JP2010158256A - Method for transformation of yeast - Google Patents

Method for transformation of yeast Download PDF

Info

Publication number
JP2010158256A
JP2010158256A JP2010099985A JP2010099985A JP2010158256A JP 2010158256 A JP2010158256 A JP 2010158256A JP 2010099985 A JP2010099985 A JP 2010099985A JP 2010099985 A JP2010099985 A JP 2010099985A JP 2010158256 A JP2010158256 A JP 2010158256A
Authority
JP
Japan
Prior art keywords
transformation
dna
yeast
cells
solid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010099985A
Other languages
Japanese (ja)
Other versions
JP4918943B2 (en
Inventor
Kaoru Takegawa
薫 竹川
Yuko Hama
祐子 浜
Tomotake Morita
友岳 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010099985A priority Critical patent/JP4918943B2/en
Publication of JP2010158256A publication Critical patent/JP2010158256A/en
Application granted granted Critical
Publication of JP4918943B2 publication Critical patent/JP4918943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for transformation of yeast that can simply treat a large number of strains in no need of preparation of competent cells. <P>SOLUTION: The method for producing a transformant includes transforming fission yeast with a DNA for transformation, wherein the yeast cell bodies cultured on a SD solid medium is added to the treating solution including a DNA for the transformation, a carrier DNA, polyethylene glycol and a buffer solution including a lithium salt in an amount of ≥1×10<SP>7</SP>per μg of DNA 1 for transformation. Then, the mixture is incubated for ≥30 minutes at 25-35°C and the treated solution contains 0.5 to 10 μg of the DNA for transformation per 100 μL of the treated solution and the carrier DNA of ≥20-fold mass based on the DNA for transformation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、宿主である酵母に形質転換用DNAを導入して形質転換を行う方法に関するものである。   The present invention relates to a method for performing transformation by introducing transformation DNA into yeast as a host.

酵母を宿主とし、組換えDNA技術を用いた異種タンパク質生産系は、既に知られている微生物学の方法と組換えDNA技術を用いて容易に実施でき、かつ高い生産能力を示すため、既に大容量の培養も実施されて実生産に急速に利用されてきている。実生産にあたり、実験室で得られた菌体あたりの高い産生効率はスケールアップ後も維持される。   A heterologous protein production system using yeast as a host and using recombinant DNA technology can be easily implemented using known microbiological methods and recombinant DNA technology, and exhibits high production capacity. Volume culture has also been implemented and has been rapidly utilized for actual production. In actual production, the high production efficiency per cell obtained in the laboratory is maintained even after scale-up.

しかしながら、実生産の場合にしばしば求められる、より低コストの生産法を考えた場合、菌体の増殖効率そのものの向上、目的異種タンパク質の分解の抑制、酵母特有の修飾の効率的実施、栄養源の利用効率の向上、などの異種タンパク質の産生効率を向上させる方策が必要と考えられる。そのためには不要遺伝子を破壊する、必要遺伝子を付加する等の酵母宿主の改変が提案されている(特許文献1参照)。その場合、改変した多数の酵母宿主すべてについて異種タンパク質が効率よく生産できるかについて検討する必要があり、そのためには改変された種々の酵母宿主を各々形質転換して、形質転換体を獲得する必要がある。   However, when considering lower-cost production methods often required in actual production, improvement of the bacterial cell growth efficiency itself, suppression of degradation of target heterologous proteins, efficient implementation of yeast-specific modifications, nutrient sources It is considered necessary to take measures to improve the production efficiency of heterologous proteins, such as improving the utilization efficiency of the protein. For this purpose, yeast host modifications such as destroying unnecessary genes and adding necessary genes have been proposed (see Patent Document 1). In that case, it is necessary to examine whether a heterologous protein can be produced efficiently for all of a large number of modified yeast hosts. For this purpose, it is necessary to transform each of various modified yeast hosts to obtain transformants. There is.

酵母の形質転換方法としては、これまで酢酸リチウム法、エレクトロポレーション法、スフェロプラスト法、ガラスビーズ法等の方法が開発されてきた。エレクトロポレーション法は簡便で効率の良い形質転換方法として広く用いられ、形質転換効率が高く、長期間保存可能なコンピテントセルの調製方法について多くの研究が成されてきた。しかしながらこれらの方法はコンピテントセルを調製する必要があるため、一度に多数の変異株等の菌株を扱う場合は不適切と考えられた。そこでパン酵母(Saccharomyces cerevisiae)などの出芽酵母では酢酸リチウム法を基に、簡便性を追求した簡易形質転換方法が開発されてきた(非特許文献1〜非特許文献3参照)。簡易形質転換方法の形質転換効率は菌体の培養条件によって異なるが、プレート上のコロニーを直接用い、96穴マイクロプレートを用いた方法では形質転換体約300個/μgDNAの形質転換効率が得られている(非特許文献3参照)。これらの簡易形質転換方法の形質転換効率は低いので、高い効率を要求されない場合には有効な方法である。形質転換効率の上昇のための工夫もいくつかなされている(非特許文献4〜非特許文献6参照)。しかし、多数の宿主を同時に扱える簡便さと形質転換効率の上昇の両方を満たす工夫には至っていない。   As a yeast transformation method, methods such as a lithium acetate method, an electroporation method, a spheroplast method, and a glass bead method have been developed so far. The electroporation method is widely used as a simple and efficient transformation method, and many studies have been conducted on a method for preparing competent cells that have high transformation efficiency and can be stored for a long period of time. However, since these methods require the preparation of competent cells, it was considered inappropriate when dealing with many strains such as mutants at once. Thus, in budding yeast such as baker's yeast (Saccharomyces cerevisiae), a simple transformation method pursuing simplicity has been developed based on the lithium acetate method (see Non-patent Documents 1 to 3). Although the transformation efficiency of the simple transformation method varies depending on the culture conditions of the bacterial cells, the transformation efficiency of about 300 transformants / μg DNA can be obtained by using the colony on the plate directly and using the 96-well microplate. (See Non-Patent Document 3). These simple transformation methods have low transformation efficiency and are effective when high efficiency is not required. Some contrivances for increasing the transformation efficiency have been made (see Non-Patent Documents 4 to 6). However, it has not yet been devised to satisfy both the convenience of handling a large number of hosts simultaneously and the increase in transformation efficiency.

一方、酵母のうちでも分裂酵母は進化過程で他の酵母とは早い時期に分かれ、別の進化をとげた結果、出芽ではなく分裂という手段で増殖することからもわかるように、動物細胞に近い性質を持つことが知られている。このため異種タンパク質を発現させる宿主として分裂酵母、特にシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe、以下S.pombeという)、を用いることによって、動物細胞の場合と同様の、より天然体に近い遺伝子産物が得られることが期待される。しかし、前記の簡易形質転換方法は出芽酵母を対象に開発されたものであり、分裂酵母においてはこのような簡易形質転換方法の開発はほとんど検討されていない。出芽酵母における前記簡易形質転換方法を分裂酵母に適用しても形質転換可能ではあるが、転換効率は出芽酵母に比較してはるかに低く、実用的な方法ではない。   On the other hand, among yeast, fission yeast is separated from other yeasts at an early stage in the evolution process, and as a result of achieving another evolution, it is close to animal cells, as can be seen from growing by means of division instead of budding. It is known to have properties. For this reason, by using fission yeast, particularly Schizosaccharomyces pombe (hereinafter referred to as S. pombe), as a host for expressing a heterologous protein, a gene product closer to the natural body, similar to the case of animal cells, can be obtained. Expected to be obtained. However, the simple transformation method described above has been developed for budding yeast, and the development of such a simple transformation method has hardly been studied for fission yeast. Although transformation is possible even if the simple transformation method in budding yeast is applied to fission yeast, the conversion efficiency is much lower than that of budding yeast, and it is not a practical method.

国際公開第02/101038号パンフレットInternational Publication No. 02/101038 Pamphlet

Rapid colony transformation of Saccharomyces cerevisiae. Rohan Baker, Nucleic Acids Reserch, 1991, 19 (8), 1945.Rapid colony transformation of Saccharomyces cerevisiae. Rohan Baker, Nucleic Acids Reserch, 1991, 19 (8), 1945. Simple and Efficient Procedure for Transformation of Yeast. Randolph Elble, Bio Techniques, 1992, 13 (1), 18-20.Simple and Efficient Procedure for Transformation of Yeast.Randolph Elble, Bio Techniques, 1992, 13 (1), 18-20. An Efficient Procedure for Multiple Transformation of Yeast in Parallel. Antonio A. Firmenich and Kevin Redding, Bio Techniques, 1993, 14 (5), 713-718.An Efficient Procedure for Multiple Transformation of Yeast in Parallel. Antonio A. Firmenich and Kevin Redding, Bio Techniques, 1993, 14 (5), 713-718. Studies on the transformation of Intact Yeast Cells by the LiAc/SS-DNA/PEG Procedure. R. Daniel Gietz, Robert H. Schiestl, Andrew R. Willems, and Robin A. Woods, Yeast, 1995, 11, 355-360.Studies on the transformation of Intact Yeast Cells by the LiAc / SS-DNA / PEG Procedure.R. Daniel Gietz, Robert H. Schiestl, Andrew R. Willems, and Robin A. Woods, Yeast, 1995, 11, 355-360. Ethanol improves the transformation efficiency of intact yeast cells. Vit Lauermann Curr. Genet. 1991, 20, 1-3.Ethanol improves the transformation efficiency of intact yeast cells. Vit Lauermann Curr. Genet. 1991, 20, 1-3. An Improved Protocol for the Preparation of Yeast Cells for Transformation by Electroporation. J. R. Thompson, E. Register, J. Curotto, M. Kurtz and R. kelly, Yeast, 1998, 14, 565-571.An Improved Protocol for the Preparation of Yeast Cells for Transformation by Electroporation.J. R. Thompson, E. Register, J. Curotto, M. Kurtz and R. kelly, Yeast, 1998, 14, 565-571.

これらの状況を鑑み、分裂酵母に対する形質転換方法として、遺伝子破壊株等の多種の宿主菌体に対して同時に簡便に形質転換でき、しかも効率の高い方法を見いだすことは、異種タンパク質を効率よく生産するための重要な手段であり、形質転換の簡便化、効率化は、産生効率の良い形質転換体を選択するのに必要な課題であると考えられる。   In view of these circumstances, as a transformation method for fission yeast, finding a highly efficient method that can simultaneously and easily transform various host cells such as gene-disrupted strains efficiently produces heterologous proteins. Therefore, it is considered that simplification and efficiency of transformation is a problem necessary for selecting transformants with high production efficiency.

本発明者は、コロニーを直接用いた単純な操作で行い得る、形質転換効率の高い分裂酵母の簡易形質転換方法に関する下記発明である。   The present inventor is the following invention relating to a simple method for transforming fission yeast with high transformation efficiency, which can be carried out by a simple operation using colonies directly.

分裂酵母を形質転換用DNAで形質転換して形質転換体を製造する方法において、形質転換用DNA、キャリアDNA、ポリエチレングリコールおよびリチウム塩を含む緩衝液からなり、100μLあたり形質転換用DNAを0.5〜10μg、キャリアDNAを該形質転換用DNAに対し20倍質量以上含む処理溶液に、SD(Synthetic Dextrose)固体培地上で培養した酵母菌体を形質転換用DNA1μgあたり1×10個以上添加して、25〜35℃で30分以上インキュベーションすることを特徴とする分裂酵母の形質転換方法。 In a method for producing a transformant by transforming fission yeast with transforming DNA, the transformant comprises a buffer solution containing DNA for transformation, carrier DNA, polyethylene glycol and lithium salt. Add 5 × 10 μg or more of yeast cells cultured on SD (Synthetic Dextrose) solid medium to 1 × 10 7 or more per 1 μg of transformation DNA to a treatment solution containing 5 to 10 μg of carrier DNA at least 20 times the mass of the transformation DNA. And a method of transforming fission yeast, which comprises incubating at 25 to 35 ° C. for 30 minutes or more.

また、上記形質転換方法においてはマイクロプレートを使用して形質転換を行うことが好ましい。さらに、分裂酵母としては、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)であることが好ましい。   Moreover, in the said transformation method, it is preferable to transform using a microplate. Furthermore, the fission yeast is preferably Schizosaccharomyces pombe.

本形質転換法では、コンピテントセルの調製を不要とし、簡便な操作で効率よく形質転換体を取得することができるため、一度にたくさんの菌株を形質転換する場合に有効である。また、処理溶液量の調整により96穴マイクロプレートなどを用いた複数菌体への同時形質転換を行うことができる。その結果、異種タンパク質の産生効率が上昇した株などを容易に選択することができるようになる。   This transformation method is effective when transforming a large number of strains at a time because preparation of competent cells is unnecessary and a transformant can be efficiently obtained by a simple operation. In addition, simultaneous transformation into a plurality of cells using a 96-well microplate or the like can be performed by adjusting the amount of the treatment solution. As a result, it becomes possible to easily select a strain having an increased production efficiency of the heterologous protein.

実施例1における持ち込み菌体数と形質転換菌体数との関係を示すグラフ。2 is a graph showing the relationship between the number of cells brought in and the number of transformed cells in Example 1. 実施例3における固体培地の種類によるインキュベーション時間と形質転換菌体数との関係を示すグラフ。The graph which shows the relationship between the incubation time by the kind of solid culture medium in Example 3, and the number of transformed microbial cells. 実施例4におけるキャリアDNA量と形質転換転換菌体数との関係を示すグラフ。The graph which shows the relationship between the amount of carrier DNA in Example 4, and the number of transformed microbial cells.

これまでに知られている出芽酵母の簡易形質転換法は簡便性に重点を置き、酢酸リチウム法を改良して開発された方法で、固形培地上で培養したコロニーを直接用いて一度に複数の菌体を形質転換することが可能である。形質転換効率は培養条件によって異なり、固体培地上のコロニーを直接用いる場合、液体培養菌体と比較して形質転換効率は低くなる(液体培養菌体:形質転換体約10000個/μgDNA、コロニー:形質転換体960〜4000個/μgDNA)(前記非特許文献1〜非特許文献3参照)。しかし、同様の方法で出芽酵母でなく分裂酵母のコロニーを用いた場合は形質転換体208個/μgDNAであった(前記非特許文献3参照)。本発明は、形質転換条件を最適化することで形質転換効率を向上させて、これらの従来方法に比較して簡便で形質転換効率のよい分裂酵母の簡易形質転換法である。   The simple transformation method of budding yeast known so far is a method developed by improving the lithium acetate method with an emphasis on simplicity, and by using colonies cultured on a solid medium directly, It is possible to transform bacterial cells. The transformation efficiency varies depending on the culture conditions. When a colony on a solid medium is used directly, the transformation efficiency is lower than that in a liquid culture (liquid culture: about 10,000 transformants / μg DNA, colony: (Transformants 960 to 4000 / μg DNA) (see Non-Patent Document 1 to Non-Patent Document 3). However, when a colony of fission yeast was used instead of budding yeast in the same manner, the number of transformants was 208 / μg DNA (see Non-patent Document 3). The present invention is a simple method for transforming fission yeast that improves the transformation efficiency by optimizing the transformation conditions and is simpler and better in transformation efficiency than these conventional methods.

本発明の形質転換方法は、分裂酵母を形質転換する方法である。分裂酵母としてはシゾサッカロマイセス属の酵母であれば特に限定されないが、従来形質転換用宿主として研究や応用が進んでいるシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)が好ましい。   The transformation method of the present invention is a method for transforming fission yeast. The fission yeast is not particularly limited as long as it is a yeast belonging to the genus Schizosaccharomyces, but Schizosaccharomyces pombe, which has been studied and applied as a transformation host, is preferred.

本発明の形質転換方法では、分裂酵母を固体培地上で培養し、得られるこの固体培地上の菌体を形質転換に供する。固体培地としては特に限定されず、分裂酵母培養に従来より使用されている固体培地を使用できる。具体的には、例えば、SD(Synthetic Dextrose)固体培地、MM(Minimal medium)固体培地、YES(Yeast Extract with supplements)固体培地などが好ましく、特に比較的短いインキュベーション時間で形質転換効率の高い培養酵母が得られるSD固体培地が好ましい。これら培地の組成は公知であり、例えば以下の文献に記載されている。液体培地の場合はそれに3%程度の寒天を添加して対応する固体培地とすることができる。   In the transformation method of the present invention, fission yeast is cultured on a solid medium, and the resulting cells on the solid medium are subjected to transformation. The solid medium is not particularly limited, and a solid medium conventionally used for fission yeast culture can be used. Specifically, for example, SD (Synthetic Dextrose) solid medium, MM (Minimal medium) solid medium, YES (Yeast Extract with supplements) solid medium, and the like are preferable. Particularly, cultured yeast having high transformation efficiency in a relatively short incubation time. An SD solid medium from which can be obtained is preferred. The composition of these media is known and is described, for example, in the following documents. In the case of a liquid medium, about 3% agar can be added thereto to obtain a corresponding solid medium.

SD培地:Burke D, Dawson D, and Stearns T. Methods in yeast genetics: A Cold Spring Harbor Laboratory Course Manual. Plainview: Cold Spring Harbor Laboratory Press, 2000. pp172.
MM培地:Alfa C, Fantes P, Hyams J, McLeod M, and Warbrick E. Experiments with fission yeast: A laboratory course manual. Plainview: Cold Spring Harbor Laboratory Press, 1993.pp 134.
YES培地:Moreno S, Klar A, and Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. In: Guthrie C, Fink GR eds. Methods in Enzymology. Volume 194: Guide to yeast genetics and molecular biology. San Diego: Academic Press, Inc., 1991: 795-823.pp801.
固体培地上での培養時間は特に限定されないが、1日〜10日程度が好ましく、培養効率を高めるためには、1日〜5日間培養して形質転換に供することが好ましい。また、最小限の栄養成分しか含まない上記のような固体培地には必要により栄養源を添加して使用することができる。この追加の栄養源は多すぎると転換効率が低下しやすい。飢餓状態の菌ほど転換効率が高いといわれることもあるが、栄養源が少なすぎると菌の発育が不充分となるおそれがある。本発明における固体培地としてはグルコースなどの糖を5%以下添加した上記のようなSD固体培地等を使用することが好ましい。
SD medium: Burke D, Dawson D, and Stearns T. Methods in yeast genetics: A Cold Spring Harbor Laboratory Course Manual. Plainview: Cold Spring Harbor Laboratory Press, 2000. pp172.
MM medium: Alfa C, Fantes P, Hyams J, McLeod M, and Warbrick E. Experiments with fission yeast: A laboratory course manual. Plainview: Cold Spring Harbor Laboratory Press, 1993.pp 134.
YES medium: Moreno S, Klar A, and Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. In: Guthrie C, Fink GR eds. Methods in Enzymology. Volume 194: Guide to yeast genetics and molecular biology. San Diego: Academic Press, Inc., 1991: 795-823.pp801.
The culture time on the solid medium is not particularly limited, but is preferably about 1 day to 10 days. In order to increase the culture efficiency, it is preferable to culture for 1 day to 5 days and use for transformation. Moreover, a nutrient source can be added to the solid medium as described above containing only a minimum amount of nutritional components if necessary. If there are too many additional nutrients, the conversion efficiency tends to decrease. It is sometimes said that the conversion efficiency is higher as the starved bacteria, but if there are too few nutrient sources, the growth of the bacteria may be insufficient. As the solid medium in the present invention, it is preferable to use the SD solid medium as described above to which 5% or less of sugar such as glucose is added.

本発明の形質転換方法において使用する形質転換処理用の処理溶液は、導入目的の遺伝子を含む形質転換用DNA、キャリアDNA、ポリエチレングリコールおよびリチウム塩を含む緩衝液からなる。   The transformation treatment solution used in the transformation method of the present invention comprises a transformation DNA containing a gene to be introduced, carrier DNA, a polyethylene glycol and a buffer containing a lithium salt.

形質転換用DNAは形質転換の目的である導入する遺伝子を含む限りどのようなものであってもよいが、通常当該遺伝子を含む、発現ベクターなどのプラスミドDNA、遺伝子破壊用や遺伝子置換用のPCR増幅断片などが使用される。形質転換用DNAは環状DNA(プラスミドDNAなど)であっても線状DNA(PCR増幅断片など)であってもよい。発現ベクターには通常当該遺伝子以外にプロモーター遺伝子、マーカー遺伝子、複製開始点などの遺伝子領域を含む。発現ベクターは、マルチクローニングベクターに目的遺伝子を導入して構築されたものであってもよい。これら形質転換用DNAの大きさは特に限定されないが、通常1000〜20Kbp程度のものが使用される。   The transformation DNA may be any DNA as long as it contains the gene to be introduced, which is the purpose of transformation. Usually, plasmid DNA containing the gene, such as an expression vector, PCR for gene disruption or gene replacement Amplified fragments are used. The DNA for transformation may be circular DNA (plasmid DNA or the like) or linear DNA (PCR amplified fragment or the like). Expression vectors usually include gene regions such as a promoter gene, marker gene, and replication origin in addition to the gene. The expression vector may be constructed by introducing a target gene into a multicloning vector. The size of these DNAs for transformation is not particularly limited, but usually about 1000 to 20 Kbp is used.

処理用液中の形質転換用DNAの量は100μLあたり0.5〜10μg使用する。形質転換用DNAの量が多いほど形質転換菌体数は多くなるが形質転換用DNAあたりの転換効率は余り高くならず、また経済的でもないのでこの程度の量が適当と考えられ、特に0.5〜2μg程度が最適である。   The amount of DNA for transformation in the treatment solution is 0.5 to 10 μg per 100 μL. The greater the amount of transforming DNA, the greater the number of transformed cells, but the conversion efficiency per transforming DNA is not so high and is not economical, so this amount is considered appropriate. About 5 to 2 μg is optimal.

キャリアーDNAは、形質転換効率の向上に必要な成分であり、通常約200〜5000bpのサイズのSingle Strand DNAが使用される。例えば、サーモン精子DNA、子牛胸腺DNAやコイ精子DNAなどが使用できる。キャリアーDNAの量は形質転換用DNAに対して20倍質量以上使用する。キャリアーDNAの量が多いほど形質転換効率は高まるが使用量が多くなりすぎると経済性を損ね、その上限は1万倍質量程度が適当である。より好ましいキャリアーDNAの量は形質転換用DNAに対して50〜500倍質量である。   Carrier DNA is a component necessary for improving transformation efficiency, and Single Strand DNA having a size of about 200 to 5000 bp is usually used. For example, salmon sperm DNA, calf thymus DNA, carp sperm DNA, and the like can be used. The amount of carrier DNA used is 20 times or more the amount of DNA for transformation. As the amount of carrier DNA increases, the transformation efficiency increases. However, if the amount used is excessive, the economic efficiency is impaired, and the upper limit is suitably about 10,000 times the mass. A more preferable amount of carrier DNA is 50 to 500 times the mass of DNA for transformation.

ポリエチレングリコール(PEG)は形質転換方法に広く使用されている化合物であり、その分子量は500〜2万程度のものが使用され、特に1000〜8000程度の分子量を有するポリエチレングリコールが好ましい。リチウム塩も同じく形質転換方法に広く使用されている化合物であり、塩酸塩などの鉱酸塩、カルボン酸塩やスルホン酸塩などの有機酸塩がある。リチウム塩としては特にカルボン酸塩が好ましく、常用されている酢酸塩が最も好ましい。これらポリエチレングリコールとリチウム塩の処理用液中の量は、常用されている量が使用され、例えば、ポリエチレングリコールは10〜70%(w/v)程度が好ましく、リチウム塩は100μLあたり10〜500mmol程度が好ましい。   Polyethylene glycol (PEG) is a compound widely used in transformation methods, and its molecular weight is about 500 to 20,000, and polyethylene glycol having a molecular weight of about 1000 to 8000 is particularly preferable. Lithium salts are also widely used in transformation methods, and include mineral acid salts such as hydrochlorides and organic acid salts such as carboxylates and sulfonates. As the lithium salt, a carboxylate is particularly preferable, and a commonly used acetate is most preferable. The amount of polyethylene glycol and lithium salt in the treatment solution is a commonly used amount. For example, polyethylene glycol is preferably about 10 to 70% (w / v), and lithium salt is 10 to 500 mmol per 100 μL. The degree is preferred.

処理溶液は緩衝作用を有する水溶液であり、通常上記成分以外にトリス(Tris)−HClやEDTAを含む。これらの量は形質転換方法に常用されている量が使用される。そのpHは4.5〜5.5程度に調整されていることが好ましい。pHがこの範囲外であると形質転換効率が低下しやすい。   The treatment solution is an aqueous solution having a buffering action, and usually contains Tris-HCl or EDTA in addition to the above components. These amounts are those commonly used in transformation methods. The pH is preferably adjusted to about 4.5 to 5.5. If the pH is outside this range, the transformation efficiency tends to decrease.

前記固体倍地上で培養した菌体を上記処理溶液に添加し、インキュベーションを行って形質転換体を得る。菌体量は、形質転換用DNA1μgあたり1×10個以上必要である。この菌体数が少ないと十分な数の形質転換体が得られない。より好ましい菌体数は3×10個以上である。また、処理溶液に添加する菌体数が多すぎると転換効率が低下する傾向にある。したがって、菌体数の上限は5×10個程度が好ましい。より好ましい上限は、1.5×10個程度である。インキュベーション時間は30分以上である。通常インキュベーション時間が長くなるほど形質転換した菌体数は増加するが、長時間インキュベーションを行うことは効率的ではなく、また、長時間のインキュベーションでは菌の死滅につながることがある。したがって、インキュベーション時間の上限は3日程度が適当である。また、本発明の目的である効率的な形質転換を行うためにはインキュベーション時間は短いほうがよく、したがって、48時間以下とすることがより好ましい。最も好ましくは、30分〜24時間のインキュベーションが採用される。特に、効率的な形質転換を行うためには、30分〜12時間のインキュベーションが好ましい。なお、インキュベーション温度は特に限定されるものではないが、25〜35℃が適当である。処理溶液によるインキュベーション終了後に菌体を選択培地で培養することにより、形質転換した菌体が得られる。 The cells cultured on the solid medium are added to the treatment solution and incubated to obtain transformants. The amount of bacterial cells is required to be 1 × 10 7 or more per 1 μg of DNA for transformation. If the number of cells is small, a sufficient number of transformants cannot be obtained. A more preferable number of cells is 3 × 10 7 or more. Moreover, when there are too many microbial cells added to a process solution, there exists a tendency for conversion efficiency to fall. Therefore, the upper limit of the number of cells is preferably about 5 × 10 8 cells. A more preferable upper limit is about 1.5 × 10 8 pieces. Incubation time is 30 minutes or more. Usually, the longer the incubation time, the more transformed cells, but it is not efficient to incubate for a long time, and long incubation may lead to the death of the bacteria. Therefore, the upper limit of the incubation time is suitably about 3 days. In addition, in order to perform efficient transformation, which is the object of the present invention, the incubation time should be short, and therefore, it is more preferably 48 hours or less. Most preferably, an incubation of 30 minutes to 24 hours is employed. In particular, in order to perform efficient transformation, incubation for 30 minutes to 12 hours is preferable. The incubation temperature is not particularly limited, but 25 to 35 ° C. is appropriate. After the incubation with the treatment solution is completed, the transformed cells are obtained by culturing the cells in a selective medium.

処理溶液で処理する前に菌体を前処理して転換効率を高めることができ、また上記インキュベーション後かつ選択培地で培養する前に菌体を後処理して転換効率を高めることもできる。代表的な後処理としてはヒートショック処理がある。例えば、上記インキュベーション後に菌体を水に懸濁させ38〜45℃程度の温度に5〜30分曝し、その後に選択培地で培養することにより形質転換効率を高めることができる。前処理としては、高張液処理、還元剤処理など、従来転換効率を向上させるための前処理として公知の処理を本発明においても行い、形質転換効率を向上させることができる。高張液処理としては2.0Mのソルビトール水溶液に接触させる方法など、比較的高い濃度の糖や塩などの水溶液に接触させる処理がある。還元剤処理としてはDTT(ジチオスレイトール)に接触させる処理がある。これら前処理や後処理は複数の処理を組み合わせて行うこともできる。   The bacterial cells can be pretreated before treatment with the treatment solution to increase the conversion efficiency, and the bacterial cells can be post-treated after the incubation and before culturing in the selective medium to increase the conversion efficiency. A typical post-processing is heat shock processing. For example, the transformation efficiency can be increased by suspending the cells in water after the incubation and exposing them to a temperature of about 38 to 45 ° C. for 5 to 30 minutes, followed by culturing in a selective medium. As the pretreatment, known treatments such as hypertonic solution treatment and reducing agent treatment for improving the conversion efficiency can also be carried out in the present invention to improve the transformation efficiency. As the hypertonic solution treatment, there is a treatment of contacting with a relatively high concentration aqueous solution of sugar or salt, such as a method of contacting with a 2.0 M sorbitol aqueous solution. As the reducing agent treatment, there is a treatment in contact with DTT (dithiothreitol). These pre-processing and post-processing can be performed by combining a plurality of processes.

本発明の方法を使用した形質転換方法において、最も効率的に形質転換体を得る(最少の原材料を使用し最も短時間で目的の形質転換菌体数を得る)基本プロトコールとしては以下の方法がある。この方法を基準にし、目的に応じて変換した本発明の方法を用いて形質転換体を得ることができる。   In the transformation method using the method of the present invention, the following method is used as a basic protocol for obtaining a transformant most efficiently (using the least amount of raw materials and obtaining the desired number of transformed cells in the shortest time). is there. Based on this method, a transformant can be obtained using the method of the present invention converted according to the purpose.

1.菌体を2%のグルコースを添加したSD固体培地で培養する。   1. The cells are cultured in an SD solid medium supplemented with 2% glucose.

2.処理溶液として、10μLの形質転換用DNA水溶液(1.0μgの形質転換用DNAを含む)、10μLのキャリアDNA水溶液(100μgのキャリアDNAを含む)、70μLの処理原水溶液(50w/vのPEG4000、100mMの酢酸リチウム、10mMのTris−HClおよび1mMのEDTAを含む:pH=4.9)および残余の水を混合して100μLとしたものを使用する。   2. As the treatment solution, 10 μL of aqueous DNA solution for transformation (containing 1.0 μg of DNA for transformation), 10 μL of aqueous solution of carrier DNA (containing 100 μg of carrier DNA), 70 μL of aqueous solution of treatment raw material (50 w / v PEG4000, Use 100 mM lithium acetate, 10 mM Tris-HCl and 1 mM EDTA: pH = 4.9) and the remaining water mixed to 100 μL.

3.上記1.の菌体約5×10個を上記2.の処理溶液に添加し、30℃で1時間インキュベーションして形質転換し、その後この形質転換菌体を含む処理溶液を直接選択培地に加えて形質転換体を選択する。 3. Above 1. About 5 × 10 7 cells of the above 2. And then transforming by incubation at 30 ° C. for 1 hour, and then adding the treatment solution containing the transformed cells directly to the selective medium.

4.上記3.の形質転換処理をマイクロプレートを使用して行う。   4). 3. above. The transformation treatment is performed using a microplate.

上記基本プロトコールはより幅広い条件に適応するため、できるだけ穏やかで単純な操作手順を基本としたので、通常の株だけでなく例えば、温度、浸透圧感受性等様々な性質を示す変異株への使用も可能と考えられる。この方法で形質転換体約3000個/μgDNA/1hの効率を得ることができる。   Since the above basic protocol adapts to a wider range of conditions, it was based on a gentle and simple procedure as much as possible, so it can be used not only for normal strains but also for mutant strains that exhibit various properties such as temperature and osmotic pressure sensitivity. It seems possible. By this method, an efficiency of about 3000 transformants / μg DNA / 1 h can be obtained.

本発明の形質転換方法は、プレート上のコロニーを直接使用するため、コンピテントセルを調製する必要がなく、操作が非常に単純であり、反応液の量が少ないため96穴マイクロプレートを用いた複数の菌株の同時形質転換への応用が可能である。さらに、この方法は形質転換効率を向上させるために菌体の前処理の追加することができる。前処理を追加することにより、インキュベーション時間の短縮や形質転換効率のさらなる向上が可能となる。   Since the transformation method of the present invention directly uses colonies on the plate, it is not necessary to prepare competent cells, the operation is very simple, and the amount of reaction solution is small, so a 96-well microplate was used. Application to simultaneous transformation of multiple strains is possible. Furthermore, this method can add a pretreatment of bacterial cells to improve transformation efficiency. By adding the pretreatment, the incubation time can be shortened and the transformation efficiency can be further improved.

以下に本発明を具体的な実施例によりさらに詳細に説明する。実施例等では、形質転換用DNAとして公知のpAL(Tanaka, K., Yanagida, T., Kawasaki, Y., Kai, M., Furuya, K., Iwasaki, M., Murakami, H., Yanagida, M. and Okayama, H. (2000) Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol. Cell. Biol. 20, 3459-3469)を使用し、キャリアDNAとして市販のサケ精子DNAを使用した。菌株はシゾサッカロマイセス・ポンベARC039(S.pombe:h, leu1-32, ura4-C190T)を用いた。また、インキュベーション処理は96穴マイクロプレートを用いて行った。 Hereinafter, the present invention will be described in more detail with reference to specific examples. In Examples and the like, pAL known as DNA for transformation (Tanaka, K., Yanagida, T., Kawasaki, Y., Kai, M., Furuya, K., Iwasaki, M., Murakami, H., Yanagida , M. and Okayama, H. (2000) Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol. Cell. Biol. 20, 3459-3469), and using commercially available salmon sperm DNA as carrier DNA. used. As a strain, Schizosaccharomyces pombe ARC039 (S. pombe: h , leu1-32, ura4-C190T) was used. The incubation treatment was performed using a 96-well microplate.

[実施例1]
酵母菌体をMM固体培地上で3日間培養し、そこにできたコロニーを、直接100μLの処理溶液[10μLのpAL水溶液(1.0μgのpALを含む)、10μLのキャリアDNA水溶液(100μgのキャリアDNAを含む)、70μLの処理原水溶液(50w/vのPEG4000、100mMの酢酸リチウム、10mMのTris−HClおよび1mMのEDTAを含む:pH=4.9)および残余の水を混合して100μLとしたもの]に加え、30℃で1日間インキュベーション後、42℃で15分ヒートショック処理し、選択培地上に塗布し、培養して形質転換体の数を測定した。図1に持ち込み菌体数と形質転換菌体数との関係を示す。
[Example 1]
The yeast cells were cultured on an MM solid medium for 3 days, and colonies formed there were directly treated with 100 μL of treatment solution [10 μL of pAL aqueous solution (including 1.0 μg of pAL), 10 μL of carrier DNA aqueous solution (100 μg of carrier). DNA), 70 μL of the aqueous treatment solution (50 w / v PEG 4000, 100 mM lithium acetate, 10 mM Tris-HCl and 1 mM EDTA: pH = 4.9) and the remaining water were mixed to make 100 μL. In addition to the above, the cells were incubated at 30 ° C. for 1 day, heat shock treated at 42 ° C. for 15 minutes, applied onto a selective medium, cultured, and the number of transformants was measured. FIG. 1 shows the relationship between the number of cells brought in and the number of transformed cells.

上記形質転換方法において、持ち込み菌体量を図1の横軸に示すように変化させたところ、得られた形質転換体数(/μgDNA)は縦軸に示す様に変化し、得られる形質転換体数は持ち込み菌体量が5×10〜1×10個(/100μL処理溶液)の時に最大となった。1×10個より少ない菌体数では形質転換効率は500個/μgDNAに到達しないため、酵母菌体は形質転換用DNA1μgあたり3×10個以上添加しない条件では効率的な形質転換はできないことが明らかになった。 In the above transformation method, when the amount of cells brought in was changed as shown on the horizontal axis of FIG. 1, the number of transformants obtained (/ μg DNA) was changed as shown on the vertical axis, and the resulting transformation The number of cells reached a maximum when the amount of cells brought in was 5 × 10 7 to 1 × 10 8 (/ 100 μL treatment solution). Since the transformation efficiency does not reach 500 cells / μg DNA when the number of cells is less than 1 × 10 7 , yeast cells cannot be efficiently transformed under the condition that 3 × 10 7 or more per 1 μg of DNA for transformation is not added. It became clear.

[実施例2]
持ち込み菌体を5×10個(/100μL処理溶液)として、処理用液中のpALの量を変える以外は実施例1と同じ実験を行った。その結果、処理溶液100μLあたり0.5μgより少ない場合は、形質転換効率は500個/μgDNA以下になり(0.1μgのpALの場合、315個/μgDNA)、効率的形質転換はできないことがわかった。
[Example 2]
The same experiment as in Example 1 was performed, except that the number of cells brought in was 5 × 10 7 (/ 100 μL treatment solution) and the amount of pAL in the treatment solution was changed. As a result, when the amount is less than 0.5 μg per 100 μL of the treatment solution, the transformation efficiency is 500 / μg DNA or less (315 μg / μg DNA in the case of 0.1 μg pAL), indicating that efficient transformation is not possible. It was.

[実施例3]
酵母菌体をSD固体培地上、MM固体培地上、YES固体培地上でそれぞれ3日間培養し、そこにできたコロニーをそれぞれ持ち込み菌体量を5×10個(/100μL処理溶液)として使用し、実施例1と同じ実験を行った。図2に固体培地の種類によるインキュベーション時間と形質転換菌体数との関係を示す。
[Example 3]
Yeast cells are cultured on SD solid medium, MM solid medium, and YES solid medium for 3 days respectively, and colonies formed there are brought in and used as 5 × 10 7 cells (/ 100 μL treatment solution). The same experiment as in Example 1 was performed. FIG. 2 shows the relationship between the incubation time and the number of transformed cells depending on the type of solid medium.

SD固体培地上で生育した菌体を用いた場合、得られる形質転換体数は1時間のインキュベーションで最大になった(600個/μgDNA/1h)。MM固体培地を用いた場合、インキュベーション時間に伴って形質転換体数が上昇し(3000個/μgDNA/72h)、得られる形質転換体数は使用した3種類の培地中で最も多かったが長いインキュベーション時間を必要とした。YES固体培地を用いた場合、形質転換効率は低かった(MM固体培地の約1/10)。しかしいずれの場合もインキュベーション時間を30分未満にした場合は、形質転換効率は500個/μgDNA以下になり、効率的形質転換はできないことがわかった。   When cells grown on an SD solid medium were used, the number of transformants obtained was maximized after 1 hour incubation (600 cells / μg DNA / 1 h). When the MM solid medium was used, the number of transformants increased with the incubation time (3000 / μg DNA / 72h), and the number of transformants obtained was the highest among the three types of media used, but the long incubation time. Took time. When the YES solid medium was used, the transformation efficiency was low (about 1/10 of the MM solid medium). However, in any case, when the incubation time was set to less than 30 minutes, the transformation efficiency was 500 pieces / μg DNA or less, and it was found that efficient transformation was impossible.

[実施例4]
持ち込み菌体を5×10個(/100μL処理溶液)として、処理用液中のキャリアーDNA量を変化させる以外は実施例1と同じ試験を行った。キャリアーDNAを100μgまで増加させたところ、形質転換効率の上昇が確認できたが、キャリアーDNA量がpALの20倍質量未満の場合、形質転換効率は500個/μgDNA以下になり、効率的形質転換はできないことがわかった。図3にキャリアDNA量と形質転換転換菌体数との関係を示す。
[Example 4]
The same test as in Example 1 was conducted, except that the number of brought-in cells was 5 × 10 7 (/ 100 μL treatment solution) and the amount of carrier DNA in the treatment solution was changed. When the carrier DNA was increased to 100 μg, an increase in transformation efficiency could be confirmed. However, when the amount of carrier DNA was less than 20 times the mass of pAL, the transformation efficiency was 500 pieces / μg DNA or less, and efficient transformation was achieved. I found it impossible. FIG. 3 shows the relationship between the amount of carrier DNA and the number of transformed cells.

酵母を宿主とし、組換えDNA技術を用いた異種タンパク質生産系を構築するためには、より効率的に異種タンパク質を産生できる酵母宿主の開発が必要である。酵母宿主の開発には、改変した多数の酵母宿主について異種タンパク質が効率よく生産できるか否かを評価する必要があり、そのためには改変された種々の酵母宿主を各々形質転換して、形質転換体を獲得する必要がある。本発明の方法は特にこの酵母宿主の評価を効率的に行うために有用な簡便かつ効率的な形質転換方法として使用できる。   In order to construct a heterologous protein production system using recombinant DNA technology using yeast as a host, it is necessary to develop a yeast host that can produce the heterologous protein more efficiently. In order to develop a yeast host, it is necessary to evaluate whether a heterologous protein can be efficiently produced for a large number of modified yeast hosts. For this purpose, transformation is performed by transforming various modified yeast hosts. Need to gain body. In particular, the method of the present invention can be used as a convenient and efficient transformation method useful for efficiently evaluating this yeast host.

Claims (6)

分裂酵母を形質転換用DNAで形質転換して形質転換体を製造する方法において、形質転換用DNA、キャリアDNA、ポリエチレングリコールおよびリチウム塩を含む緩衝液からなり、100μLあたり形質転換用DNAを0.5〜10μg、キャリアDNAを該形質転換用DNAに対し20倍質量以上含む処理溶液に、SD(Synthetic Dextrose)固体培地上で培養した酵母菌体を形質転換用DNA1μgあたり1×10個以上添加して、25〜35℃で30分以上インキュベーションすることを特徴とする分裂酵母の形質転換方法。 In a method for producing a transformant by transforming fission yeast with transforming DNA, the transformant comprises a buffer solution containing DNA for transformation, carrier DNA, polyethylene glycol and lithium salt. 5-10 [mu] g, added carrier DNA to transformants for DNA processing solution containing 20 weight equivalents or more, SD (Synthetic Dextrose) solid medium on the culture of yeast cells transformed for DNA1μg 1 × 10 7 or more per the And a method of transforming fission yeast, which comprises incubating at 25 to 35 ° C. for 30 minutes or more. マイクロプレートを使用して形質転換を行う、請求項1に記載の方法。   The method according to claim 1, wherein the transformation is performed using a microplate. 分裂酵母がシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)である、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the fission yeast is Schizosaccharomyces pombe. 前記インキュベーションの時間が30分〜1時間である請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the incubation time is 30 minutes to 1 hour. 前記酵母菌体が、前記SD固体培地上で1日〜10日培養した酵母菌体である請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the yeast cells are yeast cells cultured for 1 to 10 days on the SD solid medium. 前記SD固体培地が、5%以下の糖が添加されたSD固体培地である請求項1〜5のいずれか一項に記載の方法。   The method according to any one of claims 1 to 5, wherein the SD solid medium is an SD solid medium to which 5% or less of sugar is added.
JP2010099985A 2010-04-23 2010-04-23 Yeast transformation method Expired - Fee Related JP4918943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099985A JP4918943B2 (en) 2010-04-23 2010-04-23 Yeast transformation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099985A JP4918943B2 (en) 2010-04-23 2010-04-23 Yeast transformation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004010373A Division JP5248735B2 (en) 2004-01-19 2004-01-19 Yeast transformation method

Publications (2)

Publication Number Publication Date
JP2010158256A true JP2010158256A (en) 2010-07-22
JP4918943B2 JP4918943B2 (en) 2012-04-18

Family

ID=42575900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099985A Expired - Fee Related JP4918943B2 (en) 2010-04-23 2010-04-23 Yeast transformation method

Country Status (1)

Country Link
JP (1) JP4918943B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262284A (en) * 1999-03-18 2000-09-26 Asahi Glass Co Ltd Method for transforming schizosaccharomyces pombe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262284A (en) * 1999-03-18 2000-09-26 Asahi Glass Co Ltd Method for transforming schizosaccharomyces pombe

Also Published As

Publication number Publication date
JP4918943B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Chen et al. One-step transformation of yeast in stationary phase
Lee et al. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus
KR102126985B1 (en) Protein synthesis system for kit synthesis in vitro, kit and method for manufacturing the same
EP2140008A2 (en) Yeast expression systems
TW201317350A (en) Regulatable promoter
Mans et al. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae
Swamy et al. Experimental evolution: its principles and applications in developing stress-tolerant yeasts
Chen et al. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation
WO2009116286A1 (en) Flocculent yeast and method for production thereof
JP5248735B2 (en) Yeast transformation method
KR20170105079A (en) Combination of bacterial chaperones positively affecting the physiology of a native or engineered eukaryotic cell
JP4211603B2 (en) Method for constructing Schizosaccharomycespombe host and method for producing heterologous protein
US20200199523A1 (en) Media for microorganism culture and related compositions and methods
Josic et al. Application of proteomics in biotechnology–microbial proteomics
JP4918943B2 (en) Yeast transformation method
CN109486735B (en) Lactobacillus engineering bacterium with improved acid stress resistance and application thereof
Kato et al. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast
Branduardi et al. Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory
JP2010136627A (en) Method for making yeast to utilize galactose
CN110616161B (en) Method for regulating oxygen stress of saccharomyces cerevisiae by using Y-family polymerase Rev1
US9932608B2 (en) Method for enhanced fermentation through the destruction of mitochondrial DNA in yeast
CN109628366B (en) Method for improving acid stress resistance of lactic acid bacteria
Fujita et al. Development of a genetic transformation system using new selectable markers for fission yeast Schizosaccharomyces pombe
Cheraiti et al. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae
CN114774421B (en) Mutant of endogenous promoter of zymomonas mobilis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees