JP2010172120A - Method and device for determining wire connection state of three-phase power supply - Google Patents

Method and device for determining wire connection state of three-phase power supply Download PDF

Info

Publication number
JP2010172120A
JP2010172120A JP2009013035A JP2009013035A JP2010172120A JP 2010172120 A JP2010172120 A JP 2010172120A JP 2009013035 A JP2009013035 A JP 2009013035A JP 2009013035 A JP2009013035 A JP 2009013035A JP 2010172120 A JP2010172120 A JP 2010172120A
Authority
JP
Japan
Prior art keywords
phase
connection state
voltage signal
power supply
phase power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013035A
Other languages
Japanese (ja)
Other versions
JP5360754B2 (en
Inventor
Naoki Yumiyama
直樹 弓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Electrical Instruments Works Ltd
Original Assignee
Kyoritsu Electrical Instruments Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Electrical Instruments Works Ltd filed Critical Kyoritsu Electrical Instruments Works Ltd
Priority to JP2009013035A priority Critical patent/JP5360754B2/en
Publication of JP2010172120A publication Critical patent/JP2010172120A/en
Application granted granted Critical
Publication of JP5360754B2 publication Critical patent/JP5360754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire connection state determining device embodying a wire connection state determining method for a three-phase power supply that surely determines a wire connection state (phase interruption or a live wire) of a three-phase power supply in a short period of measurement time. <P>SOLUTION: A non-contact sensor 16 is arranged close to each conductor 14 to be measured of an R-phase, an S-phase, and a T-phase of a three-phase power supply being a determination target of a wire connection state. The non-contact sensor acquires a correlation voltage signal of each phase flowing in each conductor 14 to be measured. A differential voltage generating means 17c generates a differential voltage between the R-phase and the S-phase, a differential voltage between the S-phase and the T-phase, and a differential voltage between the T-phase and the R-phase respectively after the correlation voltage signal of each phase passes through a low-pass filter 17a and a buffer 17b. Each differential voltage is inputted to each A/D converter input port AN0-2 of a microcomputer 18. An amplitude level pattern of each differential voltage signal is compared with preset wire connection state determination conditions so as to determine the wire connection state of the three-phase power supply and to notify the determination result by a notification circuit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、三相電源の欠相及び活線を検出する結線状態判定方法と、この方法を具現化した結線状態判定装置に関するものである。   The present invention relates to a connection state determination method for detecting an open phase and a live line of a three-phase power supply, and a connection state determination device that embodies this method.

従来より、三相電源の欠相を検出する方法として、各相の位相差を監視して規定の差を保持しているかどうかを検出する方法が一般に行われている。例えば、三相電源の各相(R相、T相、S相)の各出力を、フォトカプラを介して2値パルスに変換し、マイクロコンピュータの割り込み入力端子へ各々入力し、各相の電圧変化によるON/OFFでマイクロコンピュータに割り込みを行い、各相の割り込み発生タイミングから各相の位相差を検出するものがある(例えば、特許文献1を参照)。   Conventionally, as a method for detecting an open phase of a three-phase power source, a method for detecting whether or not a prescribed difference is maintained by monitoring a phase difference of each phase is generally performed. For example, the output of each phase (R phase, T phase, S phase) of a three-phase power supply is converted into a binary pulse via a photocoupler and input to the interrupt input terminal of the microcomputer. There is one that interrupts the microcomputer by ON / OFF due to change and detects the phase difference of each phase from the interrupt generation timing of each phase (see, for example, Patent Document 1).

このような位相差検出装置では、三相出力が各々120度の位相差をもった三相パルス電圧となってマイクロコンピュータの各割り込み入力端子へ入力され、三相パルスの立ち下がり(または、立ち上がり)で割り込みを発生するように設定されており、ある相の割り込み入力端子に入力されたパルスで割り込みが発生すると、この割り込みをトリガとして内蔵タイマを作動させ、他の2つの相で割り込みが発生するまでの時間T1,T2を測定し、計測時間T1,T2に基づいて欠相を判定するのである。   In such a phase difference detection device, the three-phase output becomes a three-phase pulse voltage having a phase difference of 120 degrees and is input to each interrupt input terminal of the microcomputer, and the falling (or rising) of the three-phase pulse is detected. ) Is set to generate an interrupt. When an interrupt is generated by a pulse input to an interrupt input terminal of a certain phase, the internal timer is activated using this interrupt as a trigger, and an interrupt is generated in the other two phases. Times T1 and T2 until measurement are measured, and the phase loss is determined based on the measurement times T1 and T2.

例えば、交流周波数が50Hzの場合には、T1≒3.3(ms),T2≒6.7(ms)で欠相無しと判定でき、60Hzの場合には、T1≒2.8(ms),T2≒5.6(ms)で欠相無しと判定できる。一方、欠相が1つある場合には、2つの相が同相となり、残りの1相が180°位相のずれた反転波形となる。このとき、どの相が同相となるかは、接続されている負荷によって変わるが、マイクロコンピュータからみれば、特別な差はなく、T1=T2(50Hzの場合、T1=T2=10〔ms〕、60Hzの場合、T1=T2=8.3〔ms〕)となる。   For example, when the AC frequency is 50 Hz, it can be determined that there is no phase loss at T1≈3.3 (ms) and T2≈6.7 (ms), and when 60 Hz, T1≈2.8 (ms). , T2≈5.6 (ms), it can be determined that there is no phase loss. On the other hand, when there is one open phase, the two phases are in phase, and the remaining one phase has an inverted waveform that is 180 ° out of phase. At this time, which phase is in phase varies depending on the connected load, but from the viewpoint of the microcomputer, there is no particular difference. T1 = T2 (in the case of 50 Hz, T1 = T2 = 10 [ms], In the case of 60 Hz, T1 = T2 = 8.3 [ms]).

また、欠相及び活線の状態を検出する検電器として、被検電部との接触によりその被検電部と電気的に接続される検知子を本体部の先端に設けるとともに、本体部の基端から延びる絶縁性の握り部を具備し、本体部内には、検知回路部のアース端子部と電気的に接続された微小なアース電極を設け、握り部を作業者が把持した状態で本体部の先端にある検知子を被検電部に接触させると、被検電部が活線状態にある場合には、対地電圧Eに対して、検知子→検知回路部→アース電極と人体(作業者)間に形成される浮遊静電容量C1→人体→人体と対地間に形成される浮遊静電容量C2→大地の経路でもって閉回路が形成され、静電誘導電流iが流れるため、その検出信号に基づいて被検電部の結線状態を検知回路部で検出するものがある(例えば、特許文献2を参照)。この検電器では、ブザーによる発音やLED等による発光で、被検電部の活線状態を報知するものとなっている。   In addition, as a voltage detector that detects the state of the open phase and the live wire, a detector that is electrically connected to the power detection unit by contact with the power detection unit is provided at the tip of the main body unit, An insulating grip extending from the base end is provided, and a small ground electrode electrically connected to the ground terminal portion of the detection circuit is provided in the main body, and the main body is gripped by the operator. When the detector at the tip of the contact portion is brought into contact with the power-to-be-tested portion, when the power-tested portion is in a live line state, with respect to the ground voltage E, the detector → the detection circuit portion → the ground electrode and the human body ( Since the closed circuit is formed by the path of the floating capacitance C1 formed between the worker) → the human body → the floating capacitance C2 formed between the human body and the ground → the ground, and the electrostatic induction current i flows, There is one in which the detection circuit unit detects the connection state of the power detection unit based on the detection signal ( Example, see Patent Document 2). In this voltage detector, the live line state of the voltage detection unit is notified by sound generation by a buzzer or light emission by an LED or the like.

特開2003−153429号公報JP 2003-153429 A 特開2002−148287号公報JP 2002-148287 A

しかしながら、特許文献1に記載された従来の欠相検出装置では、パルス電圧の立ち下がり(立ち上がり)で各相の位相差を測定するため、マイクロコンピュータに入力する波形にノイズがランダムに重畳すると、ノイズをパルスの立ち下がり(立ち上がり)として誤った位相差を測定してしまい、かつ電圧不平衡による位相のずれが生じた場合にも曖昧な値を測定するため、三相電源の結線状態を適切に判定できないという課題がある。   However, in the conventional phase loss detection device described in Patent Document 1, in order to measure the phase difference of each phase at the fall (rise) of the pulse voltage, when noise is randomly superimposed on the waveform input to the microcomputer, In order to measure an ambiguous value even when a phase shift due to voltage imbalance occurs due to noise being measured as the falling edge of the pulse (rising edge), the connection state of the three-phase power supply is appropriate. There is a problem that it cannot be judged.

また、特許文献2に記載された従来の検電器で採用されている活線状態検出技術を使って、三相電源の活線状態を判定しようとした場合には、発生した静電誘導電流が被検電部から対地までの間に人体(作業者)を経由するため、被検電部−作業者−対地間それぞれの接している状態や外的要因により測定される電圧が安定せず、測定値を電圧波形に置き換えた場合に、ノイズが測定波形に重畳する不具合が起こるため、三相電源の活線状態を適切に判定することができないという課題をかかえるものであった。   In addition, when trying to determine the hot line state of a three-phase power source using the hot line state detection technique employed in the conventional voltage detector described in Patent Document 2, the generated electrostatic induction current is Since the human body (worker) is routed between the power-tested part and the ground, the voltage measured due to the state of contact between the power-tested part-worker-ground and external factors is not stable, When the measured value is replaced with a voltage waveform, there is a problem in that noise is superimposed on the measured waveform, which causes a problem that the live line state of the three-phase power source cannot be properly determined.

本発明はこのような従来の課題を解決するものであり、短い測定時間で確実に三相電源の結線状態(欠相や活線)を判定できる三相電源の結線状態判定方法と、この方法を具現化した結線状態判定装置の提供を目的とする。   The present invention solves such a conventional problem, and a method for determining a connection state of a three-phase power supply that can reliably determine the connection state (open phase or live line) of the three-phase power supply in a short measurement time, and this method An object of the present invention is to provide a connection state determination device that embodies the above.

上記の課題を解決するために、請求項1に係る三相電源の結線状態判定方法は、三相電源における各相の相関電圧信号を取得し、各相の電圧信号の差である3種類の差電圧信号を生成し、1周期以上の測定期間継続して各差電圧信号を測定し、三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定するようにしたことを特徴とする。   In order to solve the above-described problem, a connection state determination method for a three-phase power supply according to claim 1 acquires a correlation voltage signal of each phase in the three-phase power supply, and obtains three types of voltage signals that are differences between the voltage signals of each phase. A differential voltage signal is generated, each differential voltage signal is measured continuously for a measurement period of one cycle or more, and preset based on an amplitude level pattern of each differential voltage signal generated according to the connection state of the three-phase power source It is characterized in that the connection state of the three-phase power source is determined by determining the amplitude level pattern of each differential voltage signal within the measurement period under the connection state determination condition.

また、請求項2に係る三相電源の結線状態判定装置は、三相電源における各相の相関電圧信号を取得する相信号取得手段と、前記相信号取得手段により取得した各相の電圧信号の差である3種類の差電圧信号を生成する差電圧信号生成手段と、前記三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定する結線状態判定手段と、を備えることを特徴とする。   According to a second aspect of the present invention, there is provided a three-phase power connection state determining apparatus, comprising: a phase signal acquiring unit that acquires a correlation voltage signal of each phase in a three-phase power source; and a voltage signal of each phase acquired by the phase signal acquiring unit. Difference voltage signal generation means for generating three types of difference voltage signals as differences, and connection state determination conditions set in advance based on the amplitude level pattern of each difference voltage signal generated according to the connection state of the three-phase power supply And a connection state determination means for determining the connection state of the three-phase power supply by determining the amplitude level pattern of each differential voltage signal within the measurement period.

請求項1に係る三相電源の結線状態判定方法によれば、三相電源における各相の相関電圧信号を取得し、各相の電圧信号の差である3種類の差電圧信号を生成し、1周期以上の測定期間継続して各差電圧信号を測定し、三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定するので、短い測定時間で高精度に三相電源の結線状態を判定できる。   According to the connection state determination method of the three-phase power supply according to claim 1, the correlation voltage signal of each phase in the three-phase power supply is acquired, and three types of difference voltage signals that are the difference between the voltage signals of each phase are generated, Measuring each difference voltage signal continuously for a measurement period of one cycle or more, and based on the amplitude level pattern of each difference voltage signal generated according to the connection state of the three-phase power source, Since the connection state of the three-phase power supply is determined by determining the amplitude level pattern of each difference voltage signal within the measurement period, the connection state of the three-phase power supply can be determined with high accuracy in a short measurement time.

また、請求項2に係る三相電源の結線状態判定装置は、三相電源における各相の相関電圧信号を取得する相信号取得手段と、前記相信号取得手段により取得した各相の電圧信号の差である3種類の差電圧信号を生成する差電圧信号生成手段と、前記三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定する結線状態判定手段と、を備えるので、短い測定時間で高精度に三相電源の結線状態を判定できる。   According to a second aspect of the present invention, there is provided a three-phase power connection state determining apparatus, comprising: a phase signal acquiring unit that acquires a correlation voltage signal of each phase in a three-phase power source; and a voltage signal of each phase acquired by the phase signal acquiring unit. Difference voltage signal generation means for generating three types of difference voltage signals as differences, and connection state determination conditions set in advance based on the amplitude level pattern of each difference voltage signal generated according to the connection state of the three-phase power supply And a connection state determination means for determining the connection state of the three-phase power supply by determining the amplitude level pattern of each differential voltage signal within the measurement period, so that the three-phase power supply with high accuracy in a short measurement time. The connection state can be determined.

本発明に係る三相電源の結線状態判定装置の実施形態を示す機能ブロック図である。It is a functional block diagram which shows embodiment of the connection state determination apparatus of the three-phase power supply which concerns on this invention. 三相電源が正常結線時に取得される差電圧信号の一例を示す波形図である。It is a wave form diagram which shows an example of the difference voltage signal acquired when a three-phase power supply is normally connected. (a−1)は全て活線状態における各相の相関電圧信号、(b−1)は全て活線状態における差電圧信号の振幅レベルパターン、(a−2)はR欠相状態における各相の相関電圧信号、(b−2)はR欠相状態における差電圧信号の振幅レベルパターン、(a−3)はS,T欠相状態における各相の相関電圧信号、(b−3)はS,T欠相状態における差電圧信号の振幅レベルパターンである。(A-1) is the correlation voltage signal of each phase in the live line state, (b-1) is the amplitude level pattern of the differential voltage signal in the live line state, and (a-2) is each phase in the R open phase state. (B-2) is the amplitude level pattern of the differential voltage signal in the R phase loss state, (a-3) is the correlation voltage signal of each phase in the S, T phase loss state, (b-3) is It is an amplitude level pattern of the differential voltage signal in the S, T phase loss state. 本実施形態の結線状態判定装置における結線状態判定処理を示すフローチャートである。It is a flowchart which shows the connection state determination process in the connection state determination apparatus of this embodiment.

次に、本発明に係る三相電源の結線状態判定方法を具現化した結線状態判定装置の実施形態を添付図面に基づいて詳細に説明する。   Next, an embodiment of a connection state determination apparatus that embodies a connection state determination method for a three-phase power source according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本実施形態に係る結線状態判定装置の概略構成を示す機能ブロック図で、結線状態の判定対象である三相電源のR相,S相,T相の各被測定導体14に接触しない状態で電圧を測定できるように、機器本体15に接続した非接触センサ16を、R相、T相、S相それぞれの被測定導体14に近接配置して、被測定導体14に流れる各相の相関電圧信号を静電誘導方式で取得する。なお、本実施形態では、非接触センサ16を相信号取得手段としたが、これに限定されるものではなく、接触式センサを用いても良い。   FIG. 1 is a functional block diagram showing a schematic configuration of a connection state determination device according to the present embodiment, and contacts the R-, S-, and T-phase measured conductors 14 of a three-phase power source that is a connection state determination target. The non-contact sensor 16 connected to the device main body 15 is arranged close to the measured conductors 14 of the R phase, T phase, and S phase so that the voltage can be measured in a state in which the current flows in the measured conductor 14. The correlation voltage signal is acquired by the electrostatic induction method. In the present embodiment, the non-contact sensor 16 is a phase signal acquisition unit. However, the present invention is not limited to this, and a contact sensor may be used.

上記のように非接触センサ16により取得した各相の相関電圧信号を結線状態判定回路17へ入力し、この結線状態判定回路17にて行った判定結果が、報知回路によって報知(機器本体15の適所に設けたLEDの点灯/消灯による可視表示やスピーカによる音声出力など)される。   As described above, the correlation voltage signal of each phase acquired by the non-contact sensor 16 is input to the connection state determination circuit 17, and the determination result performed by the connection state determination circuit 17 is notified by the notification circuit (of the device body 15). (Visible display by turning on / off the LED provided at an appropriate place, sound output by a speaker, etc.).

結線状態判定回路17に入力された各相の相関電圧信号は、ローパスフィルタ17a及びバッファ17bを経由した後、各相の電圧信号の差である3種類の差電圧信号を生成する差電圧信号生成手段としての差電圧生成手段17cで、R相とS相との差電圧、S相とT相との差電圧、T相とR相との差電圧をそれぞれ生成し、結線状態判定手段たるマイクロコンピュータ18のA/Dコンバータ入力ポート(AN0〜2)へ入力する。図2は、前記被測定導体14の各相に約200Vの電圧を印加した場合に、AN0〜2にて測定できるそれぞれの差電圧信号をモニタした差電圧信号の一例を示す波形図である。正常な結線時には、それぞれの信号振幅が等しく揃い、波形の歪みも見られない。   The correlation voltage signal of each phase input to the connection state determination circuit 17 passes through the low-pass filter 17a and the buffer 17b, and then generates a difference voltage signal that generates three types of difference voltage signals that are differences between the voltage signals of each phase. The differential voltage generation means 17c as the means generates a differential voltage between the R phase and the S phase, a differential voltage between the S phase and the T phase, and a differential voltage between the T phase and the R phase, respectively. The data is input to A / D converter input ports (AN0 to AN2) of the computer 18. FIG. 2 is a waveform diagram showing an example of a differential voltage signal obtained by monitoring each differential voltage signal that can be measured at AN0 to 2 when a voltage of about 200 V is applied to each phase of the conductor 14 to be measured. During normal connection, the signal amplitudes are equal and there is no waveform distortion.

ここで、上記マイクロコンピュータ18にて行う結線状態判定方法について順を追って説明する。   Here, the connection state determination method performed by the microcomputer 18 will be described in order.

図3は、被測定導体14に印加する電圧による、それぞれの相関電圧信号と差電圧信号との相関関係を示すもので、図3(a−1),(b−1)は、3相全てが活線状態における各相の相関電圧信号波形と差電圧の振幅レベルパターンを示し、図3(a−2),(b−2)は、R欠相状態における各相の相関電圧信号波形と差電圧の振幅レベルパターンを示し、図3(a−3),(b−3)は、S,T欠相状態における各相の相関電圧信号波形と振幅レベルパターンを示す。   FIG. 3 shows the correlation between each correlation voltage signal and the difference voltage signal depending on the voltage applied to the conductor 14 to be measured. FIGS. 3 (a-1) and 3 (b-1) are all three phases. Shows the correlation voltage signal waveform of each phase in the live line state and the amplitude level pattern of the difference voltage, and FIGS. 3A-2 and 3B-2 show the correlation voltage signal waveform of each phase in the R open phase state. 3A and 3B show the correlation voltage signal waveform and the amplitude level pattern of each phase in the S and T open phase states.

図3(a−1)のように、各被測定導体14のR相、S相、T相の相関電圧信号の全てに電圧Eが印加されていた場合、三相電源の各相と相との電圧位相差は120°であるため、図3(b−1)に示すように、それぞれの差電圧信号は全てE×√3の電圧として、マイクロコンピュータ18のAN0〜2に入力される。すなわち、三相電源の全相が活線状態のとき、マイクロコンピュータ18は全ての差電圧信号を同じ信号振幅(E×√3)として測定することとなる。   As shown in FIG. 3 (a-1), when the voltage E is applied to all of the R-phase, S-phase, and T-phase correlated voltage signals of each measured conductor 14, each phase and phase of the three-phase power source Since the voltage phase difference is 120 °, as shown in FIG. 3 (b-1), all the difference voltage signals are inputted to AN0-2 of the microcomputer 18 as a voltage of E × √3. That is, when all the phases of the three-phase power supply are in the live line state, the microcomputer 18 measures all the differential voltage signals as the same signal amplitude (E × √3).

しかし、図3(a−2)のように、S相、T相の被測定導体14の相関電圧信号のみに電圧Eが印加されていた場合(R相が欠相である場合)、活線状態である三相電源のS相とT相との電圧位相差は120°であるため、図3(b−2)に示すように、S相−T相の差電圧信号のみ、E×√3となり、R相−S相の差電圧信号とT相−R相の差電圧信号は、共にR相に電圧が印加されていないため、Eの電圧としてマイクロコンピュータ18に入力される。すなわち、三相電源のある1相が欠相となっているとき、マイクロコンピュータ18は、2信号を同じ信号振幅Eとして、残りの1信号を信号振幅√3E(他の2信号の√3倍の振幅)として測定することとなる。   However, as shown in FIG. 3A-2, when the voltage E is applied only to the correlation voltage signal of the conductor 14 to be measured of the S phase and the T phase (when the R phase is an open phase), Since the voltage phase difference between the S phase and the T phase of the three-phase power supply that is in the state is 120 °, only the differential voltage signal of the S phase and the T phase, as shown in FIG. The difference voltage signal between the R phase and the S phase and the difference voltage signal between the T phase and the R phase are input to the microcomputer 18 as the E voltage because no voltage is applied to the R phase. That is, when one phase of the three-phase power supply is open, the microcomputer 18 sets the two signals to the same signal amplitude E and the remaining one signal to the signal amplitude √3E (√3 times the other two signals). The amplitude is measured as follows.

また、図3(a−3)のように、R相の被測定導体14の相関電圧信号のみに電圧Eが印加されていた場合(S,Tの2相が欠相である場合)、図3(b−3)に示すように、S相とT相共に電圧が印加されていないため、S相−T相の差電圧信号には、電圧は生成されず、R相−S相の差電圧信号とT相−R相の差電圧信号は、共にEの電圧としてマイクロコンピュータ18に入力される。すなわち、三相電源の2相が欠相となっているとき、マイクロコンピュータ18は、2信号を同じ信号振幅Eとして、残り1信号は電圧のない状態として測定することとなる。   Further, as shown in FIG. 3A-3, when the voltage E is applied only to the correlation voltage signal of the R-phase measured conductor 14 (when the two phases S and T are missing), 3 (b-3), since no voltage is applied to both the S phase and the T phase, no voltage is generated in the differential voltage signal between the S phase and the T phase, and the difference between the R phase and the S phase. Both the voltage signal and the T-phase-R differential voltage signal are input to the microcomputer 18 as E voltage. That is, when the two phases of the three-phase power supply are open, the microcomputer 18 measures two signals with the same signal amplitude E and the remaining one signal with no voltage.

上述したように、三相電源の結線状態は、各相の差電圧信号の、振幅レベルパターンの組み合わせによって判定することが出来る。すなわち、1周期以上の測定期間継続して各差電圧信号を測定し、三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定できるのである。   As described above, the connection state of the three-phase power supply can be determined by the combination of the amplitude level patterns of the differential voltage signals of the respective phases. That is, each differential voltage signal is continuously measured for a measurement period of one cycle or more, and based on the amplitude level pattern of each differential voltage signal generated according to the connection state of the three-phase power source, the connection state determination condition is set in advance. The connection state of the three-phase power supply can be determined by determining the amplitude level pattern of each differential voltage signal within the measurement period.

これを踏まえて、結線状態判定手段たるマイクロコンピュータ18にて実行される結線状態判定処理の一具体例を図4に基づき説明する。なお、前処理にて全ての差電圧信号振幅に対して一定の振幅電圧閾値を設定し、全ての差電圧信号に電圧が存在しない条件は除かれているものとする。また、振幅電圧閾値および結線状態判定処理で用いる規定値については、サンプリング周期やノイズの発生形態に応じて適宜決めれば良い。   Based on this, a specific example of the connection state determination process executed by the microcomputer 18 as the connection state determination means will be described with reference to FIG. It is assumed that a constant amplitude voltage threshold is set for all the difference voltage signal amplitudes in the preprocessing, and the condition that no voltage exists in all the difference voltage signals is excluded. Moreover, what is necessary is just to determine suitably about the regulation value used by an amplitude voltage threshold value and a connection state determination process according to a sampling period or the noise generation form.

先ず、各相の差電圧信号(R相−S相、S相−T相、T相−R相)を測定し(ステップS1)、その結果から各測定差電圧信号の信号振幅を演算し、各信号振幅値と各信号振幅の大小関係とをマイクロコンピュータ18内の記憶領域に格納しておく(ステップS2)。例えば、最小振幅値:MINVpp、中間振幅値:MIDVpp、最大振幅値:MAXVppにそれぞれ保存する。このとき、信号振幅値が同じであった場合には、予め定めた格納順に従って、MAXVpp,MIDVpp,MINVppへ格納するものとし、必ずしもMAXVpp>MIDVpp>MINVppの大小関係があるわけではない。   First, the differential voltage signal (R phase-S phase, S phase-T phase, T phase-R phase) of each phase is measured (step S1), and the signal amplitude of each measured differential voltage signal is calculated from the result, Each signal amplitude value and the magnitude relation between each signal amplitude are stored in a storage area in the microcomputer 18 (step S2). For example, the minimum amplitude value: MINVpp, the intermediate amplitude value: MIDPpp, and the maximum amplitude value: MAXVpp are stored. At this time, if the signal amplitude values are the same, they are stored in MAXVpp, MIDPpp, MINVpp according to a predetermined storage order, and the magnitude relationship of MAXVpp> MINVpp> MINVpp does not necessarily exist.

三相電源の結線状態が3線活線(全て活線)の状態であれば、図3を用いて説明したように、差電圧信号の振幅値は全て“E×√3”となるので、MAXVpp=MIDVpp=MINVpp=E×√3となり、それぞれ差電圧信号振幅の差は“0”のみ(MAXVpp−MIDVpp=MAXVpp−MINVpp=MIDVpp−MINVpp=0)となる。   If the connection state of the three-phase power supply is a three-wire live line (all live lines), the amplitude values of the differential voltage signals are all “E × √3” as described with reference to FIG. MAXVpp = MINVpp = MINVpp = E × √3, and the difference between the differential voltage signal amplitudes is only “0” (MAXVpp−MINVpp = MAXVpp−MINVpp = MINVpp−MINVpp = 0).

三相電源の結線状態が2線活線の状態であれば、図3を用いて説明したように、振幅は“E”が2線、“E×√3”が1線のため、MAXVpp=E×√3、MIDVpp=MINVpp=Eとなり、それぞれ差電圧信号振幅の差は最小で“0”、最大で“(E×√3)−E≒E×0.732”となる。   If the connection state of the three-phase power source is a two-wire live line state, as described with reference to FIG. 3, since the amplitude is “E” is two lines and “E × √3” is one line, MAXVpp = E × √3 and MIdvpp = MINVpp = E, and the difference in the difference voltage signal amplitude is “0” at the minimum and “(E × √3) −E≈E × 0.732” at the maximum.

三相電源の結線状態が1線活線の状態であれば、図3を用いて説明したように、振幅は“E”が2線、“0”が1線のため、MAXVpp=MIDVpp=E、MINVpp=0となり、それぞれ差電圧信号の差は最小で“0”、最大で“E”となる。   If the connection state of the three-phase power supply is a one-wire live line state, as described with reference to FIG. 3, since the amplitude is “E” is two lines and “0” is one line, MAXVpp = MIDIVpp = E MINVpp = 0, and the difference between the differential voltage signals is “0” at the minimum and “E” at the maximum.

つまり、上述の振幅レベルパターンを用いれば、次のように差電圧信号振幅を判定することで、各相の結線状態を特定することができる。   That is, if the above-described amplitude level pattern is used, the connection state of each phase can be specified by determining the difference voltage signal amplitude as follows.

そこで、上記ステップS2で保存した各差電圧信号振幅が第1相対振幅判定条件を満たすか否かを判定する(ステップS3)。この第1相対振幅判定条件は、3線活線状態を判定するもので、MAXVppとMIDVppとMINVppそれぞれの差(MAXVpp−MIDVpp,MAXVpp−MINVpp,MIDVpp−MINVpp)が、全て{MINVpp×√3−MINVpp}÷2未満であるとする。   Therefore, it is determined whether or not each differential voltage signal amplitude stored in step S2 satisfies the first relative amplitude determination condition (step S3). This first relative amplitude determination condition is for determining the three-wire live line state, and the differences between MAXVpp, MIDPpp, and MINVpp (MAXVpp-MIDEVpp, MAXVpp-MINVpp, MINVpp-MINVpp) are all {MINVpp × √3- MINVpp} ÷ 2.

具体的に説明すると、1線活線の状態であれば、MINVpp=0であるため、{0×√3−0}÷2=0となり、それぞれ差電圧信号の差の最大は“E”であるため、第1相対振幅判定条件を満たさず、2線活線の状態であれば、MINVpp=Eであるため、{E×√3−E}÷2≒E×0.366となり、それぞれ差電圧信号振幅の差の最大は“(E×√3)−E≒E×0.732”であるため、第1相対振幅判定条件を満たさない。   Specifically, in the case of a one-wire live line state, MINVpp = 0, so that {0 × √3-0} ÷ 2 = 0, and the maximum difference between the differential voltage signals is “E”. Therefore, if the first relative amplitude determination condition is not satisfied and the state is a two-wire live line, since MINVpp = E, {E × √3−E} /2≈E×0.366, which is the difference between the two. Since the maximum difference in voltage signal amplitude is “(E × √3) −E≈E × 0.732”, the first relative amplitude determination condition is not satisfied.

しかしながら、3線活線の状態であれば、MINVpp=E×√3であるため、{(E×√3)×√3−(E×√3)}÷2≒E×0.634となり、差電圧信号振幅それぞれの差は全て“0”であるため、第1相対振幅判定条件を満たす。すなわち、ステップS3で第1相対振幅判定条件を満たすと判定された場合には、R相、S相、T相全ての相が活線状態であると判定することができ、その旨を報知する(ステップS4)。   However, if it is a three-wire live line state, MINVpp = E × √3, so {(E × √3) × √3− (E × √3)} / 2≈E × 0.634, Since the differences of the difference voltage signal amplitudes are all “0”, the first relative amplitude determination condition is satisfied. That is, if it is determined in step S3 that the first relative amplitude determination condition is satisfied, it can be determined that all of the R phase, the S phase, and the T phase are in the live line state, and a notification to that effect is given. (Step S4).

一方、上記ステップS3で第1相対振幅判定条件を満たさないと判定された場合には、上記ステップS2で保存した各差電圧信号振幅が第2相対振幅判定条件を満たすか否かを判定する(ステップS5)。この第2相対振幅判定条件は、MIDVpp−MINVpp≦(MINVpp×√3−MINVpp)÷2、または、MAXVpp−MIDVpp≧(MIDVpp×√3−MIDVpp)÷2であるとする。   On the other hand, if it is determined in step S3 that the first relative amplitude determination condition is not satisfied, it is determined whether or not each differential voltage signal amplitude stored in step S2 satisfies the second relative amplitude determination condition ( Step S5). The second relative amplitude determination condition is assumed to satisfy MINVpp−MINVpp ≦ (MINVpp × √3−MINVpp) / 2, or MAXVpp−MINVpp ≧ (MIdvpp × √3−MIDPpp) ÷ 2.

具体的に説明すると、1線活線の状態であれば、MAXVpp=MIDVpp=E、MINVpp=0であるため、E−0≦(0×√3−0)÷2=E≦0、または、E−E≧(E×√3−E)÷2≒0≧E×0.366となり、第2相対振幅判定条件を満たさない。   More specifically, in the case of a one-line live line state, since MAXVpp = MINVpp = E and MINVpp = 0, E−0 ≦ (0 × √3−0) ÷ 2 = E ≦ 0, or E−E ≧ (E × √3−E) /2≈0≧E×0.366, which does not satisfy the second relative amplitude determination condition.

しかしながら、2線活線の状態であれば、MAXVpp=E×√3、MIDVpp=MINVpp=Eであるため、E−E≦(E×√3−E)÷2≒0≦E×0.366、または、E×√3−E≧(E×√3−E)÷2≒E×0.732≧E×0.366となり、第2相対振幅判定条件を満たす。そして、活線相同士の差電圧信号振幅が最大振幅値となることから、MAXVppがS相−T相の差電圧信号振幅であった場合は、R相が欠相、S相とT相が活線と判断でき、MAXVppがT相−R相の差電圧信号振幅であった場合は、S相が欠相、R相とT相が活線と判断でき、MAXVppがR相−S相の差電圧信号振幅であった場合は、T相か欠相、R相とS相が活線と判定することができ、その旨を報知する(ステップS6)。   However, in the case of a two-wire live line state, MAXVpp = E × √3 and MIdvpp = MINVpp = E, so that E−E ≦ (E × √3−E) ÷ 2≈0 ≦ E × 0.366. Or, E × √3−E ≧ (E × √3−E) /2≈E×0.732≧E×0.366, which satisfies the second relative amplitude determination condition. Since the difference voltage signal amplitude between the live wire phases becomes the maximum amplitude value, when MAXVpp is the difference voltage signal amplitude between the S phase and the T phase, the R phase is missing, and the S phase and the T phase are When it can be determined as a live line and MAXVpp is the difference voltage signal amplitude between T phase and R phase, it can be determined that S phase is open phase, R phase and T phase are live lines, and MAXVpp is between R phase and S phase. When it is the difference voltage signal amplitude, it can be determined that the T phase or the open phase, the R phase and the S phase are live lines, and this is notified (step S6).

一方、上記ステップS5で第2相対振幅判定条件を満たさないと判定された場合には、上記ステップS2で保存した各差電圧信号振幅が第3相対振幅判定条件を満たすか否かを判定する(ステップS7)。この第3相対振幅判定条件は、MIDVpp−MINVpp≧(MINVpp×√3−MINVpp)÷2、かつ、MAXVpp−MIDVpp≦(MIDVpp×√3−MIDVpp)÷2であるとする。   On the other hand, if it is determined in step S5 that the second relative amplitude determination condition is not satisfied, it is determined whether each differential voltage signal amplitude stored in step S2 satisfies the third relative amplitude determination condition ( Step S7). It is assumed that the third relative amplitude determination condition is MINVpp−MINVpp ≧ (MINVpp × √3−MINVpp) / 2 and MAXVpp−MINVpp ≦ (MINVpp × √3−MINVpp) ÷ 2.

すなわち、1線活線の状態であれば、MAXVpp=MIDVpp=E、MINVpp=0であるため、E−0≧(0×√3−0)÷2=E≧0、かつ、E−E≦(E×√3−E)÷2≒0≦E×0.366となり、第3相対振幅判定条件を満たす。そして、欠相同士の差電圧信号振幅が最小振幅値となるため、MINVppがS相−T相の差電圧信号振幅であった場合は、R相が活線、S相とT相が欠相と判断でき、MINVppがT相−R相の差電圧信号振幅であった場合は、S相が活線、R相とT相が欠相と判断でき、MINVppがR相−S相の差電圧信号振幅であった場合は、T相が活線、R相とS相が欠相と判定することができ、その旨を報知する(ステップS8)。   That is, in the case of a one-wire live line state, since MAXVpp = MINVpp = E and MINVpp = 0, E−0 ≧ (0 × √3−0) ÷ 2 = E ≧ 0 and E−E ≦ (E × √3−E) ÷ 2≈0 ≦ E × 0.366, which satisfies the third relative amplitude determination condition. Since the difference voltage signal amplitude between the open phases becomes the minimum amplitude value, when MINVpp is the differential voltage signal amplitude between the S phase and the T phase, the R phase is a live line, and the S phase and the T phase are open phases. MINVpp is the difference voltage signal amplitude between the T phase and the R phase, it can be determined that the S phase is a live line, the R phase and the T phase are open phases, and the MINVpp is a difference voltage between the R phase and the S phase. If it is the signal amplitude, it can be determined that the T phase is a live line, and the R phase and the S phase are open phases, and this is notified (step S8).

さらに、上記ステップS7で第3相対振幅判定条件の条件にも当てはまらない場合には、ノイズ及び電圧不平衡による影響にて異常な信号が入力されたと判断し、判定異常である旨を報知する(ステップS9)。このように、第1〜第3相対振幅判定条件に基づいて結線状態を判定すれば、欠相を特定できない異常な測定結果を誤判定することも回避でき、信頼性の高いものとなる。そして、この高精度な結線状態判定機能を検電器や検相器に搭載すれば、対地間の電圧及び、測定時の状態に影響されることが少なく、結線状態を正確に判定することができ、検電器や検相器として信頼性の高いものとなる。   Furthermore, if the condition of the third relative amplitude determination condition does not apply in step S7, it is determined that an abnormal signal has been input due to the influence of noise and voltage imbalance, and a determination abnormality is informed ( Step S9). As described above, if the connection state is determined based on the first to third relative amplitude determination conditions, it is possible to avoid erroneous determination of an abnormal measurement result in which an open phase cannot be specified, and the reliability becomes high. If this high-accuracy connection state determination function is installed in a voltage detector or phase detector, it is less affected by the voltage to ground and the state at the time of measurement, and the connection state can be determined accurately. It becomes highly reliable as a voltage detector or phase detector.

上述したように、本実施形態の結線状態判定装置によれば、1周期以上という短い測定時間で高精度に三相電源の結線状態を判定できる。なお、1周期の差電圧波形の測定からでも結線状態を判定できるものの、精度を向上させるためには、測定期間を長く設定(例えば、2周期以上の測定期間を設定)したり、複数回に渡る差電圧信号の検出を行い、全ての検出結果が同一の判定結果となったときに、これを最終判定結果として報じたり、するようにすれば、より精度の高い結線状態判定を行うことができる。また、判定に用いる結線状態判定条件は、上述した第1〜第3相対振幅判定条件を用いるものに限らず、適宜に設定すれば良い。例えば、欠相の有無のみを判定できればよい場合には、第1相対振幅判定条件のみを結線状態判定条件に設定すれば良い。   As described above, according to the connection state determination device of the present embodiment, the connection state of the three-phase power supply can be determined with high accuracy in a short measurement time of one cycle or more. In addition, although the connection state can be determined even from the measurement of the difference voltage waveform of one cycle, in order to improve the accuracy, the measurement period is set long (for example, the measurement period of two cycles or more is set) or multiple times By detecting the crossing voltage signal and reporting all the detection results as the same determination result, this can be reported as the final determination result, so that a more accurate connection state determination can be performed. it can. Moreover, the connection state determination conditions used for determination are not limited to those using the first to third relative amplitude determination conditions described above, and may be set as appropriate. For example, if it is sufficient to determine only the presence / absence of an open phase, only the first relative amplitude determination condition may be set as the connection state determination condition.

また、本実施形態の結線状態判定装置は、スター結線の三相電源に対して結線状態の判定を行うものとしたが、結線状態判定の対象である三相電源はこれに限定されるものではなく、デルタ結線等、他の仕様の三相電源に対して用いることもできる。さらに、本実施形態では、結線状態判定手段の機能をマイクロコンピュータで実現するものとしたが、アナログ回路によって結線状態判定手段の機能を構成しても良い。   Moreover, although the connection state determination apparatus of this embodiment shall perform the determination of a connection state with respect to the star connection three-phase power supply, the three-phase power supply which is the object of a connection state determination is not limited to this. In addition, it can be used for a three-phase power source of other specifications such as delta connection. Furthermore, in this embodiment, the function of the connection state determination unit is realized by a microcomputer, but the function of the connection state determination unit may be configured by an analog circuit.

以上は、本発明に係る三相電源の結線状態判定方法を適用した結線状態判定装置の実施形態を添付図面に基づいて説明したが、本発明の包摂範囲は、この実施形態に限定されるものではなく、公知既存の手法を適宜転用することで実現しても構わない。   The embodiment of the connection state determination device to which the connection state determination method of the three-phase power supply according to the present invention has been described above based on the accompanying drawings, but the inclusion range of the present invention is limited to this embodiment Instead, it may be realized by appropriately diverting known methods.

14 被測定導体(三相電源:R相、S相、T相)
15 機器本体(検電器あるいは検相器)
16 非接触センサ
17 結線状態判定回路
17c 差電圧生成手段
18 マイクロコンピュータ(結線状態判定手段)
14 Conductor under test (3-phase power supply: R phase, S phase, T phase)
15 Device body (voltage detector or phase detector)
16 Non-contact sensor 17 Connection state determination circuit 17c Difference voltage generation means 18 Microcomputer (connection state determination means)

Claims (2)

三相電源における各相の相関電圧信号を取得し、各相の電圧信号の差である3種類の差電圧信号を生成し、1周期以上の測定期間継続して各差電圧信号を測定し、三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定するようにしたことを特徴とする三相電源の結線状態判定方法。   Acquire the correlation voltage signal of each phase in the three-phase power supply, generate three kinds of difference voltage signals that are the difference between the voltage signals of each phase, measure each difference voltage signal continuously for a measurement period of one cycle or more, By determining the amplitude level pattern of each difference voltage signal within the measurement period under predetermined connection state determination conditions based on the amplitude level pattern of each difference voltage signal generated according to the connection state of the three-phase power supply A method for determining a connection state of a three-phase power supply, wherein the connection state of the three-phase power supply is determined. 三相電源における各相の相関電圧信号を取得する相信号取得手段と、
前記相信号取得手段により取得した各相の電圧信号の差である3種類の差電圧信号を生成する差電圧信号生成手段と、
前記三相電源の結線状態に応じて生ずる、各差電圧信号の振幅レベルパターンに基づいて、予め設定した結線状態判定条件で、前記測定期間内における各差電圧信号の振幅レベルパターンを判定することにより、三相電源の結線状態を判定する結線状態判定手段と、
を備えることを特徴とする三相電源の結線状態判定装置。
Phase signal acquisition means for acquiring a correlation voltage signal of each phase in a three-phase power supply;
Difference voltage signal generation means for generating three types of difference voltage signals, which are differences between the voltage signals of the respective phases acquired by the phase signal acquisition means;
Based on the amplitude level pattern of each difference voltage signal generated according to the connection state of the three-phase power supply, the amplitude level pattern of each difference voltage signal in the measurement period is determined under a predetermined connection state determination condition. By means of connection state determination means for determining the connection state of the three-phase power supply,
A connection state determination device for a three-phase power source, comprising:
JP2009013035A 2009-01-23 2009-01-23 Three-phase power connection state determination method and three-phase power connection state determination device Active JP5360754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013035A JP5360754B2 (en) 2009-01-23 2009-01-23 Three-phase power connection state determination method and three-phase power connection state determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013035A JP5360754B2 (en) 2009-01-23 2009-01-23 Three-phase power connection state determination method and three-phase power connection state determination device

Publications (2)

Publication Number Publication Date
JP2010172120A true JP2010172120A (en) 2010-08-05
JP5360754B2 JP5360754B2 (en) 2013-12-04

Family

ID=42703686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013035A Active JP5360754B2 (en) 2009-01-23 2009-01-23 Three-phase power connection state determination method and three-phase power connection state determination device

Country Status (1)

Country Link
JP (1) JP5360754B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036170A (en) * 2016-09-01 2018-03-08 日置電機株式会社 Connection type detection device and connection type detection method
JP2022032325A (en) * 2020-08-11 2022-02-25 株式会社きんでん Wiring condition detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203967A (en) * 1983-05-04 1984-11-19 Hitachi Ltd Detection system for wire breaking of ungrounded system distribution line
JPS59209020A (en) * 1983-05-10 1984-11-27 三菱電機株式会社 Defective phase detecting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203967A (en) * 1983-05-04 1984-11-19 Hitachi Ltd Detection system for wire breaking of ungrounded system distribution line
JPS59209020A (en) * 1983-05-10 1984-11-27 三菱電機株式会社 Defective phase detecting circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036170A (en) * 2016-09-01 2018-03-08 日置電機株式会社 Connection type detection device and connection type detection method
JP2022032325A (en) * 2020-08-11 2022-02-25 株式会社きんでん Wiring condition detection device
JP7357725B2 (en) 2020-08-11 2023-10-06 株式会社きんでん Wiring condition detection device

Also Published As

Publication number Publication date
JP5360754B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
EP1855122B1 (en) Leak current breaker and method
US7141960B2 (en) Method and device system for testing electrical components
KR102037103B1 (en) Apparatus and method for monitoring partial discharge
KR101300789B1 (en) Instrument and method to obtain ratio error of current transformer for watt-hour-meter
RU2013107025A (en) DEVICE AND METHOD FOR DETECTING A SHORT SHORT TO EARTH
KR101751096B1 (en) Electrical device and method for determining a phase failure in the electrical device
KR20160116966A (en) Inspection Device for Angular Velocity Sensor
TW200730827A (en) Fully automatic hook-type electric meter
CA2450290A1 (en) Electrical fault detection system
US11009557B2 (en) Method and device for short-circuit monitoring of a three-phase load
JP5360754B2 (en) Three-phase power connection state determination method and three-phase power connection state determination device
KR101164009B1 (en) Automatic Meter Reading, remote meter reading service electric meter which includes a leakage rheometry function
JP2008157838A (en) Insulation monitoring device
JP2011149959A (en) Insulation monitoring device
JP5183035B2 (en) Insulation monitoring device
KR101145475B1 (en) Apparatus and method for searching watt-hour meter
EP2477293A2 (en) Methods and systems involving monitoring circuit connectivity
CN113820544A (en) Earth impedance measuring circuit and earth impedance measuring method
CN105841776B (en) Water level detection circuit and its self checking method and cooking apparatus
CN104798276A (en) Differential protection method and protective device for carrying out a differential protection method
JP6608234B2 (en) Contact determination device and measurement device
JP3577912B2 (en) Electronic circuit inspection equipment
JP5354568B2 (en) System identification device
RU199233U1 (en) ARC BREAKDOWN PROTECTION DEVICE
JP2013024614A (en) Semiconductor testing device, and electric length measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5360754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250