JP2010169030A - Method for manufacturing propeller blade, propeller blade, and blower - Google Patents

Method for manufacturing propeller blade, propeller blade, and blower Download PDF

Info

Publication number
JP2010169030A
JP2010169030A JP2009013287A JP2009013287A JP2010169030A JP 2010169030 A JP2010169030 A JP 2010169030A JP 2009013287 A JP2009013287 A JP 2009013287A JP 2009013287 A JP2009013287 A JP 2009013287A JP 2010169030 A JP2010169030 A JP 2010169030A
Authority
JP
Japan
Prior art keywords
spider
propeller blade
welding
blade
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013287A
Other languages
Japanese (ja)
Other versions
JP5100671B2 (en
Inventor
Hiroshi Goto
寛士 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009013287A priority Critical patent/JP5100671B2/en
Publication of JP2010169030A publication Critical patent/JP2010169030A/en
Application granted granted Critical
Publication of JP5100671B2 publication Critical patent/JP5100671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a propeller blade having excellent material yield, not requiring the use of an adhesive, achieving the reduced number of bending (and drawing) man-hours, and having high dimensional accuracy. <P>SOLUTION: This method for manufacturing the propeller blade includes: a step of preparing a tabular spider and a plurality of tabular blades different from the spider in thickness or material; a step of forming a tabular propeller blade by welding the plurality of blades to the spider; and a step of forming a stereoscopic propeller blade by bending the tabular propeller blade. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プロペラ羽根の製造方法、プロペラ羽根及び該プロペラ羽根を備える送風機に関する。   The present invention relates to a method for manufacturing a propeller blade, a propeller blade, and a blower including the propeller blade.

従来、モータの回転軸に取着されるスパイダーと、このスパイダーに接合されるブレードとを備え、上記スパイダーと上記ブレードとの接合面に接着剤を塗布するとともに、上記接着剤により上記スパイダーの周側部をシールするようにし、上記スパイダーと上記ブレードとをスポット溶接またはリベットにより接合したプロペラ羽根が開示されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a spider that is attached to a rotating shaft of a motor and a blade that is joined to the spider are provided, and an adhesive is applied to a joint surface between the spider and the blade, and the spider is surrounded by the adhesive. A propeller blade is disclosed in which side portions are sealed and the spider and the blade are joined by spot welding or rivets (see, for example, Patent Document 1).

また、モータの回転軸に取着されるスパイダーと、このスパイダーに固着され、固着部分より回転方向に大きく突き出す先端部を持つブレードとを備え、回転により軸方向に送風するようにしたプロペラ羽根であって、上記スパイダーを上記ブレードより風の流れに対して下流側に配置するとともに、上記ブレードには絞り部を設け、この絞り部に下流側から上記スパイダーを面接触の関係に絞り込み、ブレード表面とスパイダー表面とがほぼ同一面となるよう金属用の接着剤を使って固着し、上記スパイダーと上記ブレードとをスポット溶接またはリベットにより接合したプロペラ羽根が開示されている(例えば、特許文献2参照)。   In addition, a propeller blade that is attached to the rotating shaft of the motor and a blade having a tip portion that is fixed to the spider and protrudes larger in the rotation direction than the fixing portion and blows in the axial direction by rotation. The spider is disposed downstream of the blade with respect to the flow of wind, the blade is provided with a throttle portion, and the spider is throttled into a surface contact relationship from the downstream side to the throttle portion, and the blade surface A propeller blade is disclosed in which the spider and the blade are bonded together by spot welding or rivets, which are fixed using a metal adhesive so that the surface of the spider and the spider are substantially flush with each other (see, for example, Patent Document 2). ).

上記のスパイダー部材としては、板厚約4mmの高張力鋼板が用いられ、ブレード部材としては、板厚約1mmの高張力鋼板が用いられている。また、スパイダーとボスの接合は、一般的に、MIG溶接、TIG溶接、リベット接合又はかしめ等により行なわれている。   As the spider member, a high-tensile steel plate having a thickness of about 4 mm is used, and as the blade member, a high-tensile steel plate having a thickness of about 1 mm is used. The spider and boss are generally joined by MIG welding, TIG welding, rivet joining, caulking, or the like.

実公平5−45838号公報Japanese Utility Model Publication No. 5-45838 実公平7−23600号公報No. 7-23600

しかしながら、上記従来の技術によれば、スパイダーとブレードの接合のために材料を重ね合わせている。そのため、材料歩留りが悪い、という問題があった。また、スパイダーとブレードとを重ね合わせた隙間に雨水が浸入しないように、溶接前に接着剤を塗布している。そのため、接着剤の材料費及び塗布する加工費が発生する、という問題があった。   However, according to the conventional technique, the materials are overlapped for joining the spider and the blade. Therefore, there was a problem that the material yield was poor. In addition, an adhesive is applied before welding so that rainwater does not enter the gap between the spider and the blade. For this reason, there has been a problem that the material cost of the adhesive and the processing cost to apply are generated.

また、従来のプロペラ羽根においては、スパイダーとブレードに対して、夫々個別に曲げ、絞り等の成形加工を行い、成形加工の後に、両者を組合わせ、溶接やリベット接合等の組立加工を行っていた。従って、例えば、ブレードが3枚のプロペラ羽根の場合には、スパイダー1回+ブレード3回=合計4回の曲げ・絞り加工が必要となり、加工の手間がかかっていた。   In addition, with conventional propeller blades, the spider and blade are individually bent and drawn, and after molding, the two are combined and assembled, such as welding and riveting. It was. Therefore, for example, in the case where the blade is three propeller blades, it is necessary to perform bending / drawing processing once in a spider and three times in a blade = four times in total, which is troublesome.

また、個別に曲げ、絞り加工を行ったスパイダーとブレードを重ね合わせるとき、スプリングバックの影響により、合わせ面形状を一致させることが難しく、プロペラ羽根の寸法精度が出ない。そのため、後工程でバランス修正作業が発生するという加工上の問題と、スパイダーとブレード間に隙間が生じて錆の原因になる、という品質上の問題があった。   Further, when the spider and the blade that have been individually bent and drawn are overlapped, it is difficult to match the mating surface shape due to the influence of the spring back, and the dimensional accuracy of the propeller blades is not achieved. For this reason, there is a problem in processing that balance correction work occurs in a later process, and a problem in quality that a gap is generated between the spider and the blade to cause rust.

上述の材料歩留り、錆、加工工数等の問題は、スパイダーとブレードとを突合せ溶接することにより解決することができるので、従来のMIG溶接又はTIG溶接による突合せ溶接が試行された。しかしながら、MIG溶接やTIG溶接は、材料への入熱量が多いため、特に、薄板のブレード側の熱歪みが大きくなり、実用に適さなかった。そのため、スパイダーとブレードとの接合には、スポット溶接やリベット接合といった接合法を取らざるを得なかった。   Since the above-mentioned problems such as material yield, rust, and processing man-hours can be solved by butt welding a spider and a blade, butt welding by conventional MIG welding or TIG welding has been tried. However, since MIG welding and TIG welding have a large amount of heat input to the material, the thermal distortion on the blade side of the thin plate is particularly large and is not suitable for practical use. For this reason, the spider and the blade must be joined by spot welding or rivet joining.

本発明は、上記に鑑みてなされたものであって、材料歩留りがよく、接着剤を用いる必要がなく、曲げ(及び絞り)加工工数が少なく、寸法精度が高い、プロペラ羽根の製造方法を得ることを目的とする。   The present invention has been made in view of the above, and provides a method for manufacturing a propeller blade that has a high material yield, does not require the use of an adhesive, has a small number of bending (and drawing) processing steps, and has high dimensional accuracy. For the purpose.

上述した課題を解決し、目的を達成するために、本発明は、平板状のスパイダー及び該スパイダーと板厚又は材質の異なる複数の平板状のブレードを準備する工程と、前記複数のブレードを前記スパイダーにレーザ溶接して平板状のプロペラ羽根を形成する工程と、前記平板状のプロペラ羽根を曲げ加工して立体的なプロペラ羽根を形成する工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a step of preparing a plate-like spider and a plurality of plate-like blades different in plate thickness or material from the spider, It includes a step of forming a flat propeller blade by laser welding to a spider, and a step of bending the flat propeller blade to form a three-dimensional propeller blade.

本発明によれば、材料歩留りがよく、接着剤を用いる必要がなく、曲げ・絞り加工工数が少なく、寸法精度が高い、プロペラ羽根の製造方法が得られる、という効果を奏する。   According to the present invention, there is an effect that a material yield is good, there is no need to use an adhesive, a bending / drawing man-hour is small, a dimensional accuracy is high, and a method for manufacturing a propeller blade is obtained.

図1は、本発明にかかるプロペラ羽根の製造方法の実施の形態1を従来方法と対比させて示す製造工程図である。FIG. 1 is a manufacturing process diagram showing a first embodiment of a method for manufacturing a propeller blade according to the present invention in comparison with a conventional method. 図2は、実施の形態1のブレードの板取図である。FIG. 2 is a plan view of the blade of the first embodiment. 図3は、実施の形態1のスパイダーの板取図である。FIG. 3 is a plan view of the spider according to the first embodiment. 図4−1は、ブレードとスパイダーとボスとを組合わせた実施の形態1のプロペラ羽根を示す平面図である。FIG. 4A is a plan view of the propeller blade according to the first embodiment in which a blade, a spider, and a boss are combined. 図4−2は、ブレードとスパイダーとボスとを組合わせた実施の形態1のプロペラ羽根を示す断面図である。FIG. 4-2 is a cross-sectional view showing the propeller blade of the first embodiment in which a blade, a spider, and a boss are combined. 図5−1は、下面合わせの突合せレーザ溶接方法を示す断面図である。FIG. 5A is a cross-sectional view illustrating a bottom surface butt laser welding method. 図5−2は、下面合わせの突合せレーザ溶接後の溶接部の拡大断面図である。FIG. 5-2 is an enlarged cross-sectional view of a welded portion after butt laser welding for bottom surface matching. 図6は、上面合わせの突合せレーザ溶接方法を示す断面図である。FIG. 6 is a cross-sectional view showing a butt laser welding method for top surface matching. 図7は、ワーク間に隙間を設けたレーザ溶接方法を示す断面図である。FIG. 7 is a cross-sectional view showing a laser welding method in which a gap is provided between workpieces. 図8は、ブローホールを示す断面写真である。FIG. 8 is a cross-sectional photograph showing a blowhole. 図9−1は、溶接端部に発生するノッチを示す断面写真である。FIG. 9-1 is a cross-sectional photograph showing a notch generated at the weld end. 図9−2は、ワークにタブを設けて溶接した状態を示す平面図である。FIG. 9-2 is a plan view showing a state in which the workpiece is welded with a tab. 図10は、実施の形態1のタブ切断工程を示す平面図である。FIG. 10 is a plan view showing the tab cutting step of the first embodiment. 図11は、タブ切断後の実施の形態1のプロペラ羽根を示す平面図である。FIG. 11 is a plan view showing the propeller blade of the first embodiment after cutting the tab. 図12は、ボスとスパイダーとの実施の形態1のレーザ溶接方法を従来のMIG溶接方法と対比して示す断面図である。FIG. 12 is a cross-sectional view showing the laser welding method of the first embodiment of the boss and spider in comparison with the conventional MIG welding method. 図13−1は、ボスとスパイダーとの全周レーザ溶接方法を示す平面図である。FIG. 13A is a plan view illustrating the all-around laser welding method between the boss and the spider. 図13−2は、ボスとスパイダーとの全周レーザ溶接方法を示す断面図である。FIG. 13-2 is a cross-sectional view illustrating the entire laser welding method between the boss and the spider. 図14は、ボスとスパイダーとの部分レーザ溶接方法を示す平面図である。FIG. 14 is a plan view showing a partial laser welding method between a boss and a spider. 図15は、曲げ加工後の実施の形態1のプロペラ羽根を示す平面図である。FIG. 15 is a plan view showing the propeller blade of the first embodiment after bending. 図16は、本発明にかかるプロペラ羽根の製造方法の実施の形態2の当て板を用いたレーザ溶接方法を示す図である。FIG. 16 is a diagram showing a laser welding method using the contact plate of the second embodiment of the method for manufacturing a propeller blade according to the present invention. 図17は、本発明にかかるプロペラ羽根の製造方法の実施の形態3の重ねレーザ溶接方法を示す断面図である。FIG. 17: is sectional drawing which shows the overlap laser welding method of Embodiment 3 of the manufacturing method of the propeller blade | wing concerning this invention. 図18は、実施の形態1〜3のプロペラ羽根を備えた送風機を示す側面図である。FIG. 18 is a side view showing a blower provided with the propeller blades of the first to third embodiments.

以下に、本発明にかかるプロペラ羽根の製造方法、プロペラ羽根及び送風機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   EMBODIMENT OF THE INVENTION Below, embodiment of the manufacturing method of a propeller blade | wing, propeller blade | wing, and air blower concerning this invention is described in detail based on drawing. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかるプロペラ羽根の製造方法の実施の形態1を従来方法と対比させて示す製造工程図であり、図2は、実施の形態1のブレードの板取図であり、図3は、実施の形態1のスパイダーの板取図であり、図4−1は、ブレードとスパイダーとボスとを組合わせた実施の形態1のプロペラ羽根を示す平面図であり、図4−2は、ブレードとスパイダーとボスとを組合わせた実施の形態1のプロペラ羽根を示す断面図である。
Embodiment 1 FIG.
FIG. 1 is a manufacturing process diagram showing a first embodiment of a method for manufacturing a propeller blade according to the present invention in comparison with a conventional method, and FIG. 2 is a plan view of the blade of the first embodiment. Is a plan view of the spider of the first embodiment, FIG. 4-1 is a plan view showing the propeller blade of the first embodiment in which a blade, a spider and a boss are combined, and FIG. It is sectional drawing which shows the propeller blade | wing of Embodiment 1 which combined the braid | blade, the spider, and the boss | hub.

図1及び図2に示すように、プレス機により、板厚約1.0mmの高張力鋼板のコイル材10から、プロペラ羽根1台につき3枚のブレード11を打ち抜いて準備する。打ち抜かれた平板状のブレード11には、凹円弧状の接合部11aの両端部に突起状のタブ11bが形成されている。   As shown in FIGS. 1 and 2, three blades 11 are prepared by punching one propeller blade from a coil material 10 of a high-tensile steel plate having a thickness of about 1.0 mm by a press machine. In the punched flat blade 11, protruding tabs 11 b are formed at both ends of the concave arc-shaped joint 11 a.

また、図1及び図3に示すように、プレス機により、板厚約4.0mmの高張力鋼板の定尺材或いはスケッチ材20から、プロペラ羽根1台につき1枚のスパイダー21を打ち抜いて準備する。打ち抜かれた平板状のスパイダー21には、凸円弧状の接合部21aの両端部に突起状のタブ21bが形成されている。また、旋盤等により、図示しない線材から、図4−2に示すような円筒状のボス31を切り出して準備する。   Also, as shown in FIGS. 1 and 3, one spider 21 is prepared by punching one propeller blade from a high-tensile steel standard or sketch material 20 with a thickness of about 4.0 mm using a press machine. To do. The punched flat plate-like spider 21 has protruding tabs 21b at both ends of the convex arcuate joint 21a. Further, a cylindrical boss 31 as shown in FIG. 4B is cut out and prepared from a wire rod (not shown) by a lathe or the like.

実施の形態1のプロペラ羽根の製造方法では、図4−1に示すように、準備された平板状の3枚のブレード11とスパイダー21、スパイダー21とボス31とを組合せ、図1及び図4−2に示すように、レーザ溶接にて接合する。3種類の部品の組合せに際しては、各部品の相対位置が決まるような専用治具を用い、各部品をセットした状態でレーザ溶接を行なう。   In the method of manufacturing the propeller blade of the first embodiment, as shown in FIG. 4A, the three prepared flat blades 11 and the spider 21, and the spider 21 and the boss 31 are combined. -2 is joined by laser welding. When combining the three types of components, laser welding is performed with each component set using a dedicated jig that determines the relative position of each component.

図1に示すように、従来の技術では、スパイダーとボスをMIG溶接にて接合し、次に、スパイダーの曲げ加工を行い、別個に曲げ加工した3枚のブレードとの間に接着剤を塗布した上で、スポット溶接を行っていたが、実施の形態1では、上述のように、スパイダー21及びブレード11が平板の状態でレーザ溶接を行なっている。   As shown in Fig. 1, in the conventional technology, the spider and boss are joined by MIG welding, then the spider is bent, and an adhesive is applied between the three blades that are bent separately. In addition, spot welding is performed. In the first embodiment, as described above, laser welding is performed with the spider 21 and the blade 11 in a flat plate state.

レーザ溶接は、COレーザ、YAGレーザ等の様々な方式が実用化されているが、本発明のプロペラ羽根の製造方法では、いずれの方式も利用可能である。実施の形態1では、COレーザによる溶接を行なう。 For laser welding, various methods such as a CO 2 laser and a YAG laser have been put into practical use, but any method can be used in the method for manufacturing a propeller blade of the present invention. In the first embodiment, welding with a CO 2 laser is performed.

図5−1は、下面合わせの突合せレーザ溶接方法を示す断面図である。溶接条件は、ワークの材質と板厚の組合せにより変わるが、例えば、板厚4mmの高張力鋼板と板厚1mmの高張力鋼板の溶接にCOレーザを用いる場合は、4kW、1500mm/minの条件で溶接を行なうことが可能である。 FIG. 5A is a cross-sectional view illustrating a bottom surface butt laser welding method. The welding conditions vary depending on the combination of workpiece material and plate thickness. For example, when a CO 2 laser is used for welding a high-tensile steel plate having a plate thickness of 4 mm and a high-tensile steel plate having a plate thickness of 1 mm, the welding condition is 4 kW and 1500 mm / min. It is possible to perform welding under conditions.

図5−1に示すように、薄板鋼板を突合わせてレーザ溶接を行なう場合、レーザ焦点位置を少し厚板側にずらし、厚板側を溶かして薄板側と接合するようにするとよい。焦点位置がずれて薄板側に焦点が当たると、入熱量が大きすぎて薄板側が溶け落ちるおそれがある。   As shown in FIG. 5A, when laser welding is performed by matching thin steel plates, the laser focal position is slightly shifted to the thick plate side, and the thick plate side is melted and joined to the thin plate side. If the focal position is shifted and the thin plate side is focused, the amount of heat input is so large that the thin plate side may melt.

逆に、厚板側に大きく焦点位置がずれると、溶融熱が薄板側に届かなくなる。上述の条件でレーザ溶接を行なう場合、レーザ焦点位置は、厚板端部(ワーク端面)から0.25mm厚板側を狙い、端部からのずれ量を、一定の範囲内に収める。このようにすれば、図5−2に示すような、きれいな溶接部が得られる。   On the contrary, if the focal position is greatly shifted to the thick plate side, the heat of fusion does not reach the thin plate side. When laser welding is performed under the above-described conditions, the laser focal point is aimed at the 0.25 mm thick plate side from the thick plate end (work end surface), and the deviation from the end is kept within a certain range. In this way, a beautiful weld as shown in FIG. 5-2 can be obtained.

図6は、上面合わせの突合せレーザ溶接方法を示す断面図である。図6に示すように、ワーク上面を合わせた状態でレーザ溶接を行なうことも可能である。この場合も、レーザ焦点位置は、厚板端部(ワーク端面)から0.25mm厚板側を狙い、端部からのずれ量を、一定の範囲内に収める。また、厚板中心と薄板中心を合わせた状態でレーザ溶接することも可能であり、製品機能や加工上の都合に合わせて適切な突合せ位置を選べばよい。   FIG. 6 is a cross-sectional view showing a butt laser welding method for top surface matching. As shown in FIG. 6, it is also possible to perform laser welding with the upper surfaces of the workpieces aligned. Also in this case, the laser focus position is aimed at the 0.25 mm thick plate side from the thick plate end (work end surface), and the deviation amount from the end is kept within a certain range. Laser welding can also be performed with the center of the thick plate and the center of the thin plate aligned, and an appropriate butt position may be selected according to the product function and processing convenience.

図7は、ワーク間に隙間を設けたレーザ溶接方法を示す断面図である。図7に示すように、薄板鋼板をレーザ溶接で突合せ溶接するとき、ワーク間の隙間は重要なポイントである。隙間の間隔が大きいと薄板側へ熱が伝わらず溶接不良となる。また、一見、溶着しているように見えても、溶融金属が不足してブローホール等の溶接欠陥が出やすい。   FIG. 7 is a cross-sectional view showing a laser welding method in which a gap is provided between workpieces. As shown in FIG. 7, the gap between workpieces is an important point when butt welding thin steel plates by laser welding. If the gap is large, heat is not transferred to the thin plate side, resulting in poor welding. Moreover, even if it seems to be welded at first glance, the molten metal is insufficient, and welding defects such as blow holes are likely to occur.

例えば、板厚4mmの鋼板と板厚1mmの鋼板とをCOレーザで溶接する場合、ワーク間の間隔が0.4mmまでは溶接可能であるが、0.4mmを超えると溶接不良となる。また、間隔が0.2mm以上の箇所では、図8に示すようなブローホールが発生する。溶接時のワーク間隔は、極力ゼロとするのが望ましい。例えば、溶接前工程でプレス等によるせん断加工を行う場合は、ワーク間隔に影響するので、バリやカエリ等の発生を抑える必要がある。 For example, when a steel plate with a plate thickness of 4 mm and a steel plate with a plate thickness of 1 mm are welded with a CO 2 laser, welding is possible up to an interval between workpieces of up to 0.4 mm. Further, blow holes as shown in FIG. 8 are generated at intervals of 0.2 mm or more. It is desirable that the workpiece interval during welding be zero as much as possible. For example, when shearing is performed by a press or the like in the pre-welding process, it affects the work interval, and therefore it is necessary to suppress the occurrence of burrs and burrs.

レーザ溶接を行う場合、上述したように、レーザ光の焦点位置及びワーク間の間隔が重要である。従来の技術のように、各部品の曲げ(及び絞り)加工を行った後で突合せ溶接を行う場合、溶接線が3次元的になり、焦点位置を合わせるティーチング作業が難しい。また、各部品の端面を合わせることも難しく、溶接不良が発生し易い。実施の形態1では、平板状態でレーザ溶接を行った後に、プロペラ羽根の曲げ(及び絞り)加工を行うので、ワークの端面が合わせ易く、また、ティーチング作業が容易となる。   When performing laser welding, as described above, the focal position of the laser beam and the interval between the workpieces are important. When butt welding is performed after bending (and drawing) each part as in the prior art, the welding line becomes three-dimensional and teaching work for adjusting the focal position is difficult. Moreover, it is difficult to match the end surfaces of the respective parts, and poor welding is likely to occur. In the first embodiment, since the propeller blade is bent (and drawn) after laser welding is performed in a flat plate state, the end surfaces of the workpieces can be easily aligned and teaching work is facilitated.

レーザ溶接により薄板鋼板の突合せ溶接を行なう場合、溶接線端部に、図9−1に示すような、ノッチと呼ばれる肉ヒケが発生し、プロペラ羽根の強度低下を引き起こす。実施の形態1では、接合部11a、21a(図2、図3参照)の両端部に突起状のタブ(余肉)11b、21bを形成し、レーザ溶接後にタブ11b、21bを切除することにより、この問題を解決した。   When performing butt welding of a thin steel plate by laser welding, a flesh sink called a notch as shown in FIG. 9-1 occurs at the end of the weld line, causing a reduction in the strength of the propeller blades. In the first embodiment, protruding tabs (surplus) 11b and 21b are formed at both ends of the joint portions 11a and 21a (see FIGS. 2 and 3), and the tabs 11b and 21b are cut off after laser welding. Solved this problem.

図9−2は、ワークにタブを設けてレーザ溶接した状態を示す平面図である。図9−2に示すタブ11b、21bは、板厚1mmと4mmの場合のものであるが、R寸法を5mmの半円状とした。タブ11b、21bの大きさは、発生するノッチの大きさを考慮して決定する。タブ11b、21bの大きさは、少なくとも発生するノッチ以上の大きさとする。   FIG. 9-2 is a plan view showing a state where a tab is provided on the workpiece and laser welding is performed. The tabs 11b and 21b shown in FIG. 9-2 are for the case where the plate thickness is 1 mm and 4 mm, but the R dimension is a semicircular shape with a 5 mm. The sizes of the tabs 11b and 21b are determined in consideration of the size of the notches generated. The size of the tabs 11b and 21b is at least as large as the generated notch.

ブレード11とスパイダー21のレーザ溶接後にタブ11b、21bを削除するが、タブ11b、21bの削除方法としては、プレスによるせん断やレーザによる切断等がある。図10は、実施の形態1のタブ切断工程を示す図である。切断刃A及び切断刃Bを有するタブ切断用のパンチ41を取付けたタブ切断型40を用いることにより、2箇所のタブ11b、21bを一度に切断することができる。3枚のブレード11を有するプロペラ羽根91の場合、プロペラ羽根91を回転させながら3回のタブ切断を行えば、図11に示すような、ノッチの無い平板状のプロペラ羽根91が形成される。   The tabs 11b and 21b are deleted after laser welding of the blade 11 and the spider 21. As methods for deleting the tabs 11b and 21b, there are shearing by a press, cutting by a laser, and the like. FIG. 10 is a diagram illustrating a tab cutting process according to the first embodiment. By using the tab cutting die 40 to which the tab cutting punch 41 having the cutting blade A and the cutting blade B is attached, the two tabs 11b and 21b can be cut at a time. In the case of the propeller blades 91 having the three blades 11, if the tab cutting is performed three times while rotating the propeller blades 91, a flat propeller blade 91 without a notch as shown in FIG. 11 is formed.

従来の技術では、ボス31とスパイダー21とはMIG溶接、スパイダー21とブレード11とはスポット溶接で接合していたので、接合工程を分ける必要があった。実施の形態1の製造方法では、スパイダー21とブレード11とをレーザ溶接する際、スパイダー21とボス31も同時にレーザ溶接するようにし、接合工程を1工程に集約している。   In the prior art, since the boss 31 and the spider 21 are joined by MIG welding and the spider 21 and the blade 11 are joined by spot welding, it is necessary to divide the joining process. In the manufacturing method of the first embodiment, when the spider 21 and the blade 11 are laser-welded, the spider 21 and the boss 31 are also laser-welded at the same time, and the joining process is integrated into one process.

図12は、ボスとスパイダーとの実施の形態1のレーザ溶接方法を従来のMIG溶接方法と対比して示す断面図である。図12に示すように、従来の技術のMIG溶接では、溶接棒を斜めにして溶接を行なっていた。実施の形態1のレーザ光による溶接では、図12に示すように、(1)斜めにレーザ光を照射、(2)重ね溶接、(3)突合せ溶接等の溶接方法を行なうことができる。   FIG. 12 is a cross-sectional view showing the laser welding method of the first embodiment of the boss and spider in comparison with the conventional MIG welding method. As shown in FIG. 12, in conventional MIG welding, welding is performed with the welding rod inclined. In welding with the laser beam of the first embodiment, as shown in FIG. 12, a welding method such as (1) laser beam irradiation, (2) lap welding, (3) butt welding, or the like can be performed.

(1)の場合には、レーザ光の照射位置により溶接条件が異なるが、(2)及び(3)の溶接方法を採用すれば、スパイダー21とブレード11の溶接条件と同一条件での溶接が可能である。例えば、スパイダー21の板厚が4mmの場合、COレーザを使用すれば、4kW、1500mm/minという条件で溶接を行なうことができる。 In the case of (1), the welding conditions differ depending on the irradiation position of the laser beam, but if the welding methods of (2) and (3) are adopted, welding under the same conditions as the welding conditions of the spider 21 and the blade 11 is possible. Is possible. For example, when the plate thickness of the spider 21 is 4 mm, welding can be performed under conditions of 4 kW and 1500 mm / min if a CO 2 laser is used.

図13−1は、ボスとスパイダーとの全周レーザ溶接方法を示す平面図であり、図13−2は、ボスとスパイダーとの全周レーザ溶接方法を示す断面図であり、図14は、ボスとスパイダーとの部分レーザ溶接方法を示す平面図である。プロペラ羽根91の駆動時において、スパイダー21とボス31の接合部に発生する応力は、スパイダー21とブレード11の接合部に発生する応力に比べて低いので、必ずしも図13−1及び図13−2に示すような全周溶接とする必要はなく、図14に示すような部分溶接としてもよい。   FIG. 13-1 is a plan view showing the all-around laser welding method between the boss and the spider, FIG. 13-2 is a cross-sectional view showing the all-around laser welding method between the boss and the spider, and FIG. It is a top view which shows the partial laser welding method of a boss | hub and a spider. When the propeller blade 91 is driven, the stress generated at the joint between the spider 21 and the boss 31 is lower than the stress generated at the joint between the spider 21 and the blade 11, and therefore is not necessarily FIGS. 13-1 and 13-2. It is not necessary to perform all-around welding as shown in FIG. 14, and partial welding as shown in FIG.

タブ切断が終了した平板状のプロペラ羽根91は、プレス機と曲げ(及び絞り)型により、曲げ(及び絞り)加工を行う。図15は、曲げ(及び絞り)加工後の実施の形態1のプロペラ羽根を示す平面図である。従来の技術では、スパイダー21及びブレード11を、溶接前に個別に曲げ加工していたが、実施の形態1では、一度で全ての曲げ(及び絞り)加工を行なうので、寸法精度が出し易く、きれいな曲面形状を出すことができる。また、曲げ(及び絞り)加工の寸法精度が良いので、従来行っていたバランス修正の工程を無くすことができる。   The tabular propeller blades 91 that have been subjected to tab cutting are bent (and drawn) by a press and a bending (and drawing) die. FIG. 15 is a plan view showing the propeller blade of the first embodiment after bending (and drawing) processing. In the conventional technique, the spider 21 and the blade 11 are individually bent before welding, but in the first embodiment, since all bending (and drawing) processing is performed at once, dimensional accuracy is easily obtained. A beautiful curved surface shape can be obtained. In addition, since the dimensional accuracy of the bending (and drawing) processing is good, it is possible to eliminate the balance correction process that has been conventionally performed.

実施の形態2.
図16は、本発明にかかるプロペラ羽根の製造方法の実施の形態2の当て板を用いたレーザ溶接方法を示す図である。レーザ溶接時のノッチ対策として、厚板側と同じ材質、板厚の当て板50を、図16に示すワークとの位置関係にセットする。レーザ溶接を行うとき、当て板50の一部にもレーザ光が当たるようにティーチングを行い、当て板50の一部を溶融させ、ワーク端部で不足する溶融金属を補うようにする。
Embodiment 2. FIG.
FIG. 16 is a diagram showing a laser welding method using the contact plate of the second embodiment of the method for manufacturing a propeller blade according to the present invention. As a countermeasure against notch at the time of laser welding, a contact plate 50 having the same material and thickness as the thick plate side is set in a positional relationship with the workpiece shown in FIG. When laser welding is performed, teaching is performed so that a part of the contact plate 50 is also irradiated with the laser beam, and a part of the contact plate 50 is melted to make up for the molten metal that is insufficient at the workpiece end.

溶接作業終了後、当て板50とワークとが溶着しているため、次工程で当て板切断工程が必要となる。この場合、ワークセット時に、当て板50との間にC=0.5〜1.0mm程度の隙間を設けておけば、次工程での切断が容易である。当て板50の切断方法は、プレスによるせん断、レーザ光による切断等があり、プレスによるせん断は、上述のタブ切断と同様の設備及び金型により行なうことができる。   After the welding operation is finished, the contact plate 50 and the workpiece are welded, and therefore a contact plate cutting step is required in the next step. In this case, if a gap of about C = 0.5 to 1.0 mm is provided between the contact plate 50 and the work set, cutting in the next process is easy. The cutting method of the backing plate 50 includes shearing by pressing, cutting by laser light, and the like. The shearing by pressing can be performed by the same equipment and mold as the above-described tab cutting.

実施の形態3.
図17は、本発明にかかるプロペラ羽根の製造方法の実施の形態3の重ねレーザ溶接方法を示す断面図である。図17に示すように、実施の形態3のプロペラ羽根93は、スパイダー23とブレード13とを重ねてレーザ溶接している。この場合、レーザ光の焦点位置については、実施の形態1の突合せ溶接に比べ、厳しい管理が不要となるメリットがある。
Embodiment 3 FIG.
FIG. 17: is sectional drawing which shows the overlap laser welding method of Embodiment 3 of the manufacturing method of the propeller blade | wing concerning this invention. As shown in FIG. 17, the propeller blade 93 of the third embodiment is formed by laser welding with the spider 23 and the blade 13 overlapped. In this case, there is a merit that strict management is not required for the focal position of the laser beam as compared with the butt welding of the first embodiment.

また、従来の技術と同様に、スパイダー23及びブレード13の曲げ(及び絞り)加工を行った後にレーザ溶接を行なうことも可能である。ただし、スパイダー23とブレード13との間隙が大きいと、厚板(スパイダー23)側に溶融熱が伝わらず溶接不良となることがあるので注意を要する。   Further, similarly to the conventional technique, it is also possible to perform laser welding after bending (and drawing) the spider 23 and the blade 13. However, if the gap between the spider 23 and the blade 13 is large, the heat of fusion may not be transmitted to the thick plate (spider 23) side, resulting in poor welding.

例えば、板厚約4mmのスパイダー23と板厚約1mmのブレード13を重ね、ブレード13側からCOレーザを照射して重ね溶接を行なう場合、安定した溶接を行うために、間隙を0.2mm以内に収める必要がある。従って、ワーク形状、寸法及び歪み量に十分な注意を払い、溶接時のワークセット治具に歪みを矯正する機能を持たせる等の工夫が必要である。また、重ね溶接の場合には、溶接後、ワーク間の塗装がし難いので、耐食性に関して注意を要する。 For example, when a spider 23 having a plate thickness of about 4 mm and a blade 13 having a plate thickness of about 1 mm are overlapped and lap welding is performed by irradiating a CO 2 laser from the blade 13 side, the gap is set to 0.2 mm in order to perform stable welding. Must be within. Accordingly, it is necessary to pay sufficient attention to the workpiece shape, dimensions, and amount of distortion, and to devise measures such as imparting a distortion correcting function to the workpiece setting jig during welding. Also, in the case of lap welding, it is difficult to paint between workpieces after welding, so care must be taken regarding corrosion resistance.

図5−1に示す突合せ溶接の場合は、厚板側全てを溶かすレーザ出力が必要となるが、図17に示す重ね溶接の場合は、厚板側全てを溶かす必要がないので、レーザ出力を落としたり、溶接速度をUPさせることができる。例えば、板厚約4mmと約1mmの鋼板をCOレーザで溶接する場合、突合せ溶接の場合は、4kW、1500mm/minの条件で溶接するが、重ね溶接の場合には、4kW、3000mm/minの条件で溶接が可能である。 In the case of butt welding shown in FIG. 5-1, a laser output that melts all of the thick plate side is required, but in the case of lap welding shown in FIG. 17, it is not necessary to melt all of the thick plate side. Can drop or increase welding speed. For example, when steel plates having a thickness of about 4 mm and about 1 mm are welded with a CO 2 laser, butt welding is performed under conditions of 4 kW and 1500 mm / min, but in the case of lap welding, 4 kW and 3000 mm / min are used. Welding is possible under these conditions.

なお、以上説明した実施の形態1〜3のプロペラ羽根の製造方法では、スパイダー21、23の材質とブレード11、13の材質は、高張力鋼板としたが、本発明のプロペラ羽根の製造方法においては、スパイダー及びブレードの材質は、高張力鋼板に限られるものではなく、他の金属板であってもよい。また、スパイダーの材質とブレードの材質を異ならせてもよい。   In addition, in the manufacturing method of the propeller blade | wing of Embodiment 1-3 demonstrated above, although the material of the spiders 21 and 23 and the material of the blades 11 and 13 were high-tensile steel plates, in the manufacturing method of the propeller blade | wing of this invention The material of the spider and the blade is not limited to the high-tensile steel plate, and may be another metal plate. Also, the spider material and the blade material may be different.

実施の形態4.
図18は、実施の形態1〜3のプロペラ羽根を備えた送風機を示す側面図である。送風機90は、実施の形態1〜3の製造方法により製造したプロペラ羽根91、93と、プロペラ羽根91、93を回転軸95に取付けたモータ96と、モータ96を左右上下に揺動させるブラケット97と、ブラケット97を支持するポール98と、を備えている。
Embodiment 4 FIG.
FIG. 18 is a side view showing a blower provided with the propeller blades of the first to third embodiments. The blower 90 includes propeller blades 91 and 93 manufactured by the manufacturing method according to the first to third embodiments, a motor 96 having the propeller blades 91 and 93 attached to the rotary shaft 95, and a bracket 97 that swings the motor 96 left and right and up and down. And a pole 98 that supports the bracket 97.

実施の形態4の送風機90は、プロペラ羽根91、93を備えるので、バランス修正作業の頻度が少なく、寸法精度が高く、振動、騒音の少ない送風運転を行なうことができ、製品寿命が長い。   Since the blower 90 of the fourth embodiment includes the propeller blades 91 and 93, the frequency of the balance correction work is low, the dimensional accuracy is high, the blow operation with less vibration and noise can be performed, and the product life is long.

以上説明したように、本発明のプロペラ羽根の製造方法により、高品質、高強度で安価なプロペラ羽根を製造することができる。   As described above, high-quality, high-strength and inexpensive propeller blades can be manufactured by the method for manufacturing propeller blades of the present invention.

10 コイル材
11、13 ブレード
11a 接合部
11b タブ
20 定尺材(スケッチ材)
21、23 スパイダー
21a 接合部
21b タブ
31 ボス
40 タブ切断型
41 パンチ
50 当て板
90 送風機
91、93 プロペラ羽根
95 回転軸
96 モータ
97 ブラケット
98 ポール
10 Coil material 11, 13 Blade 11a Joint 11b Tab 20 Standard material (sketch material)
21, 23 Spider 21a Joint portion 21b Tab 31 Boss 40 Tab cutting die 41 Punch 50 Pad plate 90 Blower 91, 93 Propeller blade 95 Rotary shaft 96 Motor 97 Bracket 98 Pole

Claims (8)

平板状のスパイダー及び該スパイダーと板厚又は材質の異なる複数の平板状のブレードを準備する工程と、
前記複数のブレードを前記スパイダーにレーザ溶接して平板状のプロペラ羽根を形成する工程と、
前記平板状のプロペラ羽根を曲げ加工して立体的なプロペラ羽根を形成する工程と、
を含むことを特徴とするプロペラ羽根の製造方法。
Preparing a plate-like spider and a plurality of plate-like blades having different plate thickness or material from the spider; and
A step of laser welding the plurality of blades to the spider to form a flat propeller blade;
Bending the flat propeller blade to form a three-dimensional propeller blade; and
The manufacturing method of the propeller blade | wing characterized by including.
前記複数のブレードを前記スパイダーに突合せレーザ溶接することを特徴とする請求項1に記載のプロペラ羽根の製造方法。   2. The method of manufacturing a propeller blade according to claim 1, wherein the plurality of blades are butt-welded and laser welded to the spider. 前記ブレード及びスパイダーの溶接部の端部にタブを設け、前記突合せレーザ溶接後に前記タブを除去することを特徴とする請求項2に記載のプロペラ羽根の製造方法。   3. The method of manufacturing a propeller blade according to claim 2, wherein a tab is provided at an end of a welded portion of the blade and the spider, and the tab is removed after the butt laser welding. 前記ブレード及びスパイダーの溶接部の端部に当て板を配置し、前記突合せレーザ溶接後に前記当て板を除去することを特徴とする請求項2に記載のプロペラ羽根の製造方法。   3. The method of manufacturing a propeller blade according to claim 2, wherein a contact plate is disposed at an end of a welded portion of the blade and the spider, and the contact plate is removed after the butt laser welding. 前記複数のブレードを前記スパイダーに重ね合わせレーザ溶接することを特徴とする請求項1に記載のプロペラ羽根の製造方法。   The method of manufacturing a propeller blade according to claim 1, wherein the plurality of blades are superposed on the spider and laser-welded. 前記複数のブレードを前記スパイダーにレーザ溶接して平板状のプロペラ羽根を形成する工程と同時に、前記スパイダーにボスをレーザ溶接することを特徴とする請求項1に記載のプロペラ羽根の製造方法。   2. The method for manufacturing a propeller blade according to claim 1, wherein a boss is laser welded to the spider simultaneously with the step of forming a flat propeller blade by laser welding the plurality of blades to the spider. 請求項1〜6のいずれか一つに記載のプロペラ羽根の製造方法により製造されたプロペラ羽根。   The propeller blade manufactured by the method for manufacturing a propeller blade according to any one of claims 1 to 6. 請求項7に記載のプロペラ羽根を備えることを特徴とする送風機。   A blower comprising the propeller blade according to claim 7.
JP2009013287A 2009-01-23 2009-01-23 Propeller blade manufacturing method, propeller blade and blower Expired - Fee Related JP5100671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013287A JP5100671B2 (en) 2009-01-23 2009-01-23 Propeller blade manufacturing method, propeller blade and blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013287A JP5100671B2 (en) 2009-01-23 2009-01-23 Propeller blade manufacturing method, propeller blade and blower

Publications (2)

Publication Number Publication Date
JP2010169030A true JP2010169030A (en) 2010-08-05
JP5100671B2 JP5100671B2 (en) 2012-12-19

Family

ID=42701404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013287A Expired - Fee Related JP5100671B2 (en) 2009-01-23 2009-01-23 Propeller blade manufacturing method, propeller blade and blower

Country Status (1)

Country Link
JP (1) JP5100671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606233B2 (en) 2016-10-18 2020-03-31 Fanuc Corporation Machine learning apparatus that learns setting value in machining program of machine tool, and machining system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112077A1 (en) * 2021-12-13 2023-06-22 三菱電機株式会社 Axial fan, blower, and refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168686A (en) * 1985-08-20 1987-07-24 Nippon Steel Corp Energy beam welding method
JPS62286680A (en) * 1986-06-03 1987-12-12 Sky Alum Co Ltd Butt welding method for aluminum thin plate
JPH05372A (en) * 1991-06-14 1993-01-08 Mitsubishi Heavy Ind Ltd Manufacture of impeller for compressor
JPH05208286A (en) * 1992-01-31 1993-08-20 Amada Co Ltd Butt joining method for sheet metals and jig used for the joining method
JPH07232223A (en) * 1994-02-24 1995-09-05 Pacific Ind Co Ltd Method for pressing spot welded part
JPH1076985A (en) * 1996-09-05 1998-03-24 Yamaha Motor Co Ltd Fuel tank for motorcycle
JP2007166787A (en) * 2005-12-14 2007-06-28 Tokyo Parts Ind Co Ltd Flat eccentric rotor with fan, and flat brushless type vibration motor provided with rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168686A (en) * 1985-08-20 1987-07-24 Nippon Steel Corp Energy beam welding method
JPS62286680A (en) * 1986-06-03 1987-12-12 Sky Alum Co Ltd Butt welding method for aluminum thin plate
JPH05372A (en) * 1991-06-14 1993-01-08 Mitsubishi Heavy Ind Ltd Manufacture of impeller for compressor
JPH05208286A (en) * 1992-01-31 1993-08-20 Amada Co Ltd Butt joining method for sheet metals and jig used for the joining method
JPH07232223A (en) * 1994-02-24 1995-09-05 Pacific Ind Co Ltd Method for pressing spot welded part
JPH1076985A (en) * 1996-09-05 1998-03-24 Yamaha Motor Co Ltd Fuel tank for motorcycle
JP2007166787A (en) * 2005-12-14 2007-06-28 Tokyo Parts Ind Co Ltd Flat eccentric rotor with fan, and flat brushless type vibration motor provided with rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606233B2 (en) 2016-10-18 2020-03-31 Fanuc Corporation Machine learning apparatus that learns setting value in machining program of machine tool, and machining system
DE102017009428B4 (en) * 2016-10-18 2020-09-10 Fanuc Corporation Machine learning device that learns a set value of a machining program of a machine tool and machining system

Also Published As

Publication number Publication date
JP5100671B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP6203297B2 (en) Laser lap welding method
US20130078099A1 (en) Joining structure of rotation part of rotary machine and method of joining rotation part of rotary machine
JP2024019286A (en) Laser welding method
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
US9221121B2 (en) Welding process for welding three elements using two angled energy beams
JP5100671B2 (en) Propeller blade manufacturing method, propeller blade and blower
JP2003136262A (en) Laser welding method for material of different thickness
CN104907762A (en) Motor end cap bearing chamber restoration method
JP5235332B2 (en) Laser welding method and welding apparatus for steel plate
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
JP2017119305A (en) Manufacturing method of aluminum structural member
JP6587028B1 (en) Additive manufacturing method and additive manufacturing apparatus
JP2017040368A (en) Joining method of core ring of torque converter, manufacturing method of torque converter, and torque converter manufactured by using the same
KR101266256B1 (en) A laser welding method
JP6724711B2 (en) Mold forming method
JP2002224860A (en) Butt welding method of metal by friction stir welding
JP2008528294A (en) Manufacturing method of linear motion machine part and linear bushing manufactured by the method
JP2019005769A (en) Welding method for laminated metal foil
JP6539362B2 (en) Aluminum structural member
KR20120077094A (en) Welding method for coating steel sheets
JP2006341627A (en) Forefront part structure for railway rolling stock
JP2012061499A (en) WELDING METHOD AND WELDED JOINT OF STEEL MATERIAL TO Ni-BASED SUPERALLOY
JPH0947887A (en) Manufacture of tubular seaming fixture
JP3584716B2 (en) Cutting tool manufacturing method
JP6544508B2 (en) Welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees