JP2010159233A - Method for producing 1,3-bis(3-aminophenoxy)benzene - Google Patents
Method for producing 1,3-bis(3-aminophenoxy)benzene Download PDFInfo
- Publication number
- JP2010159233A JP2010159233A JP2009003502A JP2009003502A JP2010159233A JP 2010159233 A JP2010159233 A JP 2010159233A JP 2009003502 A JP2009003502 A JP 2009003502A JP 2009003502 A JP2009003502 A JP 2009003502A JP 2010159233 A JP2010159233 A JP 2010159233A
- Authority
- JP
- Japan
- Prior art keywords
- bis
- aminophenoxy
- benzene
- acid
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は1,3−ビス(3−アミノフェノキシ)ベンゼンの製造方法に関する。 The present invention relates to a method for producing 1,3-bis (3-aminophenoxy) benzene.
1,3−ビス(3−アミノフェノキシ)ベンゼンはポリイミドなどの高耐熱性高分子の原料として有用な化合物であり、特にこれを用いて得られるポリイミドは広く用いられているビス(4−アミノフェニル)エーテルなどを用いて得られるポリイミドに比べてガラス転位温度が低くなる傾向があり、したがって金属などへの接着性能に優れる事が、接着性ポリイミドとして有用である(特許文献1参照)。 1,3-bis (3-aminophenoxy) benzene is a useful compound as a raw material for high heat-resistant polymers such as polyimide, and in particular, polyimide obtained by using this is widely used bis (4-aminophenyl). ) There is a tendency that the glass transition temperature tends to be lower than that of a polyimide obtained using ether or the like. Therefore, it is useful as an adhesive polyimide to have excellent adhesion performance to a metal or the like (see Patent Document 1).
1,3−ビス(3−アミノフェノキシ)ベンゼンの製造方法としてはアルカリの存在下に1,3−ジブロモベンゼンと3−アミノフェノールとを反応させる方法(特許文献2参照)や、アルカリの存在下にレゾルシノールと3−ブロモアニリンとを反応させる方法(特許文献3参照)が知られているが、反応性が低いため収率はそれぞれ65%と58%に過ぎず、工業的な方法とは言いがたかった。 As a method for producing 1,3-bis (3-aminophenoxy) benzene, a method in which 1,3-dibromobenzene and 3-aminophenol are reacted in the presence of an alkali (see Patent Document 2), or in the presence of an alkali. A method of reacting resorcinol with 3-bromoaniline (see Patent Document 3) is known, but the yield is only 65% and 58%, respectively, due to low reactivity. I wanted to.
また、アルカリの存在下に1,3−ジフルオロベンゼンと3−アミノフェノールとを反応させる方法(特許文献4、および特許文献5参照)が提案されているが、200℃以上の高温と長い反応時間を必要とし、しかも分離し難い副産物の生成を伴うため繁雑な精製操作が必要であった。 In addition, a method of reacting 1,3-difluorobenzene and 3-aminophenol in the presence of an alkali (see Patent Document 4 and Patent Document 5) has been proposed, but a high temperature of 200 ° C. or more and a long reaction time are proposed. And is accompanied by the production of by-products that are difficult to separate, requiring complicated purification operations.
一方、アルカリの存在下に1,3,5−トリクロロベンゼンと3−アミノフェノールを反応させて得られる1,3−ビス(3−アミノフェノキシ)−5−クロロベンゼンをアルカリの存在下に還元処理を行うことにより塩素原子を水素原子に置換する方法が知られている(特許文献6、7、8)が、この方法においても分離し難い副産物の生成を伴うため、塩酸塩精製(特許文献6)、蒸留(特許文献7、8)などの繁雑な精製工程が必要であった。 On the other hand, 1,3-bis (3-aminophenoxy) -5-chlorobenzene obtained by reacting 1,3,5-trichlorobenzene and 3-aminophenol in the presence of alkali is reduced in the presence of alkali. Although the method of substituting a chlorine atom for a hydrogen atom by performing is known (patent documents 6, 7, and 8), it involves generation of by-products that are difficult to separate even in this method. A complicated purification process such as distillation (Patent Documents 7 and 8) was required.
本発明の課題は、高純度の1,3−ビス(3−アミノフェノキシ)ベンゼンを製造するための低コストで工業的に有利な方法を提供するにある。 An object of the present invention is to provide a low-cost and industrially advantageous method for producing high-purity 1,3-bis (3-aminophenoxy) benzene.
本発明者らは1,3−ジハロゲノベンゼンのスルホン化生成物である2,4−ジハロゲノベンゼンスルホン酸あるいは2,4−ジハロゲノベンゼンスルホン酸塩をアルカリの存在下に3−アセトアミノフェノールまたは3−アミノフェノールと反応させて容易に得られる2,4−ビス(3−アセトアミノフェノキシ)ベンゼンスルホン酸塩または2,4−ビス(3−アミノフェノキシ)ベンゼンスルホン酸塩よりスルホン酸基及びアセチル基を脱離させることにより、高純度の1,3−ビス(3−アミノフェノキシ)ベンゼンが得られることに着目して本発明を完成させた。 The present inventors converted 2,4-dihalogenobenzenesulfonic acid or 2,4-dihalogenobenzenesulfonic acid salt, which is a sulfonation product of 1,3-dihalogenobenzene, into 3-acetaminophenol in the presence of alkali. Alternatively, 2,4-bis (3-acetaminophenoxy) benzenesulfonate or 2,4-bis (3-aminophenoxy) benzenesulfonate easily obtained by reaction with 3-aminophenol is used to form a sulfonic acid group and The present invention was completed by paying attention to the removal of the acetyl group to obtain high-purity 1,3-bis (3-aminophenoxy) benzene.
すなわち、本発明は一般式(1)
(式中、Xはアミノ基またはアシルアミノ基を示す。Yは水素原子またはアルカリ金属原子を示す。)
で表される2,4−ビス(3−アミノフェノキシ)ベンゼンスルホン酸、2,4−ビス(3−アシルアミノフェノキシ)ベンゼンスルホン酸、あるいはそれらのアルカリ金属塩からスルホン酸基、およびアシル基がある場合にはそのアシル基を脱離させることを特徴とする下記構造式(2)
で表される1,3−ビス(3−アミノフェノキシ)ベンゼンの製造方法に関するものである。
That is, the present invention relates to the general formula (1)
(In the formula, X represents an amino group or an acylamino group. Y represents a hydrogen atom or an alkali metal atom.)
A sulfonic acid group and an acyl group represented by 2,4-bis (3-aminophenoxy) benzenesulfonic acid, 2,4-bis (3-acylaminophenoxy) benzenesulfonic acid, or an alkali metal salt thereof. In some cases, the acyl group is eliminated and the following structural formula (2)
It is related with the manufacturing method of 1,3-bis (3-aminophenoxy) benzene represented by these.
既知の方法に比べて安価な原料を出発原料とし、繁雑な精製工程を必要としない高純度の1,3−ビス(3−アミノフェノキシ)ベンゼンの製造方法を提供することができる。 It is possible to provide a method for producing high-purity 1,3-bis (3-aminophenoxy) benzene, which uses a raw material cheaper than known methods as a starting material and does not require a complicated purification step.
本発明の原料として使用される2,4−ジハロゲノベンゼンスルホン酸OLE_LINK3あるいは2,4−ジハロゲノベンゼンスルホン酸アルカリ金属塩は、OLE_LINK3いかなる方法で製造されたものであってもよい。アルカリ金属塩としてはナトリウム塩やカリウム塩が好ましい。 The 2,4-dihalogenobenzenesulfonic acid OLE_LINK3 or 2,4-dihalogenobenzenesulfonic acid alkali metal salt used as a raw material of the present invention may be produced by any method. The alkali metal salt is preferably a sodium salt or a potassium salt.
本発明の方法に用いることができる2,4−ジハロゲノベンゼンスルホン酸には、2,4-ジフルオロベンゼンスルホン酸、2,4-ジクロロベンゼンスルホン酸、2,4-ジブロモベンゼンスルホン酸、および2,4-ジヨードベンゼンスルホン酸があるが、好ましくは2,4-ジフルオロベンゼンスルホン酸または2,4-ジクロロベンゼンスルホン酸が良い。 2,4-Dihalogenobenzenesulfonic acid that can be used in the method of the present invention includes 2,4-difluorobenzenesulfonic acid, 2,4-dichlorobenzenesulfonic acid, 2,4-dibromobenzenesulfonic acid, and 2 , 4-diiodobenzenesulfonic acid, preferably 2,4-difluorobenzenesulfonic acid or 2,4-dichlorobenzenesulfonic acid.
本発明で用いられるm−アシルアミノフェノールあるいはm−アミノフェノールは予めアルカリ金属塩としてから2,4−ジハロゲノベンゼンスルホン酸あるいは2,4−ジハロゲノベンゼンスルホン酸アルカリ金属塩と反応させてもよく、また反応器にm−アシルアミノフェノールあるいはm−アミノフェノールとアルカリ剤、2,4−ジハロゲノベンゼンスルホン酸あるいは2,4−ジハロゲノベンゼンスルホン酸アルカリ金属塩等を一括仕込みして反応させてもよい。 The m-acylaminophenol or m-aminophenol used in the present invention may be reacted with 2,4-dihalogenobenzenesulfonic acid or 2,4-dihalogenobenzenesulfonic acid alkali metal salt in advance as an alkali metal salt. In addition, m-acylaminophenol or m-aminophenol and an alkali agent, 2,4-dihalogenobenzenesulfonic acid or 2,4-dihalogenobenzenesulfonic acid alkali metal salt, etc. are charged all at once into the reactor and reacted. Also good.
本発明の方法に用いることができるアルカリ剤としては、水酸化アルカリまたは炭酸アルカリがあり、具体的には水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム,炭酸カリウムなどがある。 Examples of the alkali agent that can be used in the method of the present invention include an alkali hydroxide or an alkali carbonate, such as sodium hydroxide, sodium carbonate, potassium hydroxide, and potassium carbonate.
m−アシルアミノフェノールあるいはm−アミノフェノールの使用量は2,4−ジハロゲノベンゼンスルホン酸あるいは2,4−ジハロゲノベンゼンスルホン酸アルカリ金属塩1モルに対し通常2倍モル、好ましくは2.1〜3.0モルで使用するのがよい。 The amount of m-acylaminophenol or m-aminophenol used is usually 2-fold mol, preferably 2.1 mol per mol of 2,4-dihalogenobenzenesulfonic acid or 2,4-dihalogenobenzenesulfonic acid alkali metal salt. It is good to use at ~ 3.0 mol.
本発明の方法に用いることができる溶媒としては非プロトン性極性溶媒が挙げられ、具体的にはジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、1,3−ジメチル−2−イミダゾリジノン(DMI)、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン(DMPU)、ジメチルスルホキシド(DMSO)、スルホラン、ヘキサメチルホスホルトリアミド(HMPA)などを用いることができる。 Examples of the solvent that can be used in the method of the present invention include aprotic polar solvents. Specifically, dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 1, 3-dimethyl-2-imidazolidinone (DMI), 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (DMPU), dimethyl sulfoxide (DMSO), sulfolane, hexamethylphospho Lutriamide (HMPA) or the like can be used.
溶媒の使用量は特に制限はないが、m−アセトアミノフェノールあるいはm−アミノフェノールの使用量に対し通常1〜20質量倍、好ましくは3〜10質量倍で使用するのがよい。 Although there is no restriction | limiting in particular in the usage-amount of a solvent, It is good to use normally 1-20 mass times with respect to the usage-amount of m-acetaminophenol or m-aminophenol, Preferably it is 3-10 mass times.
本発明の方法を実施するには、反応系にトルエン、キシレンなどを共存させて反応中に生成する水を共沸により除去するのがより好ましい。 In order to carry out the method of the present invention, it is more preferable to remove azeotropically the water produced during the reaction in the presence of toluene, xylene and the like in the reaction system.
トルエンやキシレンの使用量は共沸脱水できればよく、また反応温度によっても異なってくるため特に制限はないが、使用する溶媒に対して通常0.05〜1質量倍、好ましくは0.05〜0.5質量倍で使用するのがよい。 The amount of toluene and xylene used is not particularly limited as long as it can be azeotropically dehydrated and varies depending on the reaction temperature, but is usually 0.05 to 1 times by mass, preferably 0.05 to 0 times the solvent used. It is good to use at 5 mass times.
反応は120℃ないし220℃の範囲で行うことができるが、好ましくは140℃ないし200℃の範囲で行うのが良く、より好ましくは160℃ないし180℃の範囲で行うのが良い。 The reaction can be carried out in the range of 120 ° C to 220 ° C, preferably in the range of 140 ° C to 200 ° C, more preferably in the range of 160 ° C to 180 ° C.
加水分解における硫酸濃度は55%〜70%の範囲で行うのがよく、より好ましくは硫酸濃度62%〜65%である。硫酸濃度が低いと加水分解の速度が遅く硫酸濃度が高いと硫酸酸化がおこり望ましくない。 The sulfuric acid concentration in the hydrolysis is preferably in the range of 55% to 70%, more preferably the sulfuric acid concentration is 62% to 65%. If the sulfuric acid concentration is low, the hydrolysis rate is slow, and if the sulfuric acid concentration is high, sulfuric acid oxidation occurs, which is not desirable.
加水分解における反応温度は100℃〜130℃であり、それぞれの硫酸濃度の還流温度に対応する。 The reaction temperature in the hydrolysis is 100 ° C. to 130 ° C., corresponding to the reflux temperature of each sulfuric acid concentration.
[実施例]
以下に実施例により本発明をさらに具体的に説明するが、本発明は、これによってなんら限定されるものではない。
[Example]
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
攪拌機、温度計、冷却管を備えたディーン・スタークトラップ付き300mLフラスコに2,4−ジクロロベンゼンスルホン酸ナトリウム18.0g(0.065モル)、m−アセトアミノフェノール29.1g(0.174モル)、水酸化カリウム(純度85%)11.6g(0.176モル)、炭酸カリウム5.0g(0.036モル)、NMP100g、トルエン43g、水15gを仕込み、水およびトルエンを回収しつつ150〜180℃で31時間反応させた。反応後、減圧蒸留により溶剤を回収して2,4−ビス(3−アセトアミノフェノキシ)ベンゼンスルホン酸ナトリウムを含む蒸留残渣を得た。
この蒸留残渣に62.5%硫酸100.0g(0.637モル)を仕込み122〜126℃で26時間反応し、スルホン酸基とアセチル基を同時に脱離させた。反応液を25℃まで冷却し、水40.0gを加え、36%塩酸80.0g(0.790モル)を1時間で滴下し、さらに5℃まで冷却して濾過し、LC純度92.1%の1,3−ビス(3−アミノフェノキシ)ベンゼンの塩酸塩50.1g・wetを得た。
1,3−ビス(3−アミノフェノキシ)ベンゼンの塩酸塩50.1g・wetに19.0wt%水酸化ナトリウム水溶液100.0g(0.475モル)を加えて室温で1時間攪拌した。濾過してケーキを取り出し、このケーキに3.0wt%水酸化ナトリウム水溶液100.0g(0.075モル)を加えて室温で1時間攪拌し濾過した。ケーキを水100.0gでスラリー洗浄して濾過し乾燥してLC純度98.8%の粗1,3−ビス(3−アミノフェノキシ)ベンゼン9.8gを得た。2,4−ジクロロベンゼンスルホン酸ナトリウムを基準とした縮合、脱スルホン化、および加水分解反応の通算収率46.4%。
粗1,3−ビス(3−アミノフェノキシ)ベンゼン9.8gにトルエン36g、5.0%水酸化ナトリウム水溶液56.0g(0.070モル)を加え75℃まで昇温して15分加熱攪拌した。静置して下層の水層を除去し、上層のトルエン層を5.0wt%水酸化ナトリウム水溶液10.0g(0.012モル)で2回アルカリ水洗浄を行った後、水10gで5回洗浄した。トルエン層46.0gに活性炭1.0g・wetを加え室温で15分攪拌後、濾過した。濾液が25.0gになるまで濃縮し濾過乾燥してLC純度99.5%の1,3−ビス(3−アミノフェノキシ)ベンゼン8.5gを得た。精製収率86.7%。融点107〜108℃。OLE_LINK2
OLE_LINK2
In a 300 mL flask equipped with a Dean-Stark trap equipped with a stirrer, a thermometer, and a condenser, 18.0 g (0.065 mol) of sodium 2,4-dichlorobenzenesulfonate and 29.1 g (0.174 mol) of m-acetaminophenol ), 11.6 g (0.176 mol) of potassium hydroxide (purity 85%), 5.0 g (0.036 mol) of potassium carbonate, 100 g of NMP, 43 g of toluene and 15 g of water, and 150 while collecting water and toluene. It was made to react at -180 degreeC for 31 hours. After the reaction, the solvent was recovered by distillation under reduced pressure to obtain a distillation residue containing sodium 2,4-bis (3-acetaminophenoxy) benzenesulfonate.
This distillation residue was charged with 100.0 g (0.637 mol) of 62.5% sulfuric acid and reacted at 122 to 126 ° C. for 26 hours to simultaneously remove sulfonic acid groups and acetyl groups. The reaction solution was cooled to 25 ° C., 40.0 g of water was added, and 80.0 g (0.790 mol) of 36% hydrochloric acid was added dropwise over 1 hour, further cooled to 5 ° C. and filtered, and the LC purity was 92.1. % Of 1,3-bis (3-aminophenoxy) benzene hydrochloride 50.1 g · wet was obtained.
To 50.1 g · wet of hydrochloride of 1,3-bis (3-aminophenoxy) benzene, 100.0 g (0.475 mol) of a 19.0 wt% aqueous sodium hydroxide solution was added and stirred at room temperature for 1 hour. The cake was taken out by filtration, 100.0 g (0.075 mol) of a 3.0 wt% aqueous sodium hydroxide solution was added to the cake, and the mixture was stirred at room temperature for 1 hour and filtered. The cake was slurry washed with 100.0 g of water, filtered and dried to obtain 9.8 g of crude 1,3-bis (3-aminophenoxy) benzene having an LC purity of 98.8%. Total yield of condensation, desulfonation and hydrolysis reactions based on sodium 2,4-dichlorobenzenesulfonate 46.4%.
To 9.8 g of crude 1,3-bis (3-aminophenoxy) benzene, 36 g of toluene and 56.0 g (0.070 mol) of 5.0% aqueous sodium hydroxide solution were added, the temperature was raised to 75 ° C., and the mixture was heated and stirred for 15 minutes. did. The lower aqueous layer was removed by standing, and the upper toluene layer was washed twice with 10.0 g (0.012 mol) of 5.0 wt% sodium hydroxide aqueous solution and then with 10 g of water 5 times. Washed. 1.0 g · wet of activated carbon was added to 46.0 g of the toluene layer, and the mixture was stirred at room temperature for 15 minutes and filtered. The filtrate was concentrated to 25.0 g, filtered and dried to obtain 8.5 g of 1,3-bis (3-aminophenoxy) benzene having an LC purity of 99.5%. Purification yield 86.7%. Mp 107-108 ° C. OLE_LINK2
OLE_LINK2
攪拌機、温度計、冷却管を備えたディーン・スタークトラップ付き300mLフラスコにm−アセトアミノフェノール29.1g(0.174モル)、水酸化カリウム(純度85%)11.6g(0.176モル)、NMP100g、トルエン43g、水15gを仕込み、120℃から150℃で脱水し水21gを回収した。一旦100℃まで冷却し2,4−ジフルオロベンゼンスルホンナトリウム14.1g(0.065モル)を仕込み、水およびトルエンを回収しつつ150〜185で35時間反応させた。反応後、減圧蒸留により溶剤を回収して、蒸留残渣としてLC純度69.5%の2,4−ビス(3−アセトアミノフェノキシ)ベンゼンスルホン酸ナトリウム78.0gを得た。
この蒸留残渣に62.5%硫酸100.0g(0.637モル)を仕込み、122〜125℃で14時間反応させてスルホン酸基およびアセチル基を同時に脱離した後実施例と同様に処理し、乾燥してLC純度99.5%の粗1,3−ビス(3−アミノフェノキシ)ベンゼン15.4gを得た。2,4−ジフルオロベンゼンスルホン酸ナトリウムを基準とした縮合、脱スルホン化、および加水分解反応の通算収率73.0%。
実施例1と同様に精製し、乾燥してLC純度99.6%の1,3−ビス(3−アミノフェノキシ)ベンゼン12.6gを得た。精製収率81.8%。融点105〜106℃。
In a 300 mL flask with a Dean-Stark trap equipped with a stirrer, thermometer, and condenser, 29.1 g (0.174 mol) of m-acetaminophenol and 11.6 g (0.176 mol) of potassium hydroxide (purity 85%) , NMP 100 g, toluene 43 g, and water 15 g were charged and dehydrated at 120 to 150 ° C. to recover 21 g of water. After cooling to 100 ° C., 14.1 g (0.065 mol) of 2,4-difluorobenzenesulfone sodium was charged, and the mixture was reacted at 150 to 185 for 35 hours while collecting water and toluene. After the reaction, the solvent was recovered by distillation under reduced pressure to obtain 78.0 g of sodium 2,4-bis (3-acetaminophenoxy) benzenesulfonate having an LC purity of 69.5% as a distillation residue.
This distillation residue was charged with 100.0 g (0.637 mol) of 62.5% sulfuric acid, reacted at 122-125 ° C. for 14 hours to simultaneously remove sulfonic acid groups and acetyl groups, and then treated in the same manner as in the examples. And dried to obtain 15.4 g of crude 1,3-bis (3-aminophenoxy) benzene having an LC purity of 99.5%. Total yield of condensation, desulfonation and hydrolysis reactions based on sodium 2,4-difluorobenzenesulfonate is 73.0%.
The product was purified in the same manner as in Example 1 and dried to obtain 12.6 g of 1,3-bis (3-aminophenoxy) benzene having an LC purity of 99.6%. Purification yield 81.8%. Mp 105-106 ° C.
m−アセトアミノフェノールの代わりにm−アミノフェノール19.1g(0.174モル)を用いたほかは実施例1と同様にし、150〜180℃で31時間反応させた。反応後、減圧蒸留により蒸留残渣としてLC純度53.5%の2,4−ビス(3−アミノフェノキシ)ベンゼンスルホン酸ナトリウム84.0gを得た。
この蒸留残渣に60.4%硫酸138.2g(0.851モル)を仕込み、106〜119℃で25時間反応させてスルホン酸基を脱離させた後、実施例1と同様に処理し、乾燥してLC純度99.2%の粗1,3−ビス(3−アミノフェノキシ)ベンゼン8.5gを得た。2,4−ジクロロベンゼンスルホン酸ナトリウムを基準とした縮合、脱スルホン化、および加水分解反応の通算収率40.3%。
さらに、実施例1と同様に精製し、乾燥してLC純度99.6%の1,3−ビス(3−アミノフェノキシ)ベンゼン6.7gを得た。精製収率78.8%。融点105〜106℃。
(比較例1)
The reaction was carried out at 150 to 180 ° C. for 31 hours in the same manner as in Example 1 except that 19.1 g (0.174 mol) of m-aminophenol was used instead of m-acetaminophenol. After the reaction, 84.0 g of sodium 2,4-bis (3-aminophenoxy) benzenesulfonate having an LC purity of 53.5% was obtained as a distillation residue by distillation under reduced pressure.
The distillation residue was charged with 138.2 g (0.851 mol) of 60.4% sulfuric acid, reacted at 106 to 119 ° C. for 25 hours to remove sulfonic acid groups, and then treated in the same manner as in Example 1. By drying, 8.5 g of crude 1,3-bis (3-aminophenoxy) benzene having an LC purity of 99.2% was obtained. Total yield of condensation, desulfonation and hydrolysis reactions based on sodium 2,4-dichlorobenzenesulfonate is 40.3%.
Furthermore, it refine | purified like Example 1 and it dried and obtained 6.7 g of 1, 3-bis (3-aminophenoxy) benzene of LC purity 99.6%. Purification yield 78.8%. Mp 105-106 ° C.
(Comparative Example 1)
攪拌機、温度計、窒素導入管、冷却管を備えたディーン・スタークトラップ付き100mLフラスコにm−アミノフェノール12.0g(0.174モル)、水酸化カリウム(純度88%)7.3g(0.115モル)、NMP50g、トルエン6g、水10gを仕込んだ。窒素気流下170℃まで昇温して水13g、トルエン6gを回収した。一旦160℃まで冷却後、m-ジクロロベンゼン7.4g(0.050モル)を仕込み段階的に温度を上げ185℃で20時間、195℃で7時間反応させた。GC分析の結果、m-ジクロロベンゼン0.5%、m−アミノフェノール14.1%、3−アミノ−3’−クロロジフェニルエーテル45.0%、1,3−ビス(3−アミノフェノキシ)ベンゼン7.5%であった。この結果はスルホン酸基の活性化効果を明らかに示す。 In a 100 mL flask equipped with a Dean-Stark trap equipped with a stirrer, thermometer, nitrogen inlet tube, and condenser tube, 12.0 g (0.174 mol) of m-aminophenol and 7.3 g of potassium hydroxide (88% purity) (0. 115 mol), 50 g of NMP, 6 g of toluene, and 10 g of water. The temperature was raised to 170 ° C. under a nitrogen stream, and 13 g of water and 6 g of toluene were recovered. Once cooled to 160 ° C., 7.4 g (0.050 mol) of m-dichlorobenzene was charged, and the temperature was raised stepwise and reacted at 185 ° C. for 20 hours and 195 ° C. for 7 hours. As a result of GC analysis, m-dichlorobenzene 0.5%, m-aminophenol 14.1%, 3-amino-3'-chlorodiphenyl ether 45.0%, 1,3-bis (3-aminophenoxy) benzene 7 .5%. This result clearly shows the activation effect of the sulfonic acid group.
Claims (3)
(式中、Xはアミノ基またはアシルアミノ基を示す。Yは水素またはアルカリ金属原子を示す。)
で表される2,4−ビス(3−アミノフェノキシ)ベンゼンスルホン酸、2,4−ビス(3−アシルアミノフェノキシ)ベンゼンスルホン酸、あるいはそれらのアルカリ金属塩からスルホン酸基および、アシル基がある場合にはそのアシル基を脱離させることを特徴とする下記構造式(2)
で表される1,3−ビス(3−アミノフェノキシ)ベンゼンの製造方法。 General formula (1)
(In the formula, X represents an amino group or an acylamino group. Y represents hydrogen or an alkali metal atom.)
A sulfonic acid group and an acyl group are represented by 2,4-bis (3-aminophenoxy) benzenesulfonic acid, 2,4-bis (3-acylaminophenoxy) benzenesulfonic acid represented by the following formula: In some cases, the acyl group is eliminated and the following structural formula (2)
The manufacturing method of 1,3-bis (3-aminophenoxy) benzene represented by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009003502A JP2010159233A (en) | 2009-01-09 | 2009-01-09 | Method for producing 1,3-bis(3-aminophenoxy)benzene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009003502A JP2010159233A (en) | 2009-01-09 | 2009-01-09 | Method for producing 1,3-bis(3-aminophenoxy)benzene |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010159233A true JP2010159233A (en) | 2010-07-22 |
Family
ID=42576695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009003502A Pending JP2010159233A (en) | 2009-01-09 | 2009-01-09 | Method for producing 1,3-bis(3-aminophenoxy)benzene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010159233A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116283615A (en) * | 2023-03-30 | 2023-06-23 | 天津众泰材料科技有限公司 | Preparation method of high-quality 1, 3-bis (3-aminophenoxy) benzene |
-
2009
- 2009-01-09 JP JP2009003502A patent/JP2010159233A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116283615A (en) * | 2023-03-30 | 2023-06-23 | 天津众泰材料科技有限公司 | Preparation method of high-quality 1, 3-bis (3-aminophenoxy) benzene |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5016575B2 (en) | A novel synthesis of strontium ranelate and its hydrates | |
CN109879817B (en) | Preparation method of mesosulfuron-methyl | |
JP6915189B1 (en) | High-purity 2-naphthylacetonitrile and its production method | |
KR20120117831A (en) | Method for producing 2-amino-4-(trifluoromethyl)pyridine | |
JP2010159233A (en) | Method for producing 1,3-bis(3-aminophenoxy)benzene | |
KR101744046B1 (en) | Process for preparing an intermediate useful for the synthesis of silodosin | |
JP2021004227A (en) | Method for recovering excess anilines | |
JP5524491B2 (en) | Method for producing 3-amino-2-chloro-6-trifluoromethylpyridine | |
US20230062431A1 (en) | Preparation method of 4-(heptafluoro-2-propyl)-2-trifluoromethylaniline and application thereof | |
TWI794243B (en) | Process for preparing 3,4-dichloro-n-(2-cyanophenyl)-5-isothiazolecarboxamide | |
JP4968066B2 (en) | Process for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde | |
JP6709509B2 (en) | Method for producing nitrogen-containing pentafluorosulfanylbenzene compound | |
JP5663926B2 (en) | Trifluorovinyloxy-N-monoalkylaniline compound and method for producing the same | |
KR102675493B1 (en) | Method of manufacturing dicarboxylic acid or salt thereof | |
JP2021520354A (en) | Method for producing 3,4-dichloro-N- (2-cyanophenyl) -5-isothiazole carboxamide | |
KR100266926B1 (en) | Process for the preparation of 2,4-dichloro-5-fluorobenzonitrile | |
CN115947675B (en) | Rasagiline intermediate and preparation method and application thereof | |
JP4032861B2 (en) | Process for producing β-oxonitrile derivative or alkali metal salt thereof | |
JP2002255954A (en) | METHOD FOR PRODUCING 2-n-BUTYL-5-NITROBENZOFURAN | |
JP2018062513A (en) | Method for producing sulfonamide compound | |
KR20180095911A (en) | Process for producing benzoxazole compound | |
US6664425B2 (en) | Process for producing 1,3-bis(3-aminophenoxy)benzene | |
JPS6356218B2 (en) | ||
EP0488237B1 (en) | Method for producing dichlorophenylthioglycolic acid | |
JPS5910656B2 (en) | Method for producing 1-amino-naphthalene-7-sulfonic acid |