JP2010161034A - Method of manufacturing metal catalyst-supporting carbon powder - Google Patents

Method of manufacturing metal catalyst-supporting carbon powder Download PDF

Info

Publication number
JP2010161034A
JP2010161034A JP2009003955A JP2009003955A JP2010161034A JP 2010161034 A JP2010161034 A JP 2010161034A JP 2009003955 A JP2009003955 A JP 2009003955A JP 2009003955 A JP2009003955 A JP 2009003955A JP 2010161034 A JP2010161034 A JP 2010161034A
Authority
JP
Japan
Prior art keywords
carbon powder
metal catalyst
catalyst
heat treatment
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009003955A
Other languages
Japanese (ja)
Other versions
JP5326585B2 (en
Inventor
Hiroaki Takahashi
宏明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009003955A priority Critical patent/JP5326585B2/en
Publication of JP2010161034A publication Critical patent/JP2010161034A/en
Application granted granted Critical
Publication of JP5326585B2 publication Critical patent/JP5326585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing metal catalyst-supporting carbon powder to be used for a catalyst layer of a solid polymer fuel cell, capable of improving catalyst activity by preventing oxidation of the surface of a metal catalyst, and promoting alloying when supporting another metal catalyst. <P>SOLUTION: The method of manufacturing metal catalyst-supporting carbon powder to be used for a catalyst layer of a solid polymer fuel cell comprises performing heat treatment under a high-concentration carbon dioxide atmosphere after supporting a metal catalyst on carbon powder. The heat treatment temperature is preferably 500-800°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子型燃料電池の触媒層に含有させる、Pt等の金属触媒が担持されたカーボン粉末の製造方法に関する。   The present invention relates to a method for producing a carbon powder loaded with a metal catalyst such as Pt, which is contained in a catalyst layer of a polymer electrolyte fuel cell.

固体高分子型燃料電池は、水素イオン伝導性の固体高分子電解質膜の両面に一対の電極を設け、水素ガスを燃料ガスとして一方の電極(燃料極:アノード)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(空気極:カソード)へ供給することによって起電力を得るものである。固体高分子型燃料電池は、高い電池特性を得られることに加え、小型軽量化が容易であることから、電気自動車等の移動車両や、小型コジェネレーションシステムの電源等として実用化が期待されている。   A polymer electrolyte fuel cell is provided with a pair of electrodes on both sides of a hydrogen ion conductive solid polymer electrolyte membrane, supplies hydrogen gas as a fuel gas to one electrode (fuel electrode: anode), oxygen gas or air Is obtained as an oxidizing agent to the other electrode (air electrode: cathode) to obtain an electromotive force. Solid polymer fuel cells are expected to be put to practical use as mobile vehicles such as electric vehicles and power sources for small cogeneration systems because they are easy to reduce in size and weight in addition to obtaining high battery characteristics. Yes.

通常、固体高分子型燃料電池に使用されるガス拡散性の電極は、水素イオン伝導性高分子電解質で被覆された触媒担持カーボン粉末を含有する触媒層と、この触媒層に反応ガスを供給すると共に電子を集電するガス拡散層とから構成される。そして、触媒層内には、カーボンの二次粒子間あるいは三次粒子間に形成される微小な細孔からなる空隙部が存在し、その空隙部が反応ガスの拡散流路として機能している。   Usually, a gas diffusible electrode used in a polymer electrolyte fuel cell supplies a catalyst layer containing a catalyst-supporting carbon powder coated with a hydrogen ion conductive polymer electrolyte, and supplies a reaction gas to the catalyst layer. And a gas diffusion layer for collecting electrons. In the catalyst layer, there are voids composed of minute pores formed between the carbon secondary particles or the tertiary particles, and the voids function as a reaction gas diffusion channel.

カーボン粉末に担持させるカソード及びアノード触媒としては、白金又は白金合金等の貴金属が用いられる。例えば、白金担持カーボン粉末は、カーボン粉末を水等に懸濁させ、これに塩化白金酸等の触媒金属の化合物を滴下し、還元剤を滴下することによりカーボン粉末上に白金を析出させて調製される。この白金担持カーボン粉末を水素イオン伝導性高分子電解質の溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することによって電極が作製される。この2枚の電極で固体高分子電解質膜を挟み、ホットプレス等することにより電解質膜−電極接合体(MEA)が組立てられる。   As the cathode and anode catalyst supported on the carbon powder, a noble metal such as platinum or a platinum alloy is used. For example, platinum-supported carbon powder is prepared by suspending carbon powder in water, etc., dropping a catalyst metal compound such as chloroplatinic acid, and dropping a reducing agent to deposit platinum on the carbon powder. Is done. The platinum-supported carbon powder is dispersed in a hydrogen ion conductive polymer electrolyte solution to prepare an ink. The ink is applied to a gas diffusion substrate such as carbon paper and dried to produce an electrode. An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a solid polymer electrolyte membrane between these two electrodes and performing hot pressing or the like.

従来、上記のような金属触媒担持カーボン粉末の触媒活性を向上させるため、金属触媒を微粒化して反応面積を向上させたり、カーボン粉末を特定のガス雰囲気下で熱処理することが試みられている。例えば、(特許文献1)には、導電性担体を、500〜1200℃の温度範囲で、二酸化炭素、水蒸気、空気から選ばれるいずれか1つ以上のガス雰囲気下で賦活する処理を行った後、Pt等の金属を担持してなる電極触媒が開示されている。しかし、この電極触媒は、Ptの表面が酸化されているために触媒活性が阻害され、したがって得られる性能は不十分であり、結果としてPt等の金属の使用量が増加するという問題があった。   Conventionally, in order to improve the catalytic activity of the metal catalyst-supporting carbon powder as described above, attempts have been made to atomize the metal catalyst to improve the reaction area, or to heat-treat the carbon powder in a specific gas atmosphere. For example, in (Patent Document 1), after conducting a process of activating a conductive carrier in a temperature range of 500 to 1200 ° C. in any one or more gas atmospheres selected from carbon dioxide, water vapor, and air. An electrode catalyst having a metal such as Pt supported thereon is disclosed. However, this electrode catalyst has a problem in that the catalytic activity is hindered because the surface of Pt is oxidized, and thus the obtained performance is insufficient, resulting in an increase in the amount of metal used such as Pt. .

また、複数の金属を担持させ、不活性ガス雰囲気下で熱処理を行うことにより合金化する方法も知られている。例えば、(特許文献2)には、白金担持触媒上にルテニウムを水酸化物として付着させ、しかる後に、例えば窒素と二酸化炭素の分圧比5:1の混合ガス雰囲気中で熱処理することによってルテニウム水酸化物を金属に還元すると同時に合金化する、燃料電池用アノード触媒の製造方法が開示されている。この方法も同様に、触媒金属の表面が酸化されているため、合金化が阻害され、触媒活性が十分に発揮されないという問題があった。   A method of alloying by supporting a plurality of metals and performing a heat treatment in an inert gas atmosphere is also known. For example, in Patent Document 2, ruthenium is deposited on a platinum-supported catalyst as a hydroxide, and then heat-treated in a mixed gas atmosphere having a partial pressure ratio of nitrogen and carbon dioxide of 5: 1, for example. A method for producing an anode catalyst for a fuel cell, in which an oxide is reduced to a metal and alloyed at the same time, is disclosed. Similarly, this method has a problem that the catalytic metal surface is oxidized, so that alloying is inhibited and the catalytic activity is not sufficiently exhibited.

さらに、上記の固体高分子電解質膜には、一般に、パーフルオロスルホン酸ポリマー等のイオン交換樹脂が用いられている。これらのイオン交換樹脂は、湿潤環境下で初めて高い水素イオン伝導性を発現する。これは、水素イオンの移動に水分子の介在や随伴が必須であるためと考えられている。したがって、効率良く燃料電池を作動させるために、従来は、触媒層に対して反応ガスとともに水蒸気を供給し、高分子電解質膜を常に湿潤状態に保持している。しかし、湿潤状態にするには空気供給路又は水素供給路に加湿器を別途設ける必要があり、それによって燃料電池が大型化し、製造コストが上昇するという欠点があった。そのため、低加湿条件下でも運転可能な技術の開発が望まれているが、従来の金属触媒担持カーボン粉末は、カーボンの表面が疎水性であるため、低加湿時のHOの保持能力が低く、水素イオンの伝導が阻害されるため、高い燃料電池性能を得ることができないという課題もあった。 Furthermore, ion exchange resins such as perfluorosulfonic acid polymers are generally used for the solid polymer electrolyte membrane. These ion exchange resins exhibit high hydrogen ion conductivity for the first time in a humid environment. This is thought to be due to the interposition and accompanying of water molecules in the movement of hydrogen ions. Therefore, in order to operate the fuel cell efficiently, conventionally, water vapor is supplied to the catalyst layer together with the reaction gas, and the polymer electrolyte membrane is always kept in a wet state. However, in order to obtain a wet state, it is necessary to separately provide a humidifier in the air supply path or the hydrogen supply path, which has the disadvantage that the fuel cell becomes larger and the manufacturing cost increases. Therefore, development of a technology that can be operated even under low humidification conditions is desired. However, since the conventional metal catalyst-supported carbon powder has a hydrophobic carbon surface, it has the ability to retain H 2 O during low humidification. There is also a problem that high fuel cell performance cannot be obtained because of low conductivity of hydrogen ions.

特開2005−25947号公報JP 2005-25947 A 特開昭63−213260号公報JP 63-213260 A

そこで本発明は、上記従来の状況に鑑み、固体高分子型燃料電池の触媒層に用いる、金属触媒が担持されたカーボン粉末において、金属触媒の表面の酸化を防ぎ、また他の金属触媒も担持させる場合には合金化を促進することによって触媒活性を向上させることができる、上記金属触媒担持カーボン粉末の製造方法を提供することを目的とする。   Therefore, in view of the above-described conventional situation, the present invention prevents oxidation of the surface of the metal catalyst in the carbon powder loaded with the metal catalyst used for the catalyst layer of the polymer electrolyte fuel cell, and also carries other metal catalysts. It is an object of the present invention to provide a method for producing the above metal catalyst-supported carbon powder, which can improve the catalytic activity by promoting alloying.

また、カーボン粉末表面の親水性を高めることにより、低加湿条件下において高い性能を得ることができる、金属触媒担持カーボン粉末の製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for producing a metal catalyst-supported carbon powder that can obtain high performance under low humidification conditions by increasing the hydrophilicity of the surface of the carbon powder.

上記課題に対し、本発明者は、金属触媒カーボン粉末を二酸化炭素雰囲気下で熱処理することにより還元性COガスが生成し、これによって金属触媒の表面が還元されるため、触媒活性が向上することを見出した。また、二酸化炭素雰囲気下での熱処理によってカーボン粉末の表面が賦活され、親水性が高まることを見出し、発明を完成した。すなわち、本発明の要旨は以下の通りである。   In response to the above problems, the present inventor can reduce the surface of the metal catalyst by heat-treating the metal catalyst carbon powder in a carbon dioxide atmosphere, thereby reducing the surface of the metal catalyst, thereby improving the catalytic activity I found. Further, the inventors have found that the surface of the carbon powder is activated by the heat treatment in a carbon dioxide atmosphere and the hydrophilicity is increased, and the invention has been completed. That is, the gist of the present invention is as follows.

(1)固体高分子型燃料電池の触媒層に用いる、金属触媒が担持されたカーボン粉末の製造方法であって、カーボン粉末に金属触媒を担持させた後、高濃度の二酸化炭素雰囲気下で熱処理を行う前記製造方法。 (1) A method for producing a carbon powder carrying a metal catalyst, which is used for a catalyst layer of a polymer electrolyte fuel cell, wherein the metal catalyst is carried on the carbon powder and then heat-treated in a high-concentration carbon dioxide atmosphere. The said manufacturing method which performs.

(2)固体高分子型燃料電池の触媒層に用いる、金属触媒が担持されたカーボン粉末の製造方法であって、カーボン粉末に2種以上の金属触媒を担持させた後、高濃度の二酸化炭素雰囲気下で熱処理を行い、前記2種以上の金属触媒を合金化する前記製造方法。 (2) A method for producing a carbon powder carrying a metal catalyst, which is used for a catalyst layer of a polymer electrolyte fuel cell, wherein two or more metal catalysts are carried on the carbon powder, and then a high concentration carbon dioxide The said manufacturing method which heat-processes in atmosphere and alloys the said 2 or more types of metal catalyst.

(3)熱処理の温度が、500〜800℃である前記(1)又は(2)に記載の金属触媒担持カーボン粉末の製造方法。 (3) The manufacturing method of the metal catalyst carrying | support carbon powder as described in said (1) or (2) whose temperature of heat processing is 500-800 degreeC.

本発明の製造方法により、Pt等の金属触媒の表面が還元され、その結果高い触媒活性を示す金属触媒担持カーボン粉末を得ることができる。また、2種以上の金属触媒を担持させる場合にも、その合金化を促進し、触媒性能を向上させることができる。したがって、Pt等の金属触媒の使用量を低減することが可能となる。   By the production method of the present invention, the surface of a metal catalyst such as Pt is reduced, and as a result, a metal catalyst-supporting carbon powder exhibiting high catalytic activity can be obtained. Also, when two or more kinds of metal catalysts are supported, the alloying can be promoted and the catalyst performance can be improved. Therefore, the amount of metal catalyst such as Pt used can be reduced.

さらに、カーボン粉末の表面が賦活され、欠陥部に官能基が付与されるため、カーボン粉末の親水性が向上し、低加湿条件下において高い性能を発揮する金属触媒担持カーボン粉末を得ることができる。   Furthermore, since the surface of the carbon powder is activated and functional groups are imparted to the defective portions, the hydrophilicity of the carbon powder is improved, and a metal catalyst-supported carbon powder that exhibits high performance under low humidification conditions can be obtained. .

以下、本発明を詳細に説明する。
本発明の金属触媒担持カーボン粉末の製造方法は、カーボン粉末に金属触媒を担持させた後、高濃度の二酸化炭素雰囲気下で熱処理を行うことを特徴とする。
Hereinafter, the present invention will be described in detail.
The method for producing a metal catalyst-carrying carbon powder of the present invention is characterized in that after a metal catalyst is supported on the carbon powder, heat treatment is performed in a high-concentration carbon dioxide atmosphere.

金属触媒を担持させるカーボン粉末としては特に限定されないが、比表面積が200m/g以上であることが好ましい。カーボンブラックが一般的に使用される。その他、黒鉛、炭素繊維、活性炭、カーボンナノチューブ等が適用可能である。好適な例として、Ketjen EC(商品名、ケッチェンブラックインターナショナル社製)やVulcan(商品名、Cabot社製)が挙げられる。 Although it does not specifically limit as carbon powder which carries a metal catalyst, It is preferable that a specific surface area is 200 m < 2 > / g or more. Carbon black is generally used. In addition, graphite, carbon fiber, activated carbon, carbon nanotube, etc. are applicable. Preferable examples include Ketjen EC (trade name, manufactured by Ketjen Black International) and Vulcan (trade name, manufactured by Cabot).

また、カーボン粉末に担持させる金属触媒としては、白金、コバルト、ニッケル、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム等の金属が挙げられる。また、合金化させる目的で、上記金属から2種以上を選択して用いることができる。さらに、上記金属と有機化合物や無機化合物との錯体、金属酸化物等を用いても良い。   Examples of the metal catalyst supported on the carbon powder include metals such as platinum, cobalt, nickel, palladium, ruthenium, gold, rhodium, osmium, and iridium. For the purpose of alloying, two or more of the above metals can be selected and used. Furthermore, a complex of the above metal with an organic compound or an inorganic compound, a metal oxide, or the like may be used.

カーボン粉末に金属触媒を担持させるに当たっては、従来の方法により行うことができる。具体的には、例えば、カーボン粉末を水等に懸濁させ、これに塩化白金酸等の触媒金属の化合物を滴下し、還元剤を滴下することによってカーボン粉末上に金属触媒を析出させる。2種以上の金属触媒を担持させる場合は、別の触媒金属の化合物を懸濁液に加えた後に、還元剤を添加すれば良い。   The metal catalyst can be supported on the carbon powder by a conventional method. Specifically, for example, carbon powder is suspended in water or the like, a catalyst metal compound such as chloroplatinic acid is added dropwise thereto, and a reducing agent is added dropwise to deposit the metal catalyst on the carbon powder. When two or more metal catalysts are supported, a reducing agent may be added after adding another catalyst metal compound to the suspension.

そして、上記のようにカーボン粉末に金属触媒を担持させた後、高濃度の二酸化炭素雰囲気下で熱処理を行う。なお、ここで「高濃度」とは、具体的には95重量%以上をいい、好ましくは98重量%以上、最も好ましくは100重量%である。二酸化炭素が100重量%でない場合、その他に含有させるガスはアルゴン、ヘリウム、窒素等の不活性ガスや水素等から適宜選択して用いることができる。この熱処理によって、二酸化炭素とカーボン粉末とが反応し、一酸化炭素が生成する(反応式:CO+C→2CO)。この生成した還元性COにより、Pt等の金属触媒の表面が還元されるため、触媒層中に形成される3相界面、すなわちガス、金属触媒、及び水素イオン伝導性高分子電解質からなる界面が増大し、触媒活性を高めることができる。また、2種以上の金属触媒を担持させている場合は、還元性COによって金属表面が還元されることで、合金化が促進されて触媒活性が向上する。さらに、上記反応によってカーボン粉末の表面が賦活され、欠陥部に官能基が付与されるため、カーボン表面の親水性が向上する。したがって、低加湿条件下でもHO保持能力が低下することなく、水素イオン伝導性を維持することができ、高い出力を示す燃料電池を得ることが可能となる。 And after carrying | supporting a metal catalyst on carbon powder as mentioned above, it heat-processes in a high concentration carbon dioxide atmosphere. Here, “high concentration” specifically refers to 95% by weight or more, preferably 98% by weight or more, and most preferably 100% by weight. When carbon dioxide is not 100% by weight, the other gas to be contained can be appropriately selected from inert gases such as argon, helium and nitrogen, hydrogen and the like. By this heat treatment, carbon dioxide and carbon powder react to produce carbon monoxide (reaction formula: CO 2 + C → 2CO). Since the surface of the metal catalyst such as Pt is reduced by the generated reducing CO, a three-phase interface formed in the catalyst layer, that is, an interface composed of a gas, a metal catalyst, and a hydrogen ion conductive polymer electrolyte is formed. Increase the catalytic activity. When two or more kinds of metal catalysts are supported, the metal surface is reduced by reducing CO, so that alloying is promoted and the catalytic activity is improved. Furthermore, since the surface of the carbon powder is activated by the above reaction and a functional group is imparted to the defective portion, the hydrophilicity of the carbon surface is improved. Therefore, hydrogen ion conductivity can be maintained without lowering the H 2 O retention capacity even under low humidification conditions, and a fuel cell exhibiting high output can be obtained.

熱処理を行う温度は、好ましくは500〜800℃、さらに好ましくは600〜800℃である。この温度範囲であれば、生成した還元性COによる触媒金属の被毒が起こらず、金属触媒表面を良好に還元することができる。また、熱処理時間等の諸条件は、金属触媒の種類及び量等に応じて適宜設定することができる。例えば、熱処理時間は30分〜4時間とすることが好ましいがこれに限定されるものではない。また、2種以上の金属触媒を担持させて合金化する場合、熱処理後、未合金の金属を除去するため酸による洗浄を行っても良い。その際の酸濃度、洗浄時間、洗浄温度等の条件は、金属触媒の種類等に応じて適宜設定される。   The temperature for performing the heat treatment is preferably 500 to 800 ° C, more preferably 600 to 800 ° C. Within this temperature range, the catalytic metal is not poisoned by the generated reducing CO, and the surface of the metal catalyst can be reduced well. Various conditions such as the heat treatment time can be appropriately set according to the type and amount of the metal catalyst. For example, the heat treatment time is preferably 30 minutes to 4 hours, but is not limited thereto. In addition, when alloying by supporting two or more kinds of metal catalysts, washing with an acid may be performed after heat treatment to remove unalloyed metal. Conditions such as acid concentration, washing time, and washing temperature are appropriately set according to the type of metal catalyst.

上記の熱処理によって金属触媒担持カーボン粉末が得られる。この金属触媒担持カーボン粉末と、水素イオン伝導性高分子電解質とを、溶媒に加え、超音波照射やビーズミル等による分散処理を行うことにより、触媒層形成用の塗工液(インク)を作製することができる。ここで用いる溶媒としては、エタノール、エチレングリコール、プロピレングリコール等のアルコールや、含フッ素アルコール、含フッ素エーテル等が挙げられる。   The metal catalyst-carrying carbon powder is obtained by the heat treatment. A coating liquid (ink) for forming a catalyst layer is prepared by adding the metal catalyst-supporting carbon powder and the hydrogen ion conductive polymer electrolyte to a solvent and performing a dispersion treatment by ultrasonic irradiation, bead milling or the like. be able to. Examples of the solvent used here include alcohols such as ethanol, ethylene glycol, and propylene glycol, fluorine-containing alcohols, and fluorine-containing ethers.

溶媒に加える水素イオン伝導性高分子電解質としては、含フッ素イオン交換樹脂等が適用可能であり、特に、スルホン酸型パーフルオロカーボン重合体が好ましく用いられる。好適な例として、Nafion(商品名、デュポン社製)が挙げられる。また、金属触媒担持カーボン粉末と水素イオン伝導性高分子電解質との比は、所望の燃料電池システムに適した比率を任意に設定することができる。通常、水素イオン伝導性高分子電解質の重量/金属触媒を担持していないカーボン粉末の重量の比を0.1〜1.5程度とすることが好ましいが、これに限定されるものではない。   As the hydrogen ion conductive polymer electrolyte to be added to the solvent, a fluorine-containing ion exchange resin or the like is applicable, and in particular, a sulfonic acid type perfluorocarbon polymer is preferably used. A suitable example is Nafion (trade name, manufactured by DuPont). The ratio of the metal catalyst-supported carbon powder to the hydrogen ion conductive polymer electrolyte can be arbitrarily set to a ratio suitable for a desired fuel cell system. Usually, the ratio of the weight of the hydrogen ion conductive polymer electrolyte / the weight of the carbon powder not supporting the metal catalyst is preferably about 0.1 to 1.5, but is not limited thereto.

上記の金属触媒担持カーボン粉末及び水素イオン伝導性高分子電解質以外に、必要に応じて、各種添加剤を溶媒に加えても良い。例として、より強い保水性あるいは撥水性や給水機能を補強する目的のため、PTFEやゼオライト等を添加する場合が挙げられる。添加剤を加える場合、その量は溶媒に対して10重量%以下とすることが好ましい。   In addition to the metal catalyst-supported carbon powder and the hydrogen ion conductive polymer electrolyte, various additives may be added to the solvent as necessary. As an example, there is a case where PTFE, zeolite, or the like is added for the purpose of reinforcing stronger water retention or water repellency or water supply function. When an additive is added, the amount is preferably 10% by weight or less based on the solvent.

そして、塗工液を、燃料電池の固体高分子電解質膜又はガス拡散層となるカーボンクロス等に塗布し、乾燥させることによって触媒層を形成することができる。また、別途用意した基材上に上記塗工液を塗布し乾燥させたものを、固体高分子電解質膜上に転写することによって高分子電解質上に触媒層を形成しても良い。塗布する手段としては、刷毛塗り、スプレー、ロールコーター、インクジェット、スクリーン印刷法等、適宜採用することができる。   And a catalyst layer can be formed by apply | coating a coating liquid to the carbon polymer etc. used as the solid polymer electrolyte membrane of a fuel cell, or a gas diffusion layer, and making it dry. Alternatively, the catalyst layer may be formed on the polymer electrolyte by transferring a coating prepared by applying the coating solution onto a separately prepared substrate and drying it onto the solid polymer electrolyte membrane. As a means for applying, brush coating, spraying, roll coater, ink jet, screen printing method and the like can be appropriately employed.

燃料電池における触媒層の層厚は、アノード側、カソード側とも適宜設定することができる。一般には、5〜20μm、好ましくは10〜15μmである。   The layer thickness of the catalyst layer in the fuel cell can be appropriately set on both the anode side and the cathode side. Generally, it is 5-20 micrometers, Preferably it is 10-15 micrometers.

アノード触媒層及びカソード触媒層をガス拡散層上に形成した場合には、各触媒層と固体高分子電解質膜とを接着やホットプレス等により接合することによって、膜/電極接合体(MEA)が組立てられる。また、固体高分子電解質膜上に各触媒層を形成した場合には、触媒層のみでアノード電極及びカソード電極を構成しても良いし、さらに各触媒層に隣接してガス拡散層を配置し、アノード電極及びカソード電極としても良い。   When the anode catalyst layer and the cathode catalyst layer are formed on the gas diffusion layer, the membrane / electrode assembly (MEA) is formed by bonding each catalyst layer and the solid polymer electrolyte membrane by bonding or hot pressing. Assembled. In addition, when each catalyst layer is formed on the solid polymer electrolyte membrane, the anode electrode and the cathode electrode may be constituted only by the catalyst layer, and a gas diffusion layer is disposed adjacent to each catalyst layer. Alternatively, an anode electrode and a cathode electrode may be used.

カソード及びアノードの触媒層に挟まれる固体高分子電解質膜の材料としては、湿潤条件下で良好な水素イオン伝導性を示す材料であれば適用可能である。例えば、スルホン酸基を有するパーフルオロカーボン重合体、ポリスルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を挙げることができる。中でも、スルホン酸型パーフルオロカーボン重合体が好ましく用いられる。なお、この固体高分子電解質膜は、触媒層に含まれる水素イオン伝導性高分子電解質と同じ樹脂であっても良く、異なる樹脂から構成しても良い。   As a material for the solid polymer electrolyte membrane sandwiched between the cathode and anode catalyst layers, any material that exhibits good hydrogen ion conductivity under wet conditions is applicable. Examples thereof include a perfluorocarbon polymer having a sulfonic acid group, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group. Among these, sulfonic acid type perfluorocarbon polymers are preferably used. The solid polymer electrolyte membrane may be the same resin as the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, or may be composed of a different resin.

ガス拡散層としては、セパレータに形成されたガス流路から触媒層までガスを均一に拡散させ、触媒とセパレータ間に電子を伝導させる機能を有するものであれば、種々の材料により構成することができる。一般的には、カーボンクロスやカーボンペーパー等の炭素材料が用いられる。ガス拡散性、電子伝導性に加え、耐食性を有するものであれば金属メッシュや金属ウール等の金属材料を用いることもできる。   The gas diffusion layer can be composed of various materials as long as it has a function of uniformly diffusing gas from the gas flow path formed in the separator to the catalyst layer and conducting electrons between the catalyst and the separator. it can. Generally, carbon materials such as carbon cloth and carbon paper are used. Metal materials such as metal mesh and metal wool can be used as long as they have corrosion resistance in addition to gas diffusibility and electron conductivity.

アノード及びカソードの外側には、通常、ガスの流路が形成されたセパレータが配置することにより、固体高分子型燃料電池が作製される。セパレータの流路に対し、アノードには水素を含むガス、カソードには酸素又は空気を含むガスが供給されて発電が行われる。   In general, a polymer electrolyte fuel cell is manufactured by disposing a separator in which a gas flow path is formed outside the anode and the cathode. Electric power is generated by supplying a gas containing hydrogen to the anode and a gas containing oxygen or air to the cathode.

次に、実施例及び比較例に基づき本発明をさらに詳細に説明するが、これらに限定されるものではない。
(実施例1)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、COガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、COガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
Next, although this invention is demonstrated further in detail based on an Example and a comparative example, it is not limited to these.
Example 1
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder was set in a heat treatment furnace, and the temperature was raised while circulating CO 2 gas at 500 cc / min. When the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Then, it was allowed to cool to room temperature with the CO 2 gas being circulated, and the Pt-supported carbon powder was taken out.

(実施例2)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金4.50gを含むヘキサヒドロキソ白金硝酸溶液とコバルト0.5gを含む硝酸コバルトを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、PtとCoの水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPtCo担持カーボン粉末を熱処理炉にセットし、COガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、COガスを流通したまま室温まで放冷し、PtCo担持カーボン粉末を取り出した。
(Example 2)
Commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International Co., Ltd.) 5.0 g, hexahydroxoplatinum nitrate solution containing 4.50 g of platinum, and cobalt nitrate containing 0.5 g of cobalt are added to 0.5 L of pure water and dispersed. I let you. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and a hydroxide of Pt and Co was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained PtCo-supported carbon powder was set in a heat treatment furnace, the temperature was raised while circulating CO 2 gas at 500 cc / min, and when the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Then, it was allowed to cool to room temperature with the CO 2 gas flowing, and the PtCo-supported carbon powder was taken out.

(比較例1)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、Nガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、Nガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
(Comparative Example 1)
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder was set in a heat treatment furnace, and the temperature was raised while circulating N 2 gas at 500 cc / min. When the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Thereafter, the mixture was allowed to cool to room temperature while N 2 gas was circulated, and the Pt-supported carbon powder was taken out.

(比較例2)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、Arガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、Arガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
(Comparative Example 2)
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder was set in a heat treatment furnace, and the temperature was raised while circulating Ar gas at 500 cc / min. When the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Then, it was allowed to cool to room temperature while circulating Ar gas, and the Pt-supported carbon powder was taken out.

(比較例3)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、Hガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、Hガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
(Comparative Example 3)
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder was set in a heat treatment furnace, the temperature was raised while circulating H 2 gas at 500 cc / min, and when the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Thereafter, the Pt-supported carbon powder was taken out by cooling to room temperature with the H 2 gas flowing.

(比較例4)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金4.50gを含むヘキサヒドロキソ白金硝酸溶液とコバルト0.5gを含む硝酸コバルトを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、PtとCoの水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPtCo担持カーボン粉末を熱処理炉にセットし、Nガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、Nガスを流通したまま室温まで放冷し、PtCo担持カーボン粉末を取り出した。
(Comparative Example 4)
Commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International Co., Ltd.) 5.0 g, hexahydroxoplatinum nitrate solution containing 4.50 g of platinum, and cobalt nitrate containing 0.5 g of cobalt are added to 0.5 L of pure water and dispersed. I let you. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and a hydroxide of Pt and Co was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained PtCo-supported carbon powder was set in a heat treatment furnace, the temperature was raised while circulating N 2 gas at 500 cc / min, and when the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Then, it was allowed to cool to room temperature while N 2 gas was circulated, and PtCo-supported carbon powder was taken out.

(比較例5)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金4.50gを含むヘキサヒドロキソ白金硝酸溶液とコバルト0.5gを含む硝酸コバルトを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、PtとCoの水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPtCo担持カーボン粉末を熱処理炉にセットし、Arガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、Arガスを流通したまま室温まで放冷し、PtCo担持カーボン粉末を取り出した。
(Comparative Example 5)
Commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International Co., Ltd.) 5.0 g, hexahydroxoplatinum nitrate solution containing 4.50 g of platinum, and cobalt nitrate containing 0.5 g of cobalt are added to 0.5 L of pure water and dispersed. I let you. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and a hydroxide of Pt and Co was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained PtCo-supported carbon powder was set in a heat treatment furnace, and the temperature was raised while circulating Ar gas at 500 cc / min. When the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Then, it was allowed to cool to room temperature while Ar gas was circulated, and PtCo-supported carbon powder was taken out.

(比較例6)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金4.50gを含むヘキサヒドロキソ白金硝酸溶液とコバルト0.5gを含む硝酸コバルトを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、PtとCoの水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPtCo担持カーボン粉末を熱処理炉にセットし、Hガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、Hガスを流通したまま室温まで放冷し、PtCo担持カーボン粉末を取り出した。
(Comparative Example 6)
Commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International Co., Ltd.) 5.0 g, hexahydroxoplatinum nitrate solution containing 4.50 g of platinum, and cobalt nitrate containing 0.5 g of cobalt are added to 0.5 L of pure water and dispersed. I let you. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and a hydroxide of Pt and Co was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained PtCo-supported carbon powder was set in a heat treatment furnace, and the temperature was raised while circulating H 2 gas at 500 cc / min. When the temperature reached 800 ° C., the heat treatment was carried out for 2 hours. Then, it was allowed to cool to room temperature with H 2 gas flowing, and the PtCo-supported carbon powder was taken out.

(比較例7)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、20%CO/80%N混合ガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、混合ガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
(Comparative Example 7)
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder is set in a heat treatment furnace, heated while flowing a 20% CO 2 /80% N 2 mixed gas at 500 cc / min. When the temperature reaches 800 ° C., the heat is maintained for 2 hours. Carried out. Thereafter, the mixed gas was allowed to cool to room temperature while flowing, and the Pt-supported carbon powder was taken out.

(比較例8)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、50%CO/50%N混合ガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、混合ガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
(Comparative Example 8)
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder was set in a heat treatment furnace, heated while flowing a 50% CO 2 /50% N 2 mixed gas at 500 cc / min, and when it reached 800 ° C., it was held for 2 hours and heat treated. Carried out. Thereafter, the mixed gas was allowed to cool to room temperature while flowing, and the Pt-supported carbon powder was taken out.

(比較例9)
市販のカーボンブラック(商品名;KetjenEC、ケッチェンブラックインターナショナル社製)5.0gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、Pt水酸化物を形成させカーボン粉末上に析出させた。さらにエタノールを用いて90℃で還元しこの分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。得られたPt担持カーボン粉末を熱処理炉にセットし、80%CO/20%N混合ガスを500cc/分で流通させながら昇温し、800℃になった時点で、2時間保持し熱処理を実施した。その後、混合ガスを流通したまま室温まで放冷し、Pt担持カーボン粉末を取り出した。
(Comparative Example 9)
A hexahydroxo platinum nitric acid solution containing 5.0 g of commercially available carbon black (trade name; Ketjen EC, manufactured by Ketjen Black International) and 5.0 g of platinum was added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and Pt hydroxide was formed and deposited on the carbon powder. Furthermore, it reduced at 90 degreeC using ethanol, this dispersion liquid was filtered, and the obtained powder was vacuum-dried at 100 degreeC for 10 hours. The obtained Pt-supported carbon powder is set in a heat treatment furnace, heated while circulating a mixed gas of 80% CO 2 /20% N 2 at 500 cc / min. Carried out. Thereafter, the mixed gas was allowed to cool to room temperature while flowing, and the Pt-supported carbon powder was taken out.

(膜/電極接合体の作製)
上記実施例1〜2及び比較例1〜9で調製したそれぞれの金属触媒担持カーボン粉末に蒸留水を加えた後、エタノールを加え、イオン伝導性高分子電解質としてナフィオン(商品名、デュポン社製)をさらに加えた。この混合物を十分に攪拌し、粒子の微粒化や均一分散のため、超音波照射及びビーズミルによる分散処理を行った。
(Production of membrane / electrode assembly)
After adding distilled water to each of the metal catalyst-supported carbon powders prepared in Examples 1-2 and Comparative Examples 1-9, ethanol was added to form Nafion (trade name, manufactured by DuPont) as an ion conductive polymer electrolyte. Was further added. This mixture was sufficiently stirred and subjected to ultrasonic irradiation and a dispersion process using a bead mill in order to make the particles fine and uniform.

分散後の触媒層形成用インクをテフロン(商品名、デュポン社製)からなる基材上に塗布し、乾燥して触媒層を得た。その後、ナフィオンからなる固体高分子電解質膜の両側を上記の触媒層で挟み、ホットプレスにより圧着した後、テフロンを剥がし、膜/電極接合体(MEA)を得た。   The dispersed ink for forming the catalyst layer was applied onto a substrate made of Teflon (trade name, manufactured by DuPont) and dried to obtain a catalyst layer. Thereafter, both sides of the solid polymer electrolyte membrane made of Nafion were sandwiched between the above catalyst layers and pressed by hot pressing, and then the Teflon was peeled off to obtain a membrane / electrode assembly (MEA).

(燃料電池性能評価)
初期段階での触媒性能を比較するため、電子負荷を用いて電流電圧特性を測定した。測定は、単セルのセル温度を80℃に設定し、カソード側の電極に加温バブラを通過させた加湿空気をRH40%、ストイキ比7.5、アノード側の電極に加温バブラを通過させた加湿水素をRH40%、ストイキ比7.5で供給して行った。負荷電流は、0.2A/cmとした。また、電極である各触媒層のPt量はいずれも0.3mg/cmとした。測定結果を表1及び表2に示す。
(Fuel cell performance evaluation)
In order to compare the catalyst performance at the initial stage, the current-voltage characteristics were measured using an electronic load. Measurement is performed by setting the cell temperature of the single cell to 80 ° C., and passing the heated bubbler through the heated bubbler to the cathode side electrode and passing the heated bubbler through the heated side bubbler to RH 40%, stoichiometric ratio 7.5. The humidified hydrogen was supplied at an RH of 40% and a stoichiometric ratio of 7.5. The load current was 0.2 A / cm 2 . In addition, the Pt amount of each catalyst layer as an electrode was 0.3 mg / cm 2 . The measurement results are shown in Tables 1 and 2.

Figure 2010161034
Figure 2010161034

Figure 2010161034
Figure 2010161034

表1の結果から、Pt担持カーボン粉末及びPtCo担持カーボン粉末のいずれについても、CO雰囲気下で熱処理することにより、他のガスを使用した場合に比べて高い出力が得られることが分かった。また、表2の結果から、100%濃度のCOで熱処理した場合に、より低い濃度のCOに比べて出力が向上することが明らかとなった。 From the results shown in Table 1, it was found that both the Pt-supported carbon powder and the PtCo-supported carbon powder were heat-treated in a CO 2 atmosphere, so that a higher output was obtained than when other gases were used. Further, from the results of Table 2, it was found that when the heat treatment was performed with 100% concentration of CO 2 , the output was improved as compared with the lower concentration of CO 2 .

Claims (3)

固体高分子型燃料電池の触媒層に用いる、金属触媒が担持されたカーボン粉末の製造方法であって、カーボン粉末に金属触媒を担持させた後、高濃度の二酸化炭素雰囲気下で熱処理を行う前記製造方法。   A method for producing a carbon powder carrying a metal catalyst, which is used for a catalyst layer of a polymer electrolyte fuel cell, wherein the metal catalyst is carried on a carbon powder and then heat-treated in a high-concentration carbon dioxide atmosphere. Production method. 固体高分子型燃料電池の触媒層に用いる、金属触媒が担持されたカーボン粉末の製造方法であって、カーボン粉末に2種以上の金属触媒を担持させた後、高濃度の二酸化炭素雰囲気下で熱処理を行い、前記2種以上の金属触媒を合金化する前記製造方法。   A method for producing a carbon powder carrying a metal catalyst, which is used for a catalyst layer of a polymer electrolyte fuel cell, wherein two or more metal catalysts are carried on the carbon powder, and then in a high-concentration carbon dioxide atmosphere. The said manufacturing method which heat-processes and alloyes the said 2 or more types of metal catalyst. 熱処理の温度が、500〜800℃である請求項1又は2に記載の金属触媒担持カーボン粉末の製造方法。   The method for producing a metal catalyst-supported carbon powder according to claim 1 or 2, wherein the temperature of the heat treatment is 500 to 800 ° C.
JP2009003955A 2009-01-09 2009-01-09 Method for producing metal catalyst-supported carbon powder Expired - Fee Related JP5326585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003955A JP5326585B2 (en) 2009-01-09 2009-01-09 Method for producing metal catalyst-supported carbon powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003955A JP5326585B2 (en) 2009-01-09 2009-01-09 Method for producing metal catalyst-supported carbon powder

Publications (2)

Publication Number Publication Date
JP2010161034A true JP2010161034A (en) 2010-07-22
JP5326585B2 JP5326585B2 (en) 2013-10-30

Family

ID=42578056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003955A Expired - Fee Related JP5326585B2 (en) 2009-01-09 2009-01-09 Method for producing metal catalyst-supported carbon powder

Country Status (1)

Country Link
JP (1) JP5326585B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880064B1 (en) * 2010-12-08 2012-02-22 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
CN104051748A (en) * 2014-06-26 2014-09-17 哈尔滨工程大学 Metal-free sulfur-doped carbon material hydrogen peroxide reduction catalyst and preparation method
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
CN106898786A (en) * 2015-12-18 2017-06-27 中国科学院大连化学物理研究所 A kind of oxygen reduction catalyst and its preparation and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
JP2006344424A (en) * 2005-06-07 2006-12-21 Gs Yuasa Corporation:Kk Manufacturing method of catalyst mixture for solid polymer fuel cell
JP2008258152A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
JP2006344424A (en) * 2005-06-07 2006-12-21 Gs Yuasa Corporation:Kk Manufacturing method of catalyst mixture for solid polymer fuel cell
JP2008258152A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880064B1 (en) * 2010-12-08 2012-02-22 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
WO2012077598A1 (en) * 2010-12-08 2012-06-14 田中貴金属工業株式会社 Catalyst for solid polymer fuel cells and method for producing same
CN103262318A (en) * 2010-12-08 2013-08-21 田中贵金属工业株式会社 Catalyst for solid polymer fuel cells and method for producing same
US9368805B2 (en) 2010-12-08 2016-06-14 Tanaka Kikinzoku Kogyo K.K Catalyst for polymer electrolyte fuel cell and method for producing the same
KR101842310B1 (en) * 2010-12-08 2018-03-26 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for polymer electrolyte fuel cell and method for producing the same
KR101934170B1 (en) * 2010-12-08 2018-12-31 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for polymer electrolyte fuel cell and method for producing the same
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
CN104051748A (en) * 2014-06-26 2014-09-17 哈尔滨工程大学 Metal-free sulfur-doped carbon material hydrogen peroxide reduction catalyst and preparation method
CN106898786A (en) * 2015-12-18 2017-06-27 中国科学院大连化学物理研究所 A kind of oxygen reduction catalyst and its preparation and application
CN106898786B (en) * 2015-12-18 2019-07-19 中国科学院大连化学物理研究所 A kind of oxygen reduction catalyst and its preparation and application

Also Published As

Publication number Publication date
JP5326585B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US8846271B2 (en) Electrode material
KR101397020B1 (en) Electrocatalyst for fuel cell, method for preparing the same and fuel cell including the electrode comprising the electrocatalyst
US8470495B2 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
US20070099069A1 (en) Catalyst for a fuel cell, a method for preparing the same, and a membrane-electrode assembly for a fuel cell including the same
JP2013109856A (en) Electrode catalyst layer for fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
JP5297786B2 (en) Anode catalyst layer of polymer electrolyte fuel cell
JP2004363056A (en) Catalyst carrying electrode for polymer electrolyte fuel cell and its manufacturing method
KR20110037294A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2009026501A (en) Electrolyte membrane-electrode assembly
Chabi et al. Electrocatalysis of oxygen reduction reaction on Nafion/platinum/gas diffusion layer electrode for PEM fuel cell
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
KR20210055285A (en) Catalyst for fuel cell and manufacturing method thereof
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP2005141966A (en) Catalyst-carrying electrode, mea for fuel cell, and the fuel cell
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP6658633B2 (en) Method for producing catalyst ink and catalyst composite
JP2010218721A (en) Evaluation method of catalyst layer of solid polymer fuel cell
JP2006339125A (en) Solid polymer fuel cell
JP2005190887A (en) Electrode catalyst having surface constitution to structure catalyst layer having high performance and durability, and its manufacturing method
JP2005141920A (en) Catalyst carrying electrode
KR20150047343A (en) Electrode catalyst, method for preparing the same, and membrane electrode assembly and fuel cell including the same
JP2006179412A (en) Fuel cell electrode catalyst layer and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees