JP2010163395A - Enamine derivative, and electrophotographic photoreceptor - Google Patents

Enamine derivative, and electrophotographic photoreceptor Download PDF

Info

Publication number
JP2010163395A
JP2010163395A JP2009007630A JP2009007630A JP2010163395A JP 2010163395 A JP2010163395 A JP 2010163395A JP 2009007630 A JP2009007630 A JP 2009007630A JP 2009007630 A JP2009007630 A JP 2009007630A JP 2010163395 A JP2010163395 A JP 2010163395A
Authority
JP
Japan
Prior art keywords
compound
layer
photosensitive member
type
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009007630A
Other languages
Japanese (ja)
Other versions
JP5530636B2 (en
Inventor
Hideki Okada
英樹 岡田
Daisuke Kuboshima
大輔 窪嶋
Akio Sugai
章雄 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2009007630A priority Critical patent/JP5530636B2/en
Publication of JP2010163395A publication Critical patent/JP2010163395A/en
Application granted granted Critical
Publication of JP5530636B2 publication Critical patent/JP5530636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enamine derivative for electrophotographic photoreceptors. <P>SOLUTION: The enamine derivative represented by formula (1) (wherein, R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, and R<SP>4</SP>are each a hydrogen atom, alkyl, or aryl) is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エナミン誘導体および電子写真感光体に関する。   The present invention relates to an enamine derivative and an electrophotographic photoreceptor.

画像形成装置等に用いられる電子写真感光体としては、導電性基体と、該導電性基体上に設けられた感光体層とを有する電子写真感光体が知られている。該電子写真感光体は、正孔輸送剤、電荷発生剤、結着樹脂、さらに必要に応じて電子輸送剤を溶剤に溶解した塗布液を、導電性基体上に塗布し、乾燥させて感光体層を形成することで製造される。   As an electrophotographic photosensitive member used in an image forming apparatus or the like, an electrophotographic photosensitive member having a conductive substrate and a photosensitive layer provided on the conductive substrate is known. The electrophotographic photoreceptor is a photoreceptor in which a hole transporting agent, a charge generating agent, a binder resin and, if necessary, a coating solution in which an electron transporting agent is dissolved in a solvent are coated on a conductive substrate and dried. Manufactured by forming layers.

正孔輸送剤としては、エナミン誘導体が知られている。エナミン誘導体としては、例えば下記に示す化合物(2−1)〜(2−3)が知られている(特許文献1)。   As the hole transport agent, an enamine derivative is known. As enamine derivatives, for example, compounds (2-1) to (2-3) shown below are known (Patent Document 1).

Figure 2010163395
Figure 2010163395

しかし、化合物(2−1)〜(2−3)は平面性の高い化合物であるが、共鳴安定化するための共役構造が小さいため、溶剤への溶解性および結着樹脂との相溶性が乏しい。従って、電子写真感光体用の正孔輸送剤としては感度が不十分であり、結果、得られる電子写真感光体の感度も不十分であった。   However, although the compounds (2-1) to (2-3) are compounds having high planarity, since the conjugated structure for resonance stabilization is small, the solubility in a solvent and the compatibility with a binder resin are low. poor. Accordingly, the sensitivity as a hole transport agent for an electrophotographic photoreceptor is insufficient, and as a result, the sensitivity of the resulting electrophotographic photoreceptor is also insufficient.

特許第2812618号公報Japanese Patent No. 282618

よって、本発明の目的は、電子写真感光体用の正孔輸送剤としての感度が高く、かつ溶剤への溶解性および結着樹脂との相溶性に優れたエナミン誘導体、および感度に優れた電子写真感光体を提供することにある。   Therefore, an object of the present invention is to provide an enamine derivative having high sensitivity as a hole transport agent for an electrophotographic photoreceptor, and having excellent solubility in a solvent and compatibility with a binder resin, and an electron having excellent sensitivity. It is to provide a photographic photoreceptor.

本発明のエナミン誘導体は、下記式(1)で表される化合物であることを特徴とする。   The enamine derivative of the present invention is a compound represented by the following formula (1).

Figure 2010163395
Figure 2010163395

式(1)中、Rは炭素数1〜6のアルキル基、または炭素数6〜20のアリール基であり、Rは水素原子、炭素数1〜6のアルキル基、または炭素数6〜20のアリール基であり、R、Rはそれぞれ同一または異なって、水素原子、炭素数1〜6のアルキル基、または炭素数6〜20のアリール基である。 In Formula (1), R 1 is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 6 to 6 carbon atoms. 20 is an aryl group, and R 3 and R 4 are the same or different and each is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms.

本発明の電子写真感光体は、導電性基体と、該導電性基体上に設けられた感光体層とを有し、該感光体層が、本発明のエナミン誘導体を含有する層であることを特徴とする。   The electrophotographic photoreceptor of the present invention has a conductive substrate and a photoreceptor layer provided on the conductive substrate, and the photoreceptor layer is a layer containing the enamine derivative of the present invention. Features.

本発明のエナミン誘導体は、電子写真感光体用の正孔輸送剤としての感度が高く、かつ溶剤への溶解性および結着樹脂との相溶性に優れる。
本発明の電子写真感光体は、感度に優れる。
The enamine derivative of the present invention has high sensitivity as a hole transport agent for an electrophotographic photoreceptor, and is excellent in solubility in a solvent and compatibility with a binder resin.
The electrophotographic photoreceptor of the present invention is excellent in sensitivity.

単層型電子写真感光体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a single layer type electrophotographic photoreceptor. 単層型電子写真感光体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a single layer type electrophotographic photoreceptor. 単層型電子写真感光体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a single layer type electrophotographic photoreceptor. 積層型電子写真感光体の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a laminated electrophotographic photoreceptor. 積層型電子写真感光体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a laminated type electrophotographic photoreceptor. 化合物(1−2)の 1H−NMRチャートである。It is a < 1 > H-NMR chart of a compound (1-2). 化合物(1−3)の 1H−NMRチャートである。 1 is a 1 H-NMR chart of a compound (1-3).

<エナミン誘導体>
本発明のエナミン誘導体は、下記式(1)で表される化合物である。以下、式(1)で表される化合物を化合物(1)と記す。他の化合物も同様に記す。
<Enamine derivative>
The enamine derivative of the present invention is a compound represented by the following formula (1). Hereinafter, the compound represented by Formula (1) is referred to as Compound (1). Other compounds are described in the same manner.

Figure 2010163395
Figure 2010163395

は炭素数1〜6のアルキル基、または炭素数6〜20のアリール基である。これらアルキル基およびアリール基は置換基を有していてもよく、有していなくてもよい。
アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基等が挙げられる。
アリール基としては、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、アントリル基、フェナントリル基、アラルキル基等が挙げられる。
としては、メチル基、エチル基、フェニル基が好ましい。
R 1 is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms. These alkyl groups and aryl groups may or may not have a substituent.
Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, and hexyl group.
Examples of the aryl group include phenyl, tolyl, xylyl, mesityl, naphthyl, anthryl, phenanthryl, and aralkyl groups.
R 1 is preferably a methyl group, an ethyl group, or a phenyl group.

は水素原子、炭素数1〜6のアルキル基、または炭素数6〜20のアリール基である。これらアルキル基およびアリール基は置換基を有していてもよく、有していなくてもよい。
アルキル基およびアリール基としては、先に例示したアルキル基およびアリール基が挙げられる。
としては、水素原子、メチル基が好ましい。
R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms. These alkyl groups and aryl groups may or may not have a substituent.
Examples of the alkyl group and aryl group include the alkyl groups and aryl groups exemplified above.
R 2 is preferably a hydrogen atom or a methyl group.

、Rはそれぞれ同一または異なって、水素原子、炭素数1〜6のアルキル基、または炭素数6〜20のアリール基である。これらアルキル基およびアリール基は置換基を有していてもよく、有していなくてもよい。
アルキル基としては、先に例示したメチル基や、エチル基、プロピル基、ブチル基等が挙げられる。
アリール基としては、先に例示したフェニル基や、トリル基、キシリル基、ナフチル基等が挙げられる。
、Rとしては、メチル基、フェニル基が好ましい。
R 3 and R 4 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms. These alkyl groups and aryl groups may or may not have a substituent.
Examples of the alkyl group include the methyl group, the ethyl group, the propyl group, and the butyl group exemplified above.
As an aryl group, the phenyl group illustrated previously, a tolyl group, a xylyl group, a naphthyl group, etc. are mentioned.
R 3 and R 4 are preferably a methyl group or a phenyl group.

化合物(1)としては、例えば、化合物(1−1)〜(1−6)が挙げられる。   Examples of compound (1) include compounds (1-1) to (1-6).

Figure 2010163395
Figure 2010163395

化合物(1)は、例えば、以下のようにして製造する。反応式中、X、Xはハロゲン原子であり、R〜Rは、式(1)の説明と同じである。 Compound (1) is produced, for example, as follows. In the reaction formula, X 1 and X 2 are halogen atoms, and R 1 to R 4 are the same as those in the formula (1).

(a)工程:
化合物(3)と亜リン酸トリエチルとを反応させて化合物(4)とし、未反応の亜リン酸トリエチルを減圧留去する。
(A) Process:
Compound (3) and triethyl phosphite are reacted to form compound (4), and unreacted triethyl phosphite is distilled off under reduced pressure.

Figure 2010163395
Figure 2010163395

化合物(3)と亜リン酸トリエチルとの反応割合(モル比)は、1:1〜1:2.5が好ましい。亜リン酸トリエチルが少なすぎると、未反応の化合物(3)が残り精製が困難となる。亜リン酸トリエチルが多すぎると、コストアップとなる。反応温度は、160〜200℃が好ましく、反応時間は、2〜6時間が好ましい。該範囲とすることにより、比較的簡易な製造設備で、所望の反応を効率的に実施できる。   The reaction ratio (molar ratio) between the compound (3) and triethyl phosphite is preferably 1: 1 to 1: 2.5. If there is too little triethyl phosphite, unreacted compound (3) remains and purification becomes difficult. If there is too much triethyl phosphite, the cost increases. The reaction temperature is preferably 160 to 200 ° C., and the reaction time is preferably 2 to 6 hours. By setting it as this range, a desired reaction can be efficiently carried out with a relatively simple production facility.

(b)工程:
塩基の存在下、溶剤中にて化合物(4)と化合物(5)とを反応させて化合物(6)とし、化合物(6)を抽出、精製する。
(B) Process:
Compound (4) and compound (5) are reacted in a solvent in the presence of a base to give compound (6), and compound (6) is extracted and purified.

Figure 2010163395
Figure 2010163395

化合物(4)と化合物(5)との反応割合(モル比)は、1:1〜1:2.5が好ましい。化合物(4)が少なすぎると、化合物(6)の収量が少なくなる。化合物(4)が多すぎると、未反応の化合物(4)が多くなり、副反応などにより化合物(6)の精製が困難となるおそれがある。
反応温度は、−20〜30℃が好ましく、反応時間は、5〜30時間が好ましい。該範囲とすることにより、比較的簡易な製造設備で、所望の反応を効率的に実施できる。
The reaction ratio (molar ratio) between the compound (4) and the compound (5) is preferably 1: 1 to 1: 2.5. When there is too little compound (4), the yield of compound (6) will decrease. If the amount of compound (4) is too large, the amount of unreacted compound (4) will increase, and purification of compound (6) may be difficult due to side reactions and the like.
The reaction temperature is preferably -20 to 30 ° C, and the reaction time is preferably 5 to 30 hours. By setting it as this range, a desired reaction can be efficiently carried out with a relatively simple production facility.

塩基としては、例えば、ナトリウムメトキシド、ナトリウムエトキシド等のナトリウムアルコキシド;水素化ナトリウム、水素化カリウム等の金属水素化物;n−ブチルリチウム等の金属塩等が挙げられる。塩基は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the base include sodium alkoxides such as sodium methoxide and sodium ethoxide; metal hydrides such as sodium hydride and potassium hydride; metal salts such as n-butyllithium and the like. A base may be used individually by 1 type and may be used in combination of 2 or more type.

塩基の添加量は、化合物(5)1モルに対して、1〜1.5モルが好ましい。塩基の添加量が1モル未満では、化合物(4)と化合物(5)との反応性が著しく低下するおそれがある。塩基の添加量が1.5モルを超えると、化合物(4)と化合物(5)との反応を制御することが困難になるおそれがある。   The amount of the base added is preferably 1 to 1.5 mol with respect to 1 mol of compound (5). If the addition amount of the base is less than 1 mol, the reactivity between the compound (4) and the compound (5) may be significantly reduced. When the addition amount of the base exceeds 1.5 mol, it may be difficult to control the reaction between the compound (4) and the compound (5).

溶剤としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素;ベンゼン、トルエン等の芳香族炭化水素、ジメチルホルムアミド等が挙げられる。   Examples of the solvent include ethers such as diethyl ether, tetrahydrofuran, and dioxane; halogenated hydrocarbons such as methylene chloride, chloroform, and dichloroethane; aromatic hydrocarbons such as benzene and toluene, and dimethylformamide.

(c)工程:
触媒等の存在下、溶剤中にて化合物(6)と化合物(7)とを反応させて化合物(8)とし、化合物(8)を抽出、精製する。
(C) Process:
In the presence of a catalyst or the like, the compound (6) and the compound (7) are reacted in a solvent to obtain the compound (8), and the compound (8) is extracted and purified.

Figure 2010163395
Figure 2010163395

化合物(6)と化合物(7)との反応割合(モル比)は、1:1〜1:2.5が好ましい。化合物(6)が少なすぎると、化合物(8)の収量が少なくなる。化合物(6)が多すぎると、未反応の化合物(6)が多くなり、副反応などにより化合物(8)の精製が困難となるおそれがある。
反応温度は、80〜140℃が好ましく、反応時間は、2〜10時間が好ましい。該範囲とすることにより、比較的簡易な製造設備で、所望の反応を効率的に実施できる。
The reaction ratio (molar ratio) between the compound (6) and the compound (7) is preferably 1: 1 to 1: 2.5. When there is too little compound (6), the yield of compound (8) will decrease. When there are too many compounds (6), there will be many unreacted compounds (6) and it will become difficult to refine | purify a compound (8) by side reaction etc.
The reaction temperature is preferably 80 to 140 ° C., and the reaction time is preferably 2 to 10 hours. By setting it as this range, a desired reaction can be efficiently carried out with a relatively simple production facility.

触媒としては、例えば、パラジウム系触媒等が挙げられる。パラジウム系触媒としては、トリス(ジベンジリデンアセトン)ジパラジウム(0)等が挙げられる。触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
溶剤としては、例えば、キシレン等が挙げられる。
Examples of the catalyst include a palladium catalyst. Examples of the palladium-based catalyst include tris (dibenzylideneacetone) dipalladium (0). A catalyst may be used individually by 1 type and may be used in combination of 2 or more type.
Examples of the solvent include xylene.

(d)工程:
酸触媒の存在下、溶剤中にて化合物(8)と化合物(9)とを反応させて化合物(1)とし、化合物(1)を抽出、精製する。
(D) Process:
In the presence of an acid catalyst, the compound (8) and the compound (9) are reacted in a solvent to obtain the compound (1), and the compound (1) is extracted and purified.

Figure 2010163395
Figure 2010163395

化合物(8)と化合物(9)との反応割合(モル比)は、1:1〜1:2.5が好ましい。化合物(9)が少なすぎると、化合物(8)が残り精製が困難となる。化合物(9)が多すぎると、コストアップとなる。
反応温度は、60〜120℃が好ましく、反応時間は、1〜5時間が好ましい。該範囲とすることにより、比較的簡易な製造設備で、所望の反応を効率的に実施できる。
The reaction ratio (molar ratio) between the compound (8) and the compound (9) is preferably 1: 1 to 1: 2.5. If the amount of compound (9) is too small, compound (8) remains and purification becomes difficult. When there are too many compounds (9), it will become a cost increase.
The reaction temperature is preferably 60 to 120 ° C., and the reaction time is preferably 1 to 5 hours. By setting it as this range, a desired reaction can be efficiently carried out with a relatively simple production facility.

酸触媒としては、例えばp−トルエンスルホン酸、カンファースルホン酸、ピリジニュウム−p−トルエンスルホン酸等が挙げられる。
酸触媒の添加量は、化合物(9)100質量部に対して、0.05〜10質量部が好ましく、0.2〜4質量部がより好ましい。酸触媒の添加量が0.05質量部未満では、化合物(8)と化合物(9)との反応性が著しく低下するおそれがある。酸触媒の添加量が10質量部を超えると、化合物(8)と化合物(9)との反応を制御することが困難になるおそれがある。
Examples of the acid catalyst include p-toluenesulfonic acid, camphorsulfonic acid, pyridinium-p-toluenesulfonic acid and the like.
0.05-10 mass parts is preferable with respect to 100 mass parts of compounds (9), and, as for the addition amount of an acid catalyst, 0.2-4 mass parts is more preferable. When the addition amount of the acid catalyst is less than 0.05 parts by mass, the reactivity between the compound (8) and the compound (9) may be significantly reduced. When the addition amount of the acid catalyst exceeds 10 parts by mass, it may be difficult to control the reaction between the compound (8) and the compound (9).

溶剤としては、例えば、トルエン、キシレン、クロロベンゼン、ブタノール、ジエチレングリコールジメチルエーテル等が挙げられる。
なお、(d)工程では、反応中に水が副生成物として生成するが、この水は反応を妨げるので、生成した水を溶剤と共沸させて、反応系外に取除くのが好ましい。
Examples of the solvent include toluene, xylene, chlorobenzene, butanol, diethylene glycol dimethyl ether and the like.
In the step (d), water is produced as a by-product during the reaction. Since this water hinders the reaction, the produced water is preferably azeotroped with the solvent and removed from the reaction system.

以上説明した化合物(1)は、共役構造を拡大したことにより、高い平面性を維持すると共に、共鳴安定化しやすい。また、化合物(1)はエーテル構造を有する。このような構造を有する化合物(1)は溶剤への溶解性、および極性のある結着樹脂(例えばポリカーボネート樹脂など)との相溶性に優れる。従って、化合物(1)は電子写真感光体用の正孔輸送剤としての感度が高い。   The compound (1) described above is easy to stabilize resonance while maintaining high flatness by expanding the conjugated structure. Compound (1) has an ether structure. The compound (1) having such a structure is excellent in solubility in a solvent and compatibility with a polar binder resin (for example, polycarbonate resin). Therefore, the compound (1) has high sensitivity as a hole transport agent for an electrophotographic photoreceptor.

<電子写真感光体>
本発明の電子写真感光体は、導電性基体と、該導電性基体上に設けられた感光体層とを有し、該感光体層が、本発明のエナミン誘導体(化合物(1))を含有する層である電子写真感光体である。
<Electrophotographic photoreceptor>
The electrophotographic photosensitive member of the present invention has a conductive substrate and a photosensitive layer provided on the conductive substrate, and the photosensitive layer contains the enamine derivative (compound (1)) of the present invention. An electrophotographic photoreceptor which is a layer to be used.

電子写真感光体としては、(i)単層型電子写真感光体、(ii)積層型電子写真感光体が挙げられ、正負いずれの帯電型電子写真感光体に用いることができること、構造が簡単であって、製造が容易であること、感光体層を形成する際の被膜欠陥を効果的に抑制できること、層間の界面が少なく、光学的特性を向上させやすい等の理由から、(i)単層型電子写真感光体が好ましい。   Examples of the electrophotographic photosensitive member include (i) a single-layer type electrophotographic photosensitive member and (ii) a laminated type electrophotographic photosensitive member, which can be used for either a positive or negative charging type electrophotographic photosensitive member and has a simple structure. (I) single layer for reasons such as easy manufacture, coating film defects at the time of forming a photoreceptor layer can be effectively suppressed, interface between layers is small, and optical characteristics are easily improved. Type electrophotographic photoreceptors are preferred.

(i)単層型電子写真感光体:
図1は、単層型電子写真感光体の一例を示す概略断面図である。単層型電子写真感光体10は、導電性基体12と、導電性基体12上に設けられた感光体層14とを有する。
なお、単層型電子写真感光体10は、図1のものに限定はされず、図2に示すように、導電性基体12と感光体層14との間に、単層型電子写真感光体10の特性を阻害しない範囲でバリア層16が設けられていてもよく、図3に示すように、感光体層14の表面に保護層18が設けられていてもよい。
(I) Single layer type electrophotographic photosensitive member:
FIG. 1 is a schematic cross-sectional view showing an example of a single layer type electrophotographic photosensitive member. The single layer type electrophotographic photoreceptor 10 includes a conductive substrate 12 and a photoreceptor layer 14 provided on the conductive substrate 12.
The single-layer type electrophotographic photosensitive member 10 is not limited to that shown in FIG. 1, and a single-layer type electrophotographic photosensitive member is interposed between the conductive substrate 12 and the photosensitive layer 14 as shown in FIG. The barrier layer 16 may be provided within a range that does not impede the characteristics of 10, and a protective layer 18 may be provided on the surface of the photoreceptor layer 14 as shown in FIG. 3.

導電性基体しては、例えば、鉄、アルミニウム、銅、スズ、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、インジウム、ステンレス鋼、真鍮等の金属;該金属が蒸着またはラミネートされたプラスチック材料;ヨウ化アルミニウム、酸化スズ、酸化インジウム等で被覆されたガラス等が挙げられる。
導電性基体の形状としては、シート状、ドラム状等が挙げられる。導電性基体の形状は、画像形成装置の構造に合わせて適宜決定すればよい。
Examples of the conductive substrate include metals such as iron, aluminum, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, indium, stainless steel, and brass; Laminated plastic materials; glass coated with aluminum iodide, tin oxide, indium oxide or the like can be used.
Examples of the shape of the conductive substrate include a sheet shape and a drum shape. The shape of the conductive substrate may be appropriately determined according to the structure of the image forming apparatus.

感光体層の厚さは、5〜100μmが好ましく、10〜50μmがより好ましい。
感光体層は、例えば、正孔輸送剤、電荷発生剤、結着樹脂、および必要に応じて電子輸送剤を含有する層である。
The thickness of the photoreceptor layer is preferably 5 to 100 μm, and more preferably 10 to 50 μm.
The photoreceptor layer is a layer containing, for example, a hole transport agent, a charge generator, a binder resin, and, if necessary, an electron transport agent.

感光体層は、正孔輸送剤として、化合物(1)を含有する。
感光体層は、他の正孔輸送剤を含有してもよい。他の正孔輸送剤としては、化合物(1)を除くエナミン系化合物、2,5−ジ(4−メチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール系化合物、9−(4−ジエチルアミノスチリル)アントラセン等のスチリル系化合物、ポリビニルカルバゾール等のカルバゾール系化合物、有機ポリシラン化合物、1−フェニル−3−(p−ジメチルアミノフェニル)ピラゾリン等のピラゾリン系化合物、ヒドラゾン系化合物、インドール系化合物、オキサゾール系化合物、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物、トリアゾール系化合物等の含窒素環式化合物、縮合多環式化合物等が挙げられる。正孔輸送剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The photoreceptor layer contains the compound (1) as a hole transport agent.
The photoreceptor layer may contain another hole transport agent. Other hole transporting agents include enamine compounds other than compound (1), oxadiazole compounds such as 2,5-di (4-methylaminophenyl) -1,3,4-oxadiazole, 9 Styryl compounds such as-(4-diethylaminostyryl) anthracene, carbazole compounds such as polyvinylcarbazole, organic polysilane compounds, pyrazoline compounds such as 1-phenyl-3- (p-dimethylaminophenyl) pyrazoline, hydrazone compounds, Examples thereof include nitrogen-containing cyclic compounds such as indole compounds, oxazole compounds, isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compounds, triazole compounds, and condensed polycyclic compounds. A hole transport agent may be used individually by 1 type, and may be used in combination of 2 or more type.

感光体層が電子輸送剤を含有する場合、電子輸送剤としては、キノン誘導体、アントラキノン誘導体、マロノニトリル誘導体、チオピラン誘導体、トリニトロチオキサントン誘導体、3,4,5,7−テトラニトロ−9−フルオレノン誘導体、ジニトロアントラセン誘導体、ジニトロアクリジン誘導体、ニトロアントアラキノン誘導体 、ジニトロアントラキノン誘導体、テトラシアノエチレン、2,4,8−トリニトロチオキサントン、ジニトロベンゼン、ジニトロアントラセン、ジニトロアクリジン、ニトロアントラキノン、ジニトロアントラキノン、無水コハク酸、無水マレイン酸、ジブロモ無水マレイン酸等が挙げられる。電子輸送剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   When the photoreceptor layer contains an electron transport agent, examples of the electron transport agent include quinone derivatives, anthraquinone derivatives, malononitrile derivatives, thiopyran derivatives, trinitrothioxanthone derivatives, 3,4,5,7-tetranitro-9-fluorenone derivatives, Dinitroanthracene derivatives, dinitroacridine derivatives, nitroantharaquinone derivatives, dinitroanthraquinone derivatives, tetracyanoethylene, 2,4,8-trinitrothioxanthone, dinitrobenzene, dinitroanthracene, dinitroacridine, nitroanthraquinone, dinitroanthraquinone, succinic anhydride Maleic anhydride, dibromomaleic anhydride and the like. An electron transfer agent may be used individually by 1 type, and may be used in combination of 2 or more type.

電子輸送剤としては、電子受容性および電荷発生剤との相溶性が優れており、感度特性および耐久性に優れた電子写真感光体が得られることから、キノン誘導体が好ましい。キノン誘導体としては、例えば、ナフトキノン誘導体、ジフェノキノン誘導体、アゾキノン誘導体等が挙げられる。
電子輸送剤としては、化合物(10−1)〜(10−3)が特に好ましい。
As the electron transporting agent, a quinone derivative is preferable because it is excellent in electron acceptability and compatibility with a charge generating agent, and an electrophotographic photoreceptor excellent in sensitivity characteristics and durability can be obtained. Examples of quinone derivatives include naphthoquinone derivatives, diphenoquinone derivatives, azoquinone derivatives, and the like.
As the electron transfer agent, compounds (10-1) to (10-3) are particularly preferable.

Figure 2010163395
Figure 2010163395

電荷発生剤としては、フタロシアニン系顔料、ペリレン系顔料、ビスアゾ顔料、ジオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、トリスアゾ顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、ピリリウム顔料、アンサンスロン顔料、トリフェニルメタン系顔料、スレン顔料、トルイジン系顔料、ピラゾリン系顔料、キナクリドン系顔料等の有機光導電体;セレン、セレン−テルル、セレン−ヒ素、硫化カドミウム、アモルファスシリコン等の無機光導電剤等が挙げられる。電荷発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, diketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, trisazo pigments, indigo pigments, azurenium pigments, cyanine pigments, Organic photoconductors such as pyrylium pigment, ansanthrone pigment, triphenylmethane pigment, selenium pigment, toluidine pigment, pyrazoline pigment, quinacridone pigment; selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, etc. And inorganic photoconductive agents. A charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type.

電荷発生剤としては、正孔輸送剤および電子輸送剤を併用した場合に、感度特性、電気特性および安定性等がより優れた電子写真感光体が得られることから、無金属フタロシアニン(τ型またはX型)、チタニルフタロシアニン(α型またはY型)、ヒドロキシガリウムフタロシアニン(V型)、およびクロロガリウムフタロシアニン(II型)からなる群から選択される1種以上が好ましい。   As the charge generating agent, when a hole transporting agent and an electron transporting agent are used in combination, an electrophotographic photosensitive member with more excellent sensitivity characteristics, electrical characteristics, stability and the like can be obtained. Therefore, a metal-free phthalocyanine (τ type or X type), titanyl phthalocyanine (α type or Y type), hydroxygallium phthalocyanine (V type), and one or more selected from the group consisting of chlorogallium phthalocyanine (type II) are preferred.

結着樹脂としては、例えば、ビスフェノールZ型、ビスフェノールZC型、ビスフェノールC型、ビスフェノールA型等のポリカーボネート樹脂、ポリアリレート樹脂、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体、スチレン−マレイン酸共重合体、アクリル共重合体、スチレン−アクリル酸共重合体、ポリエチレン樹脂、エチレン−酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー樹脂、塩化ビニル−酢酸ビニル共重合体、アルキド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂等の熱可塑性樹脂;シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等の熱硬化性樹脂;エポキシアクリレート、ウレタン−アクリレート等の光硬化型樹脂等が挙げられる。結着樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the binder resin include polycarbonate resins such as bisphenol Z type, bisphenol ZC type, bisphenol C type, bisphenol A type, polyarylate resin, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid. Copolymer, acrylic copolymer, styrene-acrylic acid copolymer, polyethylene resin, ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer resin, vinyl chloride-vinyl acetate copolymer Polymers, alkyd resins, polyamide resins, polyurethane resins, polysulfone resins, diallyl phthalate resins, ketone resins, polyvinyl butyral resins, polyether resins, etc .; silicone resins, epoxy resins, phenol resins, Containing resins, thermosetting resins such as melamine resin, epoxy acrylate, urethane - photocurable resins such as acrylate. Binder resin may be used individually by 1 type, and may be used in combination of 2 or more type.

感光体層は、電子写真特性に悪影響を与えない範囲で、公知の添加剤を含有していてもよい。添加剤としては、例えば、酸化防止剤、ラジカル捕捉剤、一重項クエンチャー、紫外線吸収剤等の劣化防止剤、軟化剤、可塑剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、アクセプター、ドナー等が挙げられる。
また、感光体層の感度を向上させるために、テルフェニル、ハロナフトキノン類、アセナフチレン等の公知の増感剤を電荷発生剤と併用してもよい。
The photoreceptor layer may contain a known additive as long as the electrophotographic characteristics are not adversely affected. Examples of additives include antioxidants, radical scavengers, singlet quenchers, deterioration inhibitors such as ultraviolet absorbers, softeners, plasticizers, surface modifiers, extenders, thickeners, dispersion stabilizers. , Wax, acceptor, donor and the like.
In order to improve the sensitivity of the photoreceptor layer, known sensitizers such as terphenyl, halonaphthoquinones, and acenaphthylene may be used in combination with the charge generator.

正孔輸送剤の含有量は、結着樹脂100質量部に対して20〜500質量部が好ましく、30〜200質量部がより好ましい。
電子輸送剤を含有させる場合、電子輸送剤の含有量は、結着樹脂100質量部に対して5〜100質量部が好ましく、10〜80質量部がより好ましい。
電荷発生剤の含有量は、結着樹脂100質量部に対して0.1〜50質量部が好ましく、0.5〜30質量部がより好ましい。
20-500 mass parts is preferable with respect to 100 mass parts of binder resin, and, as for content of a hole transport agent, 30-200 mass parts is more preferable.
When the electron transport agent is contained, the content of the electron transport agent is preferably 5 to 100 parts by mass and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the binder resin.
The content of the charge generating agent is preferably 0.1 to 50 parts by mass, and more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the binder resin.

感光体層は、例えば、正孔輸送剤、電荷発生剤、結着樹脂、および必要に応じて電子輸送剤を溶剤に溶解または分散させた塗布液を、導電性基体上に塗布し、乾燥させることで形成される。
塗布液の調製は、ロールミル、ボールミル、アトライタ、ペイントシェーカー、超音波分散機等を用いて、各成分を溶剤に溶解または分散さることによって行われる。塗布方法は、公知の方法を用いればよい。
The photoreceptor layer is formed by, for example, applying a hole transporting agent, a charge generating agent, a binder resin, and, if necessary, a coating solution in which an electron transporting agent is dissolved or dispersed in a solvent on a conductive substrate and drying it. Is formed.
The coating liquid is prepared by dissolving or dispersing each component in a solvent using a roll mill, a ball mill, an attritor, a paint shaker, an ultrasonic disperser or the like. As a coating method, a known method may be used.

溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;n−ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化水素;ベンゼン、トルエン、キシレン等の芳香族系炭化水素;ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸メチル等のエステル類;ジメチルホルムアルデヒド、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。溶剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
塗布液には、各成分の分散性、感光体層表面の平滑性をよくするために、界面活性剤、レベリング剤等を添加してもよい。
Examples of the solvent include alcohols such as methanol, ethanol, isopropanol and butanol; aliphatic hydrocarbons such as n-hexane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; dichloromethane, dichloroethane, Halogenated hydrocarbons such as chloroform, carbon tetrachloride and chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; ketones such as acetone, methyl ethyl ketone and cyclohexanone; esters such as ethyl acetate and methyl acetate Dimethylformaldehyde, dimethylformamide, dimethyl sulfoxide and the like. A solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
In order to improve the dispersibility of each component and the smoothness of the surface of the photoreceptor layer, a surfactant, a leveling agent, and the like may be added to the coating solution.

得られた単層型電子写真感光体は、感光体層に化合物(1)を含有しているため、残留電位が低下するとともに、感度が高い。さらに、感光体層に電子輸送剤を含有させる場合には、電荷発生剤と正孔輸送剤との電子の授受が効率よく行われるようになり、感度等がより安定する傾向が見られる。   Since the obtained single layer type electrophotographic photoreceptor contains the compound (1) in the photoreceptor layer, the residual potential is lowered and the sensitivity is high. Furthermore, when an electron transporting agent is contained in the photoreceptor layer, electrons are efficiently exchanged between the charge generating agent and the hole transporting agent, and the sensitivity and the like tend to be more stable.

(ii)積層型電子写真感光体:
図4は、積層型電子写真感光体の一例を示す概略断面図である。積層型電子写真感光体20は、導電性基体12と、導電性基体12上に設けられた、電荷発生剤を含有する電荷発生層24と、電荷発生層24上に設けられた電荷輸送層22とを有する。積層型電子写真感光体20においては、電荷発生層24と電荷輸送層22とで感光体層が構成されている。
(Ii) Multilayer electrophotographic photoreceptor:
FIG. 4 is a schematic cross-sectional view showing an example of a laminated electrophotographic photosensitive member. The multilayer electrophotographic photoreceptor 20 includes a conductive substrate 12, a charge generation layer 24 containing a charge generation agent provided on the conductive substrate 12, and a charge transport layer 22 provided on the charge generation layer 24. And have. In the multilayer electrophotographic photoreceptor 20, the charge generation layer 24 and the charge transport layer 22 constitute a photoreceptor layer.

なお、積層型電子写真感光体20は、図4のものに限定はされず、図5に示すように、導電性基体12上に電荷輸送層22が設けられ、電荷輸送層22上に電荷発生層24が設けられていてもよい。ただし、電荷発生層24は、電荷輸送層22に比べて膜厚が薄いため、電荷発生層24を保護するために、電荷発生層24の上に電荷輸送層22を設けることが好ましい。
導電性基体としては、単層型電子写真感光体と同様のものが挙げられる。
The multilayer electrophotographic photosensitive member 20 is not limited to that shown in FIG. 4, and as shown in FIG. 5, a charge transport layer 22 is provided on the conductive substrate 12, and charge generation is generated on the charge transport layer 22. A layer 24 may be provided. However, since the charge generation layer 24 is thinner than the charge transport layer 22, the charge transport layer 22 is preferably provided on the charge generation layer 24 in order to protect the charge generation layer 24.
Examples of the conductive substrate include those similar to the single-layer type electrophotographic photosensitive member.

電荷発生層の厚さは、0.01〜5μmが好ましく、0.1〜3μmがより好ましい。
電荷輸送層の厚さは、2〜100μmが好ましく、5〜50μmがより好ましい。
積層型電子写真感光体は、電荷発生層および電荷輸送層の形成順序、電荷輸送層に用いる電荷輸送剤の種類によって、正負いずれの帯電型となるかが選択される。例えば、導電性基体上に電荷発生層を設け、その上に電荷輸送層を設けた積層型電子写真感光体において、電荷輸送層の電荷輸送剤として、化合物(1)等の正孔輸送剤を用いた場合、感光体は負帯電型となる。この場合、電荷発生層には電子輸送剤を含有させてもよい。
The thickness of the charge generation layer is preferably from 0.01 to 5 μm, and more preferably from 0.1 to 3 μm.
The thickness of the charge transport layer is preferably 2 to 100 μm, and more preferably 5 to 50 μm.
Depending on the order of formation of the charge generation layer and the charge transport layer, and the type of charge transport agent used in the charge transport layer, the laminate type electrophotographic photoreceptor is selected as a positive or negative charge type. For example, in a laminated electrophotographic photosensitive member in which a charge generation layer is provided on a conductive substrate and a charge transport layer is provided thereon, a hole transport agent such as compound (1) is used as a charge transport agent for the charge transport layer. When used, the photoreceptor is of a negative charge type. In this case, the charge generation layer may contain an electron transport agent.

電荷発生剤、正孔輸送剤、電子輸送剤、結着剤等としては、単層型電子写真感光体と同様のものが挙げられる。
電荷発生層の電荷発生剤の含有量は、結着樹脂100質量部に対して5〜1000質量部が好ましく、30〜500質量部がより好ましい。
電荷発生層に正孔輸送剤を含有させる場合、正孔輸送剤の含有量は、結着樹脂100質量部に対して10〜500質量部が好ましく、50〜200質量部がより好ましい。
Examples of the charge generating agent, hole transporting agent, electron transporting agent, and binder are the same as those for the single-layer type electrophotographic photosensitive member.
The content of the charge generation agent in the charge generation layer is preferably 5 to 1000 parts by mass, more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the binder resin.
When the hole transport agent is contained in the charge generation layer, the content of the hole transport agent is preferably 10 to 500 parts by weight, and more preferably 50 to 200 parts by weight with respect to 100 parts by weight of the binder resin.

電荷輸送層の正孔輸送剤の含有量は、結着樹脂100質量部に対して10〜500質量部が好ましく、25〜200質量部がより好ましい。
電荷輸送層に電子輸送剤を含有させる場合、電子輸送剤の含有量は、結着樹脂100質量部に対して5〜200質量部が好ましく、10〜100質量部がより好ましい。
10-500 mass parts is preferable with respect to 100 mass parts of binder resin, and, as for content of the hole transport agent of a charge transport layer, 25-200 mass parts is more preferable.
When the electron transport agent is contained in the charge transport layer, the content of the electron transport agent is preferably 5 to 200 parts by weight, and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of the binder resin.

電荷発生層は、例えば、蒸着、塗布等の手段によって形成される。
電荷輸送層は、例えば、単層型電子写真感光体の感光体層と同様に塗布等の手段によって形成される。
The charge generation layer is formed, for example, by means such as vapor deposition or coating.
The charge transport layer is formed by means such as coating as in the case of the photoreceptor layer of a single-layer electrophotographic photoreceptor.

このように、本発明の電子写真感光体は、特定のエナミン誘導体(化合物(1))を含有する感光体層を有するので、感度に優れる。   Thus, since the electrophotographic photoreceptor of the present invention has a photoreceptor layer containing a specific enamine derivative (compound (1)), it is excellent in sensitivity.

実施例における各評価は、以下のように行った。
(電気特性試験)
GENTEC社製のドラム感度試験機に単層型電子写真感光体を設置し、初期表面電位Vが+700Vとなるように単層型電子写真感光体を帯電させた。ついで、ハロゲンランプの白色光からバンドパスフィルタを用いて取り出した波長780nm(半値幅20nm)の単色光(光強度1.5μJ/cm)を単層型電子写真感光体の表面に1.5秒間照射し、露光開始から0.5秒経過した時点での表面電位を測定して、これを残留電位V(V)とした。
Each evaluation in the examples was performed as follows.
(Electrical characteristics test)
Established the single-layer type electrophotographic photoconductor in GENTEC Co. drum sensitivity tester was so charges the single-layer type electrophotographic photoreceptor comprising an initial surface potential V 0 which is + 700 V. Next, monochromatic light (light intensity 1.5 μJ / cm 2 ) having a wavelength of 780 nm (half-value width 20 nm) extracted from the white light of the halogen lamp using a bandpass filter is applied to the surface of the single-layer electrophotographic photosensitive member. The surface potential was measured after 0.5 seconds from the start of exposure, and this was defined as the residual potential V L (V).

(外観評価)
単層型電子写真感光体の感光体層表面を観察した。結晶化が見られないものを○、若干結晶化したものを△、結晶化したものを×と評価した。
(Appearance evaluation)
The surface of the photoreceptor layer of the single layer type electrophotographic photoreceptor was observed. The case where no crystallization was observed was evaluated as ◯, the case where it was slightly crystallized was evaluated as Δ, and the case where it was crystallized was evaluated as ×.

[化合物(1−1)の製造]
(a)工程:
200mLフラスコに、化合物(3−1)15.2g(0.10mol)、および亜リン酸トリエチル25g(0.15mol)を入れ、180℃で加熱しながら8時間撹拌した。室温まで冷却した後、過剰な亜リン酸トリエチルエステルを減圧留去して、白色オイル状の化合物(4−1)24.1gを得た(収率90%)。
[Production of Compound (1-1)]
(A) Process:
A 200 mL flask was charged with 15.2 g (0.10 mol) of the compound (3-1) and 25 g (0.15 mol) of triethyl phosphite and stirred for 8 hours while heating at 180 ° C. After cooling to room temperature, excess phosphorous acid triethyl ester was distilled off under reduced pressure to obtain 24.1 g of a white oily compound (4-1) (yield 90%).

Figure 2010163395
Figure 2010163395

(b)工程:
500mLの2口フラスコに、化合物(4−1)13g(0.05mol)を入れ、アルゴンガス置換を行い、0℃で乾燥テトラヒドロフラン(THF)100mL、および28%ナトリウムメトキシド9.3g(0.05mol)を加え、そのまま30分間攪拌した。次いで、この反応液に、化合物(5−1)7g(0.05mol)を乾燥THF300mLに溶解させて投入し、室温で12時間攪拌した。その後、反応液をイオン交換水に注ぎ、トルエンにて抽出し、有機層をイオン交換水で5回洗浄した。次いで、有機層を無水硫酸ナトリウムで乾燥させた後、ろ過し、溶剤を留去した。その後、残渣をトルエン20mL/メタノール100mL混合溶剤で再結晶により精製して、白色結晶状の化合物(6−1)10.22gを得た(収率85%)。
(B) Process:
In a 500 mL two-necked flask, 13 g (0.05 mol) of the compound (4-1) was added, purged with argon gas, 100 mL of dry tetrahydrofuran (THF) at 0 ° C., and 9.3 g (0.3%) of 28% sodium methoxide. 05 mol) was added and stirred as such for 30 minutes. Next, 7 g (0.05 mol) of the compound (5-1) was dissolved in 300 mL of dry THF and added to this reaction solution, followed by stirring at room temperature for 12 hours. Thereafter, the reaction solution was poured into ion exchange water, extracted with toluene, and the organic layer was washed 5 times with ion exchange water. Subsequently, after drying an organic layer with anhydrous sodium sulfate, it filtered and distilled off the solvent. Thereafter, the residue was purified by recrystallization with a mixed solvent of 20 mL of toluene / 100 mL of methanol to obtain 10.22 g of a white crystalline compound (6-1) (yield 85%).

Figure 2010163395
Figure 2010163395

(c)工程:
2Lの2口フラスコに、化合物(6−1)12g(0.05mol)、(2−ビフェニル)ジシクロヘキシルホスフィン0.0662g(0.000189mol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.0864g(0.0000944mol)、ナトリウムt−ブトキシド7.68g(0.08mol)、および化合物(7−1)6.85g(0.05mol)を入れ、蒸留したo−キシレン500mLを加え、アルゴンガス置換を行い、120℃で加熱しながら5時間攪拌した。室温まで冷却した後、反応液(有機層)をイオン交換水で3回洗浄し、有機層に無水硫酸ナトリウムおよび活性白土を用いて乾燥および吸着処理した。その後、ろ過し、キシレンを減圧留去し、残渣をカラムクロマトグラフィ(展開溶媒:クロロホルム/ヘキサン)にて精製して、固体状の化合物(8−1)14.4gを得た(収率85%)。
(C) Process:
In a 2 L two-necked flask, 12 g (0.05 mol) of the compound (6-1), 0.0662 g (0.000189 mol) of (2-biphenyl) dicyclohexylphosphine, 0.0864 g of tris (dibenzylideneacetone) dipalladium (0) (0.0000944 mol), sodium t-butoxide 7.68 g (0.08 mol), and compound (7-1) 6.85 g (0.05 mol) were added, 500 mL of distilled o-xylene was added, and argon gas substitution was performed. And stirred for 5 hours while heating at 120 ° C. After cooling to room temperature, the reaction solution (organic layer) was washed three times with ion-exchanged water, and the organic layer was dried and adsorbed using anhydrous sodium sulfate and activated clay. Thereafter, filtration was performed, xylene was distilled off under reduced pressure, and the residue was purified by column chromatography (developing solvent: chloroform / hexane) to obtain 14.4 g of a solid compound (8-1) (yield 85%). ).

Figure 2010163395
Figure 2010163395

(d)工程:
500mLのフラスコに、化合物(8−1)12.6g(0.037mol)、トルエン200mL、化合物(9−1)7.2g(0.037mol)、および触媒量のp−トルエンスルホン酸を入れ、100℃で加熱しながら2時間撹拌した。室温まで冷却した後、反応液に無水硫酸ナトリウムおよび活性白土を加えて乾燥させた後、ろ過し、トルエンを減圧留去した。その後、残渣にエタノールを加えて加温し、残渣を溶解させ、その後冷却して結晶を析出させ、結晶状の化合物(1−1)16.3gを得た(収率85%)。
(D) Process:
A 500 mL flask is charged with 12.6 g (0.037 mol) of compound (8-1), 200 mL of toluene, 7.2 g (0.037 mol) of compound (9-1), and a catalytic amount of p-toluenesulfonic acid. The mixture was stirred for 2 hours while heating at 100 ° C. After cooling to room temperature, anhydrous sodium sulfate and activated clay were added to the reaction solution and dried, followed by filtration, and toluene was distilled off under reduced pressure. Thereafter, ethanol was added to the residue and heated to dissolve the residue, followed by cooling to precipitate crystals, yielding 16.3 g of crystalline compound (1-1) (yield 85%).

Figure 2010163395
Figure 2010163395

<実施例1>
電荷発生剤であるX型無金属フタロシアニン5質量部、正孔輸送剤である化合物(1−1)80質量部、電子輸送剤である化合物(10−1)50質量部、および結着樹脂であるポリカーボネート樹脂100質量部を、溶剤であるテトラヒドロフラン800質量部に、ボールミルにて50時間混合分散させて、単層型感光体層用の塗布液を調製した。ついで、この塗布液をアルミニウム素管からなる導電性基体上にディップコート法によって塗布し、100℃で30分間熱風乾燥することにより、膜厚25μmの感光体層を形成し、単層型電子写真感光体を得た。該単層型電子写真感光体について電気特性試験および外観評価を行った。結果を表1に示す。
<Example 1>
5 parts by mass of an X-type metal-free phthalocyanine as a charge generating agent, 80 parts by mass of a compound (1-1) as a hole transporting agent, 50 parts by mass of a compound (10-1) as an electron transporting agent, and a binder resin 100 parts by mass of a certain polycarbonate resin was mixed and dispersed in 800 parts by mass of tetrahydrofuran as a solvent with a ball mill for 50 hours to prepare a coating solution for a single-layer type photoreceptor layer. Next, this coating solution is applied to a conductive substrate made of an aluminum base tube by a dip coating method and dried with hot air at 100 ° C. for 30 minutes to form a photosensitive layer having a thickness of 25 μm. A photoreceptor was obtained. The single layer type electrophotographic photosensitive member was subjected to an electrical property test and an appearance evaluation. The results are shown in Table 1.

<実施例2>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 2>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (10-2) was used instead of the compound (10-1) as the electron transfer agent. The results are shown in Table 1.

<実施例3>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 3>
Example 1 except that Y-type titanyl phthalocyanine was used instead of X-type metal-free phthalocyanine as the charge generating agent, and compound (10-2) was used instead of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(1−2)の製造]
化合物(7−1)の代わりに、化合物(7−2)6.15g(0.05mol)を用いた以外は、化合物(1−1)と同様にして化合物(1−2)15.0gを得た(収率80%)。
[Production of Compound (1-2)]
15.0 g of compound (1-2) was obtained in the same manner as compound (1-1) except that 6.15 g (0.05 mol) of compound (7-2) was used instead of compound (7-1). Obtained (yield 80%).

Figure 2010163395
Figure 2010163395

化合物(1−2)について 1H−NMR(300MHz)を測定した。溶媒としては、CDCl、基準物質としてTMSを用いた。化合物(1−2)が得られていることを確認した。 1H−NMRのチャートを図6に示す。 1 H-NMR (300 MHz) was measured for the compound (1-2). As a solvent, CDCl 3 was used, and TMS was used as a reference substance. It was confirmed that compound (1-2) was obtained. The 1 H-NMR chart is shown in FIG.

<実施例4>
正孔輸送剤として、化合物(1−1)の代わりに化合物(1−2)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 4>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (1-2) was used instead of the compound (1-1) as the hole transport agent. The results are shown in Table 1.

<実施例5>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例4と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 5>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 4 except that the compound (10-2) was used instead of the compound (10-1) as the electron transfer agent. The results are shown in Table 1.

<実施例6>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例4と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 6>
Example 4 except that Y-type titanyl phthalocyanine was used instead of X-type metal-free phthalocyanine as the charge generating agent, and compound (10-2) was used instead of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(1−3)の製造]
化合物(7−1)の代わりに、化合物(7−3)9.25g(0.05mol)を用いた以外は、化合物(1−1)と同様にして化合物(1−3)16.8gを得た(収率80%)。
[Production of Compound (1-3)]
16.8 g of the compound (1-3) was obtained in the same manner as the compound (1-1) except that 9.25 g (0.05 mol) of the compound (7-3) was used instead of the compound (7-1). Obtained (yield 80%).

Figure 2010163395
Figure 2010163395

化合物(1−3)について 1H−NMR(300MHz)を測定した。溶媒としては、CDCl、基準物質としてTMSを用いた。化合物(1−3)が得られていることを確認した。 1H−NMRのチャートを図7に示す。 1 H-NMR (300 MHz) of the compound (1-3) was measured. As a solvent, CDCl 3 was used, and TMS was used as a reference substance. It was confirmed that compound (1-3) was obtained. A chart of 1 H-NMR is shown in FIG.

<実施例7>
正孔輸送剤として、化合物(1−1)の代わりに化合物(1−3)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 7>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (1-3) was used instead of the compound (1-1) as the hole transporting agent. The results are shown in Table 1.

<実施例8>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例7と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 8>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 7 except that the compound (10-2) was used instead of the compound (10-1) as the electron transfer agent. The results are shown in Table 1.

<実施例9>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例7と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 9>
Example 7 except that Y-type titanyl phthalocyanine was used instead of X-type metal-free phthalocyanine as the charge generating agent, and compound (10-2) was used instead of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(1−4)の製造]
化合物(7−1)の代わりに、化合物(7−2)6.15g(0.05mol)を用い、化合物(9−1)の代わりに、化合物(9−2)4.9g(0.037mol)を用いた以外は、化合物(1−1)と同様にして化合物(1−4)11.5gを得た(収率70%)。
[Production of Compound (1-4)]
Instead of compound (7-1), 6.15 g (0.05 mol) of compound (7-2) was used, and instead of compound (9-1), 4.9 g (0.037 mol) of compound (9-2) was used. ) 11.5 g of compound (1-4) was obtained in the same manner as compound (1-1) except that was used (yield 70%).

Figure 2010163395
Figure 2010163395

<実施例10>
正孔輸送剤として、化合物(1−1)の代わりに化合物(1−4)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 10>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (1-4) was used instead of the compound (1-1) as the hole transport agent. The results are shown in Table 1.

<実施例11>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例10と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 11>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 10 except that the compound (10-2) was used instead of the compound (10-1) as the electron transfer agent. The results are shown in Table 1.

<実施例12>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例10と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 12>
Example 10 except that Y-type titanyl phthalocyanine was used in place of X-type metal-free phthalocyanine as the charge generating agent and compound (10-2) was used in place of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(1−5)の製造]
化合物(7−1)の代わりに、化合物(7−4)6.85g(0.05mol)を用いた以外は、化合物(1−1)と同様にして化合物(1−5)14.4gを得た(収率75%)。
[Production of Compound (1-5)]
Instead of compound (7-1), compound (1-5) 14.4 g was obtained in the same manner as compound (1-1), except that compound (7-4) 6.85 g (0.05 mol) was used. Obtained (yield 75%).

Figure 2010163395
Figure 2010163395

<実施例13>
正孔輸送剤として、化合物(1−1)の代わりに化合物(1−5)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 13>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (1-5) was used instead of the compound (1-1) as the hole transporting agent. The results are shown in Table 1.

<実施例14>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例13と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 14>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 13 except that the compound (10-2) was used instead of the compound (10-1) as the electron transport agent. The results are shown in Table 1.

<実施例15>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例13と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 15>
Example 13 except that Y-type titanyl phthalocyanine was used instead of X-type metal-free phthalocyanine as the charge generating agent and compound (10-2) was used instead of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(1−6)の製造]
化合物(7−1)の代わりに、化合物(7−2)6.15g(0.05mol)を用い、化合物(9−1)の代わりに、化合物(9−3)2.7g(0.037mol)を用いた以外は、化合物(1−1)と同様にして化合物(1−6)11.3gを得た(収率80%)。
[Production of Compound (1-6)]
Instead of compound (7-1), 6.15 g (0.05 mol) of compound (7-2) was used, and 2.7 g (0.037 mol) of compound (9-3) was used instead of compound (9-1). ) Was used in the same manner as compound (1-1) to obtain 11.3 g of compound (1-6) (yield 80%).

Figure 2010163395
Figure 2010163395

<実施例16>
正孔輸送剤として、化合物(1−1)の代わりに化合物(1−6)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 16>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (1-6) was used instead of the compound (1-1) as the hole transport agent. The results are shown in Table 1.

<実施例17>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例16と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 17>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 16 except that the compound (10-2) was used instead of the compound (10-1) as the electron transport agent. The results are shown in Table 1.

<実施例18>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、実施例16と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Example 18>
Example 16 except that Y-type titanyl phthalocyanine was used in place of X-type metal-free phthalocyanine as the charge generating agent, and compound (10-2) was used in place of compound (10-1) as the electron transport agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(2−1)]
<比較例1>
正孔輸送剤として、化合物(1−1)の代わりに化合物(2−1)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
[Compound (2-1)]
<Comparative Example 1>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (2-1) was used instead of the compound (1-1) as the hole transporting agent. The results are shown in Table 1.

<比較例2>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、比較例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Comparative example 2>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Comparative Example 1 except that the compound (10-2) was used instead of the compound (10-1) as the electron transfer agent. The results are shown in Table 1.

<比較例3>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、比較例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Comparative Example 3>
Comparative Example 1 except that Y-type titanyl phthalocyanine was used instead of X-type metal-free phthalocyanine as the charge generating agent, and compound (10-2) was used instead of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(2−2)]
<比較例4>
正孔輸送剤として、化合物(1−1)の代わりに化合物(2−2)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
[Compound (2-2)]
<Comparative example 4>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (2-2) was used instead of the compound (1-1) as a hole transporting agent. The results are shown in Table 1.

<比較例5>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、比較例4と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Comparative Example 5>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Comparative Example 4 except that the compound (10-2) was used instead of the compound (10-1) as the electron transport agent. The results are shown in Table 1.

<比較例6>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、比較例4と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Comparative Example 6>
Comparative Example 4 except that Y-type titanyl phthalocyanine was used in place of X-type metal-free phthalocyanine as the charge generating agent and compound (10-2) was used in place of compound (10-1) as the electron transporting agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

[化合物(2−3)]
<比較例7>
正孔輸送剤として、化合物(1−1)の代わりに化合物(2−3)を用いた以外は、実施例1と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
[Compound (2-3)]
<Comparative Example 7>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the compound (2-3) was used instead of the compound (1-1) as the hole transport agent. The results are shown in Table 1.

<比較例8>
電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、比較例7と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Comparative Example 8>
A single-layer electrophotographic photosensitive member was produced and evaluated in the same manner as in Comparative Example 7 except that the compound (10-2) was used instead of the compound (10-1) as the electron transfer agent. The results are shown in Table 1.

<比較例9>
電荷発生剤として、X型無金属フタロシアニンの代わりにY型チタニルフタロシアニンを用い、電子輸送剤として、化合物(10−1)の代わりに化合物(10−2)を用いた以外は、比較例7と同様にして単層型電子写真感光体を製造し、評価した。結果を表1に示す。
<Comparative Example 9>
Comparative Example 7 except that Y-type titanyl phthalocyanine was used in place of X-type metal-free phthalocyanine as the charge generator, and compound (10-2) was used in place of compound (10-1) as the electron transport agent. Similarly, a single layer type electrophotographic photosensitive member was produced and evaluated. The results are shown in Table 1.

Figure 2010163395
Figure 2010163395

表1から明らかなように、実施例の単層型電子写真感光体は、比較例の単層型電子写真感光体に比べて残留電位が低かった。また、感光体の外観評価を行ったところ、結晶化が見られなかった。
一方、比較例の単層型電子写真感光体は、残留電位が高かった。
As is apparent from Table 1, the single layer type electrophotographic photosensitive member of the example had a lower residual potential than the single layer type electrophotographic photosensitive member of the comparative example. Further, when the appearance of the photoreceptor was evaluated, no crystallization was observed.
On the other hand, the single layer type electrophotographic photoreceptor of the comparative example had a high residual potential.

本発明のエナミン誘導体は、溶剤への溶解性および結着樹脂との相溶性に優れていることから、感度に優れた電子写真感光体を得ることができる。該電子写真感光体は、各種画像形成装置の高速化、高性能化等に寄与することが期待される。
本発明のエナミン誘導体は、高い正孔輸送能を有することから、太陽電池、エレクトロルミネッセンス素子等にも利用可能である。
Since the enamine derivative of the present invention is excellent in solubility in a solvent and compatibility with a binder resin, an electrophotographic photoreceptor excellent in sensitivity can be obtained. The electrophotographic photosensitive member is expected to contribute to high speed and high performance of various image forming apparatuses.
Since the enamine derivative of the present invention has a high hole transport ability, it can be used for solar cells, electroluminescence devices and the like.

10 単層型電子写真感光体(電子写真感光体) 12 導電性基体 14 感光体層 20 積層型電子写真感光体(電子写真感光体) 22 電荷輸送層(感光体層) 24 電荷発生層(感光体層)   DESCRIPTION OF SYMBOLS 10 Single layer type electrophotographic photosensitive member (electrophotographic photosensitive member) 12 Conductive substrate 14 Photosensitive member layer 20 Laminated electrophotographic photosensitive member (electrophotographic photosensitive member) 22 Charge transport layer (photosensitive member layer) 24 Charge generating layer (photosensitive member) Body layer)

Claims (2)

下記式(1)で表される化合物である、エナミン誘導体。
Figure 2010163395
式(1)中、Rは炭素数1〜6のアルキル基、または炭素数6〜20のアリール基であり、Rは水素原子、炭素数1〜6のアルキル基、または炭素数6〜20のアリール基であり、R、Rはそれぞれ同一または異なって、水素原子、炭素数1〜6のアルキル基、または炭素数6〜20のアリール基である。
An enamine derivative, which is a compound represented by the following formula (1).
Figure 2010163395
In Formula (1), R 1 is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 6 to 6 carbon atoms. 20 is an aryl group, and R 3 and R 4 are the same or different and each is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
導電性基体と、
該導電性基体上に設けられた感光体層とを有し、
該感光体層が、請求項1記載のエナミン誘導体を含有する層である、電子写真感光体。
A conductive substrate;
A photoreceptor layer provided on the conductive substrate,
An electrophotographic photoreceptor, wherein the photoreceptor layer is a layer containing the enamine derivative according to claim 1.
JP2009007630A 2009-01-16 2009-01-16 Enamine derivatives and electrophotographic photoreceptors Active JP5530636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007630A JP5530636B2 (en) 2009-01-16 2009-01-16 Enamine derivatives and electrophotographic photoreceptors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007630A JP5530636B2 (en) 2009-01-16 2009-01-16 Enamine derivatives and electrophotographic photoreceptors

Publications (2)

Publication Number Publication Date
JP2010163395A true JP2010163395A (en) 2010-07-29
JP5530636B2 JP5530636B2 (en) 2014-06-25

Family

ID=42579867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007630A Active JP5530636B2 (en) 2009-01-16 2009-01-16 Enamine derivatives and electrophotographic photoreceptors

Country Status (1)

Country Link
JP (1) JP5530636B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211844A1 (en) * 2017-05-15 2018-11-22 京セラドキュメントソリューションズ株式会社 Compound and xerographic photoreceptor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812618B2 (en) * 1991-09-27 1998-10-22 シャープ株式会社 Electrophotographic photoreceptor
JPH11265081A (en) * 1998-03-18 1999-09-28 Mitsubishi Paper Mills Ltd Electrophotographic sensitive material
JP2000242007A (en) * 1999-02-17 2000-09-08 Mitsubishi Paper Mills Ltd Electrophotographic photoreceptor
JP2002229231A (en) * 2001-01-30 2002-08-14 Kyocera Mita Corp Electrophotographic photoreceptor
JP2005321677A (en) * 2004-05-11 2005-11-17 Mitsubishi Paper Mills Ltd Electrophotographic photoreceptor
JP2006098584A (en) * 2004-09-29 2006-04-13 Kyocera Mita Corp Electrophotographic photoreceptor for wet development and image forming apparatus for wet development
JP2007322908A (en) * 2006-06-02 2007-12-13 Sharp Corp Electrophotographic photoreceptor and image forming apparatus
JP2008165082A (en) * 2006-12-29 2008-07-17 Sharp Corp Electrophotographic photoreceptor and image forming device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812618B2 (en) * 1991-09-27 1998-10-22 シャープ株式会社 Electrophotographic photoreceptor
JPH11265081A (en) * 1998-03-18 1999-09-28 Mitsubishi Paper Mills Ltd Electrophotographic sensitive material
JP2000242007A (en) * 1999-02-17 2000-09-08 Mitsubishi Paper Mills Ltd Electrophotographic photoreceptor
JP2002229231A (en) * 2001-01-30 2002-08-14 Kyocera Mita Corp Electrophotographic photoreceptor
JP2005321677A (en) * 2004-05-11 2005-11-17 Mitsubishi Paper Mills Ltd Electrophotographic photoreceptor
JP2006098584A (en) * 2004-09-29 2006-04-13 Kyocera Mita Corp Electrophotographic photoreceptor for wet development and image forming apparatus for wet development
JP2007322908A (en) * 2006-06-02 2007-12-13 Sharp Corp Electrophotographic photoreceptor and image forming apparatus
JP2008165082A (en) * 2006-12-29 2008-07-17 Sharp Corp Electrophotographic photoreceptor and image forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211844A1 (en) * 2017-05-15 2018-11-22 京セラドキュメントソリューションズ株式会社 Compound and xerographic photoreceptor
CN110546131A (en) * 2017-05-15 2019-12-06 京瓷办公信息系统株式会社 Compound and electrophotographic photoreceptor
JPWO2018211844A1 (en) * 2017-05-15 2020-03-12 京セラドキュメントソリューションズ株式会社 Compound and electrophotographic photoreceptor
CN110546131B (en) * 2017-05-15 2023-02-28 京瓷办公信息系统株式会社 Compound and electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP5530636B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5060773B2 (en) Diphenylamine derivative, process for producing the same, and electrophotographic photoreceptor
JP5000239B2 (en) Triphenylamine derivatives and electrophotographic photoreceptors
JP4813256B2 (en) Diphenylamine derivatives and electrophotographic photoreceptors
JP2007210954A (en) Stilbene amine derivative and electrophotographic photoreceptor
JP2007186481A (en) Triarylamine derivative and electrophotographic photoreceptor
JP2007197407A (en) Triarylaminehydrazone derivative and electrophotographic photoreceptor
JP2007254386A (en) Triarylamine derivative, method for producing the same and electronic photoreceptor
JP2008063229A (en) Triphenylamine derivative and electrophotographic photoreceptor
JP2007246398A (en) Diphenylamine derivative and electrophotographic photoreceptor
JP2007223923A (en) Triphenylamine derivative and electrophotographic photosensitizer
JP5530636B2 (en) Enamine derivatives and electrophotographic photoreceptors
JP5244307B2 (en) Triarylamine derivatives and electrophotographic photoreceptors
JP2008056571A (en) Triphenylamine derivative and electrophotographic receptor
JP2009007274A (en) Diamine derivative and electrophotographic photoreceptor
JP2007240853A (en) Diphenylamine derivative and electrophotographic photoreceptor
JP2007197408A (en) Diphenylbenzidine derivative and electrophotographic photoreceptor
JP2007225750A (en) Triphenylamine derivatives and electrophotographic photoreceptor
JP2008110946A (en) Triphenylamine derivative and electrophotographic photoreceptor
JP2007223988A (en) Diamine derivative and electrophotographic photoreceptor
JP5244659B2 (en) Electrophotographic photoreceptor
JP2008156302A (en) Triphenylamine derivative and electrophotographic photoreceptor, and image formation equipment using the electrophotographic photoreceptor
JP2007223986A (en) Diamine derivative and electrophotographic photoreceptor
JP2010191175A (en) Electrophotographic photoreceptor
JP4767712B2 (en) Triarylamine derivative, process for producing the same and electrophotographic photoreceptor
JP2009007276A (en) Triamine derivative and electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150