JP2010169918A - Optical element array and method for manufacturing the same - Google Patents

Optical element array and method for manufacturing the same Download PDF

Info

Publication number
JP2010169918A
JP2010169918A JP2009012727A JP2009012727A JP2010169918A JP 2010169918 A JP2010169918 A JP 2010169918A JP 2009012727 A JP2009012727 A JP 2009012727A JP 2009012727 A JP2009012727 A JP 2009012727A JP 2010169918 A JP2010169918 A JP 2010169918A
Authority
JP
Japan
Prior art keywords
substrate
optical
element array
optical element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009012727A
Other languages
Japanese (ja)
Inventor
Atsushi Okitsu
淳 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009012727A priority Critical patent/JP2010169918A/en
Publication of JP2010169918A publication Critical patent/JP2010169918A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element array in which an anti-reflection film of predetermined film thickness is securely formed on the surface of the optical face by a simple method, and to provide a method for manufacturing the optical element array. <P>SOLUTION: The plurality of optical faces 3 are formed on at least the one side of a substrate 2 made of a semiconductor material. The substrate 2 with the optical faces 3 formed on the one side thereof is thermally oxidized or thermally oxynitrogenized, thereby forming an oxidized or oxynitrogenized film 4 on both sides of the substrate 2. When the refractive index is represented by n, the film thickness is represented by d, and the wavelength of light to be transmitted is represented by λ, the oxidized or oxynitrogenized film 4 is formed to satisfy the relation expressed by nd=λ/4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、平板状の基板の少なくとも一面に複数の光学面を形成してなる光学素子アレイ及びその製造方法に関し、特に基板の表面に反射防止膜を形成した光学素子アレイ及びその製造方法に関する。   The present invention relates to an optical element array in which a plurality of optical surfaces are formed on at least one surface of a flat substrate and a manufacturing method thereof, and more particularly to an optical element array in which an antireflection film is formed on the surface of the substrate and a manufacturing method thereof.

従来、平板状の基板の少なくとも一面に複数の光学面を形成した光学素子アレイが知られている。光学面として例えばレンズ面を形成したものは、光通信機器において光ファイバーアレイに対し光学的に結合するレンズアレイとして用いられる。   Conventionally, an optical element array in which a plurality of optical surfaces are formed on at least one surface of a flat substrate is known. An optical surface having a lens surface, for example, is used as a lens array optically coupled to an optical fiber array in an optical communication device.

光学素子アレイを構成する基板は赤外光透過性を有する半導体材料、例えばシリコンからなり、この基板に対してレジストを塗布してフォトリソグラフィ及び熱処理を行うことにより光学面の形状を形成し、さらにRIE(反応性イオンエッチング)法を施すことによって基板に光学面を形成する。このような製造方法により形成された光学素子アレイとしては、例えば特許文献1に挙げるようなものがある。   The substrate constituting the optical element array is made of a semiconductor material having infrared light transparency, for example, silicon. A resist is applied to the substrate, and the shape of the optical surface is formed by photolithography and heat treatment. An optical surface is formed on the substrate by performing RIE (reactive ion etching). As an optical element array formed by such a manufacturing method, for example, there is one described in Patent Document 1.

特開2006−293396号公報JP 2006-293396 A

光学素子アレイは、透過する光の反射を抑えるために、光学面に反射防止膜が形成されることがある。この場合、反射防止膜は蒸着やスパッタなどの手法により基板の表面に形成される。このように蒸着やスパッタを行うためには、大掛かりな装置が必要となり、製造コストを上昇させる要因となっていた。また、蒸着やスパッタによりレンズなどの凹または凸状面からなる光学面の表面に成膜を行うと、蒸着やスパッタの方向に対して傾斜した面に対しては膜厚が薄くなって所定の膜厚が得られないという問題があった。   In the optical element array, an antireflection film may be formed on the optical surface in order to suppress reflection of transmitted light. In this case, the antireflection film is formed on the surface of the substrate by a technique such as vapor deposition or sputtering. Thus, in order to perform vapor deposition and sputtering, a large-scale apparatus is required, which has been a factor in increasing manufacturing costs. In addition, when a film is formed on the surface of an optical surface composed of a concave or convex surface such as a lens by vapor deposition or sputtering, the film thickness is reduced on a surface inclined with respect to the direction of vapor deposition or sputtering. There was a problem that the film thickness could not be obtained.

本発明は前記課題を鑑みてなされたものであり、簡易な方法によって光学面の表面に所定膜厚の反射防止膜を確実に形成することのできる光学素子アレイ及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides an optical element array capable of reliably forming an antireflection film having a predetermined thickness on the surface of an optical surface by a simple method and a method for manufacturing the same. Objective.

前記課題を解決するため、本発明に係る光学素子アレイは、平板状の基板の少なくとも一面に複数の光学面が形成されてなる光学素子アレイにおいて、
前記光学面を有する基板は赤外光透過性の素材からなり、前記基板の両面が酸化膜または酸窒化膜に被覆されてなることを特徴として構成されている。
In order to solve the above problems, an optical element array according to the present invention is an optical element array in which a plurality of optical surfaces are formed on at least one surface of a flat substrate.
The substrate having the optical surface is made of an infrared light transmissive material, and both surfaces of the substrate are covered with an oxide film or an oxynitride film.

また、本発明に係る光学素子アレイは、前記光学面を有する基板は半導体材料により形成されることを特徴として構成されている。   In the optical element array according to the present invention, the substrate having the optical surface is formed of a semiconductor material.

さらに、本発明に係る光学素子アレイの製造方法は、平板状の基板の少なくとも一面に複数の光学面が形成された光学素子アレイの製造方法において、
半導体材料からなる基板の少なくとも一面に前記複数の光学面を形成し、該光学面の形成された基板を熱酸化または熱酸窒化処理することにより、前記基板の両面に酸化膜または酸窒化膜を形成することを特徴として構成されている。
Furthermore, the method for manufacturing an optical element array according to the present invention is a method for manufacturing an optical element array in which a plurality of optical surfaces are formed on at least one surface of a flat substrate.
An oxide film or an oxynitride film is formed on both surfaces of the substrate by forming the plurality of optical surfaces on at least one surface of a substrate made of a semiconductor material, and subjecting the substrate on which the optical surfaces are formed to thermal oxidation or thermal oxynitridation treatment. It is configured to form.

さらにまた、本発明に係る光学素子アレイの製造方法は、前記基板の酸化膜または酸窒化膜は、屈折率をn、膜厚をd、透過させる光の波長をλとすると、nd=λ/4の関係を満たすように形成されることを特徴として構成されている。   Furthermore, in the method of manufacturing an optical element array according to the present invention, the oxide film or oxynitride film of the substrate has a refractive index of n, a film thickness of d, and a wavelength of transmitted light λ, nd = λ / 4 is formed so as to satisfy the relationship of 4.

本発明に係る光学素子アレイによれば、光学面を有する基板は赤外光透過性を有する素材からなり、基板の両面が酸化膜または酸窒化膜に被覆されてなることにより、酸化または酸窒化により基板の表面に対し容易に反射防止膜を形成し、かつ膜厚を均一とすることができる。   According to the optical element array of the present invention, the substrate having an optical surface is made of a material having infrared light transparency, and both surfaces of the substrate are covered with an oxide film or an oxynitride film, thereby oxidizing or oxynitriding. Thus, the antireflection film can be easily formed on the surface of the substrate and the film thickness can be made uniform.

また、本発明に係る光学素子アレイによれば、光学面を有する基板は半導体材料により形成されることにより、半導体製造プロセスを用いて容易に反射防止膜を形成した光学素子アレイを製造することができる。   Further, according to the optical element array of the present invention, the substrate having the optical surface is formed of a semiconductor material, so that an optical element array in which an antireflection film is easily formed can be manufactured using a semiconductor manufacturing process. it can.

さらに、本発明に係る光学素子アレイの製造方法によれば、半導体材料からなる基板の少なくとも一面に複数の光学面を形成し、光学面の形成された基板を熱酸化または熱酸窒化処理することにより、基板の両面に酸化膜または酸窒化膜を形成することにより、酸化または酸窒化により基板の表面に対し容易に反射防止膜を形成し、かつ膜厚を均一とすることができる。   Furthermore, according to the method for manufacturing an optical element array according to the present invention, a plurality of optical surfaces are formed on at least one surface of a substrate made of a semiconductor material, and the substrate on which the optical surfaces are formed is subjected to thermal oxidation or thermal oxynitridation treatment. Thus, by forming an oxide film or an oxynitride film on both surfaces of the substrate, an antireflection film can be easily formed on the surface of the substrate by oxidation or oxynitridation, and the film thickness can be made uniform.

さらにまた、本発明に係る光学素子アレイの製造方法によれば、基板の酸化膜または酸窒化膜は、屈折率をn、膜厚をd、透過させる光の波長をλとすると、nd=λ/4の関係を満たすように形成されることにより、膜厚の調整により所定波長の光の透過率を大きくすることができる。   Furthermore, according to the method for manufacturing an optical element array according to the present invention, the oxide film or oxynitride film of the substrate has a refractive index of n, a film thickness of d, and a wavelength of transmitted light λ, nd = λ By forming so as to satisfy the relationship of / 4, the transmittance of light of a predetermined wavelength can be increased by adjusting the film thickness.

本実施形態における光学素子アレイの断面図である。It is sectional drawing of the optical element array in this embodiment. 反射防止膜の屈折率に対する1550nmの波長の光の透過率の関係を表したグラフである。It is a graph showing the relationship of the transmittance | permeability of the light of 1550 nm wavelength with respect to the refractive index of an antireflection film. 光の波長に対する反射防止膜の透過率特性のグラフである。It is a graph of the transmittance | permeability characteristic of the antireflection film with respect to the wavelength of light. 光学素子アレイの製造工程を表した断面図である。It is sectional drawing showing the manufacturing process of the optical element array.

本発明の実施形態について図面に沿って詳細に説明する。図1には、本実施形態における光学素子アレイの断面図を示している。この図に示すように、本実施形態の光学素子アレイ1は、平板状の基板2の一方の表面に複数の光学面3が形成されてなるものである。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a cross-sectional view of the optical element array in the present embodiment. As shown in this figure, the optical element array 1 of the present embodiment has a plurality of optical surfaces 3 formed on one surface of a flat substrate 2.

基板2に形成される光学面3は、いずれも球面からなる凸状のレンズ面であり、本実施形態の光学素子アレイ1は、このレンズ面が複数配列されたレンズアレイとして構成されている。レンズアレイは、例えば光通信機器内において、複数の光ファイバーが配列されてなる光ファイバーアレイに光学的に結合するように用いられる。   The optical surface 3 formed on the substrate 2 is a convex lens surface made of a spherical surface, and the optical element array 1 of this embodiment is configured as a lens array in which a plurality of lens surfaces are arranged. The lens array is used, for example, in an optical communication device so as to be optically coupled to an optical fiber array in which a plurality of optical fibers are arranged.

光学面3を有する基板2は、赤外光を透過する赤外光透過性を有する材料からなり、具体的には半導体材料であるシリコン(Si)により形成されている。基板2の材料としてはその他の半導体材料であってもよく、例えばゲルマニウムなどを採用することもできる。また、本実施形態の光学素子アレイ1を透過される光は、1550nmの波長を有するものとする。   The substrate 2 having the optical surface 3 is made of a material having infrared light transmission property that transmits infrared light, and is specifically formed of silicon (Si) as a semiconductor material. As the material of the substrate 2, other semiconductor materials may be used. For example, germanium may be employed. The light transmitted through the optical element array 1 of the present embodiment has a wavelength of 1550 nm.

光学面3を含む基板2の表面には、反射防止膜4が形成されている。反射防止膜4は、酸窒化シリコン(SiO. x. N. y.)により構成されており、基板2の両面にわたって形成されている。この反射防止膜4は、光学面3に入射する光が反射することを防止することができる。   An antireflection film 4 is formed on the surface of the substrate 2 including the optical surface 3. The antireflection film 4 is made of silicon oxynitride (SiO. X. N. y.) And is formed on both surfaces of the substrate 2. The antireflection film 4 can prevent light incident on the optical surface 3 from being reflected.

基板2を構成するシリコンの屈折率は約3.48であり、一方で反射防止膜4を構成する酸窒化シリコンは、窒素の含有割合によって屈折率が変化する。窒素が含まれていない場合、すなわち酸化シリコン(SiO2)では、屈折率は約1.47となり、窒素の含有割合が大きくなるほど屈折率が大きくなる。   The refractive index of silicon constituting the substrate 2 is about 3.48, while the silicon oxynitride constituting the antireflection film 4 changes in refractive index depending on the nitrogen content. When nitrogen is not included, that is, in silicon oxide (SiO2), the refractive index is about 1.47, and the refractive index increases as the nitrogen content increases.

図2には、基板2にシリコン(屈折率約3.48)を用いた場合の反射防止膜4の屈折率に対する1550nmの波長の光の透過率の関係を表したグラフを示している。この図に示すように、反射防止膜4が酸化シリコンの場合の屈折率である約1.47であると、光の透過率は約90%となる。それよりも窒素の含有割合が大きくなり屈折率が大きくなると、光の透過率は大きくなって、屈折率が約1.84のときに光の透過率はほぼ100%となる。屈折率がそれ以上大きくなると、光の透過率は小さくなっていく。したがって、基板2にシリコン(屈折率約3.48)を用いたとき、反射防止膜4の屈折率は約1.84が最適値となる。これは、反射防止膜4の屈折率nが、基板の屈折率の1/2乗を満たす場合に、光の透過率が最大となるためである。   FIG. 2 is a graph showing the relationship between the refractive index of the antireflection film 4 and the transmittance of light having a wavelength of 1550 nm when silicon (refractive index: about 3.48) is used for the substrate 2. As shown in this figure, when the antireflective film 4 is about 1.47, which is the refractive index when silicon oxide is used, the light transmittance is about 90%. If the nitrogen content is higher than that and the refractive index is increased, the light transmittance is increased. When the refractive index is about 1.84, the light transmittance is almost 100%. As the refractive index increases further, the light transmittance decreases. Therefore, when silicon (refractive index of about 3.48) is used for the substrate 2, the optimal refractive index of the antireflection film 4 is about 1.84. This is because the light transmittance is maximized when the refractive index n of the antireflection film 4 satisfies the half power of the refractive index of the substrate.

図3には、光の波長に対する反射防止膜4の透過率特性のグラフを示している。この図には、反射防止膜4の屈折率が異なる複数の場合について示している。反射防止膜4は、前述のように1550nmの光を透過させることを前提としており、屈折率をn、膜厚をd、透過させる光の波長をλとすると、nd=λ/4の関係を満たすように形成されている。これにより、図3に示すように光の波長が1550nmのときに、透過率が最も高くなるようにされている。また、いずれの波長においても、屈折率が約1.84のときに光の透過率が最も大きい。ここで、波長が1000〜2000nmの光は、赤外光(赤外線)である。   FIG. 3 shows a graph of the transmittance characteristics of the antireflection film 4 with respect to the wavelength of light. This figure shows a plurality of cases where the refractive index of the antireflection film 4 is different. As described above, the antireflection film 4 is premised on the transmission of light of 1550 nm. When the refractive index is n, the film thickness is d, and the wavelength of the transmitted light is λ, the relationship of nd = λ / 4 is established. It is formed to satisfy. Thus, as shown in FIG. 3, the transmittance is highest when the wavelength of light is 1550 nm. At any wavelength, the light transmittance is the highest when the refractive index is about 1.84. Here, the light with a wavelength of 1000 to 2000 nm is infrared light (infrared light).

次に、本実施形態における光学素子アレイ1の製造工程について説明する。図4には、光学素子アレイ1の製造工程を表した断面図を示している。図4(a)に示すように、まずシリコンからなる板状の基板2を用意し、その一面にレジスト10をスピンコーターや吹きつけによって塗布する。また、レジスト10を基板2に塗布したら、基板2とレジスト10の間の接着力を大きくするため、プリベークを行っておく。   Next, the manufacturing process of the optical element array 1 in this embodiment will be described. FIG. 4 is a cross-sectional view showing the manufacturing process of the optical element array 1. As shown in FIG. 4A, first, a plate-like substrate 2 made of silicon is prepared, and a resist 10 is applied on one surface thereof by a spin coater or spraying. When the resist 10 is applied to the substrate 2, pre-baking is performed in order to increase the adhesive force between the substrate 2 and the resist 10.

続いて、図4(b)に示すように、円形が二次元状に配列されたパターンを有するフォトマスク11を、基板2のレジスト10が塗布された面と対向するように配置し、露光を行う。そして、露光した基板2を現像液に浸し、余分な部分のレジストを除去することで、図4(c)に示すように、円柱状のレジスト10が二次元状に配列されたパターンが、基板2の一面に形成される。   Subsequently, as shown in FIG. 4B, a photomask 11 having a pattern in which circles are arranged two-dimensionally is disposed so as to face the surface of the substrate 2 coated with the resist 10, and exposure is performed. Do. Then, by exposing the exposed substrate 2 to a developer and removing the excess portion of the resist, as shown in FIG. 4C, a pattern in which the columnar resists 10 are two-dimensionally arranged is formed on the substrate. 2 is formed on one side.

次に、レジスト10を加熱してリフローさせ、図4(d)に示すようにレジスト10の形状を球面形状に変化させる。レジスト10を球面形状としたら、反応性イオンエッチングによりレジスト10を除去すると共に、レジスト10の形状を基板2の表面に転写し、図4(e)に示すように基板2の表面に複数の光学面3を形成する。   Next, the resist 10 is heated and reflowed to change the shape of the resist 10 to a spherical shape as shown in FIG. If the resist 10 has a spherical shape, the resist 10 is removed by reactive ion etching, and the shape of the resist 10 is transferred to the surface of the substrate 2, and a plurality of optical elements are applied to the surface of the substrate 2 as shown in FIG. Surface 3 is formed.

基板2に光学面3を形成したら、基板2を加熱炉に収容し、酸素及び窒素の雰囲気中において1000〜1200℃に加熱する。これによって、光学面3を含む基板2の全面が熱酸窒化され、図4(f)に示すように酸窒化膜からなる反射防止膜4が形成される。ここで、加熱炉内における酸素と窒素の割合は、前述したように形成される反射防止膜4の屈折率が約1.84となるように設定する。次に、図4(g)に示すように、所望の大きさに基板2を切断すると、基板2の光学面3が形成された面とその対向面の両面に反射防止膜4が形成された図1に示す光学素子アレイ1を形成することができる。   After the optical surface 3 is formed on the substrate 2, the substrate 2 is accommodated in a heating furnace and heated to 1000 to 1200 ° C. in an atmosphere of oxygen and nitrogen. As a result, the entire surface of the substrate 2 including the optical surface 3 is thermally oxynitrided, and an antireflection film 4 made of an oxynitride film is formed as shown in FIG. Here, the ratio of oxygen and nitrogen in the heating furnace is set so that the refractive index of the antireflection film 4 formed as described above is about 1.84. Next, as shown in FIG. 4G, when the substrate 2 is cut to a desired size, the antireflection film 4 is formed on both the surface of the substrate 2 on which the optical surface 3 is formed and the opposite surface. The optical element array 1 shown in FIG. 1 can be formed.

このように、光学面3が形成された基板2を熱酸窒化し、基板2の両面に酸窒化膜を形成することで、光学面3における膜厚が均一な反射防止膜4を容易に形成することができる。また、基板2の両面に反射防止膜4を形成することにより、反射防止膜4が光学面3側の面にのみ形成された場合に発生する膜応力による基板2の反りを抑制することができる。   Thus, the substrate 2 on which the optical surface 3 is formed is thermally oxynitrided, and the oxynitride film is formed on both surfaces of the substrate 2, thereby easily forming the antireflection film 4 having a uniform thickness on the optical surface 3. can do. Further, by forming the antireflection film 4 on both surfaces of the substrate 2, it is possible to suppress warping of the substrate 2 due to film stress generated when the antireflection film 4 is formed only on the surface on the optical surface 3 side. .

ここでは、反射防止膜4の1550nmにおける透過率が最適値となるように、屈折率が1.84となるように酸窒化膜を形成したが、透過率の要求水準がそれほど高くない場合には、反射防止膜4を単に酸化膜として、より簡易に形成するようにしてもよい。   Here, the oxynitride film is formed so that the refractive index is 1.84 so that the transmittance of the antireflection film 4 at 1550 nm is the optimum value. However, when the required level of transmittance is not so high. The antireflection film 4 may be formed more simply as an oxide film.

以上、本発明の実施形態について説明したが、本発明の適用は本実施形態には限られず、その技術的思想の範囲内において様々に適用されうるものである。例えば、本実施形態では光学面3を凸レンズとして構成したが、光学面3は凹レンズやフレネルレンズ、あるいは回折格子など他の光学機能面であってもよい。また、本実施形態では光学面3は基板2の一面側にのみ形成されているが、両面に形成されていてもよい。   Although the embodiment of the present invention has been described above, the application of the present invention is not limited to this embodiment, and can be applied in various ways within the scope of its technical idea. For example, although the optical surface 3 is configured as a convex lens in the present embodiment, the optical surface 3 may be another optical functional surface such as a concave lens, a Fresnel lens, or a diffraction grating. In the present embodiment, the optical surface 3 is formed only on one surface side of the substrate 2, but may be formed on both surfaces.

1 光学素子アレイ
2 基板
3 光学面
4 反射防止膜
10 レジスト
11 フォトマスク
DESCRIPTION OF SYMBOLS 1 Optical element array 2 Board | substrate 3 Optical surface 4 Antireflection film 10 Resist 11 Photomask

Claims (4)

平板状の基板の少なくとも一面に複数の光学面が形成されてなる光学素子アレイにおいて、
前記光学面を有する基板は赤外光透過性の素材からなり、前記基板の両面が酸化膜または酸窒化膜に被覆されてなることを特徴とする光学素子アレイ。
In an optical element array in which a plurality of optical surfaces are formed on at least one surface of a flat substrate,
An optical element array, wherein the substrate having the optical surface is made of an infrared light transmissive material, and both surfaces of the substrate are covered with an oxide film or an oxynitride film.
前記光学面を有する基板は半導体材料により形成されることを特徴とする請求項1記載の光学素子アレイ。   2. The optical element array according to claim 1, wherein the substrate having the optical surface is made of a semiconductor material. 平板状の基板の少なくとも一面に複数の光学面が形成された光学素子アレイの製造方法において、
半導体材料からなる基板の少なくとも一面に前記複数の光学面を形成し、該光学面の形成された基板を熱酸化または熱酸窒化処理することにより、前記基板の両面に酸化膜または酸窒化膜を形成することを特徴とする光学素子アレイの製造方法。
In the method of manufacturing an optical element array in which a plurality of optical surfaces are formed on at least one surface of a flat substrate,
An oxide film or an oxynitride film is formed on both surfaces of the substrate by forming the plurality of optical surfaces on at least one surface of a substrate made of a semiconductor material, and subjecting the substrate on which the optical surfaces are formed to thermal oxidation or thermal oxynitridation treatment. A method of manufacturing an optical element array, comprising: forming an optical element array.
前記基板の酸化膜または酸窒化膜は、屈折率をn、膜厚をd、透過させる光の波長をλとすると、nd=λ/4の関係を満たすように形成されることを特徴とする請求項3記載の光学素子アレイの製造方法。   The oxide film or oxynitride film of the substrate is formed so as to satisfy a relationship of nd = λ / 4, where n is a refractive index, d is a film thickness, and λ is a wavelength of transmitted light. The manufacturing method of the optical element array of Claim 3.
JP2009012727A 2009-01-23 2009-01-23 Optical element array and method for manufacturing the same Withdrawn JP2010169918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012727A JP2010169918A (en) 2009-01-23 2009-01-23 Optical element array and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012727A JP2010169918A (en) 2009-01-23 2009-01-23 Optical element array and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010169918A true JP2010169918A (en) 2010-08-05

Family

ID=42702137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012727A Withdrawn JP2010169918A (en) 2009-01-23 2009-01-23 Optical element array and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010169918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081522A (en) * 2012-10-17 2014-05-08 Fujifilm Corp Optical member provided with anti-reflection film and manufacturing method of the same
JP2017004004A (en) * 2012-03-26 2017-01-05 旭硝子株式会社 Transmission type diffraction element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046503A (en) * 1990-04-24 1992-01-10 Mitsubishi Electric Corp Optical interference
JPH0815501A (en) * 1994-06-29 1996-01-19 Mitsubishi Electric Corp Reflection preventing film for infrared region
JP2006259711A (en) * 2005-02-18 2006-09-28 Canon Inc Optical transparent member and optical system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046503A (en) * 1990-04-24 1992-01-10 Mitsubishi Electric Corp Optical interference
JPH0815501A (en) * 1994-06-29 1996-01-19 Mitsubishi Electric Corp Reflection preventing film for infrared region
JP2006259711A (en) * 2005-02-18 2006-09-28 Canon Inc Optical transparent member and optical system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004004A (en) * 2012-03-26 2017-01-05 旭硝子株式会社 Transmission type diffraction element
JP2014081522A (en) * 2012-10-17 2014-05-08 Fujifilm Corp Optical member provided with anti-reflection film and manufacturing method of the same

Similar Documents

Publication Publication Date Title
Sasaki et al. Arrayed waveguide grating of 70× 60 µm^ sup 2^ size based on Si photonic wire waveguides
Song et al. Design of highly transparent glasses with broadband antireflective subwavelength structures
KR102535740B1 (en) Fabrication of diffraction gratings
JP5658569B2 (en) Sheet and light emitting device
JP2011013330A (en) Optical filter, solid-state image sensor having the filter, and image capturing apparatus
WO2004081620A1 (en) Diffraction element and optical device
US20090267245A1 (en) Transmission Type Optical Element
JP2001004869A (en) Optically coupled device by using photonic crystal and optical coupling method
US20120170113A1 (en) Infrared transmission optics formed with anti-reflection pattern, and manufacturing method thereof
JP2014092730A (en) Diffraction grating and optical device using the same
JP2010169918A (en) Optical element array and method for manufacturing the same
CN114578487A (en) Vertically coupled binary blazed sub-wavelength grating coupler integrated with bottom reflection layer and preparation method
US7546016B2 (en) Optical elements formed by inducing changes in the index of refraction by utilizing electron beam radiation
CN112415652B (en) Waveguide grating coupler array
KR20120010389A (en) Method to fabricate long-period fiber grating and fiber to fabricate by using the method
US9874694B2 (en) Production method for mounting structure for grating elements
Tsoi et al. Polymeric long-period waveguide gratings
JP2007010692A (en) Optical waveguide and method of manufacturing the same
JP2008216610A (en) Method of manufacturing optical component for laser beam machining
US7253425B2 (en) Method and apparatus for forming optical elements by inducing changes in the index of refraction by utilizing electron beam radiation
Yamada et al. Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass
Hsu et al. Flattened broadband notch filters using guided-mode resonance associated with asymmetric binary gratings
JPH06347630A (en) Diffraction element and its production and optical wavelength conversion element and its production
WO2024014272A1 (en) Metalens, method for manufacturing metalens, electronic instrument, and method for designing metalens
JP2004046044A (en) Quartz-based optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121001

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121023