JP2010168272A - Heat insulating monolithic refractory and method of constructing the same - Google Patents

Heat insulating monolithic refractory and method of constructing the same Download PDF

Info

Publication number
JP2010168272A
JP2010168272A JP2009293260A JP2009293260A JP2010168272A JP 2010168272 A JP2010168272 A JP 2010168272A JP 2009293260 A JP2009293260 A JP 2009293260A JP 2009293260 A JP2009293260 A JP 2009293260A JP 2010168272 A JP2010168272 A JP 2010168272A
Authority
JP
Japan
Prior art keywords
refractory
mass
heat
slurry
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009293260A
Other languages
Japanese (ja)
Other versions
JP5523087B2 (en
Inventor
Shinichi Yahiro
信一 八尋
Masahiko Sugawara
正彦 菅原
Yozo Kono
洋三 幸野
Takeyasu Hirayama
武靖 平山
Hidetoshi Terajima
英俊 寺島
Yukihisa Abe
恭久 阿部
Masahiko Amano
正彦 天野
Yoshiji Okanaka
義次 岡中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko Refractories Co Ltd
Nippon Steel Corp
Original Assignee
Taiko Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Refractories Co Ltd, Nippon Steel Corp filed Critical Taiko Refractories Co Ltd
Priority to JP2009293260A priority Critical patent/JP5523087B2/en
Publication of JP2010168272A publication Critical patent/JP2010168272A/en
Application granted granted Critical
Publication of JP5523087B2 publication Critical patent/JP5523087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating monolithic refractory which suppresses the propagation and growth of crack occurring in use at from a room temperature to a high temperature of ≥1,000°C without using granular or cotton-like ceramic fiber or using porous insulating aggregate and can be used for a long period of time without being exfoliated. <P>SOLUTION: The heat insulating monolithic refractory is obtained by preparing refractory slurry obtained by kneading a refractory composition comprising 60-90 mass% refractory fine powder having ≤300 μm particle diameter and 10-40 mass% binder, a foaming agent and a kneading liquid having 5-220 mPa s viscosity in an amount of 25-40 pts.mass per 100 pts.mass refractory composition, jetting air into the refractory slurry in an amount of 0.3-1.2 L per 1 L refractory slurry and stirring. A construction body is formed having 70-85% apparent porosity and a pore diameter distribution in which cumulative 80% diameter is ≤500 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、施工後の脱水及び加熱による亀裂の発生が少ない断熱性不定形耐火物、及びその施工方法に関し、特に加熱炉や均熱炉等の工業炉の内張り材、鍋蓋等の保温設備の内張り材等の高耐火性及び高断熱性が要求される設備に使用する断熱性不定形耐火物、及びかかる断熱性不定形耐火物の施工方法に関する。   TECHNICAL FIELD The present invention relates to a heat-insulating amorphous refractory with less cracking due to dehydration and heating after construction, and its construction method, and in particular, heat insulation equipment for lining materials for industrial furnaces such as heating furnaces and soaking furnaces, pot lids, etc. TECHNICAL FIELD The present invention relates to a heat-insulating amorphous refractory used in facilities that require high fire resistance and high heat insulation, such as a lining material, and a method for constructing such heat-insulating amorphous refractory.

従来から鋼材等用の加熱炉、均熱炉等の雰囲気炉に断熱性不定形耐火物が用いられている。そのような断熱性不定形耐火物として、例えば特開昭51-067307号(特許文献1)、及び特開昭57-071877号(特許文献2)は、耐火キャスタブルに起泡剤を添加し、水で混練しながら空気を取り込むことにより断熱性を付与する方法を提案している。しかしこれらの断熱キャスタブルは、一般的な耐火性骨材、耐火性微粉及び結合材等からなり、特に高い断熱性を有さない耐火キャスタブルを、起泡剤の作用により発泡させてなるものであり、十分に優れた断熱性を発揮するものではない。   Conventionally, heat-insulating amorphous refractories have been used in atmosphere furnaces such as heating furnaces for steel materials and soaking furnaces. As such heat-insulating amorphous refractories, for example, JP-A-51-067307 (Patent Document 1) and JP-A-57-071877 (Patent Document 2) add a foaming agent to a refractory castable, A method of providing heat insulation by introducing air while kneading with water has been proposed. However, these heat-insulating castables are made of general fire-resistant aggregates, fire-resistant fine powders, binders, etc., and are made by foaming fire-resistant castables that do not have particularly high heat insulating properties by the action of foaming agents. It does not exhibit sufficiently good heat insulation.

不定形耐火物を用いて断熱性に優れた施工体を製造する方法として、特開2007-326733号(特許文献3)、及び特開2008-013430号(特許文献4)は、耐火性粉末及び結合剤に、起泡剤、発泡剤、気孔形成剤及び水を添加し、混練しながらスラリーに空気を取り込み、鋳込み成形することにより、発泡剤の発泡と気孔形成剤の焼失とにより気泡を形成してなる施工体の製造方法を提案している。しかしこれらの方法はいずれも成形体に加熱処理を施して作製した施工体、いわゆる定形耐火物に関するものであり、不定形耐火物施工体のように拘束した状態で使用した場合、脱水及び焼結による収縮によって亀裂が発生しやすいという問題がある。   As a method for producing a construction body excellent in heat insulation using an amorphous refractory, Japanese Patent Application Laid-Open No. 2007-326733 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2008-013430 (Patent Document 4) Foaming agent, foaming agent, pore-forming agent and water are added to the binder, air is taken into the slurry while kneading, and molding is carried out to form bubbles by foaming the foaming agent and burning the pore-forming agent. The manufacturing method of the construction body made is proposed. However, these methods are all related to constructions made by heating the molded body, so-called fixed refractories, and when used in a constrained state like an irregular refractory construction, dehydration and sintering There is a problem that cracks are likely to occur due to shrinkage due to.

通常、現場で混練し、直接施工して得られる不定形耐火物の施工体は、拘束された状態のまま、施工後から加熱されそのまま高温で使用される。この時、不定形耐火物の施工体は、単純に耐火性原料の熱膨張だけでなく、混練時の水が脱水することによる収縮や高温での耐火性微粉の焼結による収縮等が起こる。拘束された状態のままで膨張や収縮を繰り返すことによって、施工体に亀裂が発生し、剥離や脱落が発生する。   Usually, the construction body of the irregular-shaped refractory material obtained by kneading on site and directly constructing it is heated after construction and used at a high temperature as it is in a restrained state. At this time, the construction body of the irregular refractory material is not only simply expanded by heat of the refractory raw material, but also contracted due to dehydration of water during kneading, and contraction due to sintering of refractory fine powder at a high temperature. By repeating expansion and contraction while being constrained, a crack is generated in the construction body, and peeling or dropping occurs.

特開平06-087666号(特許文献5)は、耐火骨材、粒状綿状のセラミックファイバー、及び起泡剤を含む耐火断熱キャスタブルを用いて施工体を形成する方法を提案しており、粒状綿状のセラミックファイバーの使用により、亀裂が発生してもその伝播を抑制することができると記載している。しかしながら、セラミックファイバーが大気中に大量に飛散するため、施工環境が悪いという問題がある。   Japanese Patent Laid-Open No. 06-087666 (Patent Document 5) proposes a method of forming a construction body using a fire-resistant and heat-insulating castable containing a fire-resistant aggregate, granular cotton-like ceramic fibers, and a foaming agent. It describes that the propagation of cracks can be suppressed by the use of the shaped ceramic fiber. However, there is a problem that the construction environment is bad because ceramic fibers are scattered in a large amount in the atmosphere.

特開2002-179471号(特許文献6)は、多孔質断熱骨材と水硬性アルミナとからなる耐火断熱キャスタブルを用いて断熱耐火性施工体を得る方法を提案しており、多孔質断熱骨材の使用により亀裂が発生してもその伝播を抑制することができると記載している。しかしながら、高耐火性を有し、かつ最適な気孔径分布及び気孔率を有する多孔質断熱骨材は種類が少ないため、高価であるので、そのような多孔質断熱骨材を用いて断熱耐火性施工体を製造するとコスト増になる。   Japanese Patent Application Laid-Open No. 2002-179471 (Patent Document 6) proposes a method for obtaining a heat-insulating and fire-resistant construction body using a fire-resistant and heat-insulating castable composed of a porous heat-insulating aggregate and hydraulic alumina. It is described that the propagation of cracks can be suppressed even if cracks occur due to the use of. However, since there are few kinds of porous heat-insulated aggregates having high fire resistance and optimal pore size distribution and porosity, they are expensive, so using such porous heat-insulated aggregates, heat insulation fire resistance Manufacturing a construction will increase costs.

特開昭51-067307号公報Japanese Patent Laid-Open No. 51-067307 特開昭57-071877号公報JP 57-071877 特開2007-326733号公報JP 2007-326733 A 特開2008-013430号公報Japanese Patent Laid-Open No. 2008-013430 特開平06-087666号公報Japanese Patent Laid-Open No. 06-087666 特開2002-179471号公報JP 2002-179471 A

従って、本発明の目的は、粒状綿状のセラミックファイバーや多孔質断熱骨材を使用することなく、常温から1000℃以上での高温使用時において発生する亀裂の伝播及び成長を抑制し、剥離することなく長期間使用できる断熱性不定形耐火物を提供することにある。   Therefore, the object of the present invention is to suppress the propagation and growth of cracks that occur during use at high temperatures from room temperature to 1000 ° C or higher, without using granular cotton-like ceramic fibers or porous heat insulating aggregates, and peeling. The object is to provide a heat-insulating amorphous refractory that can be used for a long period of time.

本発明のもう一つの目的は、前記断熱性不定形耐火物を現場の様々な状況に応じて簡便な方法で施工できる施工方法を提供することである。   Another object of the present invention is to provide a construction method capable of constructing the heat insulating amorphous refractory by a simple method according to various situations in the field.

粒状綿状のセラミックファイバーや多孔質骨材等を使用せずに優れた断熱性及び耐火性を有するとともに優れた耐久性を有する施工体を得るために鋭意研究した結果、本発明者らは、高耐火性を有する耐火性微粉及び結合材からなる耐火組成物であっても、大量に取り込んだ空気の気泡径を十分に小さく制御することにより、施工体は優れた耐火性及び断熱性を有するとともに、熱応力が緩和されて亀裂の発生が抑制されることを見出し、本発明に想到した。   As a result of earnest research to obtain a construction body having excellent heat insulation and fire resistance without using granular cotton-like ceramic fibers, porous aggregates, etc., the present inventors, Even if it is a refractory composition comprising a fire-resistant fine powder and a binder having high fire resistance, the construction body has excellent fire resistance and heat insulation by controlling the bubble diameter of air taken in a large amount sufficiently small At the same time, the inventors have found that the thermal stress is relaxed and the generation of cracks is suppressed, and the present invention has been conceived.

すなわち、本発明の断熱性不定形耐火物は、粒径300μm以下の耐火性微粉60〜90質量%及び結合材10〜40質量%からなる耐火組成物と、起泡剤と、粘度が5〜220 mPa・s及び添加量が前記耐火組成物100質量部に対して25〜40質量部である混練液とを混練して得られた耐火物スラリーに、前記耐火物スラリー1 Lあたり0.3〜1.2 Lの空気を注入し、撹拌して得られる断熱性不定形耐火物であって、1,000℃で3時間焼成することにより70〜85%の見掛気孔率、及び累積80%径が500μm以下の気泡径分布を有する施工体となることを特徴とする。   That is, the heat-insulating amorphous refractory of the present invention comprises a refractory composition comprising 60 to 90% by mass of a refractory fine powder having a particle size of 300 μm or less and a binder of 10 to 40% by mass, a foaming agent, and a viscosity of 5 to 5%. To a refractory slurry obtained by kneading 220 mPas and an addition amount of 25 to 40 parts by mass with respect to 100 parts by mass of the refractory composition, 0.3 to 1.2 per liter of the refractory slurry A heat-insulating amorphous refractory obtained by injecting and agitating L air, and firing at 1,000 ° C. for 3 hours, with an apparent porosity of 70 to 85% and a cumulative 80% diameter of 500 μm or less. It becomes the construction body which has bubble diameter distribution, It is characterized by the above-mentioned.

前記結合材は、アルミナセメントであるのが好ましい。   The binder is preferably an alumina cement.

本発明の断熱性不定形耐火物の施工方法は、粒径300μm以下の耐火性微粉60〜90質量%及び結合材10〜40質量%からなる耐火組成物と、起泡剤と、粘度が5〜220 mPa・s及び添加量が前記耐火組成物100質量部に対して25〜40質量部である混練液とを混練して得られる耐火物スラリーを、圧送ポンプにより圧送配管内を連続撹拌機まで圧送するとともに、前記耐火物スラリーにスラリー1 Lあたり0.3〜1.2 Lの空気を注入し、前記連続撹拌機で前記耐火物スラリーを撹拌することにより微細な気泡を有する断熱性不定形耐火物を調製し、前記連続撹拌機から吐出された前記断熱性不定形耐火物を施工箇所に流し込むことを特徴とする。   The construction method of the heat-insulating amorphous refractory of the present invention comprises a refractory composition comprising 60 to 90% by mass of a refractory fine powder having a particle size of 300 μm or less and a binder of 10 to 40% by mass, a foaming agent, and a viscosity of 5 A refractory slurry obtained by kneading ˜220 mPa · s and a kneading liquid having an addition amount of 25 to 40 parts by mass with respect to 100 parts by mass of the refractory composition is continuously stirred in a pressure feeding pipe by a pressure pump. The refractory slurry is injected with 0.3 to 1.2 L of air per 1 L of slurry, and the refractory slurry is stirred with the continuous stirrer to form a heat-insulating amorphous refractory having fine bubbles. The heat-insulating amorphous refractory prepared and discharged from the continuous stirrer is poured into a construction site.

前記連続撹拌機は、内周面に多数のステータピンを有する円筒状ステータと、前記円筒状ステータ内で回転するとともに外周面に多数のロータピンを有するロータとを具備し、前記ロータを周速2 m/秒以上で回転させることにより、前記ステータピンと前記ロータピンとの間の前記耐火物スラリーを撹拌し、もって前記耐火物スラリー内の気泡を微細化するのが好ましい。   The continuous stirrer includes a cylindrical stator having a large number of stator pins on the inner peripheral surface, and a rotor rotating in the cylindrical stator and having a large number of rotor pins on the outer peripheral surface. It is preferable that the refractory slurry between the stator pin and the rotor pin is agitated by rotating at a speed of at least / sec, so that the bubbles in the refractory slurry are refined.

前記結合材は、アルミナセメントであるのが好ましい。   The binder is preferably an alumina cement.

本発明の断熱性不定形耐火物は、粒状綿状のセラミックファイバーや多孔質断熱骨材等の多孔質原料を使用しないでも、高温使用時における亀裂の伝播、成長が抑制されるため、耐火性及び断熱性に優れた施工体を長期間に亘って安定して使用できる。   The heat-insulating amorphous refractory of the present invention is resistant to crack propagation and growth during high-temperature use without using porous raw materials such as granular cotton-like ceramic fibers and porous heat-insulated aggregates. And the construction body excellent in heat insulation can be used stably over a long period of time.

本発明の断熱性不定形耐火物の施工方法により、耐火性及び断熱性に優れるとともに長期間に亘って安定して使用できる断熱性不定形耐火物を、現場の状況に応じて簡便な方法で施工できる。   With the construction method of the heat-insulating amorphous refractory according to the present invention, the heat-insulating amorphous refractory that can be used stably over a long period of time while being excellent in fire resistance and heat insulation can be used in a simple manner according to the situation at the site. Can be constructed.

本発明の断熱性不定形耐火物を施工する設備の一例を示す概略図である。It is the schematic which shows an example of the equipment which constructs the heat insulation irregular refractory material of this invention. 図1の施工設備の圧縮空気注入部を示す部分拡大図であって、(a)は組み立てた状態を示し、(b)は分解した状態を示す。It is the elements on larger scale which show the compressed air injection | pouring part of the construction equipment of FIG. 1, Comprising: (a) shows the assembled state, (b) shows the disassembled state. 図1の施工設備の圧縮空気注入部を示す部分拡大断面図であって、(a)は圧縮空気を注入している状態を示し、(b)は圧縮空気を注入していない状態を示す。It is the elements on larger scale which show the compressed air injection | pouring part of the construction equipment of FIG. 1, Comprising: (a) shows the state which is injecting compressed air, (b) shows the state which is not injecting compressed air. 図1の施工設備の連続撹拌機を示し、(a)は部分拡大断面図であり、(b)は(a)のA-A断面図であり、(c)は(a)のステータ及びロータを示す分解斜視図である。1 shows a continuous stirrer of the construction equipment of FIG. 1, (a) is a partially enlarged sectional view, (b) is a sectional view of AA of (a), and (c) shows a stator and rotor of (a). It is a disassembled perspective view. 本発明の断熱性不定形耐火物を施工する設備の別の例を示す概略図である。It is the schematic which shows another example of the installation which constructs the heat insulation irregular refractory material of this invention.

[1] 断熱性不定形耐火物の組成
断熱性不定形耐火物は、粒径300μm以下の耐火性微粉60〜90質量%及び結合材10〜40質量%からなる耐火組成物と、起泡剤と、混練液とを混練して得られた耐火物スラリーに、前記耐火物スラリー1 Lあたり0.3〜1.2 Lの空気を注入し、撹拌して得られる。前記混練液の粘度は5〜220 mPa・sであり、その添加量は前記耐火組成物100質量部に対して25〜40質量部である。断熱性不定形耐火物は、1,000℃で3時間焼成することにより70〜85%の見掛気孔率、及び累積80%径が500μm以下の気泡径分布を有する施工体となる。
[1] Composition of heat-insulating amorphous refractory The heat-insulating amorphous refractory comprises a fire-resistant composition comprising 60 to 90% by mass of refractory fine powder having a particle size of 300 μm or less and a binder of 10 to 40% by mass, and a foaming agent. In addition, 0.3 to 1.2 L of air per 1 L of the refractory slurry is injected into the refractory slurry obtained by kneading the kneaded liquid and stirred. The viscosity of the kneaded liquid is 5 to 220 mPa · s, and the addition amount is 25 to 40 parts by mass with respect to 100 parts by mass of the refractory composition. The heat-insulating amorphous refractory is fired at 1,000 ° C. for 3 hours to form a construction body having an apparent porosity of 70 to 85% and a cell diameter distribution with a cumulative 80% diameter of 500 μm or less.

(1) 耐火組成物
(a) 耐火性微粉
耐火性微粉の粒径が300μm超であると、粒子間隙が大きくなるため気泡径が大きくなり、施工後の脱水及び加熱による亀裂が発生しやすくなる。ここで「300μm以下の粒径」とは、気泡の生成に実質的に影響を与える量の300μm超の耐火性微粉が存在しないことを意味する。具体的には、300μm超の耐火性微粉の含有量が10質量%未満であれば、300μm以下の粒径ということができる。耐火性微粉の粒径は200μm以下が好ましい。耐火性微粉が60質量%未満だと相対的に結合材の量が多くなるため施工体の耐火性が低くなり、90質量%超だと相対的に結合材の量が少なくなるため施工体の強度が低くなる。
(1) Refractory composition
(a) Refractory fine powder If the particle size of the refractory fine powder is more than 300 μm, the particle gap becomes large and the bubble diameter becomes large, and cracking due to dehydration and heating after construction tends to occur. Here, “particle size of 300 μm or less” means that there is no refractory fine powder of more than 300 μm in an amount that substantially affects the generation of bubbles. Specifically, if the content of the refractory fine powder exceeding 300 μm is less than 10% by mass, it can be said that the particle diameter is 300 μm or less. The particle size of the refractory fine powder is preferably 200 μm or less. If the refractory fine powder is less than 60% by mass, the amount of binder will be relatively large, so the fire resistance of the construction will be low. If it exceeds 90% by mass, the amount of binder will be relatively small, so The strength is lowered.

耐火性微粉は1,000℃以上の高温で使用可能なものであれば良く、仮焼アルミナ、焼結アルミナ、電融アルミナ等のアルミナの微粉、焼結スピネル、電融スピネル等のスピネルの微粉、電融マグネシア、海水マグネシア等のマグネシアの微粉、シリカ微粉、チタニア微粉、ムライト微粉、ジルコニア微粉、炭化珪素微粉、炭素微粉等が挙げられる。これらの耐火性微粉は単独でも組合せても良い。   The fire-resistant fine powder is not limited as long as it can be used at a high temperature of 1,000 ° C. or higher. Fine powder of alumina such as calcined alumina, sintered alumina, and fused alumina, fine powder of spinel such as sintered spinel and fused spinel, Examples thereof include magnesia fine powder such as fused magnesia and seawater magnesia, silica fine powder, titania fine powder, mullite fine powder, zirconia fine powder, silicon carbide fine powder, and carbon fine powder. These refractory fine powders may be used alone or in combination.

(b) 結合材
結合材は施工した断熱性不定形耐火物を常温で速やかに硬化させるもので、アルミナセメント、水硬性遷移アルミナ(例えばρ−アルミナ)、アルカリ金属又はアルカリ土類金属のアルミン酸塩、アルカリ金属又はアルカリ土類金属の燐酸塩、アルカリ金属又はアルカリ土類金属の珪酸塩、塩基性乳酸アルミニウム等が挙げられるが、耐熱性及び養生強度の面からアルミナセメントが好ましい。
(b) Binder A binder is a material that quickly cures a heat-insulating amorphous refractory that has been constructed at room temperature, and is composed of alumina cement, hydraulic transition alumina (eg, ρ-alumina), alkali metal or alkaline earth metal aluminate. Examples thereof include salts, alkali metal or alkaline earth metal phosphates, alkali metal or alkaline earth metal silicates, and basic aluminum lactate. Alumina cement is preferred in terms of heat resistance and curing strength.

(2) 起泡剤
起泡剤は耐火物スラリーを良好に起泡するものであれば特に制限されず、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤等の合成界面活性剤系起泡剤、樹脂せっけん系起泡剤、加水分解たん白系起泡剤等が挙げられる。起泡剤の添加量は、耐火組成物100質量部に対して0.1〜3質量部が好ましく、0.5〜2質量部がより好ましい。起泡剤が0.1質量部未満であると、気泡の微細化が困難である。起泡剤を3質量部超にしてもさらなる起泡効果は得られず、施工体の強度低下の原因となる。
(2) Foaming agent The foaming agent is not particularly limited as long as it foams the refractory slurry well, and anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, etc. Synthetic surfactant foaming agents, resin soap foaming agents, hydrolyzed protein foaming agents, and the like. 0.1-3 mass parts is preferable with respect to 100 mass parts of refractory compositions, and, as for the addition amount of a foaming agent, 0.5-2 mass parts is more preferable. If the foaming agent is less than 0.1 part by mass, it is difficult to make bubbles fine. Even if the amount of the foaming agent exceeds 3 parts by mass, a further foaming effect cannot be obtained, which causes a decrease in strength of the construction body.

(3) 混練液
混練液としては、水、水溶性高分子の水溶液又は水分散液等が挙げられるが、高粘度を有するために水溶性高分子の水溶液又は水分散液が好ましい。水溶性高分子としては、植物系多糖類、微生物醗酵多糖類、タンパク質等の天然高分子、セルロース誘導体、デンプン誘導体、アルギン酸誘導体等の半合成高分子、水溶性ビニル系樹脂、水溶性アクリル系樹脂等が挙げられる。
(3) Kneading liquid Examples of the kneading liquid include water, an aqueous solution or an aqueous dispersion of a water-soluble polymer, and an aqueous solution or an aqueous dispersion of a water-soluble polymer is preferable because of high viscosity. Water-soluble polymers include plant polysaccharides, microbial fermentation polysaccharides, natural polymers such as proteins, semi-synthetic polymers such as cellulose derivatives, starch derivatives, and alginic acid derivatives, water-soluble vinyl resins, and water-soluble acrylic resins. Etc.

混練液の粘度は5〜220 mPa・sである。粘度が5 mPa・s未満であると、高速撹拌しても微細な気泡を得るのが困難であり、気泡の結合や消失が起こり易い。一方220 mPa・s超であると、耐火物スラリーの流動性が低くなるため、高速撹拌しても剪断されにくく微細な気泡を得るのが困難となる。混練液の添加量は、耐火組成物100質量部に対して25〜40質量部である。添加量が25質量部未満であると多量の空気を含有することができないため熱伝導率が上がる。添加水量が40質量部超であると気泡径が大きくなり施工体の強度が低下する。   The viscosity of the kneaded liquid is 5 to 220 mPa · s. When the viscosity is less than 5 mPa · s, it is difficult to obtain fine bubbles even when stirred at a high speed, and bubbles are likely to be bonded or lost. On the other hand, if it exceeds 220 mPa · s, the fluidity of the refractory slurry becomes low, so that even if it is stirred at a high speed, it is difficult to shear and it is difficult to obtain fine bubbles. The addition amount of the kneading liquid is 25 to 40 parts by mass with respect to 100 parts by mass of the refractory composition. If the amount added is less than 25 parts by mass, a large amount of air cannot be contained, so that the thermal conductivity increases. If the amount of added water exceeds 40 parts by mass, the bubble diameter increases and the strength of the construction body decreases.

(4) 耐火物スラリー
耐火物スラリーは、前記耐火組成物と、前記起泡剤と、前記混練液とを混合し、混練することによって得られる。混合及び混練はパン型ミキサー等を用いて行うのが好ましい。
(4) Refractory slurry The refractory slurry is obtained by mixing and kneading the refractory composition, the foaming agent, and the kneading liquid. Mixing and kneading are preferably performed using a pan-type mixer or the like.

[2]施工方法
前記耐火物スラリーに空気を注入し、高い剪断をかけて撹拌することにより、耐火物スラリー中の気泡を微細化し断熱性不定形耐火物を作製する。施工体の見掛気孔率は、耐火物スラリーに注入する空気の量によって決まる。断熱性不定形耐火物を1,000℃で3時間焼成したときに施工体が70〜85%の気孔率を有するためには、空気の注入量は、1 Lの耐火物スラリーに対して0.3〜1.2 L(大気圧下)が好ましく、0.5〜1.0 L(大気圧下)がより好ましい。この注入量が0.3 L未満の場合、見掛気孔率が70%未満となり断熱性が低下し、1.2 L超の場合、得られる施工体は見掛気孔率が85%超となり施工体の強度が低下する。
[2] Construction method Air is injected into the refractory slurry and agitated by applying high shear to refine the bubbles in the refractory slurry to produce a heat-insulating amorphous refractory. The apparent porosity of the construction body is determined by the amount of air injected into the refractory slurry. In order for the construction body to have a porosity of 70 to 85% when the heat-insulating amorphous refractory is fired at 1,000 ° C. for 3 hours, the amount of injected air is 0.3 to 1.2 with respect to 1 L of refractory slurry. L (under atmospheric pressure) is preferable, and 0.5 to 1.0 L (under atmospheric pressure) is more preferable. When this injection amount is less than 0.3 L, the apparent porosity is less than 70% and the heat insulating property is lowered. When it exceeds 1.2 L, the obtained construction body has an apparent porosity of more than 85% and the strength of the construction body is high. descend.

(1) 圧縮空気の導入
図1〜図4は断熱性不定形耐火物の施工装置の一例を示す。この施工装置は、パン型ミキサー等を用いて調製した耐火物スラリーAを送給するポンプ1と、連続撹拌機2と、ポンプ1と連続撹拌機2とを接続する配管3と、連続撹拌機2の直近の配管3の部分に取り付けられた圧縮空気導入装置4と、連続撹拌機2の出口24に取り付けられた管5と、管5に設けられた圧力調節器6とを具備する。
(1) Introduction of compressed air FIGS. 1 to 4 show an example of a construction apparatus for heat-insulating amorphous refractories. This construction apparatus includes a pump 1 for feeding a refractory slurry A prepared using a pan mixer, a continuous agitator 2, a pipe 3 connecting the pump 1 and the continuous agitator 2, and a continuous agitator. 2, a compressed air introduction device 4 attached to a portion of the nearest pipe 3, a pipe 5 attached to the outlet 24 of the continuous agitator 2, and a pressure regulator 6 provided in the pipe 5.

耐火物スラリーAへの空気の注入は、圧縮空気導入装置4によって行う。圧縮空気導入装置4は、配管3の枝管部3aに挿入され、固着されるノズル41と、ノズル41に圧縮空気を送給する管45と、管45の途中に設けられた流量調節器46とを具備する。ノズル41は、大径の本体部41aと、小径の先端部41bと、先端部41bの途中に設けられた球状部41cと、先端部41bの先端付近に設けられた排出口42とを有する。ノズル41の先端部41bには筒状ゴム43が装着されており、筒状ゴム43は球状部41cに係止される。耐火物スラリーに圧縮空気を高速で注入するために、排出口42の開口径Dは配管3の内径に対して十分に小さいのが好ましい。例えば配管3の内径が15 mmの場合、排出口42の開口径Dは約1〜5 mmが好ましい。排出口42の数は特に制限されず、必要に応じて複数個設けても良い。   Air is injected into the refractory slurry A by the compressed air introduction device 4. The compressed air introduction device 4 is inserted into the branch pipe portion 3a of the pipe 3 and fixed to the nozzle 41, a pipe 45 for supplying compressed air to the nozzle 41, and a flow regulator 46 provided in the middle of the pipe 45. It comprises. The nozzle 41 has a large-diameter main body portion 41a, a small-diameter tip portion 41b, a spherical portion 41c provided in the middle of the tip portion 41b, and a discharge port 42 provided near the tip of the tip portion 41b. A cylindrical rubber 43 is attached to the tip portion 41b of the nozzle 41, and the cylindrical rubber 43 is locked to the spherical portion 41c. In order to inject compressed air into the refractory slurry at a high speed, the opening diameter D of the discharge port 42 is preferably sufficiently smaller than the inner diameter of the pipe 3. For example, when the inner diameter of the pipe 3 is 15 mm, the opening diameter D of the discharge port 42 is preferably about 1 to 5 mm. The number of outlets 42 is not particularly limited, and a plurality of outlets 42 may be provided as necessary.

図3(a)に示すように、ノズル41に耐火物スラリーAより高圧の圧縮空気を送給すると、筒状ゴム43は僅かに押し広げられ、先端部41bと筒状ゴム43との隙間から圧縮空気が耐火物スラリーA中に連続的に注入される。十分に高圧の圧縮空気を送給して、圧縮空気が気泡状となるように耐火物スラリーA中に注入するのが好ましい。圧縮空気の送給を停止すると、図3(b)に示すように筒状ゴム43は排出口42を覆うので、耐火物スラリーAはノズル41に進入しない。このように筒状ゴム43は逆止弁として機能する。   As shown in FIG. 3 (a), when compressed air having a pressure higher than that of the refractory slurry A is fed to the nozzle 41, the cylindrical rubber 43 is slightly expanded, and from the gap between the tip 41b and the cylindrical rubber 43. Compressed air is continuously injected into the refractory slurry A. It is preferable to supply sufficiently high-pressure compressed air and inject it into the refractory slurry A so that the compressed air is in the form of bubbles. When the supply of compressed air is stopped, the cylindrical rubber 43 covers the discharge port 42 as shown in FIG. 3 (b), so that the refractory slurry A does not enter the nozzle 41. Thus, the cylindrical rubber 43 functions as a check valve.

圧縮空気の注入量は、耐火物スラリーの配管内での送り速度、耐火物スラリーの粘度等によって変動するので、圧縮空気の圧力をコントロールすることによって適正な空気量が注入できるように調節するのが好ましい。圧縮空気の注入圧力は、0.1 Pa以上であるのが好ましい。注入圧力が0.1 Pa未満では、適正な空気量を注入することができない場合がある。   The amount of compressed air injection varies depending on the feed rate of the refractory slurry in the pipe, the viscosity of the refractory slurry, etc., so adjust the compressed air pressure so that the appropriate amount of air can be injected. Is preferred. The injection pressure of compressed air is preferably 0.1 Pa or more. If the injection pressure is less than 0.1 Pa, an appropriate amount of air may not be injected.

(2) 耐火物スラリーの撹拌
圧縮空気導入装置4によって耐火物スラリーAに注入した気泡をさらに微細化するため、耐火物スラリーに剪断をかけて撹拌する。攪拌機は耐火物スラリー中の気泡を微細化することのできる剪断力を有するものであればバッチ式の攪拌機でも、連続的に撹拌できる装置でもよいが、連続的に撹拌できる装置を用いるのが好ましい。連続撹拌機を用いる場合、図1に示すように、連続撹拌機2は、気泡が結合するのを抑制するために圧縮空気導入装置4にできるだけ近い位置に設けるのが好ましい。
(2) Agitation of the refractory slurry In order to further refine the bubbles injected into the refractory slurry A by the compressed air introduction device 4, the refractory slurry is agitated and sheared. As long as the stirrer has a shearing force capable of refining bubbles in the refractory slurry, a batch stirrer or a device capable of continuous stirring may be used, but it is preferable to use a device capable of continuous stirring. . When using a continuous stirrer, as shown in FIG. 1, it is preferable to provide the continuous stirrer 2 at a position as close as possible to the compressed air introduction device 4 in order to suppress bubbles from being combined.

連続撹拌機2は、図4(a)〜(c)に示すように、内周面に半径方向内方に突設された多数のステータピン20aを有する円筒状ステータ20と、ステータ20内に回転自在に配置され、外周面に半径方向外方に突設された多数のロータピン21aを有する円柱状ロータ21と、円筒状ステータ20及び円柱状ロータ21を覆う密閉式のケーシング25と、ロータ21を駆動するモータ22と、ケーシング25の一端部に設けられた入口23と、ケーシング25の他端部に設けられた出口24とを有する。必要に応じて連続撹拌機2を水冷又は空冷してもよい。   As shown in FIGS. 4 (a) to 4 (c), the continuous agitator 2 has a cylindrical stator 20 having a large number of stator pins 20 a projecting radially inward from the inner peripheral surface, and rotates into the stator 20. A cylindrical rotor 21 having a large number of rotor pins 21a that are freely arranged and project radially outward on the outer peripheral surface, a cylindrical stator 20 and a sealed casing 25 that covers the cylindrical rotor 21, and a rotor 21 It has a motor 22 to be driven, an inlet 23 provided at one end of the casing 25, and an outlet 24 provided at the other end of the casing 25. The continuous stirrer 2 may be water-cooled or air-cooled as necessary.

ステータピン20a及びロータピン21aは円柱状でも角柱状でも良いが、剪断力に優れている角柱状が好ましい。ピン20a,21aは、摩耗を抑制するために超硬、サーメット、セラミックス等の耐摩耗性材により形成するのが好ましい。ロータピン21a及びステータピン20aは接触しないように狭い隙間で交互に配列されているので、気泡を有する耐火物スラリーAを剪断しながら撹拌することができる。   The stator pins 20a and the rotor pins 21a may be cylindrical or prismatic, but are preferably prismatic with excellent shearing force. The pins 20a and 21a are preferably formed of a wear-resistant material such as carbide, cermet, or ceramic in order to suppress wear. Since the rotor pins 21a and the stator pins 20a are alternately arranged in a narrow gap so as not to contact, the refractory slurry A having bubbles can be stirred while being sheared.

耐火物スラリーAに高い剪断をかけて気泡を微細化させるためには、連続撹拌機2のロータ21は周速2 m/秒以上で回転させるのが好ましく、3 m/秒以上がより好ましい。周速が2 m/秒未満だと剪断力が弱すぎて気泡が十分に微細化されない場合がある。ロータ21の周速の上限は技術的に可能な限り特に制限されない。連続撹拌機2における耐火物スラリーAの滞留時間は、結合材が硬化しない時間以内に設定する。   In order to refine the bubbles by applying high shear to the refractory slurry A, the rotor 21 of the continuous agitator 2 is preferably rotated at a peripheral speed of 2 m / second or more, more preferably 3 m / second or more. If the peripheral speed is less than 2 m / sec, the shearing force is too weak and the bubbles may not be sufficiently refined. The upper limit of the peripheral speed of the rotor 21 is not particularly limited as far as technically possible. The residence time of the refractory slurry A in the continuous agitator 2 is set within a time during which the binder does not cure.

(3)施工
連続撹拌機2での高速攪拌により得られた、微細な気泡を有する断熱性不定形耐火物Bは、流し込み施工法、圧入施工法等により施工することができる。流し込み施工法の場合、図1に示すように、管5の出口から直接型枠8に流し込むことができる。しかし、加熱炉等における施工現場では連続撹拌機2を設置するのは煩雑であるので、図5に示すように、連続撹拌機2を離隔した位置に配置し、そこから施工現場まで延びるホース7を設け、型枠8まで断熱性不定形耐火物Bを圧送するのが好ましい。
(3) Construction The heat-insulating amorphous refractory B having fine bubbles obtained by high-speed stirring with the continuous stirrer 2 can be applied by a casting method, a press-fitting method, or the like. In the casting construction method, as shown in FIG. 1, the casting can be poured directly into the mold 8 from the outlet of the pipe 5. However, since it is cumbersome to install the continuous agitator 2 at a construction site in a heating furnace or the like, as shown in FIG. 5, the hose 7 extending from the continuous agitator 2 to the construction site is arranged at a spaced position. It is preferable to pump the heat-insulating amorphous refractory B to the mold 8.

[4] 断熱性不定形耐火物の施工体
断熱性不定形耐火物Bは、1,000℃で3時間焼成することにより70〜85%の見掛気孔率、及び累積80%径が500μm以下の気泡径分布を有する施工体となる。見掛気孔率が70%未満だと、施工体の断熱性が不十分であり、見掛気孔率が85%を超えると施工体としての強度が低下する。累積80%径が500μm超であると、施工体の機械的強度が不十分であるのみならず、熱応力の緩和効果(耐熱応力性)も不十分である。
[4] Insulating refractory refractory body Insulating refractory B is a foam with an apparent porosity of 70 to 85% and a cumulative 80% diameter of 500μm or less when fired at 1,000 ° C for 3 hours. The construction body has a diameter distribution. When the apparent porosity is less than 70%, the heat insulating property of the construction body is insufficient, and when the apparent porosity exceeds 85%, the strength as the construction body decreases. When the cumulative 80% diameter exceeds 500 μm, not only the mechanical strength of the construction body is insufficient, but also the thermal stress relaxation effect (heat stress resistance) is insufficient.

熱応力の緩和効果は、施工体の変形率を指標に用いて評価することができる。変形率は弾性変形及び塑性変形の両方の特性を有する材料に用いられる指標であり、荷重−変位曲線において、最大荷重及び最大荷重点までの変位を求め、JIS R 1659に記載の3点曲げ試験での弾性率計算式を用いて算出した値で表され、その値が小さいほど応力緩和しやすいため、亀裂の抑制効果が高い。施工体の変形率は25 MPa以下が好ましい。   The relaxation effect of thermal stress can be evaluated using the deformation rate of the construction body as an index. Deformation rate is an index used for materials having both elastic and plastic deformation characteristics. The maximum load and displacement up to the maximum load point are obtained in the load-displacement curve, and the three-point bending test described in JIS R 1659 It is represented by a value calculated using the elastic modulus calculation formula in FIG. 1, and the smaller the value, the easier the stress relaxation, so the crack suppression effect is high. The deformation rate of the construction body is preferably 25 MPa or less.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
仮焼アルミナ微粉(粒径45μm以下)30質量%、スピネル微粉(粒径150m以下)30質量%、マグネシア微粉(粒径200μm以下)10質量%及びアルミナセメント30質量%からなる耐火組成物と、耐火組成物100質量部に対する配合割合がそれぞれ1質量部及び30質量部のラウリル硫酸ナトリウム及びカルボキシメチルセルロース水溶液(粘度:100 mPa・s)とを、パン型強制練りミキサー(株式会社友定建機製、図示せず)を用いて1.38 m/秒の周速で1分間混練し、耐火物スラリーAを調製した。
Example 1
A refractory composition comprising 30% by mass of calcined alumina fine powder (particle size of 45 μm or less), 30% by mass of spinel powder (particle size of 150 m or less), 10% by mass of magnesia fine powder (particle size of 200 μm or less) and 30% by mass of alumina cement; A pan-type forced kneading mixer (manufactured by Yusei Kenki Co., Ltd.) was prepared by mixing 1 part by weight and 30 parts by weight of sodium lauryl sulfate and an aqueous carboxymethyl cellulose solution (viscosity: 100 mPa · s) with respect to 100 parts by weight of the refractory composition. Refractory material slurry A was prepared by kneading for 1 minute at a peripheral speed of 1.38 m / sec.

この耐火物スラリーAを、図1〜図4に示すように、ポンプ1により0.1 MPaで圧送するとともに、圧縮空気導入装置4より耐火物スラリーAに圧縮空気を注入(ノズル41の排出口42の直径D:3 mm、1 Lの耐火物スラリーAに対する空気注入量:0.7 L、注入圧力:0.12 Pa)しながら、連続撹拌機2(形式:BM90、株式会社ヤナギヤ製、ロータピン21aとステータピン20aとの間隔:2.5 mm)に導入した。連続撹拌機2に導入した耐火物スラリーAは、滞留時間30秒で連続的に撹拌(ロータ21の周速:4.7 m/秒)し、微細化された気泡を有する断熱性不定形耐火物Bを調製した。断熱性不定形耐火物Bは型枠に流し込み、24時間養生することにより硬化させ、さらに110℃で24時間乾燥した後、1,000℃で3時間焼成した。焼成後の施工体から試験片を作製した。   As shown in FIGS. 1 to 4, the refractory slurry A is pumped at 0.1 MPa by the pump 1, and compressed air is injected into the refractory slurry A from the compressed air introduction device 4 (the discharge port 42 of the nozzle 41 is With diameter D: 3 mm, air injection amount for 1 L refractory slurry A: 0.7 L, injection pressure: 0.12 Pa), continuous stirrer 2 (model: BM90, manufactured by Yana Gear Co., Ltd., rotor pin 21a and stator pin 20a The distance was 2.5 mm). The refractory slurry A introduced into the continuous stirrer 2 is continuously agitated with a residence time of 30 seconds (peripheral speed of the rotor 21: 4.7 m / second), and the heat-insulating amorphous refractory B having fine bubbles. Was prepared. The heat-insulating amorphous refractory B was poured into a mold, cured by curing for 24 hours, further dried at 110 ° C. for 24 hours, and then fired at 1,000 ° C. for 3 hours. A test piece was prepared from the fired construction.

実施例2〜4
空気の注入量をそれぞれ0.3 L、1.0L及び1.2 Lに変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Examples 2-4
Except for changing the air injection amount to 0.3 L, 1.0 L, and 1.2 L, respectively, in the same manner as in Example 1, a heat-insulating amorphous refractory construction body was produced to obtain a test piece.

実施例5及び6
カルボキシメチルセルロース水溶液の添加量を32質量部とし、粘度をそれぞれ5 mPa・s及び200 mPa・sに変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Examples 5 and 6
A heat insulating amorphous refractory construction was prepared and tested in the same manner as in Example 1, except that the amount of carboxymethylcellulose aqueous solution added was 32 parts by mass and the viscosity was changed to 5 mPa · s and 200 mPa · s, respectively. I got a piece.

実施例7及び8
カルボキシメチルセルロース水溶液の添加量をそれぞれ25質量部及び40質量部に変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Examples 7 and 8
Except having changed the addition amount of carboxymethylcellulose aqueous solution into 25 mass parts and 40 mass parts, respectively, it carried out similarly to Example 1, produced the construction body of the heat-insulating amorphous refractory, and obtained the test piece.

実施例9
ロータ21の周速を2.0 m/秒に変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Example 9
Except that the peripheral speed of the rotor 21 was changed to 2.0 m / sec, a construction body of a heat-insulating amorphous refractory was produced in the same manner as in Example 1 to obtain a test piece.

比較例1
耐火組成物として、電融アルミナ微粒(粒径1 mm以下)70質量%及びアルミナセメント30質量%からなる組成物を用いた以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Comparative Example 1
Construction of heat-insulating amorphous refractory in the same manner as in Example 1 except that a composition comprising 70 mass% of fused alumina fine particles (particle size of 1 mm or less) and 30 mass% of alumina cement was used as the refractory composition. A body was prepared to obtain a test piece.

比較例2及び3
空気の注入量をそれぞれ0.2 L及び1.4 Lに変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Comparative Examples 2 and 3
Except for changing the air injection amount to 0.2 L and 1.4 L, respectively, in the same manner as in Example 1, a construction body of heat-insulating amorphous refractory was produced to obtain a test piece.

比較例4
カルボキシメチルセルロース水溶液の添加量を34質量部、粘度を1 mPa・sに変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Comparative Example 4
Except that the amount of the carboxymethyl cellulose aqueous solution added was changed to 34 parts by mass and the viscosity was changed to 1 mPa · s, in the same manner as in Example 1, a construction body of a heat insulating amorphous refractory was produced to obtain a test piece.

比較例5
カルボキシメチルセルロース水溶液の添加量を32質量部、粘度を250 mPa・sに変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Comparative Example 5
Except that the amount of the carboxymethyl cellulose aqueous solution added was changed to 32 parts by mass and the viscosity was changed to 250 mPa · s, in the same manner as in Example 1, a construction body of a heat-insulating amorphous refractory was produced to obtain a test piece.

比較例6及び7
カルボキシメチルセルロース水溶液の添加量をそれぞれ23質量部及び45質量部に変更した以外、実施例1と同様にして、断熱性不定形耐火物の施工体を作製し試験片を得た。
Comparative Examples 6 and 7
Except having changed the addition amount of carboxymethylcellulose aqueous solution into 23 mass parts and 45 mass parts, respectively, it carried out similarly to Example 1, produced the construction body of the heat-insulating amorphous refractory, and obtained the test piece.

実施例1〜9及び比較例1〜7で作製した試験片について、以下の方法により、見掛気孔率、熱伝導率、圧縮強度、気泡の累積80%径及び変形率を測定した。測定結果を表1に示す。   About the test piece produced in Examples 1-9 and Comparative Examples 1-7, the apparent porosity, thermal conductivity, compressive strength, the cumulative 80% diameter of a bubble, and a deformation rate were measured with the following method. The measurement results are shown in Table 1.

(1) 見掛気孔率
JIS R 2205に準じて測定した。
(1) Apparent porosity
Measured according to JIS R 2205.

(2) 熱伝導率
JIS R 2616に準じて測定した。
(2) Thermal conductivity
Measured according to JIS R 2616.

(3) 圧縮強度
JIS R 2553に準じて測定した。
(3) Compressive strength
Measured according to JIS R 2553.

(4) 気泡の累積80%径
累積80%径は、下記の方法により測定した気泡径からその分布を求め、気泡の全個数を100%として、気泡径の小さいものから累積し80%となる気泡が有する径で定義した。気泡径は、エンジニアリングセラミックス分野で一般に行われている結晶粒径の測定法(切断法)に準じて測定した。具体的には、試験片切断面の走査型電子顕微鏡写真の任意の位置に画像を横切る直線を引き、各気泡を横切る線分の長さをそれぞれの気泡の径とした。
(4) Cumulative 80% diameter of bubbles The cumulative 80% diameter is obtained from the bubble diameter measured by the following method, and the total number of bubbles is 100%. It was defined as the diameter of the bubbles. The bubble diameter was measured according to a crystal grain size measuring method (cutting method) generally performed in the engineering ceramics field. Specifically, a straight line across the image was drawn at an arbitrary position on the scanning electron micrograph of the cut surface of the test piece, and the length of the line segment across each bubble was defined as the diameter of each bubble.

(5) 変形率
JIS R 1659に準じて測定した。具体的には、長さ160 mm×幅40 mm×厚さ32 mmの試験片を用いて、オートグラフAG-50KNX(株式会社島津製作所製)で、荷重ロールの降下速度を0.01 mm/minとして測定することにより得られた荷重−変位曲線から、最大荷重及び最大荷重点までの変位(荷重ロールの降下量)を求め、3点曲げ試験での弾性率計算式を用いて下記の通り変形率を算出した。
変形率=L3P/(4WT3Y) (MPa)
P:最大荷重(N)
L:支持用ロール間距離(mm)
W:試験片の幅(mm)
T:試験片の厚さ(mm)
Y:荷重ロールの降下量(mm)
(5) Deformation rate
Measured according to JIS R 1659. Specifically, using a test piece of length 160 mm x width 40 mm x thickness 32 mm, with autograph AG-50KNX (manufactured by Shimadzu Corporation), the load roll descending speed was set to 0.01 mm / min. From the load-displacement curve obtained by measurement, obtain the maximum load and the displacement to the maximum load point (the amount of descent of the load roll), and use the elastic modulus calculation formula in the three-point bending test as shown below. Was calculated.
Deformation rate = L 3 P / (4WT 3 Y) (MPa)
P: Maximum load (N)
L: Distance between support rolls (mm)
W: Specimen width (mm)
T: Specimen thickness (mm)
Y: Descent amount of load roll (mm)

Figure 2010168272
Figure 2010168272

Figure 2010168272
Figure 2010168272

Figure 2010168272
Figure 2010168272

Figure 2010168272
Figure 2010168272

表1から明らかなように、実施例1〜9の施工体は、気泡の累積80%径が500μm以下であり、25 MPa以下の優れた変形率を有していた。すなわち実施例1〜9の断熱性不定形耐火物を用いると、応力緩和しやすく、亀裂の発生が抑制された施工体が得られるといえる。   As is clear from Table 1, the construction bodies of Examples 1 to 9 had an 80% cumulative bubble diameter of 500 μm or less and an excellent deformation rate of 25 MPa or less. That is, it can be said that when the heat-insulating amorphous refractories of Examples 1 to 9 are used, it is easy to relieve stress and a construction body in which the occurrence of cracks is suppressed can be obtained.

これに対して、粒径が300μm超の耐火性微粉を含有する比較例1、及び混練液の添加量が40質量部超の比較例7では、気泡の累積80%径が500μm超であり、変形率も25 MPaを超えて高いため亀裂の発生を抑制し難い。また、空気の注入量が耐火スラリー1 Lに対して0.3 L未満の比較例2、混練液の粘度が5 mPa・s未満の比較例4、250 mPa・s超の比較例5、及び混練液の添加量が25質量部未満の比較例6では、空気を十分に含有することができないため、熱伝導率も高く、高断熱性を得ることができない。空気の注入量が耐火スラリー1 Lに対して1.2 L超の比較例3は、熱伝導率は低く優れた断熱性を有するが、施工体としての十分な強度を得ることができない。   On the other hand, in Comparative Example 1 containing refractory fine powder having a particle size of more than 300 μm and Comparative Example 7 in which the addition amount of the kneading liquid is more than 40 parts by mass, the cumulative 80% diameter of bubbles is more than 500 μm, It is difficult to suppress the occurrence of cracks because the deformation rate is higher than 25 MPa. In addition, Comparative Example 2 in which the amount of air injected was less than 0.3 L with respect to 1 L of the refractory slurry, Comparative Example 4 in which the viscosity of the kneaded liquid was less than 5 mPa · s, Comparative Example 5 in excess of 250 mPa · s, and the kneaded liquid In Comparative Example 6 in which the amount of addition is less than 25 parts by mass, air cannot be sufficiently contained, so that the thermal conductivity is high and high heat insulation cannot be obtained. Comparative Example 3 in which the amount of air injected is more than 1.2 L with respect to 1 L of the refractory slurry has a low thermal conductivity and excellent heat insulation properties, but cannot obtain sufficient strength as a construction body.

1・・・圧送ポンプ
2・・・連続撹拌機
20・・・円筒状ステータ
20a・・・ステータピン
21・・・円柱状ロータ
21a・・・ロータピン
22・・・モータ
23・・・入口
24・・・出口
25・・・ケーシング
3・・・配管
3a・・・枝管部
4・・・圧縮空気導入装置
41・・・ノズル
41a・・・本体部
41b・・・先端部
41c・・・球状部
42・・・排出口
43・・・筒状ゴム
45・・・管
46・・・流量調節器
5・・・管
6・・・圧力調節器
7・・・ホース
8・・・型枠
A・・・耐火物スラリー
B・・・断熱性不定形耐火物
1 ... Pressure pump 2 ... Continuous agitator
20 ... Cylindrical stator
20a ... Stator pin
21 ... Cylindrical rotor
21a ・ ・ ・ Rotor pin
22 ... Motor
23 ... Entrance
24 ... Exit
25 ... Case 3 ... Piping
3a ... Branch pipe part 4 ... Compressed air introduction device
41 ... Nozzle
41a ・ ・ ・ Main body
41b ・ ・ ・ Tip
41c ... spherical part
42 ... Discharge port
43 ... Tubular rubber
45 ... pipe
46 ... Flow rate regulator 5 ... Pipe 6 ... Pressure regulator 7 ... Hose 8 ... Formwork
A ... Refractory slurry
B ・ ・ ・ Insulating refractory

Claims (5)

粒径300μm以下の耐火性微粉60〜90質量%及び結合材10〜40質量%からなる耐火組成物と、起泡剤と、粘度が5〜220 mPa・s及び添加量が前記耐火組成物100質量部に対して25〜40質量部である混練液とを混練して得られた耐火物スラリーに、前記耐火物スラリー1 Lあたり0.3〜1.2 Lの空気を注入し、撹拌して得られる断熱性不定形耐火物であって、1,000℃で3時間焼成することにより70〜85%の見掛気孔率、及び累積80%径が500μm以下の気泡径分布を有する施工体となることを特徴とする断熱性不定形耐火物。 Refractory composition comprising 60 to 90% by mass of refractory fine powder having a particle size of 300 μm or less, and 10 to 40% by mass of a binder, a foaming agent, a viscosity of 5 to 220 mPa · s, and an addition amount of the refractory composition 100 Insulation obtained by injecting 0.3 to 1.2 L of air per 1 L of the refractory slurry into the refractory slurry obtained by kneading 25 to 40 parts by mass of the kneading liquid with respect to part by mass, and stirring. It is an indeterminate shaped refractory, and it is characterized by becoming a construction body having an apparent porosity of 70 to 85% and a bubble size distribution with a cumulative 80% diameter of 500 μm or less by firing at 1,000 ° C. for 3 hours. Heat-insulating unshaped refractory. 請求項1に記載の断熱性不定形耐火物において、前記結合材がアルミナセメントであることを特徴とする断熱性不定形耐火物。 The heat insulating amorphous refractory according to claim 1, wherein the binder is alumina cement. 粒径300μm以下の耐火性微粉60〜90質量%及び結合材10〜40質量%からなる耐火組成物と、起泡剤と、粘度が5〜220 mPa・s及び添加量が前記耐火組成物100質量部に対して25〜40質量部である混練液とを混練して得られる耐火物スラリーを、圧送ポンプにより圧送配管内を連続撹拌機まで圧送するとともに、前記耐火物スラリーにスラリー1 Lあたり0.3〜1.2 Lの空気を注入し、前記連続撹拌機で前記耐火物スラリーを撹拌することにより微細な気泡を有する断熱性不定形耐火物を調製し、前記連続撹拌機から吐出された前記断熱性不定形耐火物を施工箇所に流し込むことを特徴とする断熱性不定形耐火物の施工方法。 Refractory composition comprising 60 to 90% by mass of refractory fine powder having a particle size of 300 μm or less, and 10 to 40% by mass of a binder, a foaming agent, a viscosity of 5 to 220 mPa · s, and an addition amount of the refractory composition 100 The refractory slurry obtained by kneading the kneading liquid that is 25 to 40 parts by mass with respect to part by mass is pumped to the continuous agitator through the pressure feeding pipe by a pressure feeding pump, and per 1 L of slurry to the refractory slurry. Insulating 0.3 to 1.2 L of air, and stirring the refractory slurry with the continuous stirrer to prepare a heat-insulating amorphous refractory having fine bubbles, the heat insulating property discharged from the continuous stirrer A method for constructing a heat-insulating irregular refractory, characterized by pouring an irregular refractory into a construction site. 請求項3に記載の断熱性不定形耐火物の施工方法において、前記連続撹拌機は、内周面に多数のステータピンを有する円筒状ステータと、前記円筒状ステータ内で回転するとともに外周面に多数のロータピンを有するロータとを具備し、前記ロータを周速2 m/秒以上で回転させることにより、前記ステータピンと前記ロータピンとの間の前記耐火物スラリーを撹拌し、もって前記耐火物スラリー内の気泡を微細化することを特徴とする施工方法。 In the construction method of the heat-insulating amorphous refractory according to claim 3, the continuous stirrer has a cylindrical stator having a large number of stator pins on the inner peripheral surface, and a large number on the outer peripheral surface while rotating in the cylindrical stator. And the rotor is rotated at a peripheral speed of 2 m / sec or more to agitate the refractory slurry between the stator pin and the rotor pin, and thereby the refractory slurry in the refractory slurry. A construction method characterized by refining bubbles. 請求項3又は4に記載の断熱性不定形耐火物の施工方法において、前記結合材がアルミナセメントであることを特徴とする施工方法。 The construction method of the heat-insulating amorphous refractory according to claim 3 or 4, wherein the binder is alumina cement.
JP2009293260A 2008-12-26 2009-12-24 Insulating unshaped refractory and its construction method Active JP5523087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293260A JP5523087B2 (en) 2008-12-26 2009-12-24 Insulating unshaped refractory and its construction method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008333918 2008-12-26
JP2008333918 2008-12-26
JP2009293260A JP5523087B2 (en) 2008-12-26 2009-12-24 Insulating unshaped refractory and its construction method

Publications (2)

Publication Number Publication Date
JP2010168272A true JP2010168272A (en) 2010-08-05
JP5523087B2 JP5523087B2 (en) 2014-06-18

Family

ID=42700767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293260A Active JP5523087B2 (en) 2008-12-26 2009-12-24 Insulating unshaped refractory and its construction method

Country Status (1)

Country Link
JP (1) JP5523087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169170A1 (en) * 2011-06-10 2012-12-13 日ノ丸窯業株式会社 Heat-insulating firebrick
CN103073310A (en) * 2013-01-18 2013-05-01 赵莉 Inorganic silicate heat insulating refractory and preparation method thereof
CN109501001A (en) * 2017-09-14 2019-03-22 中国石油化工股份有限公司 It is used to form the device of foam slurry
CN115196982A (en) * 2022-08-05 2022-10-18 江苏华跃特种设备有限公司 Boiler lining heat-insulating material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006784A (en) * 2019-04-25 2019-07-12 常州聚和新材料股份有限公司 A kind of electrocondution slurry viscosity determining procedure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064620A (en) * 1983-07-27 1985-04-13 ストルク ブラバント ビ−.ブイ. Foam generator
JPS61219774A (en) * 1985-03-23 1986-09-30 電気化学工業株式会社 Lightweight refractory structural material
JP2002326882A (en) * 2001-04-27 2002-11-12 Asahi Kasei Corp Lightweight cellular concrete
JP2008194589A (en) * 2007-02-09 2008-08-28 Kao Corp Method for sending fluid forcibly
JP2010151284A (en) * 2008-12-26 2010-07-08 Nippon Steel Corp Method of curing end of heat insulting refractory material lined on outer periphery of pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064620A (en) * 1983-07-27 1985-04-13 ストルク ブラバント ビ−.ブイ. Foam generator
JPS61219774A (en) * 1985-03-23 1986-09-30 電気化学工業株式会社 Lightweight refractory structural material
JP2002326882A (en) * 2001-04-27 2002-11-12 Asahi Kasei Corp Lightweight cellular concrete
JP2008194589A (en) * 2007-02-09 2008-08-28 Kao Corp Method for sending fluid forcibly
JP2010151284A (en) * 2008-12-26 2010-07-08 Nippon Steel Corp Method of curing end of heat insulting refractory material lined on outer periphery of pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169170A1 (en) * 2011-06-10 2012-12-13 日ノ丸窯業株式会社 Heat-insulating firebrick
JP2012254910A (en) * 2011-06-10 2012-12-27 Hinomaru Yogyo Kk Heat-insulating firebrick
KR101503657B1 (en) 2011-06-10 2015-03-18 히노마루 요교 가부시키가이샤 Heat-insulating firebrick
US9115029B2 (en) 2011-06-10 2015-08-25 Hinomaru Yogyo Co., Ltd. Thermal insulating firebrick
CN103073310A (en) * 2013-01-18 2013-05-01 赵莉 Inorganic silicate heat insulating refractory and preparation method thereof
CN103073310B (en) * 2013-01-18 2014-08-20 赵莉 Inorganic silicate heat insulating refractory and preparation method thereof
CN109501001A (en) * 2017-09-14 2019-03-22 中国石油化工股份有限公司 It is used to form the device of foam slurry
CN115196982A (en) * 2022-08-05 2022-10-18 江苏华跃特种设备有限公司 Boiler lining heat-insulating material and preparation method thereof

Also Published As

Publication number Publication date
JP5523087B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN101445379B (en) Dedicated pouring material for cement kiln outlet and jetting coal pipe and preparation method thereof
JP5523087B2 (en) Insulating unshaped refractory and its construction method
CN101691305B (en) Corundum-mullite ceramics cast product and method for preparing same
CN104355634B (en) A kind of aluminum oxide electric furnace cover and preparation method thereof
CN103819203B (en) Mullite high-strength refractory castable
Gogtas et al. Effect of nano-YSZ and nano-ZrO2 additions on the strength and toughness behavior of self-flowing alumina castables
CN106699039A (en) Building 3D printing ink and use thereof
CN104193370B (en) A kind of preparation method of ladle carbon free precast block
JP4714640B2 (en) Manufacturing method of heat insulating gradient material
Guo et al. High-strength and corrosion-resistant Al2O3 ceramics with excellent closed-cell structure
JP7003849B2 (en) Manufacturing method of castable refractory
JP2005314222A (en) Heat insulating castable refractory for pump pressure feeding and wet spray working method using the same
KR20090101360A (en) Cellulose ether additives for the extrusion of ceramic masses
CN104829242A (en) Preparation method of tertiary air duct curve prefabricated component used for cement kiln
JP5424541B2 (en) Method for producing hardened cementitious body
CN105130475A (en) Low-temperature solidification spray coating and construction method thereof
JP6966965B2 (en) Construction method of heat-insulating amorphous refractory
CN101654359A (en) Mullite combined alumina-carborundum high-temperature ceramic material and preparation method thereof
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
TR201811464T4 (en) Refractor composition and assembly method.
Otroj et al. Behaviour of alumina-spinel self-flowing castables with nano-alumina particles addition
JP6154114B2 (en) Refractory cement composition
JP5709726B2 (en) Refractory insulation and method for producing the same
JP6678871B2 (en) Refractory fiber powder, refractory forming composition and refractory
JP3659574B2 (en) Advancing material for pumping unshaped refractories and pumping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250