JP2010156452A - Planetary rotation/linear motion converter - Google Patents

Planetary rotation/linear motion converter Download PDF

Info

Publication number
JP2010156452A
JP2010156452A JP2009223540A JP2009223540A JP2010156452A JP 2010156452 A JP2010156452 A JP 2010156452A JP 2009223540 A JP2009223540 A JP 2009223540A JP 2009223540 A JP2009223540 A JP 2009223540A JP 2010156452 A JP2010156452 A JP 2010156452A
Authority
JP
Japan
Prior art keywords
planetary
shaft
sun
gear
nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009223540A
Other languages
Japanese (ja)
Inventor
Hideo Saito
秀生 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2009223540A priority Critical patent/JP2010156452A/en
Priority to PCT/JP2009/068561 priority patent/WO2010064508A1/en
Priority to TW98140075A priority patent/TW201030255A/en
Publication of JP2010156452A publication Critical patent/JP2010156452A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2247Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
    • F16H25/2252Planetary rollers between nut and screw

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planetary rotation/linear motion converter for enlarging a stroke of a sun shaft, and improving productivity and durability. <P>SOLUTION: The planetary rotation/linear motion converter includes: the sun shaft 1 having a sun gear 11 and a helical ridge 12; planetary shafts 4 having planetary gears 41 meshing with the sun gear 11 of the sun shaft 1 and helical grooves 42 meshing with the helical ridge 12 of the sun shaft 1; and a nut 2 having an internal gear 21 meshing with the planetary gears 41 of the planetary shafts 4 and meshing with the helical grooves 42 in the planetary shafts 4. When the sun shaft 1 is rotated relative to the nut 2, the planetary shafts 4 linearly move relative to the sun shaft 1 in the axis direction of the sun shaft 1. Regions of the planetary shafts 4 in which the planetary gears 41 are formed and regions of the planetary shafts 4 in which the helical grooves 42 are formed are separated from each other in the axis direction of the planetary shafts 4. The sun gear 11 meshing with the planetary gears 41 of the planetary shafts 4 is formed on the helical ridge 12 of the sun shaft 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、遊星歯車機構を用いて回転運動を直線運動に変換する遊星式回転―直線運動変換装置に関する。   The present invention relates to a planetary rotation-linear motion conversion device that converts rotational motion into linear motion using a planetary gear mechanism.

回転運動を直線運動に変換する遊星式回転―直線運動変換装置の一つとして、太陽軸と、太陽軸の周囲に環状の空間を空けて囲むナットと、太陽軸とナットとの間に配列される複数の遊星軸と、を備える遊星式回転―直線運動変換装置が知られている(特許文献1参照)。太陽軸は、はすば状太陽歯車及びねじ状太陽歯車の双方を有する。遊星軸も、はすば状遊星歯車及びねじ状遊星歯車を有する。ナットも、はすば状内歯車及びねじ状内歯車を有する。太陽軸のはすば状太陽歯車、遊星軸のはすば状遊星歯車及びナットのはすば状内歯車が第一の遊星歯車機構を構成し、太陽軸のねじ状太陽歯車、遊星軸のねじ状遊星歯車及びナットのねじ状内歯車が第二の遊星歯車機構を構成する。太陽軸のねじ状太陽歯車、遊星軸のねじ状遊星歯車及びナットのねじ状内歯車のピッチは同一であり、互いに噛み合う第二の遊星歯車機構を構成する。そして、第一の遊星歯車機構と第二の遊星歯車機構の歯数比を異ならせることによって、ナットの回転運動を太陽軸の直線運動に変換している。   As a planetary rotation-linear motion conversion device that converts rotational motion into linear motion, it is arranged between the sun shaft, a nut that surrounds the sun shaft with an annular space, and is arranged between the sun shaft and the nut. There is known a planetary rotation-linear motion conversion device including a plurality of planetary shafts (see Patent Document 1). The sun shaft has both a helical sun gear and a threaded sun gear. The planetary shaft also has a helical planetary gear and a threaded planetary gear. The nut also has a helical internal gear and a threaded internal gear. The helical sun gear of the sun shaft, the helical planet gear of the planetary shaft, and the helical internal gear of the nut constitute the first planetary gear mechanism, and the threaded sun gear of the sun shaft, the planetary shaft of the planetary shaft The screw-like planetary gear and the screw-like internal gear of the nut constitute a second planetary gear mechanism. The threaded sun gear of the sun shaft, the threaded planetary gear of the planetary shaft, and the threaded internal gear of the nut have the same pitch, and constitute a second planetary gear mechanism that meshes with each other. Then, the rotational movement of the nut is converted into the linear movement of the sun axis by making the gear ratio of the first planetary gear mechanism and the second planetary gear mechanism different.

すなわち、特許文献1に記載の遊星式回転―直線運動変換装置において、遊星軸のはすば状遊星歯車に対する太陽軸のはすば状太陽歯車の歯数比を、遊星軸のねじ状遊星歯車に対する太陽軸のねじ状太陽歯車の条数比(歯数比)と異ならせている。その一方、遊星軸のはすば状遊星歯車に対するナットのはすば状内歯車の歯数比を、遊星軸のねじ状遊星歯車に対するナットのねじ状内歯車の条数比に一致させている。   That is, in the planetary rotation-linear motion conversion device described in Patent Document 1, the ratio of the number of teeth of the helical sun gear of the solar shaft to the helical planetary gear of the planetary shaft is expressed by the screw-type planetary gear of the planetary shaft. The ratio of the number of teeth (the ratio of the number of teeth) of the threaded sun gear on the sun shaft is different. On the other hand, the ratio of the number of teeth of the helical internal gear of the nut to the helical planetary gear of the planetary shaft is matched to the ratio of the number of threads of the internal screw of the nut to the screw-type planetary gear of the planetary shaft. .

特許文献1に記載の遊星式回転―直線運動変換装置の作動原理は以下のとおりに説明されている。太陽軸に対してナットを相対的に回転させると、遊星軸が太陽軸の回りを自転しながら公転する。ここで、第一の遊星歯車機構と第二の遊星歯車機構の歯数比が異なっているので、太陽軸が軸線方向に移動しないと仮定すると、第一の遊星歯車機構の遊星軸の公転位置と、第二の遊星歯車機構の遊星軸の公転位置が周方向にずれる。しかし、遊星軸のはすば状遊星歯車とねじ状遊星歯車とは互いに結合されているので、はすば状遊星歯車の公転位置とねじ状遊星歯車の公転位置がずれることはできない。太陽軸が軸線方向に移動すると、はすば状遊星歯車の公転位置が変化するのに対し、ねじ状遊星歯車の公転位置が変化する。それゆえ、太陽軸が軸線方向に移動することになる。   The operation principle of the planetary rotation-linear motion conversion device described in Patent Document 1 is described as follows. When the nut is rotated relative to the sun axis, the planetary axis revolves while rotating around the sun axis. Here, since the gear ratio of the first planetary gear mechanism and the second planetary gear mechanism is different, assuming that the sun axis does not move in the axial direction, the revolution position of the planetary axis of the first planetary gear mechanism Then, the revolution position of the planetary shaft of the second planetary gear mechanism is shifted in the circumferential direction. However, since the helical planetary gear and the screw planetary gear of the planetary shaft are coupled to each other, the revolution position of the helical planetary gear cannot be shifted from the revolution position of the screw planetary gear. When the sun axis moves in the axial direction, the revolution position of the helical planetary gear changes, whereas the revolution position of the screw-like planetary gear changes. Therefore, the sun axis moves in the axial direction.

特開2007−56952号公報 (図1,図14参照)JP 2007-56952 A (refer to FIG. 1 and FIG. 14)

しかし、従来の遊星式回転―直線運動変換装置にあっては、太陽軸が遊星軸に対して軸線方向に相対的に直線運動し、太陽軸のねじ状太陽歯車が遊星軸のねじ状遊星歯車の領域から外れたとき、太陽軸のねじ状太陽歯車が遊星軸のはすば状遊星歯車に当たってしまうという課題がある。このため、太陽軸のストローク量が、太陽軸のねじ状太陽歯車が遊星軸のはすば状遊星歯車に当たらない範囲に制限されてしまう。さらに、遊星軸のねじ状遊星歯車の軸線方向の片側にのみはすば状遊星歯車を設け、片側でのみ歯車駆動させているので、遊星軸を傾けるような曲げモーメントが作用し易く、回転の伝達効率が悪くなるという課題もある。   However, in the conventional planetary rotation-linear motion conversion device, the sun axis moves linearly relative to the planet axis in the axial direction, and the sun-shaped screw sun gear is the planetary-axis screw planetary gear. There is a problem in that the screw-shaped sun gear of the sun axis hits the helical planetary gear of the planetary shaft when it deviates from this region. For this reason, the stroke amount of the sun shaft is limited to a range in which the screw sun gear of the sun shaft does not hit the helical planet gear of the planet shaft. Furthermore, since a helical planetary gear is provided only on one side in the axial direction of the screw-type planetary gear of the planetary shaft and the gear is driven only on one side, a bending moment that tilts the planetary shaft is likely to act, There is also a problem that transmission efficiency deteriorates.

太陽軸のストローク量を大きくとり、かつ遊星軸に曲げモーメントが作用するのを防止するために、上記特許文献1の図14には、太陽軸の外周面に螺旋状に多数の凹みを配列し、遊星軸に太陽軸の凹みに嵌まる多数の凸部を配列した遊星式回転―直線運動変換装置も開示されている。   In order to increase the amount of stroke of the sun axis and to prevent a bending moment from acting on the planetary axis, in FIG. Also disclosed is a planetary rotation-linear motion conversion device in which a large number of convex portions that fit into the sun shaft recesses are arranged on the planetary shaft.

しかし、太陽軸の外周面の螺旋状の多数の凹みは、事実上転造以外で製造することができないので、太陽軸の製造が困難になるという新たな課題が生ずる。たとえ転造ダイスによって太陽軸を製造できたとしても、加工誤差や焼き入れ後の歪等に起因する多数の凹みのピッチ誤差を修正することができない。多数の凹みを研削加工することは事実上不可能だからである。さらに、太陽軸の多数の凹みと遊星軸の多数の凸部とが間欠的に噛み合う構造であり、しかも多数の凹部及び多数の凸部が上述のように加工精度の出にくい転造加工により製造されるので、太陽軸の凹みと遊星軸の凸部との間にがた(すきま)が発生し易く、太陽軸の凹み及び遊星軸の凸部の耐久性に悪影響を及ぼすという課題もある。   However, since a large number of spiral dents on the outer peripheral surface of the solar shaft cannot be manufactured by any means other than rolling, a new problem arises that it becomes difficult to manufacture the solar shaft. Even if the solar shaft can be manufactured by a rolling die, it is impossible to correct the pitch errors of a large number of dents due to processing errors, distortion after quenching, and the like. This is because it is practically impossible to grind many dents. In addition, a large number of recesses on the sun axis and a large number of projections on the planetary shaft are intermittently engaged with each other, and many recesses and a large number of projections are manufactured by rolling as described above. Therefore, rattling (clearance) is likely to occur between the sun shaft recess and the planetary shaft projection, and there is also a problem that the durability of the sun shaft recess and the planetary shaft projection is adversely affected.

本発明は、従来の遊星式回転―直線運動変換装置の上記の課題を解決するためになされたものであり、太陽軸又はナットのストローク量を大きくすることができ、生産性、耐久性を向上させることができる実用的な遊星式回転―直線運動変換装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the conventional planetary rotation-linear motion conversion device, and can increase the stroke amount of the sun shaft or nut, thereby improving productivity and durability. It is an object of the present invention to provide a practical planetary rotation-linear motion conversion device that can be used.

以下、本発明について説明する。
上述した課題を解決する為に、本発明の一態様は、太陽歯車を有すると共に、螺旋凸条又は周方向凸条を有する太陽軸と、前記太陽軸の前記太陽歯車に噛み合う遊星歯車を有すると共に、前記太陽軸の前記螺旋凸条又は前記周方向凸条に噛み合う螺旋溝又は周方向溝を有する遊星軸と、前記遊星軸の前記遊星歯車に噛み合う内歯車を有すると共に、前記遊星軸の前記螺旋溝又は前記周方向溝に噛み合うナットと、を備え、前記太陽軸の前記太陽歯車、前記遊星軸の前記遊星歯車、及び前記ナットの前記内歯車が遊星歯車機構を構成し、前記ナットに対して前記太陽軸を相対的に回転させると、前記遊星軸が前記太陽軸に対して前記太陽軸の軸線方向に相対的に直線運動する遊星式回転―直線運動変換装置において、前記遊星軸の前記遊星歯車が形成される領域と、前記遊星軸の前記螺旋溝又は前記周方向溝が形成される領域とを、前記遊星軸の軸線方向に分離し、前記太陽軸の前記螺旋凸条又は前記周方向凸条の凸部に、前記遊星軸の前記遊星歯車に噛み合う前記太陽歯車を形成する遊星式回転―直線運動変換装置である。
The present invention will be described below.
In order to solve the above-described problems, one embodiment of the present invention includes a sun gear, a sun shaft having a spiral ridge or a circumferential ridge, and a planetary gear that meshes with the sun gear of the sun shaft. A planetary shaft having a spiral groove or a circumferential groove that meshes with the spiral ridge of the sun shaft or the circumferential ridge, and an internal gear that meshes with the planetary gear of the planetary shaft, and the spiral of the planetary shaft A groove or a nut meshing with the circumferential groove, and the sun gear of the sun shaft, the planetary gear of the planetary shaft, and the internal gear of the nut constitute a planetary gear mechanism, and In the planetary rotation-linear motion conversion device in which the planetary axis moves linearly relative to the sun axis in the axial direction of the sun axis when the sun axis is rotated relatively, the planet of the planetary axis gear The formed region and the region in which the spiral groove or the circumferential groove of the planetary shaft is formed are separated in the axial direction of the planetary shaft, and the spiral ridge or the circumferential ridge of the solar shaft is separated. Is a planetary rotation-linear motion conversion device that forms the sun gear meshing with the planetary gear of the planetary shaft on the convex portion of the planetary shaft.

本発明の他の態様は、太陽歯車を有すると共に、螺旋凸条又は周方向凸条を有する太陽軸と、前記太陽軸の前記太陽歯車に噛み合う遊星歯車を有すると共に、前記太陽軸の前記螺旋凸条又は前記周方向凸条に噛み合う螺旋溝又は周方向溝を有する遊星軸と、前記遊星軸の前記遊星歯車に噛み合う内歯車を有すると共に、前記遊星軸の前記螺旋溝又は前記周方向溝に噛み合う螺旋凸条又は周方向凸条を有するナットと、を備え、前記太陽軸の前記太陽歯車、前記遊星軸の前記遊星歯車、及び前記ナットの前記内歯車が遊星歯車機構を構成し、前記太陽軸に対して前記ナットを相対的に回転させると、前記遊星軸が前記ナットに対して前記ナットの軸線方向に相対的に直線運動する遊星式回転―直線運動変換装置において、前記遊星軸の前記遊星歯車が形成される領域と、前記遊星軸の前記螺旋溝又は前記周方向溝が形成される領域とを、前記遊星軸の軸線方向に分離し、前記ナットの前記螺旋凸条又は前記周方向凸条の凸部に、前記遊星軸の前記遊星歯車に噛み合う前記内歯車を形成する遊星式回転―直線運動変換装置である。   Another aspect of the present invention has a sun gear, a sun shaft having a spiral ridge or a circumferential ridge, a planetary gear meshing with the sun gear of the sun shaft, and the spiral projection of the sun shaft. A planetary shaft having a spiral groove or a circumferential groove meshing with a strip or the circumferential convex strip, and an internal gear meshing with the planetary gear of the planetary shaft, and meshing with the spiral groove or the circumferential groove of the planetary shaft A nut having a spiral ridge or a circumferential ridge, and the sun gear of the sun shaft, the planetary gear of the planetary shaft, and the internal gear of the nut constitute a planetary gear mechanism, and the sun shaft In the planetary rotation-linear motion conversion device in which the planetary shaft moves linearly relative to the nut in the axial direction of the nut when the nut is rotated relative to the nut, the planet of the planetary shaft A region in which the wheel is formed and a region in which the spiral groove or the circumferential groove of the planetary shaft is formed are separated in an axial direction of the planetary shaft, and the spiral protrusion or the circumferential protrusion of the nut is separated. It is a planetary rotation-linear motion conversion device that forms the internal gear meshing with the planetary gear of the planetary shaft on the convex portion of the strip.

本発明の一態様によれば、太陽軸の螺旋凸条又は周方向凸条の凸部に、遊星軸の遊星歯車に噛み合う太陽歯車を形成するので、遊星軸が太陽軸に対し軸線方向に相対的に移動しても、太陽軸の螺旋凸条又は周方向凸条が遊星軸の遊星歯車に干渉することがなく、太陽軸の螺旋凸条又は周方向凸条と遊星軸の螺旋溝又は周方向溝との噛み合いが保たれ、太陽軸の太陽歯車と遊星軸の遊星歯車との噛み合いが保たれる。したがって、太陽軸に対するナットの軸線方向の相対的なストローク量を大きくすることができる。また、太陽軸を切削、転造のどちらでも製造することができるようになり、太陽軸を焼入れした後に研削加工等によりピッチを修正することもできるようになるので、太陽軸の生産性が向上する。さらに、遊星軸の遊星歯車が形成される領域と、遊星軸の螺旋溝又は周方向溝が形成される領域とを、遊星軸の軸線方向に分離しているので、遊星軸も切削、転造のどちらでも製造することができるようになり、遊星軸の製造も容易になる。   According to one aspect of the present invention, the sun gear that meshes with the planetary gear of the planetary shaft is formed on the spiral ridge or the circumferential ridge of the solar shaft, so that the planetary shaft is relative to the sun axis in the axial direction. The spiral ridges or circumferential ridges of the sun axis do not interfere with the planetary gears of the planetary axis even when the Engagement with the directional groove is maintained, and engagement between the sun gear of the sun shaft and the planet gear of the planet shaft is maintained. Therefore, the relative stroke amount of the nut in the axial direction with respect to the sun axis can be increased. In addition, the solar shaft can be manufactured by either cutting or rolling, and the pitch can be corrected by grinding after the quenching of the solar shaft, improving the productivity of the solar shaft. To do. Furthermore, the region where the planetary gear of the planetary shaft is formed and the region where the spiral groove or circumferential groove of the planetary shaft is formed are separated in the axial direction of the planetary shaft, so that the planetary shaft is also cut and rolled. Both of them can be manufactured, and the manufacture of the planetary shaft becomes easy.

本発明の他の態様によれば、ナットの螺旋凸条又は周方向凸条の凸部に、遊星軸の遊星歯車に噛み合う内歯車を形成するので、遊星軸がナットに対し軸線方向に相対的に移動しても、ナットの螺旋凸条又は周方向凸条が遊星軸の遊星歯車に干渉することがなく、ナットの螺旋凸条又は周方向凸条と遊星軸の螺旋溝又は周方向溝との噛み合いが保たれ、ナットの内歯車と遊星軸の遊星歯車との噛み合いが保たれる。したがって、ナットに対する太陽軸の軸線方向の相対的なストローク量を大きくすることができる。また、ナットを切削、転造のどちらでも製造することができるようになり、ナットを焼入れした後に研削加工等によりピッチを修正することもできるようになるので、ナットの生産性が向上する。さらに、遊星軸の遊星歯車が形成される領域と、遊星軸の螺旋溝又は周方向溝が形成される領域とを、遊星軸の軸線方向に分離しているので、遊星軸も切削、転造のどちらでも製造することができるようになり、遊星軸の製造も容易になる。   According to another aspect of the present invention, an internal gear that meshes with the planetary gear of the planetary shaft is formed on the convex portion of the spiral or circumferential ridge of the nut, so that the planetary shaft is relative to the nut in the axial direction. Even if it moves to, the helical ridge or circumferential ridge of the nut does not interfere with the planetary gear of the planetary shaft, and the helical ridge or circumferential ridge of the nut and the helical groove or circumferential groove of the planetary shaft And the meshing between the nut internal gear and the planetary gear of the planetary shaft is maintained. Therefore, the relative stroke amount in the axial direction of the sun shaft with respect to the nut can be increased. Further, the nut can be manufactured by either cutting or rolling, and the pitch can be corrected by grinding or the like after the nut is quenched, so that the productivity of the nut is improved. Furthermore, the region where the planetary gear of the planetary shaft is formed and the region where the spiral groove or circumferential groove of the planetary shaft is formed are separated in the axial direction of the planetary shaft, so that the planetary shaft is also cut and rolled. Both of them can be manufactured, and the manufacture of the planetary shaft becomes easy.

本発明の第一の実施形態における遊星式回転−直線運動変換装置の斜視図The perspective view of the planetary rotation-linear motion conversion apparatus in 1st embodiment of this invention. 太陽軸の側面図Solar axis side view 遊星軸の側面図Side view of planetary shaft ナットの軸線に沿う断面図Sectional view along the axis of the nut 太陽軸を1回転させたときの遊星軸の公転角度を示す模式図Schematic diagram showing the revolution angle of the planetary axis when the sun axis is rotated once. 総リードの算出方法の概念図Conceptual diagram of the total lead calculation method 遊星軸に施したクラウニングを示す図Diagram showing the crowning applied to the planetary axis 太陽軸の雄ねじ、遊星軸の雄ねじ、ナットの雌ねじの噛み合いを示す軸線に直交する断面図Sectional view perpendicular to the axis showing the meshing of the male screw of the sun shaft, the male screw of the planetary shaft, and the female screw of the nut 平歯車のモジュールを変化させた遊星式回転−直線運動変換装置の比較図(モジュール0.68(a)及びモジュール0.42(b))Comparison of planetary rotation-linear motion converters with different spur gear modules (module 0.68 (a) and module 0.42 (b)) 遊星軸の雄ねじと太陽軸の雄ねじの噛み合いを示す斜視図(モジュール0.68(a)及びモジュール0.42(b))The perspective view which shows the meshing | engagement of the external thread of a planetary axis, and the external thread of a solar axis (module 0.68 (a) and module 0.42 (b)) 太陽軸の軸線に直交する断面図(モジュール0.68(a)及びモジュール0.42(b))Cross-sectional views orthogonal to the axis of the solar axis (module 0.68 (a) and module 0.42 (b)) 本発明の第二の実施形態における遊星式回転−直線運動変換装置の斜視図The perspective view of the planetary rotation-linear motion converter in 2nd embodiment of this invention 上記遊星式回転−直線運動変換装置の断面図Sectional view of the planetary rotation-linear motion converter ナットの断面図Cross section of nut 本発明の第三の実施形態における遊星式回転−直線運動変換装置の斜視図The perspective view of the planetary rotation-linear motion conversion apparatus in 3rd embodiment of this invention. 上記遊星式回転−直線運動変換装置の断面図Sectional view of the planetary rotation-linear motion converter 太陽軸の側面図Solar axis side view 本発明の第一の実施形態の遊星式回転−直線運動変換装置を組み込んだアクチュエータの断面斜視図Sectional perspective view of an actuator incorporating the planetary rotation-linear motion conversion device of the first embodiment of the present invention.

以下、添付図面に基づいて本発明の遊星式回転―直線運動変換装置を詳細に説明する。図1は、本発明の第一の実施形態における遊星式回転−直線運動変換装置の斜視図(内部構造を分かり易くするためにナットを半分に割った状態)を示す。遊星式回転−直線運動変換装置は、共通の軸線3に沿って延在する太陽軸1及び円環状のナット2を備える。太陽軸1とナット2との間の環状の空間には、これらに噛み合う複数の例えば九つの遊星軸4が配置される。遊星軸4の軸線は、太陽軸1及びナット2の軸線と平行である。九つの遊星軸4は太陽軸1の周りに周方向に均等間隔を空けて配列される。ナットに対して太陽軸1を相対的に回転すると、ナット2が軸線方向に直線運動する。   Hereinafter, the planetary rotation-linear motion conversion device of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a perspective view of a planetary rotation-linear motion conversion device in a first embodiment of the present invention (a state in which a nut is divided in half for easy understanding of the internal structure). The planetary rotation-linear motion conversion device includes a sun shaft 1 and an annular nut 2 that extend along a common axis 3. In the annular space between the sun shaft 1 and the nut 2, a plurality of, for example, nine planetary shafts 4 that mesh with these are arranged. The axis of the planetary axis 4 is parallel to the axis of the sun axis 1 and the nut 2. The nine planetary axes 4 are arranged around the sun axis 1 at equal intervals in the circumferential direction. When the sun shaft 1 is rotated relative to the nut, the nut 2 linearly moves in the axial direction.

太陽軸1には、太陽歯車としての平歯車11及び螺旋凸条としての雄ねじ12が形成される。遊星軸4には、遊星歯車としての平歯車41及び螺旋溝としての雄ねじ42が形成される。ナット2には、内歯車としての平歯車21及び螺旋凸条としての雌ねじ22が形成される。太陽軸1の太陽歯車、遊星軸4の遊星歯車、及びナット2の内歯車は、互いに噛み合い、遊星歯車機構を構成する。太陽歯車、遊星歯車、及び内歯車は、ねじれ角が25度以下の歯車であり、ねじれ角が0度の歯車、すなわち平歯車を含む。太陽軸1の螺線凸条、遊星軸4の螺旋溝及びナットの螺線凸条も、同一ピッチで互いに噛み合い、遊星ローラねじ機構を構成する。   The sun shaft 1 is formed with a spur gear 11 as a sun gear and a male screw 12 as a spiral ridge. The planetary shaft 4 is formed with a spur gear 41 as a planetary gear and a male screw 42 as a spiral groove. The nut 2 is formed with a spur gear 21 as an internal gear and a female screw 22 as a spiral protrusion. The sun gear of the sun shaft 1, the planetary gear of the planetary shaft 4, and the internal gear of the nut 2 mesh with each other to constitute a planetary gear mechanism. The sun gear, the planetary gear, and the internal gear are gears having a twist angle of 25 degrees or less, and include gears having a twist angle of 0 degrees, that is, spur gears. The spiral ridges of the sun shaft 1, the spiral groove of the planetary shaft 4, and the spiral ridges of the nut also mesh with each other at the same pitch to constitute a planetary roller screw mechanism.

図2に示すように、太陽軸1の外周面には、螺旋凸条としての複数条の例えば八条の雄ねじ12が形成される。雄ねじ12は円筒状の外周面のつる巻き線に沿って形成され、所定のリード角を持つ。太陽軸1の軸線を含む平面による雄ねじ12の切り口の断面形状は台形である。もちろん、雄ねじ12の外径は雄ねじ12の谷の径よりも大きい。   As shown in FIG. 2, a plurality of, for example, eight male threads 12 as spiral ridges are formed on the outer peripheral surface of the sun shaft 1. The male screw 12 is formed along a spiral winding on a cylindrical outer peripheral surface and has a predetermined lead angle. The cross-sectional shape of the cut surface of the male screw 12 by a plane including the axis of the sun axis 1 is a trapezoid. Of course, the outer diameter of the male screw 12 is larger than the diameter of the valley of the male screw 12.

図1に示すように、太陽軸1の螺旋凸条としての雄ねじ12のピッチを遊星軸4の螺旋溝としての雄ねじ42のピッチに合わせれば、太陽軸1の雄ねじ12を遊星軸4の雄ねじ42に噛み合わせることができる。   As shown in FIG. 1, when the pitch of the male screw 12 as the spiral protrusion of the sun shaft 1 is matched with the pitch of the male screw 42 as the spiral groove of the planetary shaft 4, the male screw 12 of the solar shaft 1 is changed to the male screw 42 of the planetary shaft 4. Can be engaged.

太陽軸1の雄ねじ12の凸部には、太陽歯車としての平歯車11が形成される。この平歯車11は、例えば一般的な平歯車と同様にインボリュート歯形に形成される。この平歯車11の全歯たけは、雄ねじ12のねじ山の高さよりも小さく、雄ねじ12には、平歯車11の歯底よりも内側に接触面12aが形成される。言い換えれば、平歯車11の歯底円は太陽軸1の雄ねじ12の谷の径よりも大きく設定される。この接触面12aに遊星軸4の雄ねじ42が接触する。   A spur gear 11 as a sun gear is formed on the convex portion of the male screw 12 of the sun shaft 1. The spur gear 11 is formed in an involute tooth profile, for example, like a general spur gear. The total tooth depth of the spur gear 11 is smaller than the height of the thread of the male screw 12, and a contact surface 12 a is formed on the male screw 12 inside the tooth bottom of the spur gear 11. In other words, the root circle of the spur gear 11 is set larger than the diameter of the valley of the male screw 12 of the sun shaft 1. The male screw 42 of the planetary shaft 4 is in contact with the contact surface 12a.

太陽軸1の平歯車11には、遊星軸4の遊星歯車としての平歯車41が噛み合う。八条の雄ねじ12に形成される太陽軸1の平歯車11の位相は、太陽軸1の軸線方向からみて互いに一致している。太陽軸1の平歯車11の歯数をSz1,遊星軸4の平歯車41の歯数をPz1とおくと、太陽軸1の平歯車11と遊星軸4の平歯車41との間で、歯数Sz1,Pz1に応じた速比(回転数の比)で回転が伝達される。 The spur gear 11 of the planetary shaft 4 meshes with the spur gear 11 of the sun shaft 1. The phases of the spur gears 11 of the sun shaft 1 formed on the eight male threads 12 coincide with each other when viewed from the axial direction of the sun shaft 1. When the number of teeth of the spur gear 11 of the sun shaft 1 is S z1 and the number of teeth of the spur gear 41 of the planetary shaft 4 is P z1 , the distance between the spur gear 11 of the sun shaft 1 and the spur gear 41 of the planetary shaft 4 is The rotation is transmitted at a speed ratio (ratio of rotation speed) according to the number of teeth S z1 and P z1 .

太陽軸1の平歯車11は太陽軸1の雄ねじ12の凸部に形成されている。このため、太陽軸1の平歯車11が形成される領域と、太陽軸1の雄ねじ12が形成される領域とが、太陽軸1の軸線方向に重なっている。遊星軸4が太陽軸1に対して太陽軸1の軸線方向に相対的に変位しても、太陽軸1の平歯車11が遊星軸4の平歯車41との噛み合いを維持できるよう、太陽軸1の平歯車11が形成される。   The spur gear 11 of the sun shaft 1 is formed on the convex portion of the male screw 12 of the sun shaft 1. For this reason, the region where the spur gear 11 of the sun shaft 1 is formed overlaps the region where the male screw 12 of the sun shaft 1 is formed in the axial direction of the sun shaft 1. Even if the planetary shaft 4 is displaced relative to the solar shaft 1 in the axial direction of the solar shaft 1, the solar shaft 1 can maintain the meshing of the spur gear 11 of the solar shaft 1 with the spur gear 41 of the planetary shaft 4. 1 spur gear 11 is formed.

太陽軸1の周囲には九つの遊星軸4が配置される。遊星軸4の配置個数は、太陽軸1及びナット2の平歯車11,21の歯数の和、並びに太陽軸1及びナット2の雄ねじ12,雌ねじ22の条数の和の、共通の約数である。   Nine planet axes 4 are arranged around the sun axis 1. The number of arranged planetary shafts 4 is a common divisor of the sum of the number of teeth of the spur gears 11 and 21 of the sun shaft 1 and nut 2 and the sum of the number of threads of the male screw 12 and female screw 22 of the sun shaft 1 and nut 2. It is.

図3に示すように、各遊星軸4には、螺旋溝として例えば二条の雄ねじ42が設けられ、遊星歯車として一対の平歯車41が設けられる。二条の雄ねじ42は遊星軸4の軸線方向の中央部に形成される。一対の平歯車41は遊星軸4の雄ねじ42の軸線方向の両端部に形成される。遊星軸4の軸線方向から見た一対の平歯車41の位相は互いに一致している。遊星軸4の雄ねじ42の両端部に平歯車41を形成することで、遊星軸4を軸線方向の両端部で歯車駆動させることができ、遊星軸4が傾くのを防止できる。   As shown in FIG. 3, each planetary shaft 4 is provided with, for example, two male screws 42 as spiral grooves, and a pair of spur gears 41 as planetary gears. The two male threads 42 are formed at the center of the planetary shaft 4 in the axial direction. The pair of spur gears 41 is formed at both ends in the axial direction of the male screw 42 of the planetary shaft 4. The phases of the pair of spur gears 41 as seen from the axial direction of the planetary shaft 4 coincide with each other. By forming the spur gear 41 at both ends of the male screw 42 of the planetary shaft 4, the planetary shaft 4 can be gear-driven at both ends in the axial direction, and the planetary shaft 4 can be prevented from tilting.

上記太陽軸1においては、雄ねじ12が形成される領域と平歯車11が形成される領域とが太陽軸1の軸線方向に重なっている。これに対し、遊星軸4においては、雄ねじ42と平歯車41とが独立していて、雄ねじ42が形成される領域と平歯車41が形成される領域とが遊星軸4の軸線方向に分離している。そして、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12に噛み合い、遊星軸4の平歯車41が太陽軸1の平歯車11に噛み合う。遊星軸4の雄ねじ42と平歯車41とを独立させることで、遊星軸4の雄ねじ42の谷底に平歯車41を形成する必要がなくなり、遊星軸4の製造が容易になり、また遊星軸4と太陽軸1とが間欠的に噛み合うのを防止することができる。   In the sun shaft 1, a region where the male screw 12 is formed and a region where the spur gear 11 is formed overlap in the axial direction of the sun shaft 1. On the other hand, in the planetary shaft 4, the male screw 42 and the spur gear 41 are independent, and the region where the male screw 42 is formed and the region where the spur gear 41 is formed are separated in the axial direction of the planetary shaft 4. ing. The male screw 42 of the planetary shaft 4 meshes with the male screw 12 of the sun shaft 1, and the spur gear 41 of the planetary shaft 4 meshes with the spur gear 11 of the sun shaft 1. By making the male screw 42 of the planetary shaft 4 and the spur gear 41 independent, there is no need to form the spur gear 41 at the bottom of the male screw 42 of the planetary shaft 4, making the planetary shaft 4 easy to manufacture, and the planetary shaft 4. And the sun shaft 1 can be prevented from intermittently meshing with each other.

遊星軸4及び太陽軸1の雄ねじ42,12及び平歯車41,11の噛み合いを保った状態で、なおかつ太陽軸1のストローク量を大きくするために、太陽軸1の雄ねじ12に平歯車11が形成される。太陽軸1の雄ねじ12に平歯車を形成すると、一見、太陽軸1の雄ねじ12が遊星軸4の雄ねじ42に間欠的に噛み合うように見える。しかし、遊星軸4の雄ねじ42は、太陽軸1の雄ねじ12の平歯車11の歯底円よりも内側で接触するので、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12に間欠的に噛み合うことはない。   In order to increase the stroke amount of the sun shaft 1 while maintaining the meshing of the male screws 42 and 12 and the spur gears 41 and 11 of the planetary shaft 4 and the sun shaft 1, the spur gear 11 is provided on the male screw 12 of the sun shaft 1. It is formed. When a spur gear is formed on the male screw 12 of the sun shaft 1, it appears that the male screw 12 of the sun shaft 1 intermittently meshes with the male screw 42 of the planetary shaft 4. However, since the male screw 42 of the planetary shaft 4 contacts inside the root circle of the spur gear 11 of the male screw 12 of the sun shaft 1, the male screw 42 of the planetary shaft 4 intermittently meshes with the male screw 12 of the solar shaft 1. There is nothing.

図1に示すように、各遊星軸4は、軸線方向の両端にて円環板状のキャリア(図示せず)に軸線の周りに回転可能に支持されている。キャリアはナット2に対し相対的に軸線の周りに自由に回転できるようにナット2に支持される。もちろん、キャリア2の内径は太陽軸1の外径よりも大きい。   As shown in FIG. 1, each planetary shaft 4 is supported by an annular plate carrier (not shown) at both ends in the axial direction so as to be rotatable around the axis. The carrier is supported by the nut 2 so that it can freely rotate around the axis relative to the nut 2. Of course, the inner diameter of the carrier 2 is larger than the outer diameter of the sun shaft 1.

図4に示すように、ナット2は、略円筒形状に形成される。ナット2の軸線方向の一端部には、ナット2を他の部材に取り付けるためのフランジ2aが形成される。ナット2は図示しない他の部材に相対回転不能に連結される。ナット2の内周面の軸線方向の両端部には、内径を広げた一対のリング段差部2bが形成される。この一対のリング段差部2bに一対のリング歯車部材5が圧入等により固定される(図1参照)。一対のリング歯車部材5には、遊星軸4の一対の平歯車41と噛み合う一対の内歯車21が形成される。またナット2の中央部2cの内周面には、螺旋凸条として、遊星軸4の雄ねじ42と螺合する複数条の例えば十条の雌ねじ22が形成される。雌ねじ22はナット2の内周面のつる巻き線に沿う所定のリード角を持つ。ナット2の軸線を含む平面における雌ねじ22の切り口の断面形状は、台形である。   As shown in FIG. 4, the nut 2 is formed in a substantially cylindrical shape. A flange 2a for attaching the nut 2 to another member is formed at one end of the nut 2 in the axial direction. The nut 2 is connected to other members (not shown) so as not to rotate relative to each other. At both ends in the axial direction of the inner peripheral surface of the nut 2, a pair of ring step portions 2 b having an enlarged inner diameter is formed. A pair of ring gear members 5 is fixed to the pair of ring stepped portions 2b by press fitting or the like (see FIG. 1). The pair of ring gear members 5 are formed with a pair of internal gears 21 that mesh with a pair of spur gears 41 of the planetary shaft 4. Further, on the inner peripheral surface of the central portion 2c of the nut 2, a plurality of, for example, ten female threads 22 that are screwed with the male threads 42 of the planetary shaft 4 are formed as spiral ridges. The female screw 22 has a predetermined lead angle along the helical winding on the inner peripheral surface of the nut 2. The cross-sectional shape of the cut surface of the female screw 22 in a plane including the axis of the nut 2 is a trapezoid.

上記遊星式回転−直線運動変換装置を組み立てるときは、まずナット2の内側に遊星軸4を環状に抱え込ませる。キャリアによって遊星軸4とナット2との位置関係をずれないように固定した段階で、太陽軸1を遊星軸4にねじ込む。   When assembling the planetary rotation-linear motion conversion device, first, the planetary shaft 4 is held in an annular shape inside the nut 2. At the stage where the positional relationship between the planetary shaft 4 and the nut 2 is fixed so as not to be shifted by the carrier, the sun shaft 1 is screwed into the planetary shaft 4.

図1に示すように、太陽軸1の平歯車11、遊星軸4の平歯車41及びナット2の内歯車21は共働して遊星歯車機構を構成しており、それぞれ太陽歯車、遊星歯車、内歯車として機能する。また太陽軸1の雄ねじ12、遊星軸4の雄ねじ42、ナット2の雌ねじ22は共働して遊星ローラねじ機構を構成しており、それぞれ螺線凸条、螺旋溝、螺線凸条として機能する。   As shown in FIG. 1, the spur gear 11 of the sun shaft 1, the spur gear 41 of the planetary shaft 4, and the internal gear 21 of the nut 2 work together to form a planetary gear mechanism, and the sun gear, the planetary gear, Functions as an internal gear. The male screw 12 of the sun shaft 1, the male screw 42 of the planetary shaft 4, and the female screw 22 of the nut 2 constitute a planetary roller screw mechanism that functions as a spiral ridge, a spiral groove, and a spiral ridge, respectively. To do.

遊星ローラねじ機構を構成する太陽軸1の雄ねじ12、遊星軸4の雄ねじ42及びナット2の雌ねじ22は互いに噛み合っている。雄ねじ12及び雄ねじ42は互いに逆方向のリードを有し、雄ねじ42及び雌ねじ22は互いに同一方向のリードを有する。雄ねじ12、雄ねじ42、雌ねじ22のピッチは互いに等しい。そして、遊星軸4の雄ねじ42のリード角はナット2の雌ねじ22のリード角と相手方のネジリード基準ピッチ円において同一である。このため、遊星軸4がナット2の内側を自公転しても、遊星軸4がナット2に対して軸線方向にストロークすることはない。一方、遊星軸4の雄ねじ42のリード角は太陽軸1の雄ねじ12のリード角と異なる。このため、遊星軸4が太陽軸1の回りを自公転すると、遊星軸4が太陽軸1に対して軸線方向に直線運動する。したがって、ナット2も太陽軸1に対して軸線方向に直線運動する。   The male screw 12 of the sun shaft 1, the male screw 42 of the planetary shaft 4, and the female screw 22 of the nut 2 that constitute the planetary roller screw mechanism mesh with each other. The male screw 12 and the male screw 42 have leads in opposite directions, and the male screw 42 and the female screw 22 have leads in the same direction. The pitches of the male screw 12, the male screw 42, and the female screw 22 are equal to each other. The lead angle of the male screw 42 of the planetary shaft 4 is the same as the lead angle of the female screw 22 of the nut 2 in the other screw lead reference pitch circle. For this reason, even if the planetary shaft 4 revolves inside the nut 2, the planetary shaft 4 does not stroke in the axial direction with respect to the nut 2. On the other hand, the lead angle of the male screw 42 of the planetary shaft 4 is different from the lead angle of the male screw 12 of the sun shaft 1. For this reason, when the planetary axis 4 revolves around the sun axis 1, the planetary axis 4 linearly moves in the axial direction with respect to the sun axis 1. Accordingly, the nut 2 also moves linearly with respect to the sun axis 1 in the axial direction.

遊星歯車機構を構成する太陽軸1の平歯車11、遊星軸4の平歯車41及びナット2の内歯車21も互いに噛み合う。この遊星式回転−直線運動変換装置においては、平歯車11、平歯車41、内歯車21の歯数は、それぞれ69,24,120である。   The spur gear 11 of the sun shaft 1, the spur gear 41 of the planetary shaft 4 and the internal gear 21 of the nut 2 that constitute the planetary gear mechanism also mesh with each other. In this planetary rotation-linear motion converter, the number of teeth of the spur gear 11, the spur gear 41, and the internal gear 21 is 69, 24, and 120, respectively.

太陽軸1を1回転させたとき、ナット2に対する太陽軸1のストローク量(総リード)は以下のように算出される。図5に示すように、太陽軸1を1回転させると遊星軸4が太陽軸1の周囲を自転しながら公転する。遊星軸4の公転回転数である遊星軸公転減速比は、以下の式で求められる。   When the sun shaft 1 is rotated once, the stroke amount (total lead) of the sun shaft 1 relative to the nut 2 is calculated as follows. As shown in FIG. 5, when the sun axis 1 is rotated once, the planetary axis 4 revolves while rotating around the sun axis 1. The planetary shaft revolution reduction ratio, which is the revolution speed of the planetary shaft 4, is obtained by the following equation.

具体的な数値を入れると、
Entering specific numbers,

太陽軸1の雄ねじ12のピッチは7mm、条数は8なので、太陽軸1の1回転あたりのリードは7×8=56mmになる。図6に示すように、太陽軸1の雄ねじ12のSPC(太陽軸ネジリード基準ピッチ円)を28.75mmとすると、太陽軸1は1回転あたり、(28.75×π)の基準ピッチ円において56mm軸線方向に進む。 Since the pitch of the male screw 12 of the solar shaft 1 is 7 mm and the number of strips is 8, the lead per rotation of the solar shaft 1 is 7 × 8 = 56 mm. As shown in FIG. 6, when the S PC of the external thread 12 of the sun shaft 1 (sun shaft thread lead reference pitch) and 28.75Mm, sun shaft 1 per revolution, a reference pitch circle of (28.75 × [pi) At 56 mm in the axial direction.

一方、遊星軸4の雄ねじのピッチは7mm、条数は2なので、リードは7×2=14mmになる。遊星軸4の雄ねじのPPC(遊星軸ネジリード基準ピッチ円)を10mmにすると、遊星軸4は1回転あたり、(10×π)の基準ピッチ円において14mm進む。 On the other hand, since the pitch of the male screw of the planetary shaft 4 is 7 mm and the number of threads is 2, the lead is 7 × 2 = 14 mm. When the planetary shaft 4 of the external thread of the P PC (the planetary shaft thread lead reference pitch) to 10 mm, the planetary shaft 4 is per revolution, it proceeds 14mm in reference pitch of (10 × [pi).

太陽軸1の周囲を遊星軸4が公転する。太陽軸1を1回転させたときの接触部7(図5参照)の長さは、上記遊星軸公転減速比から28.75×π×0.6349となる。そのときの太陽軸1のリードと遊星軸4のリードの差分が総リードLとなる。   The planetary axis 4 revolves around the sun axis 1. The length of the contact portion 7 (see FIG. 5) when the sun shaft 1 is rotated once is 28.75 × π × 0.6349 from the planetary shaft revolution reduction ratio. The difference between the lead of the sun axis 1 and the lead of the planetary axis 4 at that time is the total lead L.

すなわち、総リードLは、太陽軸1のリード−遊星軸4のリードであり、
L=56×0.6349−28.75×π×0.6349/(10×π)×14=10mmとなる。
That is, the total lead L is the lead of the solar axis 1-the lead of the planetary axis 4,
L = 56 × 0.6349−28.75 × π × 0.6349 / (10 × π) × 14 = 10 mm.

一般式で表わすと、総リードLは以下の計算式で表わされる。
When expressed by a general formula, the total lead L is expressed by the following calculation formula.

図7に示すように、遊星軸4の雄ねじ42には、クラウニング42aが施される。クラウニング42aは、遊星軸4の軸線を含む断面で見たとき、又は遊星軸4の雄ねじ42のリードに直角な断面で見たとき、円弧形状に形成される。クラウニング42aを施すことによって、太陽軸1の雄ねじ12と遊星軸4の雄ねじ42とを点接触させることができる。遊星軸4と太陽軸1との接触点は、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12に対して滑らずに転がり運動する点の近傍に配置される。このようにすることで、太陽軸1の雄ねじ12と遊星軸4の雄ねじ42との間の差動滑りを低減することができ、回転の伝達効率を向上させることができる。   As shown in FIG. 7, the male screw 42 of the planetary shaft 4 is provided with a crowning 42a. The crowning 42 a is formed in an arc shape when viewed in a cross section including the axis of the planetary shaft 4 or when viewed in a cross section perpendicular to the lead of the male screw 42 of the planetary shaft 4. By applying the crowning 42a, the male screw 12 of the sun shaft 1 and the male screw 42 of the planetary shaft 4 can be brought into point contact. The contact point between the planetary axis 4 and the sun axis 1 is arranged in the vicinity of the point where the male screw 42 of the planetary axis 4 rolls without sliding with respect to the male screw 12 of the sun axis 1. By doing in this way, the differential slip between the external thread 12 of the sun shaft 1 and the external thread 42 of the planetary shaft 4 can be reduced, and the transmission efficiency of rotation can be improved.

図8に示すように、太陽軸1の軸線方向からみて、遊星軸4の雄ねじ42の外径円43の一部は太陽軸1の平歯車11の歯底円13よりも内側に入り込む。そして、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12に接触する点Pは、太陽軸1の雄ねじ12の接触面12a(太陽軸1の平歯車11の歯底円13よりも内側、図10参照)である。太陽軸1に軸線方向の荷重がかかると、太陽軸1の雄ねじ12及び遊星軸4の雄ねじ42の接触点Pが弾性変形し、接触領域が広くなる。太陽軸1の軸線方向の荷重は、弾性変形した太陽軸1の雄ねじ12の接触面12aが受けることになる。遊星軸4の雄ねじ42を太陽軸1の雄ねじ12の接触面12aに接触させることで、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12に形成される平歯車11にのみ接触することを避けることができる。このため、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12の平歯車11に間欠的に当たってしまう(すなわち遊星軸4の雄ねじ42が太陽軸1の雄ねじ12の平歯車11に当たっているときと当たってないときが生ずる)のを防止することができ、遊星軸4の雄ねじ42を太陽軸1の雄ねじ12に安定して接触させることができる。また、遊星軸4の雄ねじ42が太陽軸1の雄ねじ12の平歯車11に間欠的に当たるのを防止できるので、せん断応力や曲げモーメントに強いねじになる。   As shown in FIG. 8, when viewed from the axial direction of the sun shaft 1, a part of the outer diameter circle 43 of the male screw 42 of the planetary shaft 4 enters inside the root circle 13 of the spur gear 11 of the sun shaft 1. The point P where the male screw 42 of the planetary shaft 4 contacts the male screw 12 of the sun shaft 1 is the contact surface 12a of the male screw 12 of the sun shaft 1 (inside the root circle 13 of the spur gear 11 of the sun shaft 1, 10). When a load in the axial direction is applied to the sun shaft 1, the contact point P between the male screw 12 of the sun shaft 1 and the male screw 42 of the planetary shaft 4 is elastically deformed, and the contact area becomes wide. The load in the axial direction of the solar shaft 1 is received by the contact surface 12a of the external thread 12 of the solar shaft 1 that has been elastically deformed. By bringing the male screw 42 of the planetary shaft 4 into contact with the contact surface 12 a of the male screw 12 of the sun shaft 1, the male screw 42 of the planetary shaft 4 is prevented from contacting only the spur gear 11 formed on the male screw 12 of the solar shaft 1. be able to. For this reason, the male screw 42 of the planetary shaft 4 hits the spur gear 11 of the male screw 12 of the sun shaft 1 intermittently (that is, when the male screw 42 of the planetary shaft 4 hits the spur gear 11 of the male screw 12 of the sun shaft 1). Can be prevented, and the male screw 42 of the planetary shaft 4 can be brought into stable contact with the male screw 12 of the sun shaft 1. Further, since the male screw 42 of the planetary shaft 4 can be prevented from intermittently hitting the spur gear 11 of the male screw 12 of the sun shaft 1, the screw is resistant to shear stress and bending moment.

本実施形態においては、遊星軸4の雄ねじ42を太陽軸1の雄ねじ12の接触面12aに接触させたいがゆえ、遊星軸4の雄ねじ42を太らせている。遊星軸4の雄ねじ42を極端に太らせると隣の遊星軸4に干渉する。このため遊星軸4の配置個数を九つに減らしている。   In the present embodiment, since the male screw 42 of the planetary shaft 4 is desired to be brought into contact with the contact surface 12a of the male screw 12 of the sun shaft 1, the male screw 42 of the planetary shaft 4 is thickened. When the male screw 42 of the planetary shaft 4 is extremely thickened, it interferes with the adjacent planetary shaft 4. For this reason, the number of arranged planetary shafts 4 is reduced to nine.

遊星軸4の雄ねじ42のリード角は、太陽軸1の雄ねじ12のリード角と異なる。このため厳密にいうと、遊星軸4の雄ねじ42と太陽軸1の雄ねじ12との接触点Pは、太陽軸1の中心と遊星軸4の中心とを結んだ線15から僅かにずれている。一方、遊星軸4の雄ねじ42のリード角はナット2の雌ねじ22のリード角と等しい。このため、遊星軸4の雄ねじ42とナット2の雌ねじ22との接触点Qは、太陽軸1の中心と遊星軸4の中心とを結んだ線15上に位置する。   The lead angle of the male screw 42 of the planetary shaft 4 is different from the lead angle of the male screw 12 of the sun shaft 1. Therefore, strictly speaking, the contact point P between the male screw 42 of the planetary shaft 4 and the male screw 12 of the solar shaft 1 is slightly shifted from the line 15 connecting the center of the solar shaft 1 and the center of the planetary shaft 4. . On the other hand, the lead angle of the male screw 42 of the planetary shaft 4 is equal to the lead angle of the female screw 22 of the nut 2. For this reason, the contact point Q between the male screw 42 of the planetary shaft 4 and the female screw 22 of the nut 2 is located on a line 15 connecting the center of the sun shaft 1 and the center of the planetary shaft 4.

図9は、平歯車のモジュールを変化させた例を示す。平歯車の速比及び噛み合い位相を維持したまま、平歯車のモジュールを例えば0.68から0.42に小さくすると、太陽軸1の雄ねじ12の平歯車11の円ピッチが小さくなる。図10に示すように、平歯車11のモジュールを0.68から0.42に小さくすると、太陽軸1の雄ねじ12に形成される平歯車11の全歯たけを小さくすることができ、雄ねじ12の接触面12aの半径方向の厚みを厚くすることができる。このため、遊星軸4の雄ねじ42を太陽軸1の雄ねじ12の接触面12aに接触させ易くなる。さらに、図11に示すように、太陽軸1の平歯車11の全歯たけを小さくできる分、太陽軸1の雄ねじ12の噛み合いピッチ円(図中噛み合い領域で示す)を大きくでき、当該噛み合いピッチ円を滑りが生じない滑り0領域に近付けることができ、回転の伝達効率を向上させることができる。噛み合いピッチ円とは、太陽軸1の雄ねじ12と遊星軸4の雄ねじ42とが噛みあっている点上の軌跡である。滑り0領域とは、太陽軸1の雄ねじ12と遊星軸4の雄ねじ42とに滑りが生じない点上の軌跡である。自公転する遊星軸4が描く螺旋状の軌道長さと、太陽軸1の螺旋状の軌道長さとが一致する領域が滑り0領域である。   FIG. 9 shows an example in which the spur gear module is changed. If the spur gear module is reduced from 0.68 to 0.42, for example, while maintaining the speed ratio and meshing phase of the spur gear, the circular pitch of the spur gear 11 of the male screw 12 of the sun shaft 1 is reduced. As shown in FIG. 10, when the module of the spur gear 11 is reduced from 0.68 to 0.42, the total tooth clearance of the spur gear 11 formed on the male screw 12 of the sun shaft 1 can be reduced. The thickness of the contact surface 12a in the radial direction can be increased. For this reason, the male screw 42 of the planetary shaft 4 is easily brought into contact with the contact surface 12 a of the male screw 12 of the sun shaft 1. Furthermore, as shown in FIG. 11, the meshing pitch circle (shown by the meshing area in the figure) of the male screw 12 of the sunshaft 1 can be increased by the amount that the total tooth depth of the spur gear 11 of the sunshaft 1 can be reduced. The circle can be brought close to the zero-slip region where no slip occurs, and the rotation transmission efficiency can be improved. The meshing pitch circle is a locus on the point where the male screw 12 of the sun shaft 1 and the male screw 42 of the planetary shaft 4 are engaged with each other. The zero slip region is a locus on a point where no slip occurs between the male screw 12 of the sun shaft 1 and the male screw 42 of the planetary shaft 4. A region where the helical orbit length drawn by the planetary axis 4 that revolves and the helical orbit length of the sun shaft 1 coincides with the zero-slip region.

図1に示すように、遊星軸4の雄ねじ42はナット2の雌ねじ22に対しても、差動滑りが発生しないよう転がり接触する点の近傍で接触する。遊星軸4の雄ねじ42をオーバーサイズにすることにより予圧を与えることが可能になり、バックラッシュをなくすことができる。   As shown in FIG. 1, the male screw 42 of the planetary shaft 4 also contacts the female screw 22 of the nut 2 in the vicinity of the point of rolling contact so that no differential slip occurs. By making the male screw 42 of the planetary shaft 4 oversized, it is possible to apply a preload and to eliminate backlash.

上記の実施形態においては、遊星軸4が軸線方向に太陽軸1に対し相対的に変位する例について説明した。   In the above embodiment, the example in which the planetary shaft 4 is displaced relative to the solar shaft 1 in the axial direction has been described.

これとは逆に遊星軸が軸線方向にナットに対し相対的に変位してもよい。この場合には、螺旋溝を構成するナットの螺旋状の雌ねじの凸部に、内歯車を構成する歯車が設けられる。遊星軸には、螺旋溝を構成する雄ねじ、及びこの雄ねじの軸線方向の両側に遊星歯車を構成する一対の平歯車が遊星軸の軸線方向に分かれた状態で設けられる。太陽軸には、螺線凸条を構成する雄ねじ、及びこの雄ねじの軸線方向の両側に太陽歯車を構成する一対の平歯車が軸線方向に分かれた状態で設けられる。この例によれば、遊星軸がナットに対してストロークしてもナットのねじ状内歯車が遊星軸の遊星歯車に干渉することがない。したがって、ナットに対する太陽軸の軸線方向の相対的なストローク量を大きくすることができる。   Conversely, the planetary shaft may be displaced relative to the nut in the axial direction. In this case, the gear which comprises an internal gear is provided in the convex part of the helical internal thread of the nut which comprises a spiral groove. The planetary shaft is provided with a male screw constituting a spiral groove and a pair of spur gears constituting a planetary gear on both sides in the axial direction of the male screw, separated in the axial direction of the planetary shaft. The sun shaft is provided with a male screw constituting a spiral ridge and a pair of spur gears constituting a sun gear on both sides of the male screw in the axial direction, separated in the axial direction. According to this example, even if the planetary shaft makes a stroke with respect to the nut, the screw-shaped internal gear of the nut does not interfere with the planetary gear of the planetary shaft. Therefore, the relative stroke amount in the axial direction of the sun shaft with respect to the nut can be increased.

図12ないし図14は、本発明の第二の実施形態における遊星式回転−直線運動変換装置を示す。図12は、遊星式回転−直線運動変換装置の斜視図(内部構造を分かり易くするためにナット52を半分に割った状態)を示し、図13は、遊星式回転−直線運動変換装置の断面図を示す。この実施形態の遊星式回転−直線運動変換装置も、太陽軸51と、太陽軸51の周囲に配置される複数の遊星軸54と、太陽軸51及び遊星軸54を囲む環状のナット52と、を備える。   12 to 14 show a planetary rotation-linear motion conversion device according to a second embodiment of the present invention. FIG. 12 is a perspective view of the planetary rotation-linear motion conversion device (a state in which the nut 52 is divided in half for easy understanding of the internal structure), and FIG. 13 is a cross section of the planetary rotation-linear motion conversion device. The figure is shown. The planetary rotation-linear motion converter of this embodiment also includes a sun shaft 51, a plurality of planet shafts 54 arranged around the sun shaft 51, an annular nut 52 surrounding the sun shaft 51 and the planet shaft 54, Is provided.

太陽軸51には、太陽歯車としての平歯車55及び螺旋凸条としての雄ねじ56が形成される。第一の実施形態の遊星式回転−直線運動変換装置と同様に、太陽軸51の平歯車55は、雄ねじ56の凸部に形成される。雄ねじ56は所定のリード角を持つ。   The sun shaft 51 is formed with a spur gear 55 as a sun gear and a male screw 56 as a spiral ridge. Similar to the planetary rotation-linear motion conversion device of the first embodiment, the spur gear 55 of the sun shaft 51 is formed on the convex portion of the male screw 56. The male screw 56 has a predetermined lead angle.

遊星軸54には、遊星歯車としての一対の平歯車57が形成され、一対の平歯車57の間に周方向溝58が形成される。周方向溝58は、周方向に伸びる単一のリング状溝を遊星軸4の軸線方向に多数配列してなる。遊星軸54の平歯車57が太陽軸51の平歯車55に噛み合い、遊星軸54の周方向溝58が太陽軸51の雄ねじ56に噛み合う。図14のナット52の断面図に示すように、遊星軸54の周方向溝58のリード角は0度である。遊星軸54の周方向溝58のピッチは太陽軸51の雄ねじ56のピッチと同一である。   The planetary shaft 54 is formed with a pair of spur gears 57 as planetary gears, and a circumferential groove 58 is formed between the pair of spur gears 57. The circumferential groove 58 is formed by arranging a large number of single ring-shaped grooves extending in the circumferential direction in the axial direction of the planetary shaft 4. The spur gear 57 of the planetary shaft 54 meshes with the spur gear 55 of the sun shaft 51, and the circumferential groove 58 of the planetary shaft 54 meshes with the male screw 56 of the sun shaft 51. As shown in the sectional view of the nut 52 in FIG. 14, the lead angle of the circumferential groove 58 of the planetary shaft 54 is 0 degree. The pitch of the circumferential grooves 58 of the planetary shaft 54 is the same as the pitch of the male threads 56 of the sun shaft 51.

図12及び図13に示すように、ナット52には、内歯車としての一対の平歯車59が形成され、一対の平歯車59の間に周方向凸条60が形成される。ナット52の一対の平歯車59が遊星軸54の一対の平歯車57に噛み合い、ナット52の周方向凸条60が遊星軸54の周方向溝58に噛み合う。図14に示すように、ナット52の周方向凸条60も、周方向に伸びる単一のリング状凸条を複数配列してなる。周方向凸条60のリード角は0度である。   As shown in FIGS. 12 and 13, the nut 52 is formed with a pair of spur gears 59 as internal gears, and a circumferential ridge 60 is formed between the pair of spur gears 59. The pair of spur gears 59 of the nut 52 mesh with the pair of spur gears 57 of the planetary shaft 54, and the circumferential ridge 60 of the nut 52 meshes with the circumferential groove 58 of the planetary shaft 54. As shown in FIG. 14, the circumferential ridge 60 of the nut 52 is also formed by arranging a plurality of single ring-shaped ridges extending in the circumferential direction. The lead angle of the circumferential ridge 60 is 0 degree.

太陽軸51の平歯車55、遊星軸54の平歯車57、及びナット52の平歯車59が、遊星歯車機構を構成する。ナット52に対して太陽軸51を相対的に回転させると、遊星軸54が太陽軸51の周囲を自転しながら公転する。   The spur gear 55 of the sun shaft 51, the spur gear 57 of the planetary shaft 54, and the spur gear 59 of the nut 52 constitute a planetary gear mechanism. When the sun shaft 51 is rotated relative to the nut 52, the planetary shaft 54 revolves while rotating around the sun shaft 51.

太陽軸51の雄ねじ56、遊星軸54の周方向溝58及びナット52の周方向凸条60は、互いに噛み合っている。上記第一の実施形態の遊星式回転−直線運動変換装置と異なり、遊星軸54の周方向溝58及びナット52の周方向凸条60のリード角は0度であるが、第一の実施形態と同様に、太陽軸51の周囲を遊星軸54が自転しながら公転すると、太陽軸51の雄ねじ56のリード角と遊星軸54の周方向溝58のリード角との差により、遊星軸54及びナット52が軸線方向に移動する。   The male screw 56 of the sun shaft 51, the circumferential groove 58 of the planetary shaft 54, and the circumferential ridge 60 of the nut 52 mesh with each other. Unlike the planetary rotation-linear motion conversion device of the first embodiment, the lead angle of the circumferential groove 58 of the planetary shaft 54 and the circumferential protrusion 60 of the nut 52 is 0 degree. Similarly, when the planetary shaft 54 revolves around the sun shaft 51 while rotating, the difference between the lead angle of the male screw 56 of the sun shaft 51 and the lead angle of the circumferential groove 58 of the planet shaft 54 causes the planet shaft 54 and The nut 52 moves in the axial direction.

この実施形態の遊星式回転−直線運動変換装置によれば、以下の効果が得られる。1.ナット52の周方向凸条60及び遊星軸54の周方向溝58が螺旋状になっていないので、製作精度が向上する(加工精度は、螺旋状溝を加工する時のインデックス精度に左右されずに、加工機の送り精度のみに依存する)。2.ナット52の周方向凸条60及び遊星軸54の周方向溝58のリード角が0であるので、リード誤差による相対変位が生じない。3.ナット52の周方向凸条60及び遊星軸54の周方向溝58のリード角が0であるので、ねじの条数は0条と定義され、遊星軸54の配置数の自由度が増し、強度が得やすい。4.太陽軸51のねじの条数を少なく設計できるので、精度が得やすい。5.正効率を下げずに逆効率を極めて小さく設計できる。   According to the planetary rotation-linear motion conversion device of this embodiment, the following effects can be obtained. 1. Since the circumferential ridge 60 of the nut 52 and the circumferential groove 58 of the planetary shaft 54 are not helical, the manufacturing accuracy is improved (the machining accuracy is not affected by the index accuracy when machining the helical groove). Depends only on the feed accuracy of the processing machine). 2. Since the lead angle of the circumferential ridge 60 of the nut 52 and the circumferential groove 58 of the planetary shaft 54 is 0, relative displacement due to a lead error does not occur. 3. Since the lead angle of the circumferential ridge 60 of the nut 52 and the circumferential groove 58 of the planetary shaft 54 is 0, the number of threads is defined as 0, increasing the degree of freedom of the number of arrangement of the planetary shaft 54 and increasing the strength. Is easy to get. 4). Since the number of threads of the sun shaft 51 can be designed to be small, accuracy is easily obtained. 5. The reverse efficiency can be designed extremely small without reducing the normal efficiency.

図15ないし図17は、本発明の第三の実施形態における遊星式回転−直線運動変換装置を示す。図15は、遊星式回転−直線運動変換装置の斜視図を示し、図16は、断面図を示す。この実施形態の遊星式回転−直線運動変換装置も、太陽軸61と、太陽軸61の周囲に配置される複数の遊星軸64と、太陽軸61及び遊星軸64を囲む環状のナット62と、を備える。   15 to 17 show a planetary rotation-linear motion conversion device according to a third embodiment of the present invention. FIG. 15 is a perspective view of the planetary rotation-linear motion conversion device, and FIG. 16 is a cross-sectional view. The planetary rotation-linear motion conversion device of this embodiment also includes a sun shaft 61, a plurality of planet shafts 64 arranged around the sun shaft 61, an annular nut 62 surrounding the sun shaft 61 and the planet shaft 64, and Is provided.

太陽軸61には、太陽歯車としての平歯車65及び周方向凸条66が形成される。図17の太陽軸61の側面図に示すように、周方向凸条66は、周方向に伸びる単一の凸条を太陽軸61の軸線方向に複数配列してなる。周方向凸条66のリード角は0度である。太陽軸61の平歯車65は、周方向凸条66の凸部に形成される。   The sun shaft 61 is formed with a spur gear 65 and a circumferential ridge 66 as sun gears. As shown in the side view of the sun shaft 61 in FIG. 17, the circumferential ridge 66 is formed by arranging a plurality of single ridges extending in the circumferential direction in the axial direction of the sun shaft 61. The lead angle of the circumferential ridge 66 is 0 degree. The spur gear 65 of the sun shaft 61 is formed on the convex portion of the circumferential ridge 66.

図15に示すように、遊星軸64には、遊星歯車としての一対の平歯車67が形成され、及び一対の平歯車67間に螺旋溝としての雄ねじ68が形成される。遊星軸64の一対の平歯車67が太陽軸61の平歯車65に噛み合い、遊星軸64の雄ねじ68が太陽軸61の周方向凸条66に噛み合う。遊星軸64の雄ねじ68のピッチは、太陽軸61の周方向凸条66のピッチと同一である。遊星軸64の雄ねじ68は所定のリード角を持つ。   As shown in FIG. 15, a pair of spur gears 67 as planetary gears are formed on the planetary shaft 64, and a male screw 68 as a spiral groove is formed between the pair of spur gears 67. A pair of spur gears 67 of the planetary shaft 64 mesh with the spur gear 65 of the sun shaft 61, and a male screw 68 of the planetary shaft 64 meshes with the circumferential ridge 66 of the sun shaft 61. The pitch of the male screw 68 of the planetary shaft 64 is the same as the pitch of the circumferential ridge 66 of the sun shaft 61. The male screw 68 of the planetary shaft 64 has a predetermined lead angle.

ナット62には、内歯車としての平歯車69及び螺旋凸条としての雌ねじ70が形成される。ナット62の平歯車69が遊星軸64の平歯車67に噛み合い、ナット62の雌ねじ70が遊星軸64の雄ねじ68に噛み合う。ナット62の雌ねじ70は遊星軸64の雄ねじ69と逆方向の同一のリード角を持つ。   The nut 62 is formed with a spur gear 69 as an internal gear and a female screw 70 as a spiral protrusion. The spur gear 69 of the nut 62 meshes with the spur gear 67 of the planetary shaft 64, and the female screw 70 of the nut 62 meshes with the male screw 68 of the planetary shaft 64. The female screw 70 of the nut 62 has the same lead angle in the opposite direction as the male screw 69 of the planetary shaft 64.

太陽軸61の平歯車65、遊星軸64の平歯車67、及びナット62の平歯車69が遊星歯車機構を構成する。ナット62に対して太陽軸61を回転させると、遊星軸64がナット62の周囲を自転しながら公転する。   The spur gear 65 of the sun shaft 61, the spur gear 67 of the planetary shaft 64, and the spur gear 69 of the nut 62 constitute a planetary gear mechanism. When the sun shaft 61 is rotated with respect to the nut 62, the planetary shaft 64 revolves while rotating around the nut 62.

太陽軸61の周方向凸条66、遊星軸64の雄ねじ68及びナット62の雌ねじ70は互いに噛み合っている。上記第一の実施形態の遊星式回転−直線運動変換装置と異なり、太陽軸61の周方向凸条66のリード角は0度であるので、太陽軸61の周方向凸条66がねじ状歯車を構成する訳ではない。しかし、太陽軸61の周囲を遊星軸64が自転しながら公転すると、太陽軸61の周方向凸条66のリード角と遊星軸64の雄ねじ68のリード角との差により、太陽軸61が軸線方向に移動する。   The circumferential ridge 66 of the sun shaft 61, the male screw 68 of the planetary shaft 64, and the female screw 70 of the nut 62 mesh with each other. Unlike the planetary rotation-linear motion conversion device of the first embodiment, the lead angle of the circumferential ridge 66 of the sun shaft 61 is 0 degrees, so the circumferential ridge 66 of the sun shaft 61 is a screw gear. Does not constitute. However, when the planetary shaft 64 revolves around the sun shaft 61 while rotating, the sun shaft 61 is rotated by the difference between the lead angle of the circumferential projection 66 of the sun shaft 61 and the lead angle of the male screw 68 of the planet shaft 64. Move in the direction.

この実施形態の遊星式回転−直線運動変換装置によれば、以下の効果が得られる。1.太陽軸61の周方向凸条66が螺旋状になっていないので、製作精度が向上する。2.太陽軸61の周方向凸条66のリード角が0であるので、リード誤差による相対変位が生じない。3.太陽軸61の周方向凸条66のリード角が0であるので、ねじの条数は0条と定義され、遊星軸64の配置数の自由度が増し、強度が得やすい。4.太陽軸61のねじの条数を0に設計できるので、精度が得やすい。5.正効率を下げずに逆効率を極めて小さく設計できる。   According to the planetary rotation-linear motion conversion device of this embodiment, the following effects can be obtained. 1. Since the circumferential ridge 66 of the sun shaft 61 is not spiral, the manufacturing accuracy is improved. 2. Since the lead angle of the circumferential ridge 66 of the sun shaft 61 is 0, relative displacement due to lead error does not occur. 3. Since the lead angle of the circumferential ridge 66 of the sun axis 61 is 0, the number of threads is defined as 0, the degree of freedom of the number of arrangement of the planetary axes 64 is increased, and the strength is easily obtained. 4). Since the number of threads of the sun shaft 61 can be designed to be zero, it is easy to obtain accuracy. 5. The reverse efficiency can be designed extremely small without reducing the normal efficiency.

図18は、本発明の第一の実施形態の遊星式回転−直線運動変換装置を組み込んだアクチュエータを示す。このアクチュータにおいては、中空モータ73によってナット2を回転させ、これにより軸線方向に移動する太陽軸1がハウジング74から出入りするようになっている。   FIG. 18 shows an actuator incorporating the planetary rotation-linear motion conversion device of the first embodiment of the present invention. In this actuator, the nut 2 is rotated by the hollow motor 73 so that the sun shaft 1 moving in the axial direction enters and exits the housing 74.

ナット2はその前後方向の両端部がベアリング76,77に回転可能に支持されている。ベアリング76,77はハウジング74の内部に組み込まれている。   Both ends of the nut 2 in the front-rear direction are rotatably supported by bearings 76 and 77. The bearings 76 and 77 are incorporated in the housing 74.

モータ73はハウジング74に一体的に組み込まれている。モータ73のロータとなる永久磁石71がナットの外周面に固定される。モータ73のステータとなる三相コイル72は、永久磁石71を取り囲んだ状態でハウジング74に一体的に固定される。   The motor 73 is integrally incorporated in the housing 74. A permanent magnet 71 serving as a rotor of the motor 73 is fixed to the outer peripheral surface of the nut. A three-phase coil 72 serving as a stator of the motor 73 is integrally fixed to the housing 74 so as to surround the permanent magnet 71.

ハウジング74の前部壁75には、太陽軸1が軸線の回りを回転するのを防止し、かつ太陽軸1がその軸線方向に直線運動するのを許容するスプライン溝75aが形成される。太陽軸1には、ハウジング75のスプライン溝75aに係合するスプライン凸条1aが形成される。これらのスプライン溝75a及びスプライン凸条1aが回り止め機構を構成する。   The front wall 75 of the housing 74 is formed with a spline groove 75a that prevents the sun shaft 1 from rotating about its axis and allows the sun shaft 1 to linearly move in the axial direction. The sun shaft 1 is formed with a spline protrusion 1 a that engages with the spline groove 75 a of the housing 75. These spline grooves 75a and spline ridges 1a constitute a detent mechanism.

モータ73がナット2を回転させると、遊星軸4が太陽軸1の周囲を自転しながら公転する。遊星軸4の自転及び公転に伴い、遊星軸4に噛み合う太陽軸1が軸線方向に移動する。太陽軸1の軸線の回りの回転は回り止め機構1a,75aによって制限されているので、太陽軸1がナット2と一緒に回転することはない。   When the motor 73 rotates the nut 2, the planetary shaft 4 revolves while rotating around the sun shaft 1. As the planetary shaft 4 rotates and revolves, the sun shaft 1 that meshes with the planetary shaft 4 moves in the axial direction. Since the rotation of the sun shaft 1 around the axis is limited by the rotation preventing mechanisms 1a and 75a, the sun shaft 1 does not rotate together with the nut 2.

本実施形態のアクチュエータによれば、逆効率が低い遊星式回転−直線運動変換装置を組み込んでいるので、太陽軸1の軸方向位置を保持するためのモータ73のパワーを小さくすることができる。太陽軸1に作用する軸方向の荷重に逆らって、太陽軸1の位置を保持するためには、太陽軸1の位置を保持している間、モータ73がトルクを発生し続けなければならない。遊星式回転−直線運動変換装置はボールねじよりも逆効率(軸方向の荷重を回転方向のトルクに変える効率)が低いので、太陽軸1の位置を保持するために必要なトルクはボールねじに比べて極端に小さくてすむ。したがって、モータ73の容量、寸法を小さくすることができ、モータ73の発熱を抑えることができる。   According to the actuator of this embodiment, since the planetary rotation-linear motion conversion device with low reverse efficiency is incorporated, the power of the motor 73 for maintaining the axial position of the sun shaft 1 can be reduced. In order to hold the position of the sun axis 1 against the axial load acting on the sun axis 1, the motor 73 must continue to generate torque while the position of the sun axis 1 is being held. Since the planetary rotation-linear motion conversion device has a lower reverse efficiency (efficiency to change the axial load into the rotational torque) than the ball screw, the torque required to maintain the position of the sun shaft 1 is applied to the ball screw. Compared to an extremely small size. Therefore, the capacity and size of the motor 73 can be reduced, and the heat generation of the motor 73 can be suppressed.

なお、本発明は上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲で様々に変更できる。上記実施形態で示された歯数等の設計諸元は一例であり、総リード、軸線方向荷重に応じて適宜変更することができる。   The present invention is not limited to being embodied in the above-described embodiment, and can be variously modified without departing from the scope of the present invention. The design specifications such as the number of teeth shown in the above embodiment are examples, and can be appropriately changed according to the total lead and the axial load.

1,51,61…太陽軸,2,52,62…ナット,3…軸線,4,54,64…遊星軸,11,55,65…太陽軸の平歯車(太陽歯車),12,56…太陽軸の雄ねじ(太陽軸の螺旋凸条),66…太陽軸の周方向凸条,12a…接触面,13…太陽軸の平歯車の歯底円,21,59,69…ナットの平歯車(内歯車),22,70…ナットの雌ねじ(ナットの螺旋凸条),60…ナットの周方向凸条,41,57,67…遊星軸の平歯車(遊星歯車),42,68…遊星軸の雄ねじ(遊星軸の螺旋溝),58…遊星軸の周方向溝,42a…クラウニング,P…太陽軸の雄ねじと遊星軸の雄ねじの接触点

DESCRIPTION OF SYMBOLS 1,51,61 ... Sun shaft, 2, 52, 62 ... Nut, 3 ... Axis, 4, 54, 64 ... Planetary shaft, 11, 55, 65 ... Spur gear (sun gear) of solar shaft, 12, 56 ... Male axis of the sun axis (spiral ridge of the sun axis), 66 ... Circumferential ridges of the sun axis, 12a ... Contact surface, 13 ... Root circle of the spur gear of the sun axis, 21, 59, 69 ... Spur gear of the nut (Internal gears), 22, 70 ... nut internal threads (nut spiral ridges), 60 ... nut circumferential ridges, 41, 57, 67 ... planetary shaft spur gears (planetary gears), 42, 68 ... planets Shaft male screw (planetary spiral groove), 58 ... circumferential groove of planetary shaft, 42a ... crowning, P ... contact point between male screw of solar shaft and male screw of planetary shaft

Claims (8)

太陽歯車を有すると共に、螺旋凸条又は周方向凸条を有する太陽軸と、
前記太陽軸の前記太陽歯車に噛み合う遊星歯車を有すると共に、前記太陽軸の前記螺旋凸条又は前記周方向凸条に噛み合う螺旋溝又は周方向溝を有する遊星軸と、
前記遊星軸の前記遊星歯車に噛み合う内歯車を有すると共に、前記遊星軸の前記螺旋溝又は前記周方向溝に噛み合うナットと、を備え、
前記太陽軸の前記太陽歯車、前記遊星軸の前記遊星歯車、及び前記ナットの前記内歯車が遊星歯車機構を構成し、
前記ナットに対して前記太陽軸を相対的に回転させると、前記遊星軸が前記太陽軸に対して前記太陽軸の軸線方向に相対的に直線運動する遊星式回転―直線運動変換装置において、
前記遊星軸の前記遊星歯車が形成される領域と、前記遊星軸の前記螺旋溝又は前記周方向溝が形成される領域とを、前記遊星軸の軸線方向に分離し、
前記太陽軸の前記螺旋凸条又は前記周方向凸条の凸部に、前記遊星軸の前記遊星歯車に噛み合う前記太陽歯車を形成する遊星式回転―直線運動変換装置。
A sun shaft having a sun gear and a spiral or circumferential ridge,
A planetary gear having a planetary gear meshing with the sun gear of the sun shaft, and having a spiral groove or a circumferential groove meshing with the spiral ridge or the circumferential ridge of the sun shaft;
An internal gear that meshes with the planetary gear of the planetary shaft, and a nut that meshes with the spiral groove or the circumferential groove of the planetary shaft,
The sun gear of the sun shaft, the planetary gear of the planetary shaft, and the internal gear of the nut constitute a planetary gear mechanism,
In the planetary rotation-linear motion conversion device in which when the sun axis is rotated relative to the nut, the planetary axis is linearly moved relative to the sun axis in the axial direction of the sun axis.
The region of the planetary shaft where the planetary gear is formed and the region of the planetary shaft where the spiral groove or the circumferential groove is formed are separated in the axial direction of the planetary shaft,
A planetary rotation-linear motion conversion device that forms the sun gear meshing with the planetary gear of the planetary shaft on the spiral ridge of the sunshaft or the convex portion of the circumferential ridge.
前記太陽軸の前記螺旋凸条又は前記周方向凸条と前記遊星軸の前記螺旋溝又は前記周方向溝との接触位置が、前記太陽軸の軸線方向からみて、前記太陽軸の前記太陽歯車の歯底円よりも内側であることを特徴とする請求項1に記載の遊星式回転―直線運動変換装置。   The contact position between the spiral ridges or the circumferential ridges of the sun axis and the spiral grooves or the circumferential grooves of the planetary axis is the position of the sun gear of the sun axis when viewed from the axial direction of the sun axis. The planetary rotation-linear motion conversion device according to claim 1, wherein the planetary rotation-linear motion conversion device is inside the root circle. 前記遊星軸の前記螺旋溝又は前記周方向溝には、前記遊星軸の軸線を含む断面で見たとき、又は前記遊星軸の前記螺旋溝又は前記周方向溝のリードに直角な断面で見たとき、前記遊星軸の前記螺旋溝又は前記周方向溝と前記太陽軸の前記螺旋凸条又は前記周方向凸条とが点接触するよう、クラウニングが施されることを特徴とする請求項2に記載の遊星式回転―直線運動変換装置。   The spiral groove or the circumferential groove of the planetary shaft is viewed in a cross section including the axis of the planetary shaft, or viewed in a cross section perpendicular to the lead of the spiral groove or the circumferential groove of the planetary shaft. The crowning is performed so that the spiral groove or the circumferential groove of the planetary shaft and the spiral ridge or the circumferential ridge of the sun axis are in point contact with each other. The planetary rotation-linear motion conversion device described. 前記遊星軸の軸線方向の中央部に前記螺旋溝又は前記周方向溝が形成され、
前記遊星軸の軸線方向の両端部に、一対の前記遊星歯車が形成されることを特徴とする請求項1ないし3のいずれかに記載の遊星式回転―直線運動変換装置。
The spiral groove or the circumferential groove is formed in the center of the planetary shaft in the axial direction,
The planetary rotation-linear motion conversion device according to any one of claims 1 to 3, wherein a pair of the planetary gears are formed at both ends of the planetary shaft in the axial direction.
前記ナットに対して前記太陽軸を相対的に回転させると、前記遊星軸が前記太陽軸に対して前記太陽軸の軸線方向に相対的に直線運動するよう、前記太陽軸の前記螺旋凸条又は前記周方向凸条のリード角と前記遊星軸の前記螺旋溝又は前記周方向溝のリード角とが互いに異なることを特徴とする請求項1ないし4のいずれかに記載の遊星式回転―直線運動変換装置。   When the sun axis is rotated relative to the nut, the spiral ridge of the sun axis or the planetary axis moves linearly relative to the sun axis in the axial direction of the sun axis or 5. The planetary rotational-linear motion according to claim 1, wherein a lead angle of the circumferential ridge is different from a lead angle of the spiral groove or the circumferential groove of the planetary shaft. Conversion device. 太陽歯車を有すると共に、螺旋凸条又は周方向凸条を有する太陽軸と、
前記太陽軸の前記太陽歯車に噛み合う遊星歯車を有すると共に、前記太陽軸の前記螺旋凸条又は前記周方向凸条に噛み合う螺旋溝又は周方向溝を有する遊星軸と、
前記遊星軸の前記遊星歯車に噛み合う内歯車を有すると共に、前記遊星軸の前記螺旋溝又は前記周方向溝に噛み合う螺旋凸条又は周方向凸条を有するナットと、を備え、
前記太陽軸の前記太陽歯車、前記遊星軸の前記遊星歯車、及び前記ナットの前記内歯車が遊星歯車機構を構成し、
前記太陽軸に対して前記ナットを相対的に回転させると、前記遊星軸が前記ナットに対して前記ナットの軸線方向に相対的に直線運動する遊星式回転―直線運動変換装置において、
前記遊星軸の前記遊星歯車が形成される領域と、前記遊星軸の前記螺旋溝又は前記周方向溝が形成される領域とを、前記遊星軸の軸線方向に分離し、
前記ナットの前記螺旋凸条又は前記周方向凸条の凸部に、前記遊星軸の前記遊星歯車に噛み合う前記内歯車を形成する遊星式回転―直線運動変換装置。
A sun shaft having a sun gear and a spiral or circumferential ridge,
A planetary gear having a planetary gear meshing with the sun gear of the sun shaft, and having a spiral groove or a circumferential groove meshing with the spiral ridge or the circumferential ridge of the sun shaft;
And having an internal gear that meshes with the planetary gear of the planetary shaft, and a nut having a spiral ridge or a circumferential ridge that meshes with the spiral groove or the circumferential groove of the planetary shaft,
The sun gear of the sun shaft, the planetary gear of the planetary shaft, and the internal gear of the nut constitute a planetary gear mechanism,
In the planetary rotation-linear motion conversion device in which when the nut is rotated relative to the sun shaft, the planetary shaft moves linearly relative to the nut in the axial direction of the nut,
The region of the planetary shaft where the planetary gear is formed and the region of the planetary shaft where the spiral groove or the circumferential groove is formed are separated in the axial direction of the planetary shaft,
A planetary rotation-linear motion conversion device for forming the internal gear meshing with the planetary gear of the planetary shaft on the convex portion of the spiral ridge or the circumferential ridge of the nut.
前記太陽軸に対して前記ナットを相対的に回転させると、前記遊星軸が前記ナットに対して前記ナットの軸線方向に相対的に直線運動するよう、前記ナットの前記螺旋凸条又は前記周方向凸条のリード角と前記遊星軸の前記螺旋溝又は前記周方向溝のリード角とが互いに異なることを特徴とする請求項6に記載の遊星式回転―直線運動変換装置。   When the nut is rotated relative to the sun axis, the spiral ridge of the nut or the circumferential direction so that the planetary shaft linearly moves relative to the nut in the axial direction of the nut. The planetary rotation-linear motion conversion device according to claim 6, wherein a lead angle of the ridge and a lead angle of the spiral groove or the circumferential groove of the planetary shaft are different from each other. 請求項1ないし7のいずれかに記載の遊星式回転―直線運動変換装置と、
前記遊星式回転―直線運動変換装置の前記ナットを前記太陽軸に対して回転させる駆動源と、
前記太陽軸がその軸線の回りを回転するのを防止し、かつ太陽軸がその軸線方向に直線運動するのを許容する回り止め機構と、を備え、
前記駆動源が前記太陽軸に対して前記ナットを回転させることによって、前記太陽軸が前記ナットに対して太陽軸の軸線方向に直線運動するアクチュエータ。
The planetary rotation-linear motion conversion device according to any one of claims 1 to 7,
A drive source for rotating the nut of the planetary rotation-linear motion converter with respect to the sun axis;
A detent mechanism that prevents the sun axis from rotating about its axis and allows the sun axis to linearly move in its axial direction;
An actuator that linearly moves the sun axis relative to the nut in the axial direction of the sun axis when the drive source rotates the nut with respect to the sun axis.
JP2009223540A 2008-12-05 2009-09-28 Planetary rotation/linear motion converter Withdrawn JP2010156452A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009223540A JP2010156452A (en) 2008-12-05 2009-09-28 Planetary rotation/linear motion converter
PCT/JP2009/068561 WO2010064508A1 (en) 2008-12-05 2009-10-29 Planetary type rotary-linear motion converting device
TW98140075A TW201030255A (en) 2008-12-05 2009-11-25 Planetary device for conversion between rotary motion and linear motion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008311427 2008-12-05
JP2009223540A JP2010156452A (en) 2008-12-05 2009-09-28 Planetary rotation/linear motion converter

Publications (1)

Publication Number Publication Date
JP2010156452A true JP2010156452A (en) 2010-07-15

Family

ID=42574503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223540A Withdrawn JP2010156452A (en) 2008-12-05 2009-09-28 Planetary rotation/linear motion converter

Country Status (1)

Country Link
JP (1) JP2010156452A (en)

Similar Documents

Publication Publication Date Title
JP4025806B2 (en) Gear mechanism, planetary gear device, rotary bearing device, and mysterious planetary gear reduction device
CN107588177B (en) Cycloidal pin gear harmonic drive device
KR100988215B1 (en) Harmonic drive using profile shifted gear
CN110469651B (en) Wave gear device
US8082818B2 (en) Planetary device for conversion between rotary motion and linear motion
JP5126428B2 (en) Swing inscribed planetary gear device and rotation drive device
JP7160413B2 (en) Planetary reduction motor and multi-joint robot that can achieve complete closed-loop control
US20050160856A1 (en) Planetary differential screw type rotary/linear motion converter
JP5156961B2 (en) Reduction gear
KR100987950B1 (en) Flexible double ring gear type reducer
CN103453096B (en) A kind of roller screw pair that can realize small helical pitch
WO2011093744A1 (en) Eccentrically cycloidal engagement of toothed profiles having curved teeth
EP2639477B1 (en) Planetary gear reducer
JP4759607B2 (en) Rotary reducer
JP7466255B2 (en) Gear Pair and Nutation Reducer
CN115199727A (en) Small tooth difference planetary reduction mechanism and tooth profile design method thereof
WO2016013378A1 (en) Dual-type wave gear device
US10975946B1 (en) Differential reducer with high ratio
JP2010156453A (en) Planetary rotation/linear motion converter
JP2012067899A (en) Step-up/reduction gear
WO2010064508A1 (en) Planetary type rotary-linear motion converting device
JP2010156452A (en) Planetary rotation/linear motion converter
CN111895058B (en) Forming design method of speed reducer
JP2010156454A (en) Planetary type rotary-linear motion converting device
KR102311330B1 (en) A cycloid reducer

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101130