results indicate that Tex19 is not involved in pluripotency but is involved in spermatogenesis.

実施例5: Tex19ノックアウトマウスの組織学分析
組織学分析の結果から、Tex19ノックアウトマウスの8週零及び20週零の成体の精巣では、多数の分裂細胞が含まれるものの、減数分裂細胞の数は僅かであることが判る(図2、F)。因みに、これに類似した表現型は、検討した中の最高齢であった56週零のマウスで観察された。又、Tex19ノックアウトマウスのセルトリ細胞には特に異常は見られなかった。
Example 5: Histological analysis of Tex19 knockout mice From the results of histological analysis, the adult testes of Tex19 knockout mice at 0 weeks and 0 weeks contain many dividing cells, but the number of meiotic cells is It turns out that it is few (FIG. 2, F). Incidentally, a similar phenotype was observed in the 56-week-old mice, the oldest being studied. No particular abnormality was found in Sertoli cells of Tex19 knockout mice.

更に、半定量的RT−PCRの結果から、セルトリ細胞から分泌される精原幹細胞支持因子である「Gdnf」の発現にTex19-/-マウス及び正常マウスで相違が見られなかった。一方、これに対して、分化マーカーであるOppo1遺伝子の発現が全く見られないこと、Calmegin, Haspin遺伝子の発現量が減少していることから、発生の初期段階において精原細胞の分化が停止していることが判った(図2、G)。 Furthermore, from the results of semi-quantitative RT-PCR, there was no difference in the expression of “Gdnf”, a spermatogonial stem cell supporting factor secreted from Sertoli cells, between Tex19 − / − mice and normal mice. On the other hand, the expression of Oppo1 gene, which is a differentiation marker, is not observed at all, and the expression level of Calmegin and Haspin genes is decreased, so that differentiation of spermatogonia is stopped at the early stage of development. (Fig. 2, G).

実施例6: 移植実験
Tex19-/-マウスの精巣に見られた異常を確認するために、移植実験を行った。即ち、増強緑蛍光タンパク質(EGFP)遺伝子を導入するために、C57BL/6-トランスジェニック(GAG-EGFP)マウス(Okabe et al., 1997)(SLC, Hamamatsu, Japan)と雌性Tex19-/-マウスを交尾させた。移植操作は当業者に公知の方法で実施した(Ogawa et al., 1997)。上記交尾の結果得られた、5週齢のEGFPトランスジェニックTex19-/-マウスから得た細胞を、内因性精子形成能のない8週齢のWBB6F1-W/Wvマウス(日本SLCより入手、Ogawa et al., 1997)の精巣に移植した。移植後8週間に移植マウスを殺し、精巣細胞を蛍光分析及びフローサイトメトリー分析で検討した。
Example 6: Transplantation experiment
In order to confirm the abnormalities observed in the testis of Tex19 − / − mice, transplantation experiments were conducted. That is, in order to introduce the enhanced green fluorescent protein (EGFP) gene, C57BL / 6-transgenic (GAG-EGFP) mice (Okabe et al., 1997) (SLC, Hamamatsu, Japan) and female Tex19 − / − mice Were mated. Transplantation was performed by methods known to those skilled in the art (Ogawa et al., 1997). Cells obtained from 5-week-old EGFP transgenic Tex19 − / − mice obtained as a result of the above mating were used as 8-week-old WBB6F1-W / Wv mice (obtained from Japan SLC, Ogawa et al., 1997). Eight weeks after transplantation, the transplanted mice were killed, and testis cells were examined by fluorescence analysis and flow cytometry analysis.

精巣細胞のHE染色(図3、A)及び、GFP蛍光(図3、B上)により、GFP陽性である細精管が受容マウスの精巣内に形成されたことが確認された。又、GFP陽性細胞は細精管の基底膜に沿って点在していることが確認された(図3、B下)。更に、抗GATA1抗体によるセルトリ細胞の免疫組織学分析(Yomogida et al., 1994)の結果、Tex19遺伝子の破壊によっても精子形成を支持する系には影響がないことが判明した。   Testicular cell HE staining (FIG. 3, A) and GFP fluorescence (FIG. 3, B top) confirmed that GFP-positive tubules were formed in the testes of recipient mice. It was also confirmed that GFP positive cells were scattered along the basement membrane of the seminiferous tubule (FIG. 3, B bottom). Furthermore, as a result of immunohistochemical analysis of Sertoli cells with anti-GATA1 antibody (Yomogida et al., 1994), it was found that disruption of the Tex19 gene does not affect the system supporting spermatogenesis.

実施例7: SSCにおけるTex19の局在
上記のTex19ノックアウトマウスはLacZ遺伝子が挿入されているので、LacZ陽性細胞をフローサイトメトリーで検出した。その結果、8週齢マウスにおいて睾丸細胞の約0.4+0.09%(n=4)がLacZ陽性であった。この割合はAs細胞の割合に類似していることから、このLacZ陽性細胞はSSCであると考えられる(Tegelenbosch and de Rooiji, 1993)。
Example 7: Localization of Tex19 in SSC Since the above Tex19 knockout mouse had the LacZ gene inserted, LacZ positive cells were detected by flow cytometry. As a result, about 0.4 + 0.09% (n = 4) of testicular cells were positive for LacZ in 8-week-old mice. Since this ratio is similar to the ratio of As cells, this LacZ positive cell is considered to be SSC (Tegelenbosch and de Rooiji, 1993).

更に、抗Plzf抗体及び抗Tex19抗体を用いた免疫組織化学的分析を実施した。その結果、8週齢のマウスの精巣において、Tex19陽性細胞は抗Plzf抗体でも染色され、少数の陽性細胞は基底膜の近傍に観察された(図4、A)。これに対して、2週齢のマウスの精巣では相当数の陽性細胞が観察された。   Furthermore, immunohistochemical analysis using anti-Plzf antibody and anti-Tex19 antibody was performed. As a result, in the testis of 8-week-old mice, Tex19 positive cells were also stained with anti-Plzf antibody, and a small number of positive cells were observed in the vicinity of the basement membrane (FIG. 4, A). In contrast, a considerable number of positive cells were observed in the testis of 2-week-old mice.

8週齢のTex19+/- マウス及びTex19-/- マウスの精巣からLacZ陽性細胞をFACSによって取得した。こうして得られたLacZ陽性細胞の定量的リアルタイムRNA分析を行った結果、このLacZ陽性細胞にはSSCが多量に含まれていることが判明した。即ち、図4、Bに示されるように、SSCのマーカーである、Plzf, Ret及び Ngn3の発現が非常に高く、これに対して、精子形成マーカーであるCalmegin 及びOppo1の発現は殆ど見られなかった(Ikawa et al., 1997; Nakamura et al., 2002; Tanaka et al., 1999)。 LacZ positive cells were obtained by FACS from the testis of 8 week old Tex19 +/− and Tex19 − / − mice. As a result of quantitative real-time RNA analysis of the LacZ positive cells thus obtained, it was found that the LacZ positive cells contained a large amount of SSC. That is, as shown in FIG. 4B, the expression of Sz markers Plzf, Ret and Ngn3 is very high, whereas the expression of spermatogenesis markers Calmegin and Oppo1 is hardly seen. (Ikawa et al., 1997; Nakamura et al., 2002; Tanaka et al., 1999).

実施例8:トランスクリプトーム分析
8週齢のTex19+/- マウス及びTex19-/- マウスの精巣からFACSによって取得した約500個のLacZ陽性細胞(全RNA量:約5ng)を出発材料として用いてHiCEP法によるトランスクリプトーム分析を実施した。その結果、約30,000種類の転写物を定量的に検出できた。Tex19+/- マウスとTex19-/- マウスとの間で発現量に3倍以上の差が見られるものを挙げた(表2)。正常分化精巣で発現されることが知られている「4921525O09Rik」の発現がTex19-/- マウスではTex19+/- マウスに比べて10分の1以下に減少していることから、Tex19-/- マウスのSSCには分化能力に欠陥のあることが示された。一方で、Akt3 及びTnks2の発現はTex19-/- マウスで3倍以上に増加していることから、SSCの多能性を維持のために必須であるGdnf1経路における異常が示唆された。
Example 8: Transcriptome analysis About 500 LacZ positive cells (total RNA amount: about 5 ng) obtained by FACS from testis of 8-week old Tex19 +/− mice and Tex19 − / − mice were used as starting materials. Transcriptome analysis by the HiCEP method was performed. As a result, about 30,000 kinds of transcripts could be detected quantitatively. Listed were those in which a difference of 3 times or more was observed in the expression level between Tex19 +/− mice and Tex19 − / − mice (Table 2). Since the expression of “4921525O09Rik”, which is known to be expressed in normal differentiated testis, is reduced to 1/10 or less in Tex19 − / − mice compared to Tex19 +/− mice, Tex19 − / − Mouse SSCs were shown to be defective in differentiation potential. On the other hand, the expression of Akt3 and Tnks2 increased three-fold or more in Tex19 − / − mice, suggesting an abnormality in the Gdnf1 pathway essential for maintaining the pluripotency of SSC.

実施例9:定量的RNA分析
8週齢のTex19+/- マウス及びTex19-/- マウスの精巣からFACSによって取得したLacZ陽性細胞を用いて定量的RNA分析を実施した。その結果、幹細胞関連遺伝子であるPlzf, Ret及び Ngn3のSSCにおける発現がTex19-/- マウスではTex19+/- マウスと比べて増大していることが判った(図5)。又、ハウスキーピング遺伝子群には差異は見られなかった。以上の結果から、Tex19-/- マウスのSSC細胞はTex19+/- マウスに比べて未成熟であることを示すものである。
Example 9: Quantitative RNA analysis Quantitative RNA analysis was performed using LacZ positive cells obtained by FACS from the testis of 8 week old Tex19 +/− and Tex19 − / − mice. As a result, it was found that the expression of stem cell-related genes Plzf, Ret and Ngn3 in SSC was increased in Tex19 − / − mice compared to Tex19 +/− mice (FIG. 5). In addition, no difference was observed in the housekeeping gene group. The above results indicate that Tex19 − / − mouse SSC cells are immature as compared to Tex19 +/− mice.

更に、実施例2におけるTex19ノックアウトマウスの作製の際に調製したTex19+/- ES細胞から当業者に公知の組み換え方法(Mortensen, et al., 1992)によって2つのTex19-/-ES細胞株を樹立した。これらを用いて、両対立遺伝子においてTex19が破壊された影響を調べた。その結果、Tex19の欠損によって、幹細胞マーカーであるNanog及びRex1の発現が増加したことが判った(図6)。 Furthermore, two Tex19 − / − ES cell lines were obtained from Tex19 +/− ES cells prepared in the production of the Tex19 knockout mouse in Example 2 by a recombination method known to those skilled in the art (Mortensen, et al., 1992). Established. These were used to examine the effect of Tex19 disruption on both alleles. As a result, it was found that the expression of stem cell markers Nanog and Rex1 increased due to the lack of Tex19 (FIG. 6).

尚、本明細書中で括弧内の数字で引用した公知文献は以下の通りである。
Araki, R., Fukumura, R., Sasaki, N., K asama, Y., Suzuki, N., Takahashi, H., Tabata, Y.,
Saito, T. and Abe, M. (2006). More than 40,000 transcripts, including novel and noncoding transcripts, in mouse embryonic stem cells. Stem Cells 24, 2522-2528.
Braydich-Stolle, L., Kostereva, N., Dym, M. and Hofmann, M. C. (2007). Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 304, 34-45.
Buaas, F. W., Kirsh, A. L., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., de
Rooij, D. G. and Braun, R. E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36, 647-652.
Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655.
Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Grotewold, L. and Smith, A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230-1234.
Costoya, J. A., Hobbs, R. M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K. E., Wolgemuth, D. J. and Pandolfi, P. P. (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36, 653-659.
Fukumura, R., Takahashi, H., Saito, T., Tsutsumi, Y., Fujimori, A., Sato, S., Tatsumi, K.,
Araki, R. and Abe, M. (2003). A sensitive transcriptome analysis method that can detect unknown transcripts. Nucleic Acids Res 31 , e94.
Hoshino, M., Sone, M., Fukata, M., Kuroda, S., Kaibuchi, K., Nabeshima, Y. and H ama, C.
(1999). Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J Biol Chem 274, 17837-17844.
Ikawa, M., Wada, I., Kominami, K., Watanabe, D., Toshimori, K., Nishimune, Y. and Okabe, M. (1 997). The putative chaperone calmegin is required for sperm fertility. Nature 387,
607-61 1 .
Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S.,
Kato, T., Kazuki, Y., Toyokuni, S. et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 11 9, 1 001-1 01 2.
Kuntz, S., Kieffer, E., Bianchetti, L., Lamoureux, N., Fuhrmann, G. and Viville, S. (2008).
Tex1 9, a mammalian-specific protein with a restricted expression in pluripotent stem cells and germ line. Stem Cells 26, 734-744.
Lee, J., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Kimura, T., Nakano, T., Ogura, A. and Shinohara, T. (2007). Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134, 1853-1 859.
Mitsui, K., Tokuzawa, Y., Itoh, H ., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642.
Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. and Seidman, J. G.
(1992). Production of homozygous mutant ES cells with a single targeting construct. Mol
Cell Biol 12, 2391-2395.
Mountford, P., Zevnik, B., Duwel, A., Nichols, J., Li, M., Dani, C., Robertson, M., Chambers, I. and Smith, A. (1994). Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci U S A 91 , 4303-4307.
Nagy, A., Gertsenstein, M., Vintersten, K. and Behringer, R. (2002). Manipulating the Mouse Embryo A Laboratory Manual 3rd edn. New York: Cold Spring Harbor Laboratory Press.
Nakamura, Y., Tanaka, H., Koga, M., Miyagawa, Y., Iguchi, N., Egydio de Carvalho, C.,
Yomogida, K., Nozaki, M., Nojima, H., Matsumiya, K. et al. (2002). Molecular cloning and characterization of oppo 1 : a haploid germ cell-specific complementary DNA encoding sperm tail protein. Biol Reprod 67, 1-7.
Naughton, C. K., Jain, S., Strickland, A. M., Gupta, A. and Milbrandt, J. (2006). Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74, 31 4-321.
Niwa, H., Miyazaki, J. and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-376.
Ogawa, T., Arechaga, J. M., Avarbock, M. R. and Brinster, R. L. (1997). Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41 , 111-122.
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. and Nishimune, Y. (1997). 'Green mice' as a source of ubiquitous green cells. FEBS Lett 407, 313-319.
Pan, G. and Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17, 42-49.
Raverot, G., Weiss, J., Park, S. Y., Hurley, L. and Jameson, J. L. (2005). Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283, 21 5-225.
Suzuki, S., Ono, R., Narita, T., Pask, A. J., Shaw, G., Wang, C., Kohda, T., Alsop, A. E.,
Marshall Graves, J. A., Kohara, Y. et al. (2007). Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 3, e55.
Tanaka, H., Yoshimura, Y., Nozaki, M., Yomogida, K., Tsuchida, J., Tosaka, Y., Habu, T.,
Nakanishi, T., Okada, M., Nojima, H. et al. (1 999). Identification and characterization of a haploid germ cell-specific nuclear protein kinase (Haspin) in spermatid nuclei and its effects on somatic cells. J Biol Chem 274, 17049-17057.
Tegelenbosch, R. A. and de Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290,
1 93-200.
Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D. N., Theunissen, T. W. and Orkin, S. H.
(2006). A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364-368.
Wang, P. J., McCarrey, J. R., Yang, F. and Page, D. C. (2001). An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27, 422-426.
Yomogida, K., Ohtani, H., Harigae, H., Ito, E., Nishimune, Y., Engel, J. D. andYamamoto, M. (1 994). Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development 120, 1 759-1 766.
Yoshida, S., Takakura, A., Ohbo, K., Abe, K., Wakabayashi, J., Yamamoto, M., Suda, T. and Nabeshima, Y. (2004). Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269, 447-458.
Yoshimizu, T., Sugiyama, N., De Felice, M., Yeom, Y. I., Ohbo, K., Masuko, K., Obinata, M., Abe, K., Scholer, H. R. and Matsui, Y. (1999). Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 41 , 675-684.
Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A., and Seidman, J. G. (1992). Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol 12, 2391-2395.
In addition, the well-known literature quoted with the number in a parenthesis in this specification is as follows.
Araki, R., Fukumura, R., Sasaki, N., K asama, Y., Suzuki, N., Takahashi, H., Tabata, Y.,
Saito, T. and Abe, M. (2006) .More than 40,000 transcripts, including novel and noncoding transcripts, in mouse embryonic stem cells.Stem Cells 24, 2522-2528.
Braydich-Stolle, L., Kostereva, N., Dym, M. and Hofmann, MC (2007) .Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation.Dev Biol 304, 34-45.
Buaas, FW, Kirsh, AL, Sharma, M., McLean, DJ, Morris, JL, Griswold, MD, de
Rooij, DG and Braun, RE (2004) .Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36, 647-652.
Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Cell 113, 643-655.
Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Grotewold, L. and Smith, A. ( 2007) .Nanog safeguards pluripotency and mediates germline development.Nature 450, 1230-1234.
Costoya, JA, Hobbs, RM, Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, KE, Wolgemuth, DJ and Pandolfi, PP (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36, 653-659.
Fukumura, R., Takahashi, H., Saito, T., Tsutsumi, Y., Fujimori, A., Sato, S., Tatsumi, K.,
Araki, R. and Abe, M. (2003) .A sensitive transcriptome analysis method that can detect unknown transcripts.Nucleic Acids Res 31, e94.
Hoshino, M., Sone, M., Fukata, M., Kuroda, S., Kaibuchi, K., Nabeshima, Y. and H ama, C.
(1999). Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J Biol Chem 274, 17837-17844.
Ikawa, M., Wada, I., Kominami, K., Watanabe, D., Toshimori, K., Nishimune, Y. and Okabe, M. (1 997). The putative chaperone calmegin is required for sperm fertility. Nature 387,
607-61 1.
Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S.,
Kato, T., Kazuki, Y., Toyokuni, S. et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis.Cell 11 9, 1 001-1 01 2.
Kuntz, S., Kieffer, E., Bianchetti, L., Lamoureux, N., Fuhrmann, G. and Viville, S. (2008).
Tex1 9, a mammalian-specific protein with a restricted expression in pluripotent stem cells and germ line.Stem Cells 26, 734-744.
Lee, J., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Kimura, T., Nakano, T., Ogura, A. and Shinohara, T (2007). Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134, 1853-1 859.
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell 113, 631-642.
Mortensen, RM, Conner, DA, Chao, S., Geisterfer-Lowrance, AA and Seidman, JG
(1992). Production of homozygous mutant ES cells with a single targeting construct. Mol
Cell Biol 12, 2391-2395.
Mountford, P., Zevnik, B., Duwel, A., Nichols, J., Li, M., Dani, C., Robertson, M., Chambers, I. and Smith, A. (1994). Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression.Proc Natl Acad Sci USA 91, 4303-4307.
Nagy, A., Gertsenstein, M., Vintersten, K. and Behringer, R. (2002). Manipulating the Mouse Embryo A Laboratory Manual 3rd edn. New York: Cold Spring Harbor Laboratory Press.
Nakamura, Y., Tanaka, H., Koga, M., Miyagawa, Y., Iguchi, N., Egydio de Carvalho, C.,
Yomogida, K., Nozaki, M., Nojima, H., Matsumiya, K. et al. (2002). Molecular cloning and characterization of oppo 1: a haploid germ cell-specific complementary DNA encoding sperm tail protein. Biol Reprod 67 , 1-7.
Naughton, CK, Jain, S., Strickland, AM, Gupta, A. and Milbrandt, J. (2006) .Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate.Biol Reprod 74, 31 4- 321.
Niwa, H., Miyazaki, J. and Smith, AG (2000) .Quantitative expression of Oct-3 / 4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-376.
Ogawa, T., Arechaga, JM, Avarbock, MR and Brinster, RL (1997) .Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41, 111-122.
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. and Nishimune, Y. (1997). 'Green mice' as a source of ubiquitous green cells.FEBS Lett 407, 313-319.
Pan, G. and Thomson, JA (2007) .Nanog and transcriptional networks in embryonic stem cell pluripotency.Cell Res 17, 42-49.
Raverot, G., Weiss, J., Park, SY, Hurley, L. and Jameson, JL (2005) .Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283, 21 5-225.
Suzuki, S., Ono, R., Narita, T., Pask, AJ, Shaw, G., Wang, C., Kohda, T., Alsop, AE,
Marshall Graves, JA, Kohara, Y. et al. (2007). Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.PLoS Genet 3, e55.
Tanaka, H., Yoshimura, Y., Nozaki, M., Yomogida, K., Tsuchida, J., Tosaka, Y., Habu, T.,
Nakanishi, T., Okada, M., Nojima, H. et al. (1 999) .Identification and characterization of a haploid germ cell-specific nuclear protein kinase (Haspin) in spermatid nuclei and its effects on somatic cells.J Biol Chem 274, 17049-17057.
Tegelenbosch, RA and de Rooij, DG (1993) .A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H / 101 F1 hybrid mouse.Mutat Res 290,
1 93-200.
Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, DN, Theunissen, TW and Orkin, SH
(2006) .A protein interaction network for pluripotency of embryonic stem cells.Nature 444, 364-368.
Wang, PJ, McCarrey, JR, Yang, F. and Page, DC (2001). An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27, 422-426.
Yomogida, K., Ohtani, H., Harigae, H., Ito, E., Nishimune, Y., Engel, JD and Yamamoto, M. (1 994). Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA -1 in mouse Sertoli cells.Development 120, 1 759-1 766.
Yoshida, S., Takakura, A., Ohbo, K., Abe, K., Wakabayashi, J., Yamamoto, M., Suda, T. and Nabeshima, Y. (2004). Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis.Dev Biol 269, 447-458.
Yoshimizu, T., Sugiyama, N., De Felice, M., Yeom, YI, Ohbo, K., Masuko, K., Obinata, M., Abe, K., Scholer, HR and Matsui, Y. (1999 ). Germline-specific expression of the Oct-4 / green fluorescent protein (GFP) transgene in mice.Dev Growth Differ 41, 675-684.
Mortensen, RM, Conner, DA, Chao, S., Geisterfer-Lowrance, AA, and Seidman, JG (1992) .Production of homozygous mutant ES cells with a single targeting construct.Mole Cell Biol 12, 2391-2395.

本発明の結果から、Tex19遺伝子産物は、幹細胞における分化のメディエーターとして機能し、幹細胞(多能性)の維持に必要な遺伝子を抑制していることが考えられる。従って、Tex19遺伝子の機能等に関する研究が、幹細胞における多能性の維持及び分化の機能の解明に大いに役立つものと期待される。   From the results of the present invention, it is considered that the Tex19 gene product functions as a mediator of differentiation in stem cells and suppresses genes necessary for maintaining stem cells (pluripotency). Therefore, it is expected that research on the function of the Tex19 gene will greatly help elucidate the function of maintaining pluripotency and differentiation in stem cells.

Claims (15)

幹細胞におけるTex19遺伝子の発現量の変動を測定することにより、該幹細胞の多能性又は分化能を判定又は検出する方法。 A method for determining or detecting the pluripotency or differentiation potential of a stem cell by measuring a change in the expression level of the Tex19 gene in the stem cell. (1)幹細胞に被検物質を接触させる工程、及び(2)該幹細胞におけるTex19遺伝子の発現量の変動を測定する工程を含む、該幹細胞の多能性を維持若しくは阻害する物質、又は、該幹細胞の分化能を増大若しくは阻害する物質をスクリーニングする方法。 A substance that maintains or inhibits the pluripotency of the stem cell, comprising: (1) contacting a test substance with the stem cell; and (2) measuring a change in the expression level of the Tex19 gene in the stem cell, or A method for screening for a substance that increases or inhibits the differentiation potential of stem cells. Tex19遺伝子の発現量の変動を該遺伝子のmRNAの発現量に基づき測定することを特徴とする、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the variation in the expression level of the Tex19 gene is measured based on the expression level of mRNA of the gene. Tex19遺伝子の発現量の変動をHiCEP法に基づき作製される遺伝子発現プロファイルから求めることを特徴とする、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the variation in the expression level of the Tex19 gene is determined from a gene expression profile produced based on the HiCEP method. Tex19遺伝子の発現量の変動をTex19遺伝子のmRNAの発現量をPCRで測定することを特徴とする、請求項1〜4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the variation in the expression level of the Tex19 gene is measured by PCR with respect to the expression level of the mRNA of the Tex19 gene. Tex19遺伝子の発現量の変動を該遺伝子産物(蛋白質)の発現量に基づき測定することを特徴とする、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the variation in the expression level of the Tex19 gene is measured based on the expression level of the gene product (protein). Tex19蛋白質の発現量をウェスタンブロット法で測定することを特徴とする、請求項6記載の方法。 The method according to claim 6, wherein the expression level of Tex19 protein is measured by Western blotting. 幹細胞が精原幹細胞である、請求項1〜7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the stem cell is a spermatogonial stem cell. 精原幹細胞が成体の精巣由来である、請求項8に記載の方法。 9. The method according to claim 8, wherein the spermatogonial stem cell is derived from an adult testis. 幹細胞が胚性幹細胞である、請求項1〜7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the stem cell is an embryonic stem cell. 幹細胞がiPS細胞である、請求項1〜7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the stem cell is an iPS cell. Tex19遺伝子の発現産物から成る、精原幹細胞における精子形成能の検出マーカー。 A detection marker for the ability to form spermatozoa in spermatogonial stem cells, comprising an expression product of the Tex19 gene. Tex19遺伝子の発現産物が、該遺伝子のmRNA,cDNA,若しくは、それらの部分塩基配列を含む核酸分子、又は、該遺伝子がコードする蛋白質又はその部分ポリペプチドである、請求項12記載の検出マーカー。 The detection marker according to claim 12, wherein the expression product of the Tex19 gene is a nucleic acid molecule containing mRNA, cDNA, or a partial base sequence thereof, or a protein encoded by the gene or a partial polypeptide thereof. 請求項1〜11のいずれか一項に記載のスクリーニング方法に用いるスクリーニングキットであって、Tex19遺伝子の発現産物と特異的に反応する化合物を含む該キット。 It is a screening kit used for the screening method as described in any one of Claims 1-11, Comprising: This kit containing the compound which reacts specifically with the expression product of Tex19 gene. (1)Tex19ノックアウト動物に被検物質を投与する工程、及び(2)該ノックアウト動物の精子形成を検出する工程を含む、雄性不稔性、精子形成不全(異常)又は精原幹細胞の分化停止(低下)に関連する疾患に対する治療薬となり得る物質をスクリーニングする方法。 (1) administering a test substance to a Tex19 knockout animal, and (2) detecting spermatogenesis in the knockout animal, male sterility, spermatogenesis dysplasia (abnormal), or spermatogonial stem cell differentiation arrest A method of screening a substance that can be a therapeutic agent for a disease associated with (decrease).
JP2009016246A 2009-01-28 2009-01-28 Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell Pending JP2010172225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016246A JP2010172225A (en) 2009-01-28 2009-01-28 Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016246A JP2010172225A (en) 2009-01-28 2009-01-28 Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell

Publications (1)

Publication Number Publication Date
JP2010172225A true JP2010172225A (en) 2010-08-12

Family

ID=42703775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016246A Pending JP2010172225A (en) 2009-01-28 2009-01-28 Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell

Country Status (1)

Country Link
JP (1) JP2010172225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014929A1 (en) 2011-07-25 2013-01-31 Kyoto University Method for screening induced pluripotent stem cells
CN104894259A (en) * 2015-06-01 2015-09-09 北京泱深生物信息技术有限公司 Application of TEX19 gene in diagnosis and treatment of biliary duct cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118791A1 (en) * 2004-06-03 2005-12-15 National Institute Of Radiological Sciences Exhaustive gene expression profiling analysis using microsample
WO2006004201A1 (en) * 2004-07-01 2006-01-12 Eisai R & D Management Co., Ltd. Nerve reveneration promoter
JP2007252370A (en) * 2006-02-22 2007-10-04 Institute Of Physical & Chemical Research Il-4 initial expression-based transgenic non-human animal and use of the same
JP2007259795A (en) * 2006-03-29 2007-10-11 Natl Inst Of Radiological Sciences Polynucleotide in dna specifically expressing in pluripotent cell
WO2008149807A1 (en) * 2007-05-30 2008-12-11 Kumamoto University Method for induction of differentiation of es cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118791A1 (en) * 2004-06-03 2005-12-15 National Institute Of Radiological Sciences Exhaustive gene expression profiling analysis using microsample
WO2006004201A1 (en) * 2004-07-01 2006-01-12 Eisai R & D Management Co., Ltd. Nerve reveneration promoter
JP2007252370A (en) * 2006-02-22 2007-10-04 Institute Of Physical & Chemical Research Il-4 initial expression-based transgenic non-human animal and use of the same
JP2007259795A (en) * 2006-03-29 2007-10-11 Natl Inst Of Radiological Sciences Polynucleotide in dna specifically expressing in pluripotent cell
WO2008149807A1 (en) * 2007-05-30 2008-12-11 Kumamoto University Method for induction of differentiation of es cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013040982; KUNTZ, S., et al.: STEM CELLS 26, 2008, pp.734-744 *
JPN6013040983; OELLINGER, R., et al.: PLoS Genet 4(9), 200809, e1000199 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014929A1 (en) 2011-07-25 2013-01-31 Kyoto University Method for screening induced pluripotent stem cells
EP2737064A4 (en) * 2011-07-25 2015-08-12 Univ Kyoto Method for screening induced pluripotent stem cells
US9677141B2 (en) 2011-07-25 2017-06-13 Kyoto University Method for screening induced pluripotent stem cells
AU2012288249B2 (en) * 2011-07-25 2017-06-22 Kyoto University Method for screening induced pluripotent stem cells
US9938585B2 (en) 2011-07-25 2018-04-10 Kyoto University Method for screening induced pluripotent stem cells
EP3305899A1 (en) * 2011-07-25 2018-04-11 Kyoto University Method for screening induced pluripotent stem cells
CN107988381A (en) * 2011-07-25 2018-05-04 国立大学法人京都大学 The method for screening the multipotential stem cell of induction
US10385407B2 (en) 2011-07-25 2019-08-20 Kyoto University Method for screening induced pluripotent stem cells
EP3608423A1 (en) * 2011-07-25 2020-02-12 Kyoto University Method for screening induced pluripotent stem cells
CN107988381B (en) * 2011-07-25 2021-05-28 国立大学法人京都大学 Method for screening induced pluripotent stem cells
CN104894259A (en) * 2015-06-01 2015-09-09 北京泱深生物信息技术有限公司 Application of TEX19 gene in diagnosis and treatment of biliary duct cancer

Similar Documents

Publication Publication Date Title
Yatsenko et al. Genetics of human female infertility
EP2606152B1 (en) Methods for determining the presence or risk of developing facioscapulohumeral dystrophy (fshd)
US20210102251A1 (en) Methods for telomere length and genomic dna quality control analysis in pluripotent stem cells
Dion et al. SMCHD1 is involved in de novo methylation of the DUX4-encoding D4Z4 macrosatellite
Washkowitz et al. Mga is essential for the survival of pluripotent cells during peri-implantation development
AU2012343826A1 (en) Haploid cells
US20210198697A1 (en) Methods for making and using modified oocytes
Toolee et al. Roles for Kisspeptin in proliferation and differentiation of spermatogonial cells isolated from mice offspring when the cells are cocultured with somatic cells
US7842783B2 (en) Mouse spermatogenesis genes related to human male sterility
JP2010172225A (en) Method for deciding or detecting pluripotency or differentiation postency in stem cell on basis of variation of amount of expression of tex19 gene in the stem cell
US20100144549A1 (en) Parthenote-derived stem cells and methods of making and using them
Fu et al. Repression of FGF signaling is responsible for Dnmt3b inhibition and impaired de novo DNA methylation during early development of in vitro fertilized embryos
Meng et al. Maternal EHMT2 is essential for homologous chromosome segregation by regulating Cyclin B3 transcription in oocyte meiosis
Ademi et al. Expression of Wnt5a defines the major progenitors of fetal and adult Leydig cells
US20200131473A1 (en) Method of generating 2 cell-like stem cells
US12116404B2 (en) antiRPS4Y1 mAb
US20210332436A1 (en) Stem cell-based multiplex methods and compositions
Raymond Uncovering non-canonical functions for the E3 ubiquitin ligase UBR2 in the mouse
KR20170141505A (en) Methods for obtaining matured oocytes from immatured oocytes using Rad51 protein
Alcaine Colet Identification and characterization of the molecular pathways regulating the cell cycle-linked pluripotency exit
Berchowitz et al. The Retrotransposon-Derived Capsid Genes PNMA1 and PNMA4 Maintain Reproductive Capacity
Wood et al. Two retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity
JP2024510965A (en) Markers specific to pluripotent stem cells and their use
Rogers Expression and functional analysis of SOX3 in murine neurogenesis.
Cheng et al. CHD7 in oocytes is essential for female fertility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318