JP2010156892A - Optical element manufacturing method - Google Patents
Optical element manufacturing method Download PDFInfo
- Publication number
- JP2010156892A JP2010156892A JP2008335781A JP2008335781A JP2010156892A JP 2010156892 A JP2010156892 A JP 2010156892A JP 2008335781 A JP2008335781 A JP 2008335781A JP 2008335781 A JP2008335781 A JP 2008335781A JP 2010156892 A JP2010156892 A JP 2010156892A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical element
- shielding layer
- layer
- light shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0062—Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
- G02B3/0068—Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133504—Diffusing, scattering, diffracting elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133526—Lenses, e.g. microlenses or Fresnel lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
本発明は、液晶表示装置などの透過型表示装置を背面から照明する照明装置(バックライト)に使用される光学要素、あるいは、透過型表示装置の前面に配置されて視野角を制御する光学要素、の製造方法に関する。 The present invention relates to an optical element used in an illumination device (backlight) for illuminating a transmissive display device such as a liquid crystal display device from the back, or an optical element arranged on the front surface of the transmissive display device to control a viewing angle. The present invention relates to a manufacturing method.
近年、液晶ディスプレイは画像表示装置の主流となり、携帯電話、デジタルカメラ、または液晶テレビ等の幅広い機器で用いられている。これらの機器によって液晶ディスプレイのサイズは異なるが、主な構成はサイズによらずほぼ同様であり、液晶を含む液晶パネルおよび光源としてのバックライトを液晶ディスプレイは備える。液晶ディスプレイではまた、バックライトからの光を拡散させ、また集光させることによって、光の視野角・明るさ等を調節する為、様々な光学要素が使用または考案されている。 In recent years, liquid crystal displays have become the mainstream of image display devices and are used in a wide range of devices such as mobile phones, digital cameras, and liquid crystal televisions. Although the size of the liquid crystal display varies depending on these devices, the main configuration is almost the same regardless of the size, and the liquid crystal display includes a liquid crystal panel including liquid crystal and a backlight as a light source. In the liquid crystal display, various optical elements are used or devised in order to adjust the viewing angle and brightness of the light by diffusing and condensing the light from the backlight.
また、液晶、特にネマティック液晶では、光の入射角度によって偏光面の回転作用が異なる為に、斜め方向に入射し斜め方向に出射する光に対する変調作用が不十分で、その結果、斜め方向から観察した場合のコントラストの低下や、反転現象が生じる。 In addition, liquid crystal, especially nematic liquid crystal, has a polarization function that varies depending on the incident angle of light, so that it does not have sufficient modulation effect on light that is incident in an oblique direction and is emitted in an oblique direction. In such a case, a decrease in contrast and an inversion phenomenon occur.
これを回避する方法として、バックライトからの光を集光、平行光化させて液晶パネルに入射させ、液晶パネルから出射した後、光を拡散する方法が、特許文献1及び特許文献2に記載されている。 As a method for avoiding this, Patent Document 1 and Patent Document 2 describe a method in which light from a backlight is condensed, collimated, incident on a liquid crystal panel, emitted from the liquid crystal panel, and then diffused. Has been.
バックライトからの光を集光させる光学要素として、特許文献2には、レンチキュラーレンズまたはマイクロレンズのアレイとその焦点面近傍に光を通過させる開口部がそれ以外の部分に光を反射する遮光部が形成されたものが開示されている。このような開口部と遮光部の形成方法として、引用文献2には、レンズ自体の集光作用を利用したセルフアライメントによって、粘着性感光樹脂層の粘着性を失わせ、粘着性を喪失した部分以外の部位に遮光性材料を形成する方法が開示されている。 As an optical element for condensing light from a backlight, Patent Document 2 discloses an array of lenticular lenses or microlenses and a light-shielding portion that reflects light to other portions by an opening that allows light to pass in the vicinity of its focal plane. What is formed is disclosed. As a method for forming such an opening and a light-shielding portion, Reference 2 discloses a portion in which the adhesiveness of the adhesive photosensitive resin layer is lost by self-alignment using the light collecting action of the lens itself, and the adhesiveness is lost. A method of forming a light-shielding material at a site other than the above is disclosed.
一方、特許文献1の光学要素は、液晶パネルとバックライトの間に配置され、バックライト側の面に沿って配列された開口部と、開口部を通って入射した光を全反射によって平行光化する為、光入力面より大きい面積の光出力面を有する突状のマイクロコリメータとマイクロコリメータを通過した光をさらに平行光化させるレンズとを備える光学要素である。バックライトからの光は開口部を通って光学要素に達し、開口部はマイクロコリメータおよびレンズに対応して間隔を空けて並んでおり、光を遮る遮光層が開口部と開口部との間を埋めている。 On the other hand, the optical element of Patent Document 1 is arranged between a liquid crystal panel and a backlight, and has openings arranged along the surface on the backlight side, and light incident through the openings is converted into parallel light by total reflection. Therefore, the optical element includes a projecting microcollimator having a light output surface larger in area than the light input surface and a lens that further collimates the light that has passed through the microcollimator. The light from the backlight reaches the optical element through the opening, and the openings are arranged at intervals corresponding to the microcollimator and the lens, and a light-shielding layer that blocks light is located between the openings. Buried.
このマイクロコリメータのように面積の異なる光入力面と光出力面とを有し、全反射を利用して光の集光/拡散を行う光学シートに遮光層を形成する方法に、突部と突部の間の溝に遮光性の顔料粒子を充填し、過剰の粒子をブラシなどで除去する方法が特許文献3に記載されている。
しかし、レンズのセルフアライメントによって粘着性感光樹脂層の粘着性を喪失させ、粘着性が喪失しない部位のみに遮光層を形成する方法は、遮光層の厚みが遮光性微粒子1〜数個分に限定され、厚く形成することが困難で、従って、十分な遮光性能が得られないという問題があった。あるいは、この方法の応用で、あらかじめ遮光性顔料を含んだ転写性インクを用意して、セルフアライメントを利用して粘着性の粘着層を形成し、この粘着層のパターンに遮光性の顔料を含んだインクを転写して開口部と遮光層とを形成する方法もあるが、しかし、この方法においても、インク内の顔料濃度を上げたり、インク層の厚みを厚くすると、解像されないという問題があった。 However, the method of forming the light-shielding layer only in the part where the adhesiveness of the adhesive photosensitive resin layer is lost by self-alignment of the lens and the adhesiveness is not lost is limited to one to several light-shielding fine particles. However, it is difficult to form a thick film, and thus there is a problem that sufficient light shielding performance cannot be obtained. Alternatively, by applying this method, a transferable ink containing a light-shielding pigment is prepared in advance, an adhesive adhesive layer is formed using self-alignment, and the light-shielding pigment is included in the pattern of the adhesive layer. However, there is a method of transferring the ink to form the opening and the light shielding layer. However, even in this method, if the pigment concentration in the ink is increased or the thickness of the ink layer is increased, there is a problem that the image is not resolved. there were.
また、開口部となる突部と突部の間の溝にインク(遮光性微粒子)を充填し、余分なインクを除去する方法は、インクの充填後、余分なインクを掻き出して除去する必要があり、製造工程が煩雑になり易い。また、開口部に相当する突部へインクが付着して残る、またはインクを除去する際に突部が傷付く等の要因によって、製品品質を低下させる虞がある。本発明はこのような課題に鑑みてなされたものであり、製造が容易な光学要素製造方法を提供することを目的とする。 In addition, the method of filling the groove between the protrusions serving as the openings with ink (light-shielding fine particles) and removing the excess ink requires that the excess ink be scraped and removed after the ink is filled. Yes, the manufacturing process tends to be complicated. In addition, there is a risk that the quality of the product may be deteriorated due to factors such as ink remaining on the protrusion corresponding to the opening or the protrusion being damaged when the ink is removed. The present invention has been made in view of such problems, and an object thereof is to provide an optical element manufacturing method that is easy to manufacture.
上記目的を達成するための本発明の光学要素製造方法は、光を通す扁平な基部と、当該基部の一の面に設けられた光を通す複数の突部とを備える光学シートを、光を通す基材に重ね、前記光学シートによって、前記基材上に設けられた光を遮る遮光層を押圧し、前記突部によって前記遮光層を破断させて光を通す開口部を形成する押圧工程を有する。 In order to achieve the above object, an optical element manufacturing method according to the present invention provides an optical sheet comprising a flat base that transmits light and a plurality of protrusions that transmit light provided on one surface of the base. A pressing step of forming an opening that allows light to pass by pressing the light shielding layer that blocks light provided on the substrate by the optical sheet, and rupturing the light shielding layer by the protrusion. Have.
本発明の光学要素製造方法では、突部による遮光層の破断によって、光を通す開口部を形成しつつ開口部の位置に合わせて突部を配置するため、製造工程の煩雑さを抑えられ、製造が容易である。 In the optical element manufacturing method of the present invention, the projecting portion is arranged in accordance with the position of the opening while forming the opening that allows light to pass by the breakage of the light shielding layer by the protrusion, so that the complexity of the manufacturing process can be suppressed, Easy to manufacture.
以下、図面を参照して、本発明の実施形態を説明する。なお、以下で説明する実施形態において、各実施形態で共通する機能を有する部材については、類似の符号を付し、また、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments described below, members having functions common to the respective embodiments are denoted by similar reference numerals, and redundant description is omitted.
<第1実施形態>
図1は光学要素製造方法の概要を説明するための図、図2は光学要素の製造工程を詳細に説明するための図、図3は第1実施形態により製造された光学要素の用途例を説明する図である。
<First Embodiment>
FIG. 1 is a diagram for explaining the outline of the optical element manufacturing method, FIG. 2 is a diagram for explaining the manufacturing process of the optical element in detail, and FIG. 3 is an application example of the optical element manufactured according to the first embodiment. It is a figure explaining.
図1において説明すると、実施形態に係る光学要素製造方法は、光を通す扁平な基部412と基部412の一の面417に設けられた光を通す複数の突部415とを備える光学シート410を形成する光学シート形成工程を有する。 Referring to FIG. 1, the optical element manufacturing method according to the embodiment includes an optical sheet 410 including a flat base 412 that transmits light and a plurality of protrusions 415 that transmit light provided on one surface 417 of the base 412. An optical sheet forming step to be formed;
光学要素製造方法はまた、光を通す拡散板421(基材に相当する)上に突部415よりも柔らかく透明な緩衝層422と、緩衝層422上に緩衝層422よりも脆い材料からなる遮光層423を形成する工程と、を有する。 The optical element manufacturing method also includes a buffer layer 422 that is softer and more transparent than the protrusions 415 on a diffusion plate 421 (corresponding to a base material) that transmits light, and a light shielding material that is made of a material more brittle than the buffer layer 422 on the buffer layer 422. Forming a layer 423.
拡散板421は、均一に面発光した光を光学シート410に供給する。緩衝層422は、粘着性を有し、例えばPSA(Pressure Sensitive Adhesive)である。遮光層423は、例えば、透明樹脂等のバインダ中に、酸化チタン、酸化ケイ素等の微粒子を分散させたものである。遮光層423の厚さtは、数μm〜数十μmであり、突部415の高さHより小さい(H>t)。遮光層423は、50〜90%の拡散反射率を有する。ここで、遮光層423は、大部分の光を遮るが、完全に遮断して、まったく透過しないわけではない。 The diffusing plate 421 supplies the uniformly surface-emitting light to the optical sheet 410. The buffer layer 422 has adhesiveness, and is, for example, PSA (Pressure Sensitive Adhesive). The light shielding layer 423 is formed by dispersing fine particles such as titanium oxide and silicon oxide in a binder such as a transparent resin. The thickness t of the light shielding layer 423 is several μm to several tens μm, and is smaller than the height H of the protrusion 415 (H> t). The light shielding layer 423 has a diffuse reflectance of 50 to 90%. Here, the light shielding layer 423 blocks most of the light but does not completely block light and does not transmit at all.
光学シート形成工程および遮光層形成工程の後に、光学要素製造方法は、光学シート410を拡散板421に重ね、光学シート410によって、拡散板421上に設けられた遮光層423を押圧し、突部415によって遮光層423を破断させて光を通す開口部を形成する押圧工程を有する。 After the optical sheet forming step and the light shielding layer forming step, the optical element manufacturing method stacks the optical sheet 410 on the diffusion plate 421, presses the light shielding layer 423 provided on the diffusion plate 421 with the optical sheet 410, and 415 includes a pressing step of breaking the light shielding layer 423 to form an opening through which light passes.
図2(A)に示すように、光学シート形成工程では、基部412の面417に複数の突部415を、周知の紫外線硬化型樹脂(以下、単にUV樹脂と称す)を母型(図示せず)に充填し、紫外線を照射することによって、UV樹脂を硬化させ形成する。また、光学要素410は、溶融押出成形によって、基部412と複数の突部415とを一体的に形成しても良い。 As shown in FIG. 2A, in the optical sheet forming step, a plurality of protrusions 415 are formed on the surface 417 of the base 412, and a well-known ultraviolet curable resin (hereinafter simply referred to as a UV resin) is used as a matrix (not shown). The resin is cured and formed by irradiating with ultraviolet rays. The optical element 410 may integrally form the base 412 and the plurality of protrusions 415 by melt extrusion.
図2(B)および図2(C)に拡散板421上に緩衝層422および遮光層423を形成する方法を示す。図2(B)に示したように、あらかじめ、一対の剥離フィルム424および425の間に粘着性を有する緩衝層422および遮光層423を形成したフィルムシートを用意する。次に、図2(C)に示したように、緩衝層422側の剥離フィルム424を剥離しながら、緩衝層422の粘着性を利用して、拡散板421に前記フィルムシートを貼合する。 2B and 2C illustrate a method for forming the buffer layer 422 and the light shielding layer 423 over the diffusion plate 421. FIG. As shown in FIG. 2B, a film sheet is prepared in which an adhesive buffer layer 422 and a light-shielding layer 423 are formed between a pair of release films 424 and 425 in advance. Next, as shown in FIG. 2C, the film sheet is bonded to the diffusion plate 421 using the adhesiveness of the buffer layer 422 while peeling the release film 424 on the buffer layer 422 side.
図2(D)に示すように押圧工程は、剥離フィルム425を剥離後、突部415によって遮光層423を破断させるとともに、突部415を緩衝層422に食い込ませる。押圧工程によって、光学シート410と拡散板421とが一体となり、光学要素400が形成される。 As shown in FIG. 2D, in the pressing step, after the release film 425 is peeled off, the light shielding layer 423 is broken by the protrusions 415 and the protrusions 415 are bitten into the buffer layer 422. By the pressing step, the optical sheet 410 and the diffusion plate 421 are integrated, and the optical element 400 is formed.
突部415は遮光層423を突き抜ける。破断した遮光層423は、緩衝層422とともに突部415と突部415との間に入り込む。突部415と突部415との間では、遮光層423と光学シート410との間に空気の層405(以下、単に空気層405と称す)が形成される。 The protrusion 415 penetrates the light shielding layer 423. The broken light shielding layer 423 enters between the protrusions 415 and 415 together with the buffer layer 422. Between the protrusion 415 and the protrusion 415, an air layer 405 (hereinafter simply referred to as an air layer 405) is formed between the light shielding layer 423 and the optical sheet 410.
遮光層423が緩衝層422のように柔らかいと、突部415が遮光層423を押圧したとき遮光層423が突部415の外形に沿って変形し、開口部となる突部415を覆う虞があるため、遮光層423は、脆く、突部415による押圧によって破断し易いものが好ましい。 If the light shielding layer 423 is soft like the buffer layer 422, the light shielding layer 423 may be deformed along the outer shape of the projection 415 when the projection 415 presses the light shielding layer 423, and may cover the projection 415 serving as an opening. Therefore, it is preferable that the light shielding layer 423 is fragile and easily breaks when pressed by the protrusion 415.
第1実施形態では、緩衝層422及び遮光層423を、あらかじめ、剥離フィルム424及び425の間に形成したものを用意し、拡散板421に貼合して用いたが、これに限定されるものではなく、拡散板421上に直接、緩衝層422、遮光層423を順に形成しても良い。また、遮光層423の破断時に破砕された遮光層423の飛沫の飛散防止や、突部415の先端部の角の傷つき防止などの目的で、遮光層423の両側に緩衝層422を形成しても良い。この際、突部415の側面での光の全反射を損なわない為に、光学シート410側の透明な緩衝層の屈折率を、突部415の屈折率より小さくすることが望ましい。 In the first embodiment, the buffer layer 422 and the light shielding layer 423 are prepared in advance between the release films 424 and 425 and bonded to the diffusion plate 421. However, the present invention is not limited to this. Instead, the buffer layer 422 and the light shielding layer 423 may be formed in this order directly on the diffusion plate 421. In addition, buffer layers 422 are formed on both sides of the light shielding layer 423 for the purpose of preventing splashing of the light shielding layer 423 crushed when the light shielding layer 423 is broken and preventing the corners of the tip of the projection 415 from being damaged. Also good. At this time, it is desirable that the refractive index of the transparent buffer layer on the optical sheet 410 side is smaller than the refractive index of the protrusion 415 so as not to impair the total reflection of light on the side surface of the protrusion 415.
第1実施形態の作用効果を述べる。 The effects of the first embodiment will be described.
光学要素製造方法は、突部415による遮光層423の破断によって、光を通す開口部を形成しつつ開口部の位置に合わせて突部415を配置するため、製造工程の煩雑さを抑えられ、製造が容易である。 Since the optical element manufacturing method arranges the protrusions 415 in accordance with the positions of the openings while forming the openings through which light passes due to the breakage of the light shielding layer 423 by the protrusions 415, the complexity of the manufacturing process can be suppressed, Easy to manufacture.
また、光学要素製造方法は、突部415に比べて柔らかい緩衝層422に突部415を食い込ませるため突部415の損傷を妨げられ、ひいては良好な品質の光学要素400を製造し得る。 Further, since the optical element manufacturing method causes the protrusion 415 to bite into the buffer layer 422 that is softer than the protrusion 415, damage to the protrusion 415 can be prevented, and as a result, an optical element 400 of good quality can be manufactured.
図3に、第1実施形態の光学要素の利用形態を示す。 FIG. 3 shows a usage pattern of the optical element of the first embodiment.
図3(A)に示すように、第1実施形態に係る光学要素製造方法によって製造した光学要素400は、液晶パネル50とバックライト52との間に配置され、拡散板421によって均一化させた、バックライトの光53を入射させることによって、正面方向に光を集光させ、明るさを向上させた光54を液晶パネル50に供給できる。 As shown in FIG. 3A, the optical element 400 manufactured by the optical element manufacturing method according to the first embodiment is disposed between the liquid crystal panel 50 and the backlight 52 and is made uniform by the diffusion plate 421. By making the light 53 of the backlight incident, it is possible to collect the light 54 in the front direction and supply the light 54 with improved brightness to the liquid crystal panel 50.
図3(B)に示す光学要素400は、液晶パネル50に対して光51の出射方向下流に配置し、光学シート410から光51を入射させることによって、光51の視野角を広げられる。 The optical element 400 shown in FIG. 3B is disposed downstream of the liquid crystal panel 50 in the emission direction of the light 51, and the light 51 is incident from the optical sheet 410, thereby widening the viewing angle of the light 51.
なお、図3(B)に示した実施形態においては、明室でのコントラストを向上させるため、遮光層423は、黒色等の光を吸収する遮光層423である。この吸光性の遮光層423は、例えば、透明樹脂等のバインダ中に、カーボン、黒色樹脂ビーズ、黒色顔料等の微粒子を分散させたものである。また、基材421は、拡散板ではなく、透明板または透明フィルムでも良い。この透明板または透明フィルムは、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂などのプラスチック製の板およびフィルムやガラス板などが使用できる。この透明板や透明フィルムは、その出射側表面に、公知のアンチグレア層(AG)、無反射層(AR)、低反射層(LR)等を形成しても良い。 In the embodiment shown in FIG. 3B, the light shielding layer 423 is a light shielding layer 423 that absorbs light such as black in order to improve contrast in a bright room. For example, the light-absorbing light-shielding layer 423 is obtained by dispersing fine particles such as carbon, black resin beads, and black pigment in a binder such as a transparent resin. Further, the substrate 421 may be a transparent plate or a transparent film instead of the diffusion plate. As the transparent plate or transparent film, plastic plates such as acrylic resin, styrene resin, polycarbonate resin, and polyester resin, and films and glass plates can be used. This transparent plate or transparent film may be formed with a known anti-glare layer (AG), non-reflective layer (AR), low reflective layer (LR), etc. on its outgoing side surface.
<第2実施形態>
図4は光学要素製造方法の概要を説明するための図、図5は光学シート形成工程を説明するための図、図6は押圧工程を説明するための図、図7は光学要素の部分拡大図である。
<Second Embodiment>
4 is a diagram for explaining the outline of the optical element manufacturing method, FIG. 5 is a diagram for explaining the optical sheet forming process, FIG. 6 is a diagram for explaining the pressing process, and FIG. 7 is a partially enlarged view of the optical element. FIG.
図4において説明すると、実施形態に係る光学要素製造方法は、光を通す扁平な基部112と基部112の一の面117に設けられた光を通す複数の突部115とを備える光学シート110を形成する光学シート形成工程を有する。光学シート110は、基部112の面117と異なる他の面116の突部115に対応する位置に、複数の凸レンズ111(レンズに相当する)を有する。 Referring to FIG. 4, the optical element manufacturing method according to the embodiment includes an optical sheet 110 including a flat base 112 that transmits light and a plurality of protrusions 115 that transmit light provided on one surface 117 of the base 112. An optical sheet forming step to be formed; The optical sheet 110 has a plurality of convex lenses 111 (corresponding to lenses) at positions corresponding to the protrusions 115 of the other surface 116 different from the surface 117 of the base 112.
光学要素製造方法はまた、光を通す拡散板121(基材に相当する)上に突部115よりも柔らかく透明な緩衝層122、及び、緩衝層122上に緩衝層122よりも脆い材料からなる遮光層123を形成する工程と、を有する。拡散板121、緩衝層122、及び、遮光層123は、第1実施形態で説明したものと同様のものが使用できる。 The optical element manufacturing method also includes a buffer layer 122 that is softer and transparent than the protrusion 115 on the diffusion plate 121 (corresponding to the base material) that transmits light, and a material that is more brittle than the buffer layer 122 on the buffer layer 122. Forming a light shielding layer 123. The diffuser plate 121, the buffer layer 122, and the light shielding layer 123 can be the same as those described in the first embodiment.
光学シート形成工程および遮光層形成工程の後に、光学要素製造方法は、光学シート110を拡散板121に重ね、光学シート110によって、拡散板121上に設けられた遮光層123を押圧し、突部115によって遮光層123を破断させて光を通す開口部を形成する押圧工程を有する。 After the optical sheet forming step and the light shielding layer forming step, the optical element manufacturing method stacks the optical sheet 110 on the diffusion plate 121, presses the light shielding layer 123 provided on the diffusion plate 121 with the optical sheet 110, and 115 has a pressing step of breaking the light shielding layer 123 to form an opening through which light passes.
図5に示すように、光学シート形成工程は、基部112の面116に複数の凸レンズ111を形成するレンズ形成工程と、光によって硬化するUV樹脂層113を基部112の面117に形成する硬化層形成工程と、を有する。光学シート形成工程はまた、凸レンズ111を通してUV樹脂層113に光を照射し、UV樹脂層113が硬化してなる硬化部114を形成する硬化工程と、硬化部114と異なるUV樹脂層113を除去し、硬化部114を突部115とする突部形成工程と、を有する。 As shown in FIG. 5, the optical sheet forming step includes a lens forming step for forming a plurality of convex lenses 111 on the surface 116 of the base 112, and a cured layer for forming a UV resin layer 113 that is cured by light on the surface 117 of the base 112. Forming step. In the optical sheet forming step, the UV resin layer 113 is irradiated with light through the convex lens 111 to form a cured portion 114 formed by curing the UV resin layer 113, and the UV resin layer 113 different from the cured portion 114 is removed. And a protruding portion forming step in which the hardened portion 114 is the protruding portion 115.
図5(A)に示すように、レンズ形成工程では、紫外線硬化型樹脂(以下、単にUV樹脂と称す)に紫外線を照射することによって、または溶融押出成形によって、基部112と複数の凸レンズ111とを一体的に形成する。 As shown in FIG. 5A, in the lens formation step, the base 112 and the plurality of convex lenses 111 are formed by irradiating an ultraviolet curable resin (hereinafter simply referred to as UV resin) with ultraviolet rays or by melt extrusion molding. Are integrally formed.
複数の凸レンズ111は、例えば、1次元のレンチキュラーレンズ、または2次元のマイクロレンズアレイである。マイクロレンズアレイの配列は、縦横に並んだ正方配列、六角形に隙間なく並んだ六方最密配列の他、ランダムな配列であっても良い。レンズ形成工程の後、硬化層形成工程では、UV樹脂を面117に塗布する。 The plurality of convex lenses 111 are, for example, a one-dimensional lenticular lens or a two-dimensional microlens array. The array of the microlens array may be a square array arranged vertically and horizontally, a hexagonal close-packed array arranged in a hexagonal shape without a gap, or a random array. After the lens formation step, UV resin is applied to the surface 117 in the cured layer formation step.
図5(B)に示すように硬化工程では、セルフアライメントによって、面117に塗布したUV樹脂を硬化させる。すなわち、凸レンズ111を通して、UV樹脂層113に紫外線10を照射し、UV樹脂層113において凸レンズ111に対応した部分を硬化させる。紫外線10の照射方向は、基部112の面116、117に対して略直角であり、凸レンズ111の焦点15はUV樹脂層113に位置する。 As shown in FIG. 5B, in the curing step, the UV resin applied to the surface 117 is cured by self-alignment. That is, the UV resin layer 113 is irradiated with ultraviolet rays 10 through the convex lens 111, and the portion corresponding to the convex lens 111 in the UV resin layer 113 is cured. The irradiation direction of the ultraviolet rays 10 is substantially perpendicular to the surfaces 116 and 117 of the base 112, and the focal point 15 of the convex lens 111 is located on the UV resin layer 113.
図5(C)に示すように突部形成工程では、硬化部114と異なるUV樹脂層113、つまり未硬化のUV樹脂を例えば溶剤等によって洗い流して、突部115を形成する。 As shown in FIG. 5C, in the protrusion forming step, the UV resin layer 113 different from the cured part 114, that is, the uncured UV resin is washed away with, for example, a solvent to form the protrusions 115.
このようにして形成された突部115は、複数の凸レンズ111が、1次元のレンチキュラーレンズの場合には、凸レンズ111同様に、1次元の突部となり、2次元のマイクロレンズアレイの場合には、やはり、2次元的に配列されたものとなる。 The protrusions 115 formed in this way become one-dimensional protrusions when the plurality of convex lenses 111 are one-dimensional lenticular lenses, like the convex lens 111, and in the case of a two-dimensional microlens array. After all, it is arranged two-dimensionally.
図6に示すように押圧工程は、突部115によって遮光層123を破断させるとともに、突部115を緩衝層122に食い込ませる。押圧工程によって、光学シート110と拡散板121とが一体となり、光学要素100が形成される。 As shown in FIG. 6, in the pressing step, the light blocking layer 123 is broken by the protrusion 115 and the protrusion 115 is bitten into the buffer layer 122. By the pressing step, the optical sheet 110 and the diffusion plate 121 are integrated, and the optical element 100 is formed.
第2実施形態は第1実施形態と略同様の効果を奏する。 The second embodiment has substantially the same effect as the first embodiment.
実施形態と異なり、面117における、突部115と突部115との間に相当する位置にレンズ111のセルフアライメントを利用して粘着性の粘着層を形成し、この粘着層のパターンに遮光性の顔料を含んだインクを転写して開口部と遮光層とを形成する(転写法)こともできる。しかしこの方法では、インク内の顔料濃度を上げると、解像性の低下を招く虞がある。 Unlike the embodiment, an adhesive pressure-sensitive adhesive layer is formed by utilizing self-alignment of the lens 111 at a position corresponding to the surface 117 between the protrusions 115 on the surface 117, and the pattern of the pressure-sensitive adhesive layer is shielded from light. It is also possible to transfer the ink containing the pigment to form the opening and the light shielding layer (transfer method). However, in this method, if the pigment concentration in the ink is increased, the resolution may be lowered.
一方、本実施形態では、転写によらず、突部115によって遮光層123を破断させて光を通す開口部を形成しつつ突部115と突部115との間に遮光層123を形成するため、遮光層123に含まれる遮光性の微粒子の濃度を上げても、解像性が良好である。 On the other hand, in the present embodiment, the light shielding layer 123 is formed between the protrusion 115 and the protrusion 115 while the light blocking layer 123 is broken by the protrusion 115 to form an opening through which light passes without being transferred. Even when the concentration of the light-shielding fine particles contained in the light-shielding layer 123 is increased, the resolution is good.
実施形態と異なり、機械的方法によって、突部115と開口部とを位置合わせすることもできるが、このような方法では、高精細化と大面積化との両立が困難である。一方、本実施形態では、突部115による遮光層123の破断によって、光を通す開口部を形成しつつ開口部の位置に合わせて突部115を配置するため、高精細化と大面積化との両立が容易である。 Unlike the embodiment, the protrusion 115 and the opening can be aligned by a mechanical method. However, with such a method, it is difficult to achieve both high definition and large area. On the other hand, in the present embodiment, the projection 115 is arranged in accordance with the position of the opening while forming the opening through which light is transmitted by the breakage of the light shielding layer 123 by the projection 115. It is easy to achieve both.
図7に示すように光学要素100では、拡散板121によって散乱した光は、突部115および凸レンズ111を通り、レンズ作用によって正面方向にコリメートされる。したがって、液晶を含む液晶パネルと光源としてのバックライトとの間に光学要素100を配置し、拡散板121からバックライトの光を入射させることによって、正面方向の明るさを向上させた光を液晶パネルに供給できる。 As shown in FIG. 7, in the optical element 100, the light scattered by the diffusion plate 121 passes through the projection 115 and the convex lens 111 and is collimated in the front direction by the lens action. Therefore, the optical element 100 is disposed between a liquid crystal panel including liquid crystal and a backlight as a light source, and light from the backlight is made incident from the diffusion plate 121, so that light with improved brightness in the front direction is liquid crystal. Can supply the panel.
空気層105はなくてもよいが、実施形態のように空気層105があると、遮光層123と空気層105との屈折率の差によって全反射する光が生じるため、空気層105がない場合に比べて遮光層123の遮光性が高められ好ましい。また、突部115と空気層105との屈折率の差によって突部115の側面118において全反射する光が生ずるため、隣接する凸レンズ111に入射する光(図7中の点線参照)の割合を低減できる。 The air layer 105 may not be provided. However, if the air layer 105 is provided as in the embodiment, light that is totally reflected is generated due to a difference in refractive index between the light shielding layer 123 and the air layer 105. Compared to the above, the light shielding property of the light shielding layer 123 is preferably increased. Further, since the light totally reflected on the side surface 118 of the protrusion 115 is generated due to the difference in refractive index between the protrusion 115 and the air layer 105, the ratio of the light incident on the adjacent convex lens 111 (see the dotted line in FIG. 7) is set. Can be reduced.
実施形態に係る光学要素製造方法では、緩衝層122に突部115を食い込ませたとき、破断した遮光層123は、緩衝層122に押されるようにして突部115と突部115との間に入り込むため、光学要素100では、遮光層123が光学シート110に向かって突き出している。遮光層123で光が反射するとき、完全な散乱反射のみが生ずることは稀で、方向性を持たない散乱反射と正反射(鏡面反射)とが混ざり合っていることが多い。光学要素100では、遮光層123が光学シート110に向かって突き出しているため、散乱反射のうちの正反射成分において、緩衝層122と拡散板121との境界面に対して垂直な方向成分の割合が、遮光層123と基部112とが略平行な場合に比べて増加する。その結果、反射回数を抑制して光を突部115から出射できるため、光の利用効率が向上する。 In the optical element manufacturing method according to the embodiment, when the protrusion 115 is bitten into the buffer layer 122, the broken light shielding layer 123 is pressed between the protrusion 115 and the protrusion 115 so as to be pushed by the buffer layer 122. Therefore, in the optical element 100, the light shielding layer 123 protrudes toward the optical sheet 110. When light is reflected by the light shielding layer 123, only complete scattered reflection rarely occurs, and scattered reflection having no directionality and regular reflection (specular reflection) are often mixed. In the optical element 100, since the light shielding layer 123 protrudes toward the optical sheet 110, the ratio of the directional component perpendicular to the boundary surface between the buffer layer 122 and the diffusion plate 121 in the regular reflection component of the scattered reflection. However, it increases compared with the case where the light shielding layer 123 and the base 112 are substantially parallel. As a result, since the number of reflections can be suppressed and light can be emitted from the projection 115, the light utilization efficiency is improved.
<第3実施形態>
図8は第3実施形態に係る他の光学要素製造方法を説明するための図である。
<Third Embodiment>
FIG. 8 is a diagram for explaining another optical element manufacturing method according to the third embodiment.
図8に示すように、第3実施形態は第2実施形態と略同様であるが、第2実施形態の硬化工程において、凸レンズ211の焦点25をUV樹脂層213より遠方に位置させる点で、第2実施形態と異なる。このため断面が台形形状の突部215が形成でき、押圧工程は、先端に向かって先細りとなる形状を有する突部215によって遮光層223を破断する。よって、第2実施形態の効果に加え、押圧工程において、突部215を押し付けるための力を低減できるという効果を奏する。 As shown in FIG. 8, the third embodiment is substantially the same as the second embodiment, but in the curing step of the second embodiment, the focal point 25 of the convex lens 211 is positioned farther than the UV resin layer 213. Different from the second embodiment. Therefore, a protrusion 215 having a trapezoidal cross section can be formed, and in the pressing step, the light shielding layer 223 is broken by the protrusion 215 having a shape that tapers toward the tip. Therefore, in addition to the effect of the second embodiment, there is an effect that the force for pressing the protrusion 215 can be reduced in the pressing step.
図9に、第2、第3実施形態の光学要素の利用形態を示す。 FIG. 9 shows how the optical elements of the second and third embodiments are used.
図9(A)に示すように、第2、第3実施形態に係る光学要素製造方法によって製造した光学要素100(200)は、前述の第1実施形態に係る光学要素製造方法によって製造した光学要素400と同様に、液晶パネル50とバックライト52との間に配置され、拡散板121(221)によって均一化させた、バックライトの光53を入射させることによって、正面方向に光を集光させ、明るさを向上させた光54を液晶パネル50に供給できる。 As shown in FIG. 9A, the optical element 100 (200) manufactured by the optical element manufacturing method according to the second and third embodiments is an optical manufactured by the optical element manufacturing method according to the first embodiment. Similar to the element 400, the light 53 of the backlight is incident between the liquid crystal panel 50 and the backlight 52, and is made uniform by the diffusion plate 121 (221), thereby condensing the light in the front direction. Thus, the light 54 with improved brightness can be supplied to the liquid crystal panel 50.
また、図9(B)に示すように、第2、第3実施形態に係る光学要素製造方法によって製造した光学要素100(200)を、液晶パネル50に対して光51の出射方向下流に配置し、レンズ111(211)から光51を入射させることによって、光51の視野角を広げられる。遮光層123(223)は、第1実施形態に係る製造方法によって製造した光学要素400における遮光層423と同様、吸光性の遮光層で、基材121(221)も、また、第1実施形態におけるに係る製造方法によって製造した光学要素400における基材421と同様、透明板または透明フィルムであっても良い。 Further, as shown in FIG. 9B, the optical element 100 (200) manufactured by the optical element manufacturing method according to the second and third embodiments is arranged downstream of the liquid crystal panel 50 in the emission direction of the light 51. Then, by making the light 51 incident from the lens 111 (211), the viewing angle of the light 51 can be widened. The light shielding layer 123 (223) is an absorptive light shielding layer similar to the light shielding layer 423 in the optical element 400 manufactured by the manufacturing method according to the first embodiment, and the base material 121 (221) is also the first embodiment. Similarly to the substrate 421 in the optical element 400 manufactured by the manufacturing method according to, a transparent plate or a transparent film may be used.
<第4実施形態>
図10は第4実施形態に係る光学要素製造方法を説明するための図、図11は突部側から見た第4実施形態に係る光学シートの平面図である。
<Fourth embodiment>
FIG. 10 is a view for explaining an optical element manufacturing method according to the fourth embodiment, and FIG. 11 is a plan view of the optical sheet according to the fourth embodiment viewed from the protrusion side.
第4実施形態に係る光学要素製造方法は、第2実施形態と略同様であるが、第2実施形態が、複数の凸レンズ要素111が、1次元のレンチキュラーレンズ、2次元のマイクロレンズアレイのいずれをも含むものであったが、第4実施形態においては、2次元のマイクロレンズアレイのみに限定される。また、硬化工程が第2実施形態と異なる。 The optical element manufacturing method according to the fourth embodiment is substantially the same as that of the second embodiment. In the second embodiment, the plurality of convex lens elements 111 is either a one-dimensional lenticular lens or a two-dimensional microlens array. However, the fourth embodiment is limited to only a two-dimensional microlens array. Moreover, a hardening process differs from 2nd Embodiment.
図10(A)は、第4実施形態に使用するマイクロレンズアレイシートの斜視図である。この例のマイクロレンズアレイシートは、凸レンズ311が六方最密に配列されている。凸レンズ311が順に配列されている方向を31、1つおきに互い違いに配列されている方向を32とする。以下、第4実施形態に使用するマイクロレンズアレイシートは、凸レンズ311が六方最密に配列されている例で説明するが、第4実施形態はこれに限定されるものでは無く、正方配列やランダム配列等においても、適応可能である。 FIG. 10A is a perspective view of a microlens array sheet used in the fourth embodiment. In the microlens array sheet of this example, convex lenses 311 are arranged in a hexagonal close-packed manner. The direction in which the convex lenses 311 are sequentially arranged is 31, and the direction in which every other lens is alternately arranged is 32. Hereinafter, the microlens array sheet used in the fourth embodiment will be described with an example in which the convex lenses 311 are arranged in a hexagonal close-packed manner, but the fourth embodiment is not limited to this, and a square arrangement or a random arrangement is used. It can also be applied to arrangements and the like.
図10(B)に示すように、第4実施形態の硬化工程は、UV樹脂層313の面に沿う一方向31に紫外線30を拡散させて照射する、または、紫外線30を照射する角度を変えてUV樹脂層313の面に沿う一方向31に段階的に紫外線を照射する。 As shown in FIG. 10B, in the curing step of the fourth embodiment, the ultraviolet rays 30 are diffused and irradiated in one direction 31 along the surface of the UV resin layer 313, or the angle at which the ultraviolet rays 30 are irradiated is changed. Then, ultraviolet rays are irradiated stepwise in one direction 31 along the surface of the UV resin layer 313.
このような照射によって、例えば図11(A)に示すように、基部312の面317に対して平行な面における断面形状が楕円形の突部315Aが形成される。楕円形の長軸は方向31に沿っている。または図11(B)に示すように、方向31に沿って繋がった突部315Bが形成される。突部315A、315Bの各々がこのような形状を有することによって、方向31とこれに直角な方向32とで視野角が異なる。つまり、第4実施形態に係る光学要素製造方法は、第2実施形態の効果に加え、2方向で視野角の異なる光学要素を製造できるという効果を奏する。 By such irradiation, for example, as shown in FIG. 11A, a protrusion 315A having an elliptical cross-sectional shape in a plane parallel to the surface 317 of the base 312 is formed. The major axis of the ellipse is along direction 31. Alternatively, as shown in FIG. 11B, a protrusion 315B connected along the direction 31 is formed. Since each of the protrusions 315A and 315B has such a shape, the viewing angle is different between the direction 31 and the direction 32 perpendicular thereto. That is, the optical element manufacturing method according to the fourth embodiment has an effect of manufacturing optical elements having different viewing angles in two directions in addition to the effects of the second embodiment.
本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変できる。例えば、第1実施形態において、緩衝層422が十分な厚みを有していれば、突部415の断面形状を先端が尖った三角形としてもよい。また、利用形態に関する図3(B)において、液晶パネル50と光学要素400とを基部412で貼り合せる場合、光学要素400自体に自立性は不要となるため、押圧工程後、基材421を剥離しても良い。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the first embodiment, if the buffer layer 422 has a sufficient thickness, the cross-sectional shape of the protrusion 415 may be a triangle with a sharp tip. Further, in FIG. 3B regarding the usage mode, when the liquid crystal panel 50 and the optical element 400 are bonded to each other with the base 412, the optical element 400 itself does not need to be self-supporting. You may do it.
10、20、30 紫外線、
15、25 焦点、
31 一方向、
50 液晶パネル、
52 バックライト、
100、400 光学要素、
105、405 空気層、
110、210、410 光学シート
111、211、311 凸レンズ(レンズに相当する)、
112、212、312、412 基部、
113、213、313 硬化層、
114 硬化部、
115、215、315A、315B、415 突部、
116、216、316、416 基部の面(一の面に相当する)、
117、217、317、417 基部の面(他の面に相当する)、
121、221、421 拡散板(基材に相当する)、
122、222、422 緩衝層、
123、223、423 遮光層。
10, 20, 30 UV,
15, 25 focus,
31 one way,
50 LCD panel,
52 Backlight,
100, 400 optical elements,
105, 405 air layer,
110, 210, 410 Optical sheets 111, 211, 311 Convex lenses (corresponding to lenses),
112, 212, 312, 412 base,
113, 213, 313 hardened layer,
114 curing part,
115, 215, 315A, 315B, 415 protrusion,
116, 216, 316, 416 Base surface (corresponding to one surface),
117, 217, 317, 417 Base surface (corresponding to other surface),
121, 221 and 421 diffuser plate (corresponding to the base material),
122, 222, 422 buffer layer,
123, 223, 423 Light-shielding layers.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335781A JP5101485B2 (en) | 2008-12-29 | 2008-12-29 | Optical element manufacturing method |
KR1020090130254A KR101234850B1 (en) | 2008-12-29 | 2009-12-23 | Method of manuracturing optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335781A JP5101485B2 (en) | 2008-12-29 | 2008-12-29 | Optical element manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010156892A true JP2010156892A (en) | 2010-07-15 |
JP5101485B2 JP5101485B2 (en) | 2012-12-19 |
Family
ID=42574853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008335781A Expired - Fee Related JP5101485B2 (en) | 2008-12-29 | 2008-12-29 | Optical element manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5101485B2 (en) |
KR (1) | KR101234850B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101816846B1 (en) | 2010-08-19 | 2018-01-12 | 삼성전자주식회사 | Display apparatus and method for providing OSD applying thereto |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009163904A (en) * | 2007-12-28 | 2009-07-23 | Kuraray Co Ltd | Brightness improvement device for backlight and its manufacturing method |
JP2009163906A (en) * | 2007-12-28 | 2009-07-23 | Kuraray Co Ltd | Brightness improvement device for backlight and its manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4450977B2 (en) * | 2000-12-07 | 2010-04-14 | セイコーインスツル株式会社 | Optical aperture manufacturing method and optical aperture manufacturing apparatus |
JP2002174586A (en) | 2000-12-07 | 2002-06-21 | Seiko Instruments Inc | Manufacturing method for optical aperture |
JP3731592B2 (en) * | 2003-09-08 | 2006-01-05 | セイコーエプソン株式会社 | Transmission screen member, transmission screen and rear projector |
KR100623014B1 (en) * | 2004-08-28 | 2006-09-19 | 엘지전자 주식회사 | Microlens Array Sheet including Black Matrix and Manufacturing Method thereof |
-
2008
- 2008-12-29 JP JP2008335781A patent/JP5101485B2/en not_active Expired - Fee Related
-
2009
- 2009-12-23 KR KR1020090130254A patent/KR101234850B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009163904A (en) * | 2007-12-28 | 2009-07-23 | Kuraray Co Ltd | Brightness improvement device for backlight and its manufacturing method |
JP2009163906A (en) * | 2007-12-28 | 2009-07-23 | Kuraray Co Ltd | Brightness improvement device for backlight and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20100080387A (en) | 2010-07-08 |
JP5101485B2 (en) | 2012-12-19 |
KR101234850B1 (en) | 2013-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI794456B (en) | optical device | |
JP5495259B2 (en) | Display device and manufacturing method thereof | |
WO2009118946A1 (en) | Optical member, illuminating apparatus, display apparatus, television receiving apparatus and method for manufacturing optical member | |
JP2008116913A (en) | Method for manufacturing optical element, optical element, illuminating optical apparatus, display apparatus, and electronic apparatus | |
JP2007264393A (en) | Liquid crystal display device | |
JP2007003852A (en) | Diffusion sheet, method for manufacturing diffusion sheet, backlight device and liquid crystal display device | |
WO2011052255A1 (en) | Light diffusion sheet, method for producing light diffusion sheet, and display device | |
JP2009258297A (en) | Lens array sheet, optical sheet, light source, and liquid crystal display device | |
JP4039465B1 (en) | Optical sheet and backlight unit and display using the same | |
WO2011068168A1 (en) | Light diffusion sheet, method for manufacturing same, and transmissive display device provided with light diffusion sheet | |
JP2009086208A (en) | Optical sheet, backlight unit, and display device | |
JP5003298B2 (en) | Optical sheet, backlight unit using the same, and display device | |
JP5157234B2 (en) | Optical sheet, backlight unit using the same, and display device | |
JP2008310251A (en) | Optical sheet, back light unit, and display apparatus | |
JP2010050003A (en) | Surface illuminating device and image display apparatus | |
JP5012221B2 (en) | Backlight unit and display device | |
JP5101485B2 (en) | Optical element manufacturing method | |
JP2009109828A (en) | Optical sheet, backlight unit, and display device | |
JP2008139541A (en) | Optical sheet, backlight unit using the same and display device | |
JP2022189735A (en) | Light diffusion sheet, light diffusion sheet laminate, backlight unit, and liquid crystal display device | |
JP5066957B2 (en) | Optical sheet, backlight unit using the same, and display device | |
JP2009294240A (en) | Optical sheet, back light unit, liquid crystal display device and display device | |
JP2008298839A (en) | Optical sheet, back light unit using the same, and display device | |
JP2006323149A (en) | Method for producing microlens, microlens, optical plate, diffusion plate, light guide plate, backlight, screen for projection, projection system, optoelectronic device and electronic device | |
TW200304579A (en) | Micro-lens sheet and projection screen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |