JP2010169672A - Vessel for luminescence measurement - Google Patents

Vessel for luminescence measurement Download PDF

Info

Publication number
JP2010169672A
JP2010169672A JP2009288189A JP2009288189A JP2010169672A JP 2010169672 A JP2010169672 A JP 2010169672A JP 2009288189 A JP2009288189 A JP 2009288189A JP 2009288189 A JP2009288189 A JP 2009288189A JP 2010169672 A JP2010169672 A JP 2010169672A
Authority
JP
Japan
Prior art keywords
container
light
luminescence
measurement
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009288189A
Other languages
Japanese (ja)
Inventor
Seiji Kawaguchi
成治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009288189A priority Critical patent/JP2010169672A/en
Priority to PCT/JP2009/071839 priority patent/WO2010074305A1/en
Publication of JP2010169672A publication Critical patent/JP2010169672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vessel for luminescence measurement, made of a thermoplastic resin containing light-reflecting component and light-absorbing component so as to enhance signal intensity by reflection on the inner surface of a vessel, reduce background by self light emission from the thermoplastic resin body itself constituting the vessel, and simultaneously attain all light-shielding effects for eliminating unfixed noise. <P>SOLUTION: This vessel for luminescence measurement is made of a molded thermoplastic resin, containing 0.5-10 wt.% light-reflecting component and 0.01-0.5 wt.% light-absorbing component and is colored in a gray or chromatic tint. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光測定に用いられる発光測定用容器に関するものである。更に詳しくは、本発明は、優れたシグナル増強効果と、自己発光等のノイズ低減効果と、更には優れた遮光効果を同時に達成し得る、化学発光測定用などの測定用容器に関するものである。   The present invention relates to a luminescence measurement container used for luminescence measurement. More specifically, the present invention relates to a measurement container such as for chemiluminescence measurement that can simultaneously achieve an excellent signal enhancement effect, a noise reduction effect such as self-luminescence, and an excellent light-shielding effect.

今日の臨床検査等の分野では、蛍光測定、化学発光測定、生物発光測定等の種々の発光測定を利用して、例えば特定の疾病に関連するマーカー物質の血中濃度を測定することで、当該疾病の早期発見・治療に利用している。かかる分野で使用される発光測定用容器は、量産の容易さ、安価性、形状・寸法等の融通性等から、一般に熱可塑性樹脂製であるが、その内外壁の色等は、目的や用途に応じて概ね無着色のもの、黒色のもの、そして白色のものが使い分けられている。   In the field of today's clinical examinations, for example, by measuring the blood concentration of a marker substance related to a specific disease using various luminescence measurements such as fluorescence measurement, chemiluminescence measurement, bioluminescence measurement, etc. It is used for early detection and treatment of diseases. The luminescence measuring containers used in such fields are generally made of a thermoplastic resin due to ease of mass production, low cost, flexibility such as shape and dimensions, etc. Depending on the case, the uncolored ones, black ones, and white ones are used properly.

まず、容器内面の反射によって発光を反射することでシグナルを増強した方が測定感度の向上等のために有利な場合には、光反射性成分である白色顔料を配合した(練り込んだ)熱可塑性樹脂製の白色容器が使用される。次に、容器を構成する熱可塑性樹脂本体が出す自己発光によるバックグランドを低減する必要がある場合、励起光を反射し又は吸収するため光反射性成分である白色顔料か、又は、光吸収性成分である黒色顔料を配合した(練り込んだ)、白色又は黒色の熱可塑性樹脂製容器が使用される。そして、外部からくる不定のノイズ(例えば外乱光、隣接する容器からこぼれる発光等)を排除すること(いわゆるクロストークの回避)によってS/N比を向上し、高感度化を図る場合には、外乱光の遮光性に富む、黒色の熱可塑性樹脂製容器が使用される。   First, when it is more advantageous to improve the measurement sensitivity by reflecting the light emission by reflecting the inner surface of the container, the heat with which the white pigment which is a light reflecting component is blended (kneaded) A white container made of plastic resin is used. Next, when it is necessary to reduce the background due to self-emission emitted from the thermoplastic resin main body constituting the container, it is a white pigment that is a light reflective component to reflect or absorb excitation light, or a light absorbing property. A white or black thermoplastic resin container in which a black pigment as a component is blended (kneaded) is used. And, in order to improve the S / N ratio by eliminating indefinite noise coming from the outside (for example, disturbance light, light emission spilling from an adjacent container, etc.) and avoiding so-called crosstalk, and to achieve high sensitivity, A black thermoplastic resin container having a good light shielding property against ambient light is used.

例えば特許文献1は、試料に励起光を照射する発光(蛍光)測定において、容器を構成する熱可塑性樹脂が励起光によって励起され蛍光を出すことでバックグランドが上昇するのを防止するために、白色又は黒色の顔料を配合することを開示している。また例えば特許文献2は、発光測定用容器において、バックグランドを低減するためにその内壁の一部を白色以外の色に着色することを開示している。   For example, Patent Document 1 discloses that, in light emission (fluorescence) measurement in which a sample is irradiated with excitation light, the thermoplastic resin constituting the container is excited by excitation light and emits fluorescence to prevent the background from rising. It discloses the incorporation of white or black pigments. Further, for example, Patent Document 2 discloses that a part of the inner wall is colored in a color other than white in a luminescence measurement container in order to reduce the background.

特公平3−40818号公報Japanese Patent Publication No. 3-40818 特開2006−119011号公報JP 2006-1119011 A

発光測定の測定感度を高感度化するためには、前記した容器内面での反射によるシグナル増強や容器を構成する熱可塑性樹脂本体が出す自己発光によるバックグランドの低減に加えて、N(ノイズ)成分を低減して測定系のS/N比を向上することが重要であるが、N成分の中でも測定系の外部からくる不定のノイズを排除するうえで、発光測定用容器の遮光性を向上することが大切である。不定のノイズには、前記したものの他に、例えば、発光測定用容器がマイクロプレートであって、隣接するウェルからの発光が強大であるのに対して測定対象ウェルの発光が微細である場合に、側壁を通して当該強大な発光が対象ウェルに漏れ出るようなものも含まれる。   In order to increase the measurement sensitivity of luminescence measurement, N (noise) in addition to signal enhancement by reflection on the inner surface of the container and reduction of background caused by self-luminescence emitted from the thermoplastic resin body constituting the container. It is important to improve the S / N ratio of the measurement system by reducing the components, but in order to eliminate indefinite noise from the outside of the measurement system among the N components, the light-shielding property of the luminescence measurement container is improved. It is important to do. Indefinite noise includes, for example, the case where the light emission measurement container is a microplate, and the light emission from the adjacent well is strong, whereas the light emission of the measurement target well is fine. In addition, the strong light emission leaks through the side wall to the target well.

しかしながら、特許文献1は黒色又は白色顔料を配合することしか開示しておらず、バックグランドの低減、容器内面での反射によるシグナル増強そして遮光性の全てを期待することはできない。黒色顔料を練り込んだ場合、容器内面での反射によるシグナル増強が課題として残り、逆に白色顔料を配合した場合、黒色顔料を配合した場合と比較すると十分な遮光性が得られないからである。特許文献2は、容器内壁を白色以外の色、好ましくは黒色に着色しているため、バックグランドの低減を期待することはできるものの、容器内面での反射によるシグナル増強が不十分になるという課題がある。   However, Patent Document 1 only discloses that a black or white pigment is blended, and it is impossible to expect all of reduction of background, enhancement of signal due to reflection on the inner surface of the container, and light shielding properties. When black pigments are kneaded, signal enhancement due to reflection on the inner surface of the container remains as a problem. Conversely, when white pigments are blended, sufficient light-shielding properties cannot be obtained compared with blending black pigments. . In Patent Document 2, since the inner wall of the container is colored in a color other than white, preferably black, reduction of the background can be expected, but signal enhancement due to reflection on the inner surface of the container is insufficient. There is.

光吸収性成分である黒色顔料と光反射性成分である白色顔料の両者を配合することにより、黒色顔料の配合によって達成されるバックグランドの低減と遮光性、そして白色顔料の配合によって達成されるバックグランドの低減と容器内面での反射によるシグナル増強の全てを同時に達成し得るのか、更には両者をどのような割合で配合すれば容器内面での反射によるシグナル増強、容器を構成する熱可塑性樹脂本体が出す自己発光によるバックグランドの低減、そして不定のノイズを排除するための遮光性を同時かつ効率的に達成できるかについては知られていない。   By blending both a black pigment that is a light-absorbing component and a white pigment that is a light-reflecting component, this is achieved by reducing the background and shading achieved by blending the black pigment, and blending the white pigment. Can the reduction of the background and the signal enhancement by reflection on the inner surface of the container be achieved at the same time, and what proportion should be added to increase the signal by reflection on the inner surface of the container and the thermoplastic resin constituting the container It is not known whether it is possible to simultaneously and efficiently achieve the reduction of the background by the self-emission emitted from the main body and the light shielding property to eliminate indefinite noise.

そこで本発明の目的は、容器内面での反射によるシグナル増強、容器を構成する熱可塑性樹脂本体が出す自己発光によるバックグランドの低減、そして不定のノイズを排除するための遮光性の全てを同時に達成し得るように光反射性成分と光吸収性成分を配合した熱可塑性樹脂製の発光測定用容器を提供することにある。   Therefore, the object of the present invention is to achieve all of the signal enhancement by reflection on the inner surface of the container, the reduction of the background by the self-emission emitted from the thermoplastic resin body constituting the container, and the light shielding property to eliminate indefinite noise at the same time. An object of the present invention is to provide a container for light emission measurement made of a thermoplastic resin in which a light reflecting component and a light absorbing component are blended.

上記目的を達成するためになされた本発明は、0.5から10重量%の光反射性成分及び0.01から0.5重量%の光吸収性成分を配合し、灰色又は有彩色に着色成形した、熱可塑性樹脂製の発光測定用容器である。また、発光測定用容器が複数の開口部を有している場合、光学特性からみた本発明の発光測定用容器は、
発光測定用容器が有する開口部の一つに発光溶液を入れたときに前記開口部から検出される前記発光溶液からの光量(A)[cps]、及び
前記容器が有する開口部の一つに前記発光溶液を入れたときに前記開口部に隣接した開口部から検出される前記発光溶液からの光量(B)[cps]から、式(1)
[{(A)−(B)}÷(A)]×100 式(1)
により計算される遮光率が99.99%以上であり、
前記光量(A)[cps]が、1.0重量%の黒色顔料を配合した容器が有する開口部に前記発光溶液を入れたときに前記開口部から検出される前記発光溶液からの光量[cps]よりも大きい、発光測定用容器である。以下、本発明を詳細に説明する。
The present invention, which has been made to achieve the above object, contains 0.5 to 10% by weight of a light-reflective component and 0.01 to 0.5% by weight of a light-absorbing component, and is colored gray or chromatic. A molded luminescence measurement container made of a thermoplastic resin. In addition, when the luminescence measurement container has a plurality of openings, the luminescence measurement container of the present invention from the viewpoint of optical characteristics,
The amount of light (A) [cps] from the luminescent solution detected from the opening when the luminescent solution is put into one of the openings of the luminescence measurement container, and one of the openings of the container From the amount of light (B) [cps] from the luminescent solution detected from the opening adjacent to the opening when the luminescent solution is added, equation (1)
[{(A)-(B)} ÷ (A)] × 100 Formula (1)
The shading rate calculated by is 99.99% or more,
The light quantity (A) [cps] is the light quantity [cps] detected from the luminescent solution when the luminescent solution is put into the opening of a container containing 1.0% by weight of black pigment. ], A luminescence measurement container. Hereinafter, the present invention will be described in detail.

本発明における発光は、化学発光や生物発光等の化学反応により基底状態にあった分子がエネルギーを吸収して高エネルギー状態の励起状態に遷移し、元の基底状態に戻る際に生じる可視光であって、蛍光発光又は燐光発光以外のものである。また発光は、測定対象物から直接的に放出される可視光に限定されず、例えば、反応場に共存する蛍光物質などにエネルギーを一旦受け渡すことで、その蛍光物質が励起状態となり、そこから基底状態に戻る際に放出される可視光であっても良い。ここで蛍光発光とは、紫外光や可視光を励起光として照射することで、励起光を吸収した発光体が電子励起されて中間励起状態におち、そこから基底状態に戻るときに発する励起光より長波長の発光をいい、燐光発光とは、電子励起三重項に遷移した電子が基底状態にもどるときに発する発光をいう。   Luminescence in the present invention is visible light generated when a molecule in the ground state by chemical reaction such as chemiluminescence or bioluminescence absorbs energy and transitions to an excited state of a high energy state and returns to the original ground state. And other than fluorescence emission or phosphorescence emission. Luminescence is not limited to visible light emitted directly from the measurement object. For example, once the energy is transferred to a fluorescent substance coexisting in the reaction field, the fluorescent substance becomes excited, and from there It may be visible light emitted when returning to the ground state. Here, fluorescence emission refers to excitation light emitted when an illuminant that absorbs excitation light is electronically excited to enter an intermediate excitation state and return to the ground state by irradiating ultraviolet light or visible light as excitation light. Phosphorescence emission refers to luminescence emitted when electrons that have transitioned to the electronically excited triplet return to the ground state.

容器は、発光反応によって生じる発光を測定するための開口部を有する熱可塑性樹脂製のものであれば寸法は特に限定されないが、一般に容器の肉厚が薄いと遮光性が低下し、後述する光吸収性成分を配合しても十分な遮光性が得られなくなる可能性があるため、1mm程度(0.5mmから1.5mm)の肉厚を確保したものであることが好ましい。容器の形状としては、例えばチューブ、カップ、キュベット等の、個別独立した凹状のもの(開口部を一つ有したもの)、マイクロプレートのように、凹状のものが複数個連結されたもの(開口部を複数有したもの)が例示できる。容器を構成する熱可塑性樹脂は、後述する光反射性成分や光吸収性成分である顔料又は染料が配合できるものであれば特に制限はなく、例えば、オレフィン系樹脂、スチレン系樹脂、ビニル系樹脂、カーボネート系樹脂、ポリエステル系樹脂又はポリアミド系樹脂等を例示することができるがこれらに限定されない。例示した熱可塑性樹脂の中でも、既に発光測定用容器を構成するものとしての実績に富むオレフィン系ホモポリマーやコポリマーは特に好ましい熱可塑性樹脂である。より具体的には、例えば、低密度、中密度又は高密度のポリエチレン、線状低密度ポリエチレン、ポリプロピレン、ポリブテン−1、ポリ4−メチルペンテン−1、プロピレン−エチレン共重合体、アイオノマー、エチレン−アクリル共重合体又はエチレン−酢酸ビニル共重合体等を例示することができる。   The size of the container is not particularly limited as long as it is made of a thermoplastic resin having an opening for measuring the luminescence generated by the luminescence reaction. Even if an absorptive component is blended, there is a possibility that sufficient light-shielding properties may not be obtained. Therefore, it is preferable to secure a thickness of about 1 mm (0.5 mm to 1.5 mm). As the shape of the container, for example, a tube, a cup, a cuvette, etc., each of which has an individual concave shape (having one opening), or a shape in which a plurality of concave shapes such as a microplate are connected (opening) One having a plurality of parts) can be exemplified. The thermoplastic resin constituting the container is not particularly limited as long as it can be blended with a pigment or dye that is a light-reflecting component or a light-absorbing component, which will be described later. For example, an olefin resin, a styrene resin, a vinyl resin Examples thereof include, but are not limited to, carbonate-based resins, polyester-based resins, and polyamide-based resins. Among the exemplified thermoplastic resins, olefin homopolymers and copolymers having a proven track record as already constituting a container for light emission measurement are particularly preferred thermoplastic resins. More specifically, for example, low density, medium density or high density polyethylene, linear low density polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, propylene-ethylene copolymer, ionomer, ethylene- An acrylic copolymer, an ethylene-vinyl acetate copolymer, etc. can be illustrated.

容器を構成する熱可塑性樹脂に配合する光反射性成分は、容器内面での反射によるシグナル増強と当該反射による熱可塑性樹脂本体の励起を防止することによる自己発光に由来するバックグランドの低減のためのものである。従って、全波長にわたって光を反射する白色系の顔料又は染料や、測定しようとする発光の特定の波長を反射する色の顔料又は染料が光反射性成分として例示できる。中でも顔料は、特に好ましい光反射性成分である。より具体的には、白色顔料である二酸化チタン、亜鉛華、鉛白、炭酸カルシウム、タルク、マイカ等を例示することができる。中でも二酸化チタンは、熱可塑性樹脂を容器形状に成形する際の分散性や隠蔽性が良好で、安全性も高く、特に好ましい顔料である。なお二酸化チタンの中でも、通常、光触媒作用の小さい結晶型を選択するか、光触媒作用を抑制するために水酸化アルミニウムやアルミナ等で被覆処理されたものが特に好ましい。測定しようとする発光の特定の波長を反射する色の顔料としては、例えば、当該特定の波長が450nm付近であれば、ウルトラマリン青、プロシア青、フタロシアニン青又はアントラキノン等の青色の顔料を、当該特定の波長が550nm付近であれば、フタロシアニン緑、ぺリレン又はニトロソ化合物等の緑色の顔料を、当該特定の波長が650nm付近であれば、ニッケルチタン黄、ストロンチウム黄、黄鉛、クロム黄、亜鉛黄、ベンジジン黄、キノフタロン、イソインドリノン又はイミダゾロン等の黄色の顔料を例示することができる。以上に説明した光反射性成分は、一種類のものを単独で配合しても良いし、二種以上のものを組み合わせて配合しても良い。二種以上のものを組み合わせる場合には、同一色の顔料を二種以上組み合わせること以外に、異なる色の顔料を二種以上組み合わせることも含む。   The light-reflective component blended in the thermoplastic resin that composes the container is designed to reduce the background caused by self-luminescence by preventing signal enhancement by reflection on the inner surface of the container and excitation of the thermoplastic resin body by the reflection. belongs to. Accordingly, examples of the light-reflecting component include white pigments or dyes that reflect light over all wavelengths, and pigments or dyes that reflect a specific wavelength of light emission to be measured. Among these, a pigment is a particularly preferable light reflecting component. More specifically, white pigments such as titanium dioxide, zinc white, lead white, calcium carbonate, talc, and mica can be exemplified. Among these, titanium dioxide is a particularly preferable pigment because it has good dispersibility and concealment properties when molding a thermoplastic resin into a container shape, and has high safety. Of the titanium dioxides, those that are usually selected are those having a small photocatalytic action, or those coated with aluminum hydroxide or alumina to suppress the photocatalytic action. As a pigment of a color that reflects a specific wavelength of light emission to be measured, for example, if the specific wavelength is around 450 nm, a blue pigment such as ultramarine blue, procyanine blue, phthalocyanine blue, or anthraquinone, If the specific wavelength is around 550 nm, a green pigment such as phthalocyanine green, perylene, or nitroso compound is used. If the specific wavelength is around 650 nm, nickel titanium yellow, strontium yellow, yellow lead, chromium yellow, zinc Examples thereof include yellow pigments such as yellow, benzidine yellow, quinophthalone, isoindolinone and imidazolone. The light reflective component demonstrated above may be mix | blended individually by 1 type, and may be mix | blended combining 2 or more types. When two or more types are combined, in addition to combining two or more pigments of the same color, it also includes combining two or more pigments of different colors.

容器を構成する熱可塑性樹脂に配合する光吸収性成分は、容器を構成する熱可塑性樹脂本体が出す自己発光によるバックグランドの低減、そして不定のノイズを排除するための遮光性のためのものである。従って、全波長にわたって光を吸収する黒色の顔料又は染料が例示できる。中でも顔料は、特に好ましい光吸収性成分である。より具体的には、黒色料である、カーボンブラック、チタンブラック、アセチレンブラック、ランプブラック、アニリンブラック、酸化鉄(Fe)又は還元鉄等を例示することができる。これらは単独で配合することもできるし、二種以上を組み合わせて配合することができる。 The light-absorbing component blended in the thermoplastic resin that composes the container is intended to reduce the background due to self-emission emitted from the thermoplastic resin body that composes the container, and to block light to eliminate indefinite noise. is there. Accordingly, black pigments or dyes that absorb light over all wavelengths can be exemplified. Among these, a pigment is a particularly preferable light absorbing component. More specifically, examples of the black material include carbon black, titanium black, acetylene black, lamp black, aniline black, iron oxide (Fe 3 O 4 ), and reduced iron. These can also be mix | blended independently and can be mix | blended combining 2 or more types.

光反射性成分は、容器内面での反射によるシグナル増強と当該反射による熱可塑性樹脂
本体の励起を防止することによる自己発光に由来するバックグランドの低減のため、熱可
塑性樹脂製の容器に対し、0.5から10重量%、好ましくは1から6重量%配合する。一方、光吸収性成分は、容器を構成する熱可塑性樹脂本体が出す自己発光によるバックグランドの低減、そして不定のノイズを排除するための遮光性のため、熱可塑性樹脂製の容器に対し、0.01から0.5重量%、好ましくは0.02から0.1重量%配合する。光反射性成分及び光吸収性成分として、先に例示したもののうち、白色顔料及び黒色顔料を採用した場合には、灰色を呈する本発明の発光測定用容器が提供されるが、その明度は、配合する白色及び黒色顔料の比率等により変化する。これに対し、光反射性成分として白色以外の顔料又は白色と白色以外の顔料を採用した場合には、例えば青色容器(450nm付近の光を反射する)、緑色容器(550nm付近の光を反射する)、黄色容器(650nm付近の光を反射する)等、有彩色に着色された発光測定用容器が提供される。熱可塑性樹脂への光反射性成分及び光吸収性成分の配合量は、例えば、白色顔料を配合した白色のものをベースとして、これに黒色顔料を種々の割合で配合し、実際に容器の使用を意図している測定系で評価することにより決定することができる。本発明者の知見では、遮光性は少量の光吸収性成分を配合することによって達成可能である。そこで、まず、白色、青色、緑色又は黄色等の顔料により十分な容器内面での反射によるシグナル増強効果を達成できる配合量を検討した後、少量の黒色顔料を配合し、熱可塑性樹脂の自己発光によるバックグランドの低減と遮光性について検討し、黒色顔料の配合を調整することが例示できる。
The light-reflecting component is used for the thermoplastic resin container to reduce the background derived from self-luminescence by preventing signal enhancement by reflection on the inner surface of the container and excitation of the thermoplastic resin body by the reflection. 0.5 to 10% by weight, preferably 1 to 6% by weight is blended. On the other hand, the light-absorbing component is less than the thermoplastic resin container because of the reduction of the background due to self-emission emitted from the thermoplastic resin body constituting the container and the light-shielding property to eliminate indefinite noise. 0.01 to 0.5% by weight, preferably 0.02 to 0.1% by weight. Among the examples exemplified above as the light reflecting component and the light absorbing component, when a white pigment and a black pigment are employed, the luminescence measurement container of the present invention that exhibits gray color is provided. It varies depending on the ratio of white and black pigments to be blended. On the other hand, when a pigment other than white or a pigment other than white and white is employed as the light reflecting component, for example, a blue container (reflects light near 450 nm), a green container (reflects light near 550 nm). ), A yellow container (reflects light near 650 nm) and the like, and a luminescent color measurement container colored in a chromatic color is provided. The amount of the light-reflective component and the light-absorbing component to the thermoplastic resin is based on, for example, a white component containing a white pigment, and a black pigment is compounded in various proportions. Can be determined by evaluating with the intended measurement system. According to the knowledge of the present inventor, the light-shielding property can be achieved by blending a small amount of a light-absorbing component. Therefore, first, after studying the blending amount that can achieve a signal enhancement effect due to reflection on the inner surface of the container with a white, blue, green, or yellow pigment, a small amount of black pigment is blended, and the thermoplastic resin self-luminous. It is possible to exemplify adjusting the composition of the black pigment by examining the background reduction and the light-shielding property.

本発明の容器が図1の容器やマイクロプレートのように、凹状のものが複数個連結された(開口部を複数有した)容器の場合、光学特性から見た本発明の容器は、
容器が有する開口部の一つに発光溶液を入れたときに前記開口部から検出される前記発光溶液からの光量(A)[cps]、及び
前記容器が有する開口部の一つに前記発光溶液を入れたときに前記開口部に隣接した開口部から検出される前記発光溶液からの光量(B)[cps]から、式(1)
[{(A)−(B)}÷(A)]×100 式(1)
により計算される遮光率が99.99%以上であり、
前記光量(A)[cps]が、1.0重量%の黒色顔料を配合した容器が有する開口部に前記発光溶液を入れたときに前記開口部から検出される前記発光溶液からの光量[cps]よりも大きい、容器である。遮光率の測定方法の具体的態様としては、
一つの開口部に発光溶液を入れ他の開口部を遮光性材料で覆った後、前記発光溶液を入れた開口部から検出される発光溶液からの光量(A)[cps]を測定し、
一つの開口部に前記発光溶液を入れ遮光性材料で前記開口部を覆った後、前記開口部に隣接した開口部(マイクロプレートのように隣接した開口部が複数ある場合は隣接する開口部のうちの一つ)から検出される発光溶液からの光量(B)[cps]を測定後、
前記式(1)により遮光率を計算する方法があげられる。遮光率を測定する際に用いる開口部を覆う遮光性材料としては、アルミ箔など当業者が通常用いる材料を用いれば良い。
In the case where the container of the present invention is a container in which a plurality of concave objects are connected (having a plurality of openings), such as the container of FIG.
The amount of light (A) [cps] detected from the luminescent solution when the luminescent solution is put in one of the openings of the container, and the luminescent solution in one of the openings of the container From the amount of light (B) [cps] from the luminescent solution detected from the opening adjacent to the opening when
[{(A)-(B)} ÷ (A)] × 100 Formula (1)
The shading rate calculated by is 99.99% or more,
The light quantity (A) [cps] is the light quantity [cps] detected from the luminescent solution when the luminescent solution is put into the opening of a container containing 1.0% by weight of black pigment. ] Is larger than the container. As a specific aspect of the method for measuring the light shielding rate,
After putting a luminescent solution in one opening and covering the other opening with a light-shielding material, measure the light amount (A) [cps] from the luminescent solution detected from the opening containing the luminescent solution,
After the luminescent solution is put in one opening and the opening is covered with a light-shielding material, the opening adjacent to the opening (if there are a plurality of adjacent openings like a microplate, After measuring the amount of light (B) [cps] from the luminescent solution detected from one of them)
A method of calculating the light shielding rate by the above formula (1) can be mentioned. As the light-shielding material that covers the opening used when measuring the light-shielding rate, a material usually used by those skilled in the art, such as an aluminum foil, may be used.

本発明の容器は、発光測定用のものである。しかし、容器を構成する熱可塑性樹脂は従来から免疫反応や生化学反応といった各種反応のための反応容器としても用いられている。このことは、本発明の容器を単に発光測定の段階に限らず、その前段階である各種反応を生じさせる容器として使用することが可能であることを意味するものである。例えば、血液や血清中の微量成分を、生物学的特異反応を利用して複合体として固相に捕捉し、固相に捕捉された成分(Bound)と捕捉されなかった成分(Free)を分けるB/F分離を行ったのち、複合体中の標識成分を発光反応に導いて発光測定する一連の操作において、当該生物学的特異反応を生じさせるための容器としても、本発明の容器は使用可能である。更に、当該生物学的特異反応のための試薬を予めアルミシール等で封入しておけば、本発明の容器は、生物学的特異反応試薬の保存容器として、そして、測定のための試料を添加するだけで当該生物学的特異反応をスタートさせ、結果として生じる発光を測定するという試薬キットの一部とすることができる。ここで、生物学的特異反応とは、抗原抗体反応、ビオチン−ストレプトアビジン反応、ビオチン−アビジン反応、核酸−核酸相互反応、リガンド−リセプター反応等である。   The container of the present invention is for luminescence measurement. However, the thermoplastic resin constituting the container has been conventionally used as a reaction container for various reactions such as immune reactions and biochemical reactions. This means that the container of the present invention can be used not only for the stage of luminescence measurement but also as a container for causing various reactions as the previous stage. For example, a trace component in blood or serum is captured on a solid phase as a complex using a biological specific reaction, and a component (Bound) captured on the solid phase and a component (Free) not captured are separated. After performing B / F separation, the container of the present invention can be used as a container for causing the biological specific reaction in a series of operations in which the labeling component in the complex is introduced into the luminescence reaction to measure luminescence. Is possible. Further, if the reagent for the biological specific reaction is sealed in advance with an aluminum seal or the like, the container of the present invention is used as a storage container for the biological specific reaction reagent, and a sample for measurement is added. This can be part of a reagent kit that starts the biological specific reaction and measures the resulting luminescence. Here, the biological specific reaction includes antigen-antibody reaction, biotin-streptavidin reaction, biotin-avidin reaction, nucleic acid-nucleic acid interaction, ligand-receptor reaction, and the like.

生物学的特異反応として抗原抗体反応を用いる2ステップサンドイッチ反応の試薬を例に具体的に説明すると、本発明の発光測定用容器に、一回の反応を生じさせるのに必要な量の、抗体を固定化した担体を含む溶液を分注して凍結乾燥したものが該当する。この容器とは別の容器に一回の測定を実施するのに必要な量の、アルカリ性ホスファターゼ等の酵素で標識した抗体又はアクリジニウム等の発光物質で標識した抗体の溶液を分注して凍結乾燥しておく。血液や血清等の検体を、担体を含む容器に分注し、凍結乾燥成分の溶解と第一の抗原抗体反応を行い、第一のB/F分離を行う。別の容器にも溶解液を分注して標識抗体を溶解し、溶解した標識抗体をB/F分離を完了した容器に分注して第二の抗原抗体反応を行う。第二の抗原抗体反応終了後に第二のB/F分離を行い、続いて必要により酵素基質を分注し、発光量を測定して抗原抗体反応の対象物の濃度に換算する。この例では、本発明の発光測定用容器は、免疫反応試薬の保存のための容器、抗原抗体反応用容器、発光測定用容器として共通に使用することになる。   The reagent for the two-step sandwich reaction using the antigen-antibody reaction as a biological specific reaction will be specifically described as an example. The amount of antibody necessary to cause one reaction in the luminescence measurement container of the present invention is described. This corresponds to a solution obtained by dispensing and lyophilizing a solution containing a carrier on which is immobilized. Dispensing and lyophilizing a solution of an antibody labeled with an enzyme such as alkaline phosphatase or an antibody labeled with a luminescent substance such as acridinium in an amount necessary to carry out a single measurement in a container different from this container Keep it. Samples such as blood and serum are dispensed into a container containing a carrier, lyophilized components are dissolved and a first antigen-antibody reaction is performed, and a first B / F separation is performed. Dissolve the solution in another container to dissolve the labeled antibody, and dispense the dissolved labeled antibody into the container that has completed B / F separation to perform the second antigen-antibody reaction. After completion of the second antigen-antibody reaction, second B / F separation is performed, and then an enzyme substrate is dispensed as necessary, and the amount of luminescence is measured and converted to the concentration of the target of the antigen-antibody reaction. In this example, the luminescence measurement container of the present invention is commonly used as a container for storing an immune reaction reagent, an antigen-antibody reaction container, and a luminescence measurement container.

本発明の発光測定用容器は、光吸収性成分である黒色顔料と光反射性成分である白色顔料等の両者を一定の配合率で配合することにより、黒色顔料の配合によって達成されるバックグランドの低減と遮光性、そして白色顔料の配合によって達成されるバックグランドの低減と容器内面での反射によるシグナル増強の全てを同時かつ効果的に達成するものである。本発明の発光測定用容器は、その高い遮光性により、
(ア)発光検出器内にコンタミ成分由来の発光があっても、これを取り込まないようにすることができる、
(イ)測定対象物質が超低濃度から高濃度まで含まれる種々の未知試料である場合でも、これをマイクロプレート形状とした本発明の発光測定用容器等を用いて測定すれば、ウェル間のクロストークを回避したうえで測定できる、
(ウ)発光測定用容器を多連式のチューブ形状とし、一の容器中に保持された発光物質と反応する試薬を隣接する他のチューブに分注して測定を行う場合でも、発光物質分注時の飛沫混入により発生するノイズ光の漏れを回避できる、
(エ)低いバックグランドを実現する既存の黒色の容器に比べて、容器内面での反射によるシグナル増強を期待できる、
という効果を有するものである。特に上記(ア)から(ウ)は、発光測定において低濃度の測定対象物を高感度に測定する場合に、測定値の信頼性を高めるのに有効である。
The light emission measuring container of the present invention is a background achieved by blending a black pigment as a light-absorbing component and a white pigment as a light-reflecting component at a certain blending ratio. Reduction, light shielding, and background reduction and signal enhancement by reflection on the inner surface of the container are achieved simultaneously and effectively. The luminescence measurement container of the present invention has a high light shielding property,
(A) Even if there is luminescence derived from a contamination component in the luminescence detector, it can be prevented from taking it in.
(B) Even when the substance to be measured is various unknown samples contained from a very low concentration to a high concentration, if it is measured using the luminescence measurement container of the present invention in the form of a microplate, Can be measured after avoiding crosstalk,
(C) Even if the luminescence measurement container has a multiple tube shape and the reagent that reacts with the luminescent substance held in one container is dispensed into another adjacent tube, the luminescent substance content is measured. It is possible to avoid leakage of noise light that occurs due to splashing at the time of injection,
(D) Compared with the existing black container that realizes a low background, signal enhancement due to reflection on the inner surface of the container can be expected.
It has the effect. In particular, the above (a) to (c) are effective in increasing the reliability of the measured value when measuring a low-concentration measurement object with high sensitivity in luminescence measurement.

図1は、発光測定用容器に関する遮光率を説明するための図である。図中1は蛍光検出器を、2は発光測定用容器を、3は酵素反応液を、4はアルミ箔シールをそれぞれ示す。FIG. 1 is a diagram for explaining the light shielding rate related to the luminescence measurement container. In the figure, 1 is a fluorescence detector, 2 is a luminescence measuring container, 3 is an enzyme reaction solution, and 4 is an aluminum foil seal. 図2は、表1における黒色容器を用いて測定したTSHのレスポンスカーブを示した図である。FIG. 2 is a diagram showing a response curve of TSH measured using the black container in Table 1. 図3は、表1における#2容器を用いて測定したTSHのレスポンスカーブを示した図である。FIG. 3 is a diagram showing a TSH response curve measured using the # 2 container in Table 1.

以下、実施例により本発明を詳細に説明するが、これら実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, these Examples do not limit this invention.

実施例1
光反射性成分として白色顔料(二酸化チタン)、光吸収性成分として黒色顔料(カーボンブラック)を選択し、表1のようにポリプロピレンに対する配合率を#1から#4の4つのパターンで変化させて、それぞれ容量が同一である2槽タイプの発光測定用容器(図1参照)を作製した。対照として無着色、黒色、白色容器も作製した。
Example 1
A white pigment (titanium dioxide) is selected as the light reflecting component, and a black pigment (carbon black) is selected as the light absorbing component. As shown in Table 1, the blending ratio with respect to polypropylene is changed in four patterns # 1 to # 4. A two-tank type luminescence measurement container (see FIG. 1) having the same capacity was prepared. As controls, uncolored, black and white containers were also prepared.

図1の(a)に示すように空容器の一方の開口部をアルミ箔4でシールした後、もう一方の槽に10ng/mLのアルカリ性ホスファターゼ(ALP)10μLと0.4mMのALP用化学発光基質溶液(特開2005−77142号参照)100μLとからなる酵素反応液3を分注して発光検出器1にセットし、37℃、5分間反応後の発光量(A)を、反応溶液の入った槽の開口部上方から検出した。   As shown in FIG. 1 (a), one opening of an empty container is sealed with aluminum foil 4, and then 10 ng / mL alkaline phosphatase (ALP) 10 μL and 0.4 mM ALP chemiluminescence are added to the other tank. The enzyme reaction solution 3 consisting of 100 μL of the substrate solution (see JP-A-2005-77142) is dispensed and set in the luminescence detector 1, and the amount of luminescence (A) after the reaction at 37 ° C. for 5 minutes is determined according to the reaction solution. It detected from the opening part upper part of the tank into which it entered.

次に図1の(b)に示すように新たな空容器を用意し、一方の槽に酵素反応液3を分注して開口部をアルミ箔4でシールした後、37℃、5分間反応させた。反応後、空の槽の開口部の上方に受光面が位置するように発光検出器1に容器をセットし、酵素反応液3が入った槽から最短箇所で約1mmの隔壁を透過して空の槽へ漏れ出た光量(B)を測定した。遮光率は以下のように計算し表1にまとめた。   Next, as shown in FIG. 1B, a new empty container is prepared, the enzyme reaction solution 3 is dispensed into one tank, the opening is sealed with aluminum foil 4, and the reaction is performed at 37 ° C. for 5 minutes. I let you. After the reaction, a container is set in the luminescence detector 1 so that the light receiving surface is located above the opening of the empty tank, and the empty space passes through a partition wall of about 1 mm at the shortest point from the tank containing the enzyme reaction solution 3. The amount of light (B) leaking into the tank was measured. The light blocking ratio was calculated as follows and summarized in Table 1.

遮光率[%]=
{(サンプル側の光量(A)[cps]−空の槽に漏れ出た光量(B)[cps])
÷サンプル側の光量(A)[cps]}×100
光反射性成分に遮蔽性の良好な二酸化チタンを用い、顔料の練り込み率を成形濃度限界近くの6%に上げた白色容器を用いても、漏れ光量は944,105cpsと高く、遮光率は93.6774%しか得られない。これに対して、黒色、#1、#2、#3(光吸収性成分であるカーボンブラックの配合率は、それぞれ、1.00、0.09、0.048、0.024%)では、いずれも空槽への漏れ光量が30から41cpsと、検出器1のダークカウントと同レベルと低く、遮光率はいずれも99.997%以上の良好な値を示した。光吸収性成分であるカーボンブラックの配合率を0.012%まで落とした#4は1,611cpsの漏れ光量を示し、遮光率は99.9662%となった。
Shading rate [%] =
{(Amount of light on sample side (A) [cps] −Amount of light leaking into empty tank (B) [cps])
÷ Sample-side light intensity (A) [cps]} × 100
Even when using titanium dioxide with good shielding properties as the light-reflective component and using a white container in which the pigment kneading rate is increased to 6% near the molding density limit, the amount of leakage light is as high as 944 and 105 cps, and the light shielding rate is Only 93.6774% is obtained. On the other hand, in black, # 1, # 2, and # 3 (the mixing ratio of carbon black that is a light absorbing component is 1.00, 0.09, 0.048, and 0.024%, respectively) In any case, the amount of light leaked into the empty tank was 30 to 41 cps, which was as low as the dark count of the detector 1, and the light shielding rate showed a good value of 99.997% or more. # 4 in which the blending ratio of carbon black, which is a light absorbing component, was reduced to 0.012% showed a leakage light amount of 1,611 cps, and the light blocking ratio was 99.9662%.

以上の結果から、黒色容器と同レベルの遮光率(すなわち99.99%以上)を確保するためには、白色顔料にごく少量のカーボンブラックを練り込めば良く、その配合率は0.024%以上であることが分かる。その一方で、ALPの酵素反応による発光量の増強効果においては、#1、#2、#3はいずれも黒色容器に比べて高いシグナルが得られ、その中でも必要最低量のカーボンブラックを配合した#3が最も高値であった。#4、白色1及び白色2(特に白色容器)は高いシグナル増強効果が得られたが、遮光性が悪く、発光が漏れ、容器外からのノイズ光の漏れ込みによって測定値が偽高値化するという虞のあることが分かる。   From the above results, in order to ensure the same level of light shielding rate as that of the black container (that is, 99.99% or more), it is sufficient to incorporate a very small amount of carbon black into the white pigment, and the blending ratio is 0.024%. It turns out that it is above. On the other hand, in the effect of enhancing the amount of luminescence by the enzymatic reaction of ALP, all of # 1, # 2, and # 3 obtained a high signal compared with the black container, and among them, the necessary minimum amount of carbon black was blended. # 3 was the highest. # 4, White 1 and White 2 (especially white containers) have a high signal enhancement effect, but the light shielding properties are poor, light emission leaks, and the measured value becomes false high due to leakage of noise light from outside the container I understand that there is a fear.

Figure 2010169672
実施例2
実施例1において観察された容器外からのノイズ光の漏れ込みが、実際の発光測定においてどの程度の偽高値に相当するのかを評価するために、無着色、黒色、#2、#4、白色2のそれぞれの容器を用いて実際に甲状腺刺激ホルモン(TSH)の発光測定を行った。
Figure 2010169672
Example 2
In order to evaluate how much false high value the leakage of noise light from outside the container observed in Example 1 corresponds to in actual light emission measurement, no coloring, black, # 2, # 4, white The luminescence measurement of thyroid stimulating hormone (TSH) was actually performed using each of the two containers.

1.抗TSH抗体固定化粒子の調製
1.5mLのチューブにカルボキシル化微粒子(粒子表面にカルボキシ基を有する、直径約2.5μmの微粒子)を10mg取り、1mLの10mM MES緩衝液(pH6.0)で洗浄後、10%N−エチル−N’−(ジメチルアミノプロピル)カルボジイミド(EDC)を含む10mM MES緩衝液(pH6.0)を1mL添加して室温で振盪攪拌した。上清を除去後、1mLの10mM MES緩衝液(pH6.0)にて洗浄し、超音波処理後、1mg/mLの抗体溶液を100μL添加し、室温にて振盪攪拌した。0.1%アジ化ナトリウムを含む1mLの0.1M Tris塩酸緩衝液(pH8.0)にて洗浄後、0.1%BSA及び0.1%アジ化ナトリウムを含む0.1M Tris塩酸緩衝液(pH8.0)にてブロッキングし、同緩衝液中に保存した。
1. Preparation of anti-TSH antibody-immobilized particles Take 10 mg of carboxylated microparticles (microparticles having a carboxy group on the particle surface and a diameter of about 2.5 μm) in a 1.5 mL tube, and use 1 mL of 10 mM MES buffer (pH 6.0). After washing, 1 mL of 10 mM MES buffer (pH 6.0) containing 10% N-ethyl-N ′-(dimethylaminopropyl) carbodiimide (EDC) was added, and the mixture was shaken and stirred at room temperature. After removing the supernatant, it was washed with 1 mL of 10 mM MES buffer (pH 6.0), sonicated, 100 μL of 1 mg / mL antibody solution was added, and the mixture was shaken and stirred at room temperature. After washing with 1 mL of 0.1 M Tris hydrochloric acid buffer (pH 8.0) containing 0.1% sodium azide, 0.1 M Tris hydrochloric acid buffer containing 0.1% BSA and 0.1% sodium azide Blocked at (pH 8.0) and stored in the same buffer.

2.TSHの測定
0.4%抗TSH抗体固定化粒子10μLと、TSH試料10μLと、界面活性剤入り精製水40μLとを発光測定用容器に取り、攪拌後、37℃にて5分間、2ステップサンドイッチ法の第1反応を行った。反応液を吸引除去した後、10mMのTris塩酸緩衝液(150mM NaCl、0.05%Tween−20、1mM MgCl、0.1%アジ化ナトリウムを含む)(pH8.0)を用いて第1洗浄を行った。2.8μg/mLのALP標識抗TSH抗体を50μL添加し、攪拌後、37℃で第2反応を行った。第2洗浄後、0.4mMのALP用化学発光基質溶液を100μL添加して攪拌し、37℃で5分間反応させ、エンドポイント測光した。
2. Measurement of TSH Take 10 μL of 0.4% anti-TSH antibody-immobilized particles, 10 μL of TSH sample, and 40 μL of surfactant-containing purified water in a container for luminescence measurement, stir, and then a 2-step sandwich at 37 ° C. for 5 minutes. The first reaction of the method was performed. After the reaction solution was removed by suction, the reaction solution was first treated with 10 mM Tris hydrochloric acid buffer solution (containing 150 mM NaCl, 0.05% Tween-20, 1 mM MgCl 2 , 0.1% sodium azide) (pH 8.0). Washing was performed. 50 μL of 2.8 μg / mL ALP-labeled anti-TSH antibody was added, and after stirring, the second reaction was performed at 37 ° C. After the second washing, 0.4 μL of a 0.4 mM ALP chemiluminescence substrate solution was added and stirred, reacted at 37 ° C. for 5 minutes, and endpoint photometry was performed.

TSH濃度とカウント値の比較を表2に示す。黒色容器及び#2容器を用いたTSHのレスポンスカーブを図2および図3にそれぞれ示す。本実施例では、試料に測定下限界濃度付近の低濃度TSH試料を用いた。実施例1の結果における漏れ光量において、遮光率99.99%未満の容器である#4の1,611cpsはTSH濃度で約0.004μIU/mL以上のプラス誤差(0.0021μIU/mL×1,611/(1,323−523)=0.0042μIU/mL)、同じく遮光率99.99%未満の容器である白色容器2の944,105cpsは1.37μIU/mL以上のプラス誤差(0.0021μIU/mL×944,105/(2,284−839)=1.372μIU/mL)となることが分かる。当然のことながら、容器の外で光るノイズ光には上限がなく、光量が多ければ測定値のプラス誤差となる程度も高くなる。このように制御できないノイズ光が突発的に漏れ込み測定値が変動すると、特に低濃度域の測定の信頼性が低下し、大きな問題となる。   Table 2 shows a comparison between the TSH concentration and the count value. The response curves of TSH using the black container and # 2 container are shown in FIGS. 2 and 3, respectively. In this example, a low-concentration TSH sample near the measurement lower limit concentration was used as the sample. In the amount of leakage light in the result of Example 1, 1,611 cps of # 4, which is a container with a light shielding rate of less than 99.99%, has a TSH concentration of about 0.004 μIU / mL or more plus error (0.0021 μIU / mL × 1, 611 / (1,323-523) = 0.0042 μIU / mL), 944,105 cps of the white container 2, which is also a container with a light shielding rate of less than 99.99%, is a positive error of 1.37 μIU / mL or more (0.0021 μIU /ML×944,105/(2,284-839)=1.372 μIU / mL). As a matter of course, there is no upper limit to the noise light that shines outside the container, and the greater the amount of light, the higher the degree of positive error in the measured value. If noise light that cannot be controlled in this way suddenly leaks and the measured value fluctuates, the reliability of measurement in the low concentration region is lowered, which is a serious problem.

また、TSHの検出下限界濃度(MDC)を、2SD法、すなわちゼロ濃度試料を複数回測定して計算した標準偏差(SD)および検量線の傾きから算出する方法により実施例1で作製した黒色容器および#2の容器を用いて求めた結果、#2の容器を用いたレスポンスカーブの傾きの方が約2倍大きくなり、MDCにおいては黒色容器を用いた場合が0.00017μIU/mL、#2の容器を用いた場合が0.000089μIU/mLとなる。この結果から、#2の容器の方が約2倍高感度に測定できることが分かる。   Also, the black color produced in Example 1 by the 2SD method, that is, the standard deviation (SD) calculated by measuring a zero concentration sample a plurality of times and the slope of the calibration curve, are calculated from the TSH detection lower limit concentration (MDC). As a result of using the container and the # 2 container, the slope of the response curve using the # 2 container is about twice as large. In the MDC, the black container is 0.00017 μIU / mL, # When 2 containers are used, 0.000089 μIU / mL is obtained. From this result, it can be seen that the # 2 container can measure the sensitivity twice as high.

Figure 2010169672
Figure 2010169672

1 発光検出器
2 発光測定用容器
3 酵素反応液
4 アルミ箔(のシール)
DESCRIPTION OF SYMBOLS 1 Luminescence detector 2 Luminescence measuring container 3 Enzyme reaction liquid 4 Aluminum foil (seal)

Claims (9)

0.5から10重量%の光反射性成分及び0.01から0.5重量%の光吸収性成分を配合し、灰色又は有彩色に着色成形した、熱可塑性樹脂製の発光測定用容器。 A container for light emission measurement made of a thermoplastic resin, containing 0.5 to 10% by weight of a light-reflective component and 0.01 to 0.5% by weight of a light-absorbing component, and colored and molded in gray or chromatic color. 前記光反射性成分が白色顔料である、請求項1の発光測定用容器。 The light emission measuring container according to claim 1, wherein the light reflective component is a white pigment. 前記白色顔料が二酸化チタンである、請求項2の発光測定用容器。 The container for luminescence measurement according to claim 2, wherein the white pigment is titanium dioxide. 前記光吸収性成分が黒色顔料である、請求項1の発光測定用容器。 The container for light emission measurement of Claim 1 whose said light absorptive component is a black pigment. 前記黒色顔料がカーボンブラックである、請求項4の発光測定用容器。 The luminescence measurement container according to claim 4, wherein the black pigment is carbon black. 1から6重量%の二酸化チタン及び0.02から0.1重量%のカーボンブラックを配合した、熱可塑性樹脂製の発光測定用容器。 A container for light emission measurement made of a thermoplastic resin, containing 1 to 6% by weight of titanium dioxide and 0.02 to 0.1% by weight of carbon black. 開口部を複数有した、請求項1から6のいずれかの発光測定用容器。 The container for luminescence measurement according to any one of claims 1 to 6, comprising a plurality of openings. 開口部を複数有した発光測定用容器であって、
発光測定用容器が有する開口部の一つに発光溶液を入れたときに前記開口部から検出される前記発光溶液からの光量(A)[cps]、及び
前記容器が有する開口部の一つに前記発光溶液を入れたときに前記開口部に隣接した開口部から検出される前記発光溶液からの光量(B)[cps]から、式(1)
[{(A)−(B)}÷(A)]×100 式(1)
により計算される遮光率が99.99%以上であり、
前記光量(A)[cps]が、1.0重量%の黒色顔料を配合した容器が有する開口部に前記発光溶液を入れたときに前記開口部から検出される前記発光溶液からの光量[cps]よりも大きい、発光測定用容器。
A luminescence measurement container having a plurality of openings,
The amount of light (A) [cps] from the luminescent solution detected from the opening when the luminescent solution is put into one of the openings of the luminescence measurement container, and one of the openings of the container From the amount of light (B) [cps] from the luminescent solution detected from the opening adjacent to the opening when the luminescent solution is added, equation (1)
[{(A)-(B)} ÷ (A)] × 100 Formula (1)
The shading rate calculated by is 99.99% or more,
The light quantity (A) [cps] is the light quantity [cps] detected from the luminescent solution when the luminescent solution is put into the opening of a container containing 1.0% by weight of black pigment. ], A container for measuring luminescence larger than.
請求項7または8の発光測定用容器が有する開口部の一つに発光溶液を入れ、前記発光溶液からの発光を前記開口部上方から検出する、発光測定方法。 A luminescence measurement method, wherein a luminescent solution is placed in one of the openings of the luminescence measurement container according to claim 7 or 8, and light emission from the luminescent solution is detected from above the opening.
JP2009288189A 2008-12-22 2009-12-18 Vessel for luminescence measurement Pending JP2010169672A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009288189A JP2010169672A (en) 2008-12-22 2009-12-18 Vessel for luminescence measurement
PCT/JP2009/071839 WO2010074305A1 (en) 2008-12-22 2009-12-22 Vessel for luminescence measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008325405 2008-12-22
JP2009288189A JP2010169672A (en) 2008-12-22 2009-12-18 Vessel for luminescence measurement

Publications (1)

Publication Number Publication Date
JP2010169672A true JP2010169672A (en) 2010-08-05

Family

ID=42287899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288189A Pending JP2010169672A (en) 2008-12-22 2009-12-18 Vessel for luminescence measurement

Country Status (2)

Country Link
JP (1) JP2010169672A (en)
WO (1) WO2010074305A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040641A (en) * 2016-09-06 2018-03-15 国立大学法人九州大学 Optical measurement system and optical cell
JP2020190564A (en) * 2016-09-06 2020-11-26 国立大学法人九州大学 Optical measuring system and optical cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132335A (en) * 1982-10-12 1984-07-30 ダイナテク・ラボラトリ−ズ・インコ−ポレ−テツド Non-fluorescent vessel for holding test sample for fluorometric analysis, its manufacture and fluorometric analysis method
JPH06102182A (en) * 1992-09-18 1994-04-15 Toyobo Co Ltd Plate for nucleic acid measurement by luminescence method
JPH10221243A (en) * 1996-11-25 1998-08-21 Porvair Plc Microplate and its manufacture
JPH11211653A (en) * 1998-01-26 1999-08-06 Shimadzu Corp Biodegradability low-fluorescence cell
JP2002530661A (en) * 1998-11-20 2002-09-17 モレキュラー マシーンズ アンド インダストリーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Multi-well assembly with improved sensitivity for optical analysis
JP2004510996A (en) * 2000-10-10 2004-04-08 バイオトローブ・インコーポレイテツド Instruments for assay, synthesis, and storage, and methods of making, using, and manipulating them
JP2005526238A (en) * 2002-02-25 2005-09-02 ウオーターズ・インベストメンツ・リミテツド Opaque additive that blocks stray light in a flow cell for TEFLON (registered trademark) AF light guidance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132335A (en) * 1982-10-12 1984-07-30 ダイナテク・ラボラトリ−ズ・インコ−ポレ−テツド Non-fluorescent vessel for holding test sample for fluorometric analysis, its manufacture and fluorometric analysis method
JPH06102182A (en) * 1992-09-18 1994-04-15 Toyobo Co Ltd Plate for nucleic acid measurement by luminescence method
JPH10221243A (en) * 1996-11-25 1998-08-21 Porvair Plc Microplate and its manufacture
JPH11211653A (en) * 1998-01-26 1999-08-06 Shimadzu Corp Biodegradability low-fluorescence cell
JP2002530661A (en) * 1998-11-20 2002-09-17 モレキュラー マシーンズ アンド インダストリーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Multi-well assembly with improved sensitivity for optical analysis
JP2004510996A (en) * 2000-10-10 2004-04-08 バイオトローブ・インコーポレイテツド Instruments for assay, synthesis, and storage, and methods of making, using, and manipulating them
JP2005526238A (en) * 2002-02-25 2005-09-02 ウオーターズ・インベストメンツ・リミテツド Opaque additive that blocks stray light in a flow cell for TEFLON (registered trademark) AF light guidance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040641A (en) * 2016-09-06 2018-03-15 国立大学法人九州大学 Optical measurement system and optical cell
JP2020190564A (en) * 2016-09-06 2020-11-26 国立大学法人九州大学 Optical measuring system and optical cell

Also Published As

Publication number Publication date
WO2010074305A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
EP0106662B1 (en) Non-fluorescent vessels for holding test samples in fluorescent assays
EP1253419B1 (en) Fluorescence detection method capable of making measurement under external light
FI81680B (en) HOMOGEN FLUORECENS IMMUNOANALYS BASERAD PAO ETT LJUSABSORBERANDE AEMNE.
US4725388A (en) Non-fluorescent vessels for holding test samples in fluorescent assays
JP2011058868A (en) Container for light emission measurement
AU2015243289B2 (en) Use of absorbent particles to improve signal detection in an analysis method
JP2008064574A (en) Background light reducing method and member in evanescent wave exciting fluorescent observation
WO2010074305A1 (en) Vessel for luminescence measurement
JP6810055B2 (en) How to reuse test probes and reagents in immunoassay
WO2005095929A1 (en) Masking member, light measuring method, light measuring kit and light measuring container
JPH06102182A (en) Plate for nucleic acid measurement by luminescence method
JP6195840B2 (en) Analysis method and analysis kit for simultaneously detecting or quantifying multiple types of target substances
CN104897654B (en) A kind of microflow controlled biochip detection device and preparation method
US20220365092A1 (en) A method for detecting an analyte
JPH02254364A (en) Plate for measuring immunity of biological/chemical luminescent enzyme
CN101769927A (en) Detection particle of carcino-embryonic antigen as well as preparation and application thereof
CN110514648A (en) A kind of chemiluminescence analysis POCT detection device and its application
JP2008096324A (en) Emission detecting system
WO2022044702A1 (en) Target measurement method, device for target measurement, target measurement apparatus, and kit for target measurement
CN110514650B (en) Chemiluminescence analysis determination method, system and kit using same
CN115791763B (en) Homogeneous phase luminescence detection device and application
CN110514646A (en) A kind of chemiluminescence analysis measuring method and the system using this method, kit
CN110514647A (en) A kind of chemiluminescence analysis measuring method and the system using this method, kit
Soini The principle of time-resolved fluorometry
CN113454462A (en) Solid-phase reaction chip and measurement method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218