JP2010156373A - Split-type sliding bearing for crankshaft in internal combustion engine and split-type sliding bearing device - Google Patents

Split-type sliding bearing for crankshaft in internal combustion engine and split-type sliding bearing device Download PDF

Info

Publication number
JP2010156373A
JP2010156373A JP2008333843A JP2008333843A JP2010156373A JP 2010156373 A JP2010156373 A JP 2010156373A JP 2008333843 A JP2008333843 A JP 2008333843A JP 2008333843 A JP2008333843 A JP 2008333843A JP 2010156373 A JP2010156373 A JP 2010156373A
Authority
JP
Japan
Prior art keywords
bearing
circumferential
semi
split
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333843A
Other languages
Japanese (ja)
Other versions
JP5290738B2 (en
Inventor
Aisuke Kuwahara
愛介 桑原
Osamu Ishigo
修 石吾
Koji Saito
康志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2008333843A priority Critical patent/JP5290738B2/en
Priority to DE102009055170A priority patent/DE102009055170A1/en
Priority to US12/647,160 priority patent/US8371754B2/en
Publication of JP2010156373A publication Critical patent/JP2010156373A/en
Priority to US13/750,527 priority patent/US8556515B2/en
Application granted granted Critical
Publication of JP5290738B2 publication Critical patent/JP5290738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a step is created on a bearing inner circumferential surface of an abutting end face of a pair of semi-cylindrical bearing bodies, when the semi-cylindrical bearing bodies which are sliding bearings, are fitted to a pair of housing halves having a rigidity difference therebetween. <P>SOLUTION: The semi-cylindrical bearing body 20 supported by the low rigidity side housing half 14 and the semi-cylindrical bearing body 22 supported by the high rigidity side housing half 16 have an equal outer diameter in an initial condition. The wall thickness in both circumferential end areas of the semi-cylindrical bearing body 20 supported by the housing half 14 is larger than that in both circumferential end areas of the semi-cylindrical bearing body 22 supported by the housing half 16. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一対の軸受半円筒体を互いに組み合わせて円筒形状体として用いられる、内燃機関のクランク軸用分割型すべり軸受であり、その組み合わせ状態と整合する態様で2分割された円筒形状の軸受保持穴を有するとともに一対のハウジング分割体から成る分割型軸受ハウジング内に収容して用いられる前記分割型すべり軸受に関するものである(例えば、特許文献1参照)。   The present invention is a split-type slide bearing for a crankshaft of an internal combustion engine that is used as a cylindrical body by combining a pair of bearing semi-cylindrical bodies with each other, and a cylindrical bearing that is divided into two in a manner consistent with the combined state The present invention relates to the above-described split type slide bearing that is used by being housed in a split type bearing housing having a holding hole and including a pair of housing split bodies (for example, see Patent Document 1).

内燃機関のクランク軸用分割型すべり軸受は、一対の軸受半円筒体を、エンジンブロックの一部であるハウジング分割体と、軸受キャップとしてのハウジング分割体に組み付けることにより円筒形状体になる。分割型軸受ハウジングの軸受保持穴は、一対の軸受半円筒体を組み付ける前に、一対のハウジング分割体をボルトで締結した状態で、真円になるように単一作業で加工される。
また、近年、乗用車用内燃機関では、内燃機関の軽量化のために、アルミニウム合金製エンジンブロックを用いることが一般的である。この場合、クランク軸用分割型軸受ハウジングでは、一方のハウジング分割体がアルミニウム合金製エンジンブロックの一部であり、他方のハウジング分割体が鉄合金製軸受キャップである組合せが一般的である。
A split type plain bearing for a crankshaft of an internal combustion engine becomes a cylindrical body by assembling a pair of bearing semi-cylindrical bodies into a housing divided body that is a part of an engine block and a housing divided body as a bearing cap. The bearing holding hole of the split bearing housing is processed in a single operation so as to be a perfect circle with the pair of housing split bodies fastened with bolts before the pair of bearing semi-cylindrical bodies are assembled.
Further, in recent years, in an internal combustion engine for a passenger car, an aluminum alloy engine block is generally used to reduce the weight of the internal combustion engine. In this case, in the split-type bearing housing for crankshaft, a combination in which one housing divided body is a part of an aluminum alloy engine block and the other housing divided body is an iron alloy bearing cap is common.

一方、クランク軸用分割型すべり軸受の軸受半円筒体は、鋼製裏金と軸受合金層から成るのが普通である。一対の軸受半円筒体から成るクランク軸用分割型すべり軸受の外周面周長は、分割型軸受ハウジングの内周面周長よりも所定長だけ大きく形成されている。この寸法関係により、一対の軸受半円筒体を分割型軸受ハウジングに組付けると、一対の軸受半円筒体には、周方向圧縮応力が発生すると同時に、半径方向応力が発生する。このことによって、一対の軸受半円筒体は分割型軸受ハウジングの内周面に密着固定されるとともに、分割型軸受ハウジングは弾性変形して半径方向に膨張し、その内径が増大する。   On the other hand, the bearing semi-cylindrical body of the split type plain bearing for crankshaft is usually composed of a steel back metal and a bearing alloy layer. The outer peripheral surface circumference of the crankshaft split-type slide bearing formed of a pair of bearing semi-cylindrical bodies is formed to be larger than the inner peripheral surface peripheral length of the split-type bearing housing by a predetermined length. Due to this dimensional relationship, when the pair of bearing semi-cylindrical bodies are assembled to the split bearing housing, the pair of bearing semi-cylindrical bodies generate a radial direction stress as well as a circumferential compressive stress. As a result, the pair of bearing semi-cylindrical bodies are tightly fixed to the inner peripheral surface of the split bearing housing, and the split bearing housing is elastically deformed and expands in the radial direction to increase its inner diameter.

一対の軸受半円筒体から成るクランク軸用分割型すべり軸受の内周面とクランク軸との間には、潤滑油を供給するための軸受クリアランスが設けられている。この軸受クリアランスが過大になると、クランク軸にガタが生じ、内燃機関の振動や騒音の原因となる。
一方、分割型軸受ハウジングにおける軸受保持穴の内径、および、クランク軸の外径には製造時の加工誤差が伴うため、分割型軸受ハウジングとクランク軸との間の間隔にはバラツキが生じる。したがって、分割型すべり軸受の内周面とクランク軸との間の軸受クリアランスを適正に設定するには、適切な厚さを有する分割型すべり軸受を選択することによって、軸受クリアランスのバラツキを抑制しなければならない。
A bearing clearance for supplying lubricating oil is provided between the inner peripheral surface of the crankshaft split-type slide bearing composed of a pair of bearing semi-cylindrical bodies and the crankshaft. If this bearing clearance is excessive, backlash occurs on the crankshaft, causing vibration and noise in the internal combustion engine.
On the other hand, the inner diameter of the bearing holding hole in the split bearing housing and the outer diameter of the crankshaft are accompanied by processing errors at the time of manufacture, so that the gap between the split bearing housing and the crankshaft varies. Therefore, in order to properly set the bearing clearance between the inner peripheral surface of the split slide bearing and the crankshaft, by selecting a split slide bearing having an appropriate thickness, it is possible to suppress variations in the bearing clearance. There must be.

しかるに、前記のとおり、分割型すべり軸受が分割型軸受ハウジングに組付けられる際、分割型軸受ハウジング内径は径方向に膨張変形する。かかる膨張変形が生じた場合の軸受クリアランスは、分割型軸受ハウジングにおける軸受保持穴の内径、クランク軸の外径、および、軸受半円筒体の厚さによって定まる設計上の軸受クリアランスに比して、分割型軸受ハウジングの膨張変形分だけ増大し、かかる膨張変形によってもバラツキが生じる。
このバラツキについて、特許文献2(特開平10−175131号公報)に教示があり、分割型すべり軸受の外周面周長と、分割型軸受ハウジングの軸受保持穴内径との選択的組み合わせにより、分割型軸受ハウジングの膨張変形に起因する、分割型軸受ハウジングとクランク軸との間の間隔寸法のバラツキを小さくして、軸受クリアランスのバラツキを低減化している。
特開平8−210355号公報 特開平10−175131号公報
However, as described above, when the split slide bearing is assembled to the split bearing housing, the split bearing housing inner diameter expands and deforms in the radial direction. The bearing clearance when such expansion deformation occurs is compared with the designed bearing clearance determined by the inner diameter of the bearing holding hole in the split bearing housing, the outer diameter of the crankshaft, and the thickness of the bearing semi-cylindrical body. It increases by the amount of expansion deformation of the split bearing housing, and variation also occurs due to such expansion deformation.
This variation is taught in Patent Document 2 (Japanese Patent Laid-Open No. 10-175131), and is divided by a selective combination of the outer peripheral surface circumference of the split slide bearing and the inner diameter of the bearing holding hole of the split bearing housing. The variation in the distance between the split bearing housing and the crankshaft due to the expansion deformation of the bearing housing is reduced to reduce the variation in the bearing clearance.
JP-A-8-210355 JP-A-10-175131

内燃機関の軽量化のために、クランク軸用分割型軸受ハウジングは、従来より低剛性化されてきている。汎用されているアルミニウム合金製エンジンブロックの採用も軽量化のためである。
ここで、分割型軸受ハウジングと、これに組み込まれる一対の軸受半円筒体から成るクランク軸用分割型すべり軸受との関係について、図9、図10を見ながら説明する。
図9は、クランク軸用分割型軸受ハウジング01を示し、軸受ハウジング01は、エンジンブロックの一部である一方のハウジング分割体02と、軸受キャップ(例えば、鉄合金製)としての他方のハウジング分割体03とで形成されている。ハウジング分割体03が、ボルト04によってハウジング分割体02に組み付けられた状態で、室温にて、機械加工により、横断面真円形状の軸受保持穴(05、06)が形成される。この後の、軸受装置組立作業は、軸受ハウジング01からボルト04を取り外し、軸受保持穴の内周面05、06に沿って、分割型すべり軸受を形成する軸受半円筒体07、08を装着し、再度、ボルト04によって、ハウジング分割体03を、ハウジング分割体02に締結することによって行なわれる(図10参照)。
In order to reduce the weight of the internal combustion engine, the crankshaft split-type bearing housing has been made more rigid than before. The use of a widely used aluminum alloy engine block is also for weight reduction.
Here, the relationship between the split-type bearing housing and the split-type slide bearing for crankshaft composed of a pair of bearing semi-cylindrical bodies incorporated therein will be described with reference to FIGS.
FIG. 9 shows a split-type bearing housing for crankshaft 01. The bearing housing 01 is divided into one housing divided body 02 which is a part of the engine block and the other housing divided as a bearing cap (for example, made of iron alloy). The body 03 is formed. In a state where the housing divided body 03 is assembled to the housing divided body 02 with bolts 04, a bearing holding hole (05, 06) having a perfectly circular cross section is formed by machining at room temperature. In the subsequent assembly of the bearing device, the bolts 04 are removed from the bearing housing 01, and the bearing semi-cylindrical bodies 07 and 08 forming the split slide bearings are mounted along the inner peripheral surfaces 05 and 06 of the bearing holding holes. The housing division body 03 is again fastened to the housing division body 02 with the bolts 04 (see FIG. 10).

しかるに、近年汎用されている低剛性化された分割型軸受ハウジング01に分割型すべり軸受を密嵌、固定するために、従来と同程度の応力が分割型すべり軸受に生じるように、ボルト04による締め付けを行なうと、分割型軸受ハウジングの内径の膨張変形量が大きくなる。さらに、分割型軸受ハウジングを構成するハウジング分割体02、03は、互いに剛性が異なるので、分割型すべり軸受を固定する応力により、ハウジング分割体02、03の突き合わせ端面(分割型軸受ハウジングの分割面)における内径05、06に膨張変形量の差が生じ、これが段差(図10、記号G参照)になって現れ、軸受半円筒体07、08の突き合わせ端面において、軸受内周面にも段差(g)が生じる。   However, in order to tightly fit and fix the split-type slide bearing to the split-type bearing housing 01 with low rigidity that has been widely used in recent years, the bolt 04 is used so that the same level of stress is generated in the split-type slide bearing. When tightening, the amount of expansion and deformation of the inner diameter of the split bearing housing increases. Furthermore, since the housing divided bodies 02 and 03 constituting the split bearing housing have different rigidity, the abutting end surfaces of the housing split bodies 02 and 03 (the split surfaces of the split bearing housing) are caused by the stress that fixes the split slide bearing. ) In the inner diameters 05 and 06 in FIG. 10), which appears as a step (see symbol G in FIG. 10), and at the abutting end surfaces of the bearing semi-cylindrical bodies 07 and 08, a step ( g) occurs.

一方、近年の内燃機関では、オイルポンプの小型化により、クランク軸用すべり軸受の内周面に対する潤滑油供給量が減少している。これに対応して、クランク軸用すべり軸受の内周面とクランク軸表面の間の軸受クリアランスからの潤滑油の漏れ量を少なくするために、軸受クリアランスがより小さく設定される。そのため、軸受半円筒体07、08の突き合わせ端面における軸受内周面に段差(g)が形成されていると、従来の軸受クリアランスが大きく設定された場合に比べて、潤滑油の流路断面積に対する潤滑油流の障壁になる段差面積の割合が相対的に高くなり、段差(g)による潤滑油のワイピング現象が生じて、潤滑油の漏れ量が増加し、軸受摺動面に対する潤滑油供給不良が発生するようになってきた。   On the other hand, in recent internal combustion engines, the amount of lubricating oil supplied to the inner peripheral surface of the crankshaft slide bearing has decreased due to the downsizing of the oil pump. Correspondingly, the bearing clearance is set smaller in order to reduce the amount of lubricating oil leakage from the bearing clearance between the inner peripheral surface of the crankshaft slide bearing and the crankshaft surface. Therefore, when the step (g) is formed on the bearing inner peripheral surface at the end face of the bearing semi-cylindrical bodies 07 and 08, the flow passage cross-sectional area of the lubricating oil is larger than when the conventional bearing clearance is set large. The ratio of the step area that becomes a barrier to the lubricating oil flow with respect to the oil becomes relatively high, the wiping phenomenon of the lubricating oil due to the step (g) occurs, the amount of lubricating oil leakage increases, and the lubricating oil supply to the bearing sliding surface Defects are starting to occur.

特許文献2は、内燃機関の静粛性のためにすべり軸受の内周面と軸表面の間の軸受クリアランスをより小さくする手段を教示しているが、互いに剛性差のある、分割型軸受ハウジングの一対のハウジング分割体に一対の軸受半円筒体が組み付けられた時の該軸受半円筒体の突き合わせ端面において、軸受内周面に段差が発生する問題については何も考察されていない。   Patent Document 2 teaches a means for reducing the bearing clearance between the inner peripheral surface of the plain bearing and the shaft surface for quietness of the internal combustion engine. No consideration has been given to the problem that a step is generated on the inner peripheral surface of the bearing at the abutting end face of the bearing semi-cylindrical body when the pair of bearing semi-cylindrical bodies are assembled to the pair of housing divided bodies.

かくして、本発明の目的は、内燃機関のクランク軸用分割型軸受ハウジングを構成する互いに剛性差のある一対のハウジング分割体に、すべり軸受である一対の軸受半円筒体が装着された時、該軸受半円筒体の突き合わせ端面において、軸受内周面に段差が生じることによる、潤滑油のワイピング現象が発生する問題を解決することである。   Thus, an object of the present invention is that when a pair of bearing semi-cylindrical bodies which are slide bearings are mounted on a pair of housing divided bodies which form a split bearing housing for a crankshaft of an internal combustion engine and which have a difference in rigidity, This is to solve the problem that a wiping phenomenon of the lubricating oil occurs due to a step formed on the inner peripheral surface of the bearing at the abutting end surface of the bearing semi-cylindrical body.

かかる目的に照らし、本発明の第一の観点によれば、以下に示す内燃機関のクランク軸用分割型すべり軸受が提供される。
一対の軸受半円筒体を互いに組み合わせて円筒形状体として用いられる、内燃機関のクランク軸用分割型すべり軸受であり、その組み合わせ状態と整合する態様で2分割された円筒形状の軸受保持穴を有する分割型軸受ハウジング内に収容して用いられる前記分割型すべり軸受において、
前記分割型軸受ハウジングが、相対的に低剛性のハウジング分割体と、相対的に高剛性のハウジング分割体とから成り、
前記低剛性側ハウジング分割体に支持される前記軸受半円筒体を第一軸受半円筒体と称し、前記高剛性側ハウジング分割体に支持される前記軸受半円筒体を第二軸受半円筒体と称するとき、非装着状態における前記第一および第二軸受半円筒体の寸法関係が、
(1)前記第一および第二軸受半円筒体の外径寸法が等しく、かつ
(2)前記第一軸受半円筒体の周方向両端部の厚さが、前記第二軸受半円筒体の周方向両端部の厚さよりも大きくなされており、
それによって、前記第一および第二軸受半円筒体が組み込まれた状態で一対の前記ハウジング分割体がボルト締結された時、一対の前記ハウジング分割体の突き合わせ端面に、前記剛性の違いに基づいて生じる両ハウジング分割体の変形量の差に起因する段差が生じても、前記第一および第二軸受半円筒体の突き合わせ端面における両軸受半円筒体の内周面が整合状態になることを特徴とする内燃機関のクランク軸用分割型すべり軸受。
ここで、前記「内周面の整合状態」について説明する。
この整合は、軸受半円筒体内周面相互の幾何学的完全一致を意味せず、第一および第二軸受半円筒体を装着した状態で、一対のハウジング分割体をボルト締結した場合の両ハウジング分割体の突き合わせ端面における軸受保持穴内径の膨張変形量差を、例えば、以下に示す「膨張変形量差計算式」で求め、この値の1/2の値を、突き合わせ端部における軸受厚さの差として設定し、分割型すべり軸受および分割型軸受ハウジングの製造時における加工精度によって定まる誤差を許容するものとする。
In light of this object, according to a first aspect of the present invention, there is provided the following split shaft bearing for a crankshaft of an internal combustion engine.
A split-type slide bearing for a crankshaft of an internal combustion engine that is used as a cylindrical body by combining a pair of bearing semi-cylindrical bodies with a cylindrical bearing holding hole that is divided into two in a manner that matches the combined state In the split slide bearing used by being housed in a split bearing housing,
The split bearing housing comprises a relatively low-rigidity housing split and a relatively high-rigidity housing split,
The bearing semi-cylindrical body supported by the low-rigidity side housing divided body is referred to as a first bearing semi-cylindrical body, and the bearing semi-cylindrical body supported by the high-rigidity side housing divided body is referred to as a second bearing semi-cylindrical body. When called, the dimensional relationship between the first and second bearing semi-cylindrical bodies in the non-mounted state is
(1) The outer diameters of the first and second bearing semi-cylindrical bodies are equal, and (2) the thicknesses of both ends in the circumferential direction of the first bearing semi-cylindrical body are the circumference of the second bearing semi-cylindrical body. It is made larger than the thickness at both ends in the direction,
Thereby, when the pair of housing divided bodies are bolted in a state where the first and second bearing semi-cylindrical bodies are incorporated, the butt end surfaces of the pair of housing divided bodies are based on the difference in rigidity. The inner peripheral surfaces of the two bearing semi-cylindrical bodies at the abutting end surfaces of the first and second bearing semi-cylindrical bodies are in an aligned state even if a step due to the difference in deformation between the two housing divided bodies occurs. A split slide bearing for a crankshaft of an internal combustion engine.
Here, the “alignment state of the inner peripheral surface” will be described.
This alignment does not mean geometrical coincidence between the peripheral surfaces of the bearing semi-cylindrical bodies, and both housings when the pair of housing divided bodies are bolted together with the first and second bearing semi-cylindrical bodies mounted. The difference in expansion deformation of the inner diameter of the bearing holding hole at the butt end surface of the divided body is obtained by, for example, the following “expansion deformation amount difference calculation formula”, and the value of ½ of this value is the bearing thickness at the butt end. This difference is set to allow an error determined by the processing accuracy in manufacturing the split slide bearing and split bearing housing.

(数1)
ΔD=ΔD(L)−ΔD(H) … 数式1

記号の説明:
ΔD:膨張変形量差(mm)
ΔD(L):低剛性側分割型軸受ハウジングの軸受保持穴内径膨張変形量(mm)
ΔD(H):高剛性側分割型軸受ハウジングの軸受保持穴内径膨張変形量(mm)
(Equation 1)
ΔD = ΔD (L) −ΔD (H) Equation 1

Explanation of symbols:
ΔD: Expansion deformation difference (mm)
ΔD (L): Bearing holding hole inner diameter expansion deformation amount of low rigidity side split type bearing housing (mm)
ΔD (H): Bearing holding hole inner diameter expansion deformation of high rigidity side split type bearing housing (mm)

Figure 2010156373

記号の説明:
:組合せ円筒での軸受半円筒体剛性に関する係数(mm/N)
(L):組合せ円筒での低剛性側分割型軸受ハウジング剛性に関する係数(mm/N)
σ:締め代(軸受半円筒体外径−軸受保持穴内径)(mm)
Figure 2010156373

Explanation of symbols:
B B : Coefficient of bearing semi-cylindrical rigidity in combination cylinder (mm 2 / N)
B H (L): Coefficient of low rigidity side split type bearing housing in combination cylinder (mm 2 / N)
σ: Tightening margin (Bearing semi-cylindrical outer diameter-Bearing holding hole inner diameter) (mm)

Figure 2010156373

記号の説明:
t:軸受半円筒体厚さ(mm)
D:軸受保持穴内径(mm)
:軸受半円筒体のヤング率(GPa)
ν:軸受半円筒体のポアソン比
Figure 2010156373

Explanation of symbols:
t: Bearing semi-cylinder thickness (mm)
D: Bearing holding hole inner diameter (mm)
E B : Young's modulus (GPa) of bearing semi-cylindrical body
ν B : Poisson's ratio of bearing semi-cylindrical body

Figure 2010156373

記号の説明:
ν(L):低剛性側分割型軸受ハウジングのポアソン比
(L):低剛性側分割型軸受ハウジングの外径(mm)
(L):低剛性側分割型軸受ハウジングのヤング率(GPa)
Figure 2010156373

Explanation of symbols:
ν H (L): Poisson's ratio of low rigidity side split bearing housing DH (L): Outer diameter of low rigidity side split bearing housing (mm)
E H (L): Young's modulus (GPa) of low rigidity side split type bearing housing

Figure 2010156373

記号の説明:
(H):組合せ円筒での高剛性側分割型軸受ハウジング剛性に関する係数(mm/N)
Figure 2010156373

Explanation of symbols:
B H (H): Coefficient for high rigidity side split type bearing housing rigidity in combination cylinder (mm 2 / N)

Figure 2010156373

記号の説明:
ν(H):高剛性側分割型軸受ハウジングのポアソン比
(H):高剛性側分割型軸受ハウジングの外径(mm)
(H):高剛性側分割型軸受ハウジングのヤング率(GPa)
Figure 2010156373

Explanation of symbols:
ν H (H): Poisson's ratio of high rigidity side split bearing housing DH (H): Outer diameter of high rigidity side split bearing housing (mm)
E H (H): Young's modulus (GPa) of high rigidity side split type bearing housing

本発明すべり軸受の第一の実施形態によれば、前記第一軸受半円筒体は、周方向長さの全体に亘ってその厚さが均一になされる。
本発明すべり軸受の第二の実施形態によれば、前記第一軸受半円筒体は、周方向長さの中央部分から両突き合わせ端面に向かってその厚さが増大する。
本発明すべり軸受の第三の実施形態によれば、前記第二軸受半円筒体は、周方向長さの全体に亘ってその厚さが均一である。
本発明すべり軸受の第四の実施形態によれば、前記第二軸受半円筒体は、周方向長さの中央部分から両突き合わせ端面に向かってその厚さが小さくなされる。
本発明すべり軸受の第五の実施形態によれば、少なくとも前記第二軸受半円筒体の内周面に、周方向に延在する多数の周方向溝が存在し、該第二軸受半円筒体の2つの周方向端面を含む前記第二軸受半円筒体の周方向端部領域に形成された前記周方向溝の深さが5μm以上20μm以下になされる。
本発明すべり軸受の第六の実施形態によれば、前記第一軸受半円筒体の内周面に、周方向に延在する多数の周方向溝が存在し、該第一軸受半円筒体の2つの周方向端面を含む前記第一軸受半円筒体の周方向端部領域に形成された周方向溝の深さが5μm以上20μm以下になされる。
本発明すべり軸受の第七の実施形態によれば、前記第一軸受半円筒体の前記内周面における前記周方向端部領域が、当該周方向端面を始点とする少なくとも円周角10°、最大で円周角50°に相当する周方向長さで規定される範囲である。
本発明すべり軸受の第八の実施形態によれば、前記第一軸受半円筒体における、前記周方向長さで規定される範囲以外の前記内周面の表面粗さが3.2μmRz以下である。
本発明すべり軸受の第九の実施形態によれば、前記第一軸受半円筒体における、前記周方向溝のピッチが0.3mm〜1.5mmである。
本発明すべり軸受の第十の実施形態によれば、前記第二軸受半円筒体の内周面に形成された前記周方向溝の深さが、前記第一および第二軸受半円筒体の突き合わせ端面の間で生じる段差量と同等以上の大きさになされる。
According to the first embodiment of the sliding bearing of the present invention, the thickness of the first bearing semi-cylindrical body is made uniform over the entire circumferential length.
According to the second embodiment of the sliding bearing of the present invention, the thickness of the first bearing semi-cylindrical body increases from the central portion of the circumferential length toward both butted end faces.
According to the third embodiment of the sliding bearing of the present invention, the thickness of the second bearing semi-cylindrical body is uniform over the entire circumferential length.
According to the fourth embodiment of the sliding bearing of the present invention, the thickness of the second bearing semi-cylindrical body is reduced from the central portion of the circumferential length toward both butted end faces.
According to the fifth embodiment of the sliding bearing of the present invention, there are a large number of circumferential grooves extending in the circumferential direction at least on the inner peripheral surface of the second bearing semicylindrical body, and the second bearing semicylindrical body. The depth of the circumferential groove formed in the circumferential end region of the second bearing semi-cylindrical body including the two circumferential end surfaces is 5 μm or more and 20 μm or less.
According to the sixth embodiment of the sliding bearing of the present invention, there are a large number of circumferential grooves extending in the circumferential direction on the inner circumferential surface of the first bearing semi-cylindrical body, The depth of the circumferential groove formed in the circumferential end region of the first bearing semi-cylindrical body including the two circumferential end faces is set to 5 μm or more and 20 μm or less.
According to the seventh embodiment of the sliding bearing of the present invention, the circumferential end region of the inner circumferential surface of the first bearing semi-cylindrical body has at least a circumferential angle of 10 ° starting from the circumferential end surface, This is a range defined by a circumferential length corresponding to a circumferential angle of 50 ° at the maximum.
According to the eighth embodiment of the sliding bearing of the present invention, the surface roughness of the inner peripheral surface outside the range defined by the circumferential length in the first bearing semi-cylindrical body is 3.2 μmRz or less. .
According to the ninth embodiment of the sliding bearing of the present invention, the pitch of the circumferential groove in the first bearing semi-cylindrical body is 0.3 mm to 1.5 mm.
According to the tenth embodiment of the sliding bearing of the present invention, the depth of the circumferential groove formed on the inner peripheral surface of the second bearing semi-cylindrical body is determined by the butt of the first and second bearing semi-cylindrical bodies. The size is equal to or greater than the amount of step generated between the end faces.

本発明の第二の観点によれば、以下に示す内燃機関のクランク軸用分割型すべり軸受装置が提供される。
一対の軸受半円筒体を互いに組み合わせて円筒形状体として用いられる、内燃機関のクランク軸用分割型すべり軸受と、
前記一対の軸受半円筒体の組み合わせ状態と整合する態様で2分割された円筒形状の軸受保持穴を有し、該軸受保持穴内に前記一対の軸受半円筒体を収容して保持する内燃機関のクランク軸用分割型軸受ハウジングとを含む分割型すべり軸受装置において、
前記分割型軸受ハウジングが、相対的に低剛性のハウジング分割体と、相対的に高剛性のハウジング分割体とから成り、
前記低剛性側ハウジング分割体に支持される前記軸受半円筒体を第一軸受半円筒体と称し、前記高剛性側ハウジング分割体に支持される前記軸受半円筒体を第二軸受半円筒体と称するとき、非装着状態における前記第一および第二軸受半円筒体の寸法関係が、
(1)前記第一および第二軸受半円筒体の外径寸法が等しく、かつ
(2)前記第一軸受半円筒体の周方向両端部の厚さが、前記第二軸受半円筒体の周方向両端部の厚さよりも大きくなされており、
それによって、前記第一および第二軸受半円筒体が組み込まれた状態で一対の前記ハウジング分割体がボルト締結された時、一対の前記ハウジング分割体の突き合わせ端面に、前記剛性の違いに基づいて生じる両ハウジング分割体の変形量の差に起因する段差が生じても、前記第一および第二軸受半円筒体の突き合わせ端面における両軸受半円筒体の内周面が整合状態になることを特徴とする内燃機関のクランク軸用分割型すべり軸受装置。
According to the second aspect of the present invention, there is provided the following split shaft bearing device for a crankshaft of an internal combustion engine.
A split slide bearing for a crankshaft of an internal combustion engine, which is used as a cylindrical body by combining a pair of bearing semi-cylindrical bodies,
An internal combustion engine having a cylindrical bearing holding hole that is divided into two in a manner that matches the combined state of the pair of bearing semi-cylindrical bodies and that houses and holds the pair of bearing semi-cylindrical bodies in the bearing holding holes. In a split slide bearing device including a split bearing housing for a crankshaft,
The split bearing housing comprises a relatively low-rigidity housing split and a relatively high-rigidity housing split,
The bearing semi-cylindrical body supported by the low-rigidity side housing divided body is referred to as a first bearing semi-cylindrical body, and the bearing semi-cylindrical body supported by the high-rigidity side housing divided body is referred to as a second bearing semi-cylindrical body. When called, the dimensional relationship between the first and second bearing semi-cylindrical bodies in the non-mounted state is
(1) The outer diameters of the first and second bearing semi-cylindrical bodies are equal, and (2) the thicknesses of both ends in the circumferential direction of the first bearing semi-cylindrical body are the circumference of the second bearing semi-cylindrical body. It is made larger than the thickness at both ends in the direction,
Thereby, when the pair of housing divided bodies are bolted in a state where the first and second bearing semi-cylindrical bodies are incorporated, the butt end surfaces of the pair of housing divided bodies are based on the difference in rigidity. The inner peripheral surfaces of the two bearing semi-cylindrical bodies at the abutting end surfaces of the first and second bearing semi-cylindrical bodies are in an aligned state even if a step due to the difference in deformation between the two housing divided bodies occurs. A split-type plain bearing device for a crankshaft of an internal combustion engine.

[発明の効果]
内燃機関のクランク軸用分割型軸受ハウジングが、互いに剛性差のある一対のハウジング分割体から成り、該軸受ハウジングに装着して用いられる前記分割型すべり軸受によれば、分割型すべり軸受が装着された状態で、ボルトによって、互いに剛性の異なる一対のハウジング分割体を締結した時に、分割型すべり軸受を固定する応力により、一対のハウジング分割体の突き合わせ端面(分割型軸受ハウジングの分割面)における軸受保持穴の内径に、低剛性ハウジング分割体と高剛性ハウジング分割体との間で膨張変形量の差が生じ、これが段差(図10、記号G参照)になって現れるが、従来の分割型すべり軸受と違って、軸受保持穴に保持される一対の軸受半円筒体の突き合わせ端面に段差が生じることは事実上ない。何故なら、膨張変形量の大きな低剛性ハウジング分割体に沿って装着された軸受半円筒体の突き合わせ端部の厚さが、膨張変形量の小さな高剛性ハウジング分割体に沿って装着された軸受半円筒体の突き合わせ端部の厚さよりも大きくなされており、その厚さの差を適切に選択することにより、一対のハウジング分割体の突き合わせ端面に生じる段差を事実上相殺できるからである。
[The invention's effect]
A split-type bearing housing for a crankshaft of an internal combustion engine comprises a pair of housing split bodies having a difference in rigidity from each other. According to the split-type slide bearing used by being mounted on the bearing housing, the split-type slide bearing is mounted. Bearings on the butted end surfaces of the pair of housing split bodies (split surfaces of the split bearing housing) due to the stress of fixing the split slide bearings when the pair of housing split bodies having different rigidity are fastened with bolts There is a difference in the amount of expansion deformation between the low-rigidity housing divided body and the high-rigidity housing divided body on the inner diameter of the holding hole, and this appears as a step (see symbol G in FIG. 10). Unlike a bearing, there is virtually no step on the end face of the pair of bearing semi-cylindrical bodies held in the bearing holding hole. This is because the thickness of the abutting end of the bearing semi-cylindrical body mounted along the low-rigidity housing segment having a large expansion deformation amount is equal to that of the bearing half cylinder mounted along the high-rigidity housing segment having a small expansion deformation amount. This is because the thickness is made larger than the thickness of the butted end portion of the cylindrical body, and by appropriately selecting the difference in thickness, the step generated on the butted end surfaces of the pair of housing divided bodies can be virtually offset.

図1は、内燃機関のクランク軸用分割型軸受ハウジング10の軸受保持穴12内に、一対の軸受半円筒体20、22から成る分割型すべり軸受を装着した状態を示す正面図である。分割型軸受ハウジング10は、アルミニウム合金製エンジンブロックの一部をなす低剛性側ハウジング分割体14と、鉄合金製軸受キャップとしての高剛性側ハウジング分割体16とで形成され、両ハウジング分割体14、16は、ボルト18で一体的に締結されている。分割型軸受ハウジング10の軸受保持穴12は、分割型すべり軸受を装着せずに、ボルト18を用いてハウジング分割体14、16を組立てた状態で、横断面真円形の円筒形状穴を機械加工して形成したものである。前記のように機械加工によって軸受保持穴12を形成した後の分割型軸受ハウジング10を分解して、ハウジング分割体14、16の内周面に沿って軸受半円筒体20、22を装着し、再度、ハウジング分割体14、16をボルト18で一体的に組み合わせた状態が図1に示されている。
軸受半円筒体20、22は、分割型軸受ハウジング10に組み込まれる前の初期状態で、外径が等しいものの、両者の突き合せ端部20a、22aの壁厚さが異なっている。すなわち、壁厚さの関係は、突き合せ端部20aの壁厚さが、突き合せ端部22aの壁厚さよりも大きい。また、軸受半円筒体20、22の壁厚さは、軸受半円筒体の周方向中央部20x、22xで最も大きく、突き合せ端面20b、22bに向かって、次第に小さくなされている。
FIG. 1 is a front view showing a state in which a split type slide bearing comprising a pair of bearing semi-cylindrical bodies 20 and 22 is mounted in a bearing holding hole 12 of a split type bearing housing 10 for a crankshaft of an internal combustion engine. The split bearing housing 10 is formed of a low-rigidity side housing divided body 14 that forms a part of an aluminum alloy engine block, and a high-rigidity side housing divided body 16 as an iron alloy bearing cap. , 16 are integrally fastened by bolts 18. The bearing holding hole 12 of the split bearing housing 10 is machined into a cylindrical hole having a true circular cross section in a state where the housing split bodies 14 and 16 are assembled using bolts 18 without mounting the split slide bearing. Formed. The split bearing housing 10 after the bearing holding hole 12 is formed by machining as described above is disassembled, and the bearing semi-cylindrical bodies 20 and 22 are mounted along the inner peripheral surfaces of the housing divided bodies 14 and 16. Again, FIG. 1 shows a state in which the housing divided bodies 14 and 16 are integrally combined with the bolts 18.
The bearing semi-cylindrical bodies 20 and 22 are in the initial state before being incorporated into the split bearing housing 10, but have the same outer diameter, but the wall thicknesses of the butted ends 20 a and 22 a are different. That is, the wall thickness relationship is such that the wall thickness of the butted end portion 20a is larger than the wall thickness of the butted end portion 22a. The wall thickness of the bearing semi-cylindrical bodies 20 and 22 is the largest at the circumferential center portions 20x and 22x of the bearing semi-cylindrical bodies, and gradually decreases toward the butt end faces 20b and 22b.

しかるに、ハウジング分割体14、16をボルト18で一体的に組み合わせた時、前記[0007]欄で説明したとおり、また、図10に示されるとおり、低剛性側ハウジング分割体14の突き合せ端部における膨張変形量が、高剛性側ハウジング分割体16の突き合せ端部における膨張変形量よりも大きいため、軸受保持穴12の内径が、両ハウジング分割体14、16間で異なり、両軸受半円筒体20、22の突き合せ端面20b、22b間で、図10に示すような、段差(g)が生じる可能性がある。しかしながら、本実施例では、軸受半円筒体20、22の初期状態における外径が等しく、また、突き合せ端部20aの壁厚さが、突き合せ端部22aの壁厚さよりも大きく、突き合せ端面20b、22bにおいて、両軸受半円筒体20、22の内周面が互いに整合するように設計されており、図1に示されるような突き合せ端面20b、22bの状態になる。このため、両軸受半円筒体20、22の突き合せ端面20b、22bにおいて、潤滑油のワイピング現象が起き難い。   However, when the housing divided bodies 14 and 16 are integrally combined with the bolts 18, as described in the above [0007] column and as shown in FIG. Is larger than the amount of expansion deformation at the abutting end portion of the high-rigidity side housing divided body 16, the inner diameter of the bearing holding hole 12 is different between the two housing divided bodies 14, 16. A step (g) as shown in FIG. 10 may occur between the butted end surfaces 20b and 22b of the bodies 20 and 22. FIG. However, in the present embodiment, the outer diameters of the bearing semi-cylindrical bodies 20 and 22 in the initial state are equal, and the wall thickness of the butted end portion 20a is larger than the wall thickness of the butted end portion 22a. The end surfaces 20b and 22b are designed so that the inner peripheral surfaces of the two bearing semi-cylindrical bodies 20 and 22 are aligned with each other, resulting in a butt end surface 20b and 22b as shown in FIG. For this reason, the wiping phenomenon of the lubricating oil hardly occurs at the butted end surfaces 20b and 22b of the both bearing semi-cylindrical bodies 20 and 22.

現実に、両軸受半円筒体20、22の内周面が前記のように互いに整合するように構成するには、分割型軸受ハウジング10の実物(シリンダブロックと軸受キャップ)、または、実物を模して作成した分割型軸受ハウジング部分のみのモデルを用いる。
分割型軸受ハウジングの軸受保持穴に、同一形状、同一寸法の一対の軸受半円筒体を装着して、両軸受半円筒体をボルトで締結した状態で、一対の軸受半円筒体の突き合わせ端面における内径の段差寸法を真円度測定機等の測定機を用いて測定する。
この測定値を用い、相対的に低剛性側のハウジング分割体に装着されるべき軸受半円筒体の周方向両端部の壁厚さを、相対的に高剛性側のハウジング分割体に装着されるべき軸受半円筒体の周方向両端部の壁厚さよりも、実物またはモデルを用いて実際に測定した段差寸法値分だけ大きくするとよい。
Actually, in order to configure the inner peripheral surfaces of the two bearing semi-cylindrical bodies 20 and 22 to be aligned with each other as described above, the split bearing housing 10 (the cylinder block and the bearing cap) or the actual one is modeled. The model of the split bearing housing part created in this way is used.
A pair of bearing semi-cylindrical bodies of the same shape and the same dimensions are mounted in the bearing holding holes of the split bearing housing, and the bearing semi-cylindrical bodies are fastened with bolts. The step size of the inner diameter is measured using a measuring machine such as a roundness measuring machine.
Using this measured value, the wall thickness at both ends in the circumferential direction of the bearing semi-cylindrical body to be attached to the relatively low-rigidity housing division is attached to the relatively high-rigidity housing division. It is good to make it larger by the step size value actually measured using the real thing or the model than the wall thickness of the circumferential direction both ends of the power bearing semi-cylindrical body.

或いはまた、簡易的に、前記[0012]〜[0017]欄に記載した数式で求められる分割型軸受ハウジングの軸受保持穴内径の膨張変形量差の1/2の値だけ、相対的に低剛性側のハウジング分割体に装着されるべき軸受半円筒体の周方向両端部の壁厚さを、相対的に高剛性側のハウジング分割体に装着されるべき軸受半円筒体の周方向端部の壁厚さよりも大きくしてよい。   Alternatively, the rigidity is relatively low by a value that is ½ of the difference in expansion deformation of the inner diameter of the bearing holding hole of the split bearing housing, which is simply obtained by the mathematical formulas described in the columns [0012] to [0017]. The wall thickness of both ends in the circumferential direction of the bearing semi-cylindrical body to be mounted on the housing division on the side is set to be equal to that of the circumferential end of the bearing semi-cylindrical body to be mounted on the relatively rigid housing division. It may be larger than the wall thickness.

前記[0016]欄において、「突き合せ端面20b、22bにおいて、両軸受半円筒体20、22の内周面が互いに整合する」旨述べたが、この「整合」とは、幾何学的に完全整合した状態のみに限定されない。何故なら、両軸受半円筒体の製造時、および、分割型軸受ハウジングの軸受保持穴を機械加工する時には、加工誤差が生じ、さらに、分割型軸受ハウジングに両軸受半円筒体を装着して、ボルトで分割型軸受ハウジングを再締結する時にも、前記突き合せ端面20b、22bの僅かな位置ずれを伴うからである。このため、両軸受半円筒体の一方の突き合わせ側において、半径方向で5μm以内(すなわち、±5μm以内)の段差は許容されるものとする。   In the [0016] column, it was stated that “the inner peripheral surfaces of the bearing semi-cylindrical bodies 20 and 22 are aligned with each other at the butted end surfaces 20b and 22b”. This “alignment” is geometrically perfect. It is not limited to just a consistent state. This is because when manufacturing the double-bearing semi-cylindrical body and when machining the bearing holding hole of the split-type bearing housing, a processing error occurs, and further, the double-bearing semi-cylindrical body is attached to the split-type bearing housing, This is because even when the split bearing housing is refastened with bolts, the butt end faces 20b and 22b are slightly misaligned. For this reason, a step within 5 μm (that is, within ± 5 μm) in the radial direction is allowed on one abutting side of both bearing semi-cylindrical bodies.

本実施例では、内燃機関用の分割型すべり軸受として最も一般的である、両軸受半円筒体の周方向中央部の厚さ(20x、22x)が最も大きく、周方向両端面に向かって厚さが減少する仕様のものを用いて説明したが、本発明は、この仕様に限定されるわけではない。本発明では、分割型軸受ハウジングに一対の軸受半円筒体を装着した時に、両軸受半円筒体の周方向両端面において内周面を整合させる限り、両軸受半円筒体の厚さが周方向全体に亘って等しい仕様、両軸受半円筒体の周方向中央部の厚さが最も小さく周方向両端面に向かって厚さが増大する仕様、または、両軸受半円筒体の内周面が曲率の異なる複数の円弧面で形成された仕様を用いてよく、あるいはまた、相互間で異なる仕様の一対の軸受半円筒体を組み合わせて用いてもよい。   In this embodiment, the thickness (20x, 22x) of the center portion in the circumferential direction of both bearing semi-cylindrical bodies, which is the most common as a split slide bearing for an internal combustion engine, is the largest and thicker toward both end surfaces in the circumferential direction. Although the present invention has been described using a specification that decreases, the present invention is not limited to this specification. In the present invention, when a pair of bearing semi-cylindrical bodies are mounted on a split bearing housing, the thickness of both bearing semi-cylindrical bodies is set to the circumferential direction as long as the inner peripheral surfaces are aligned at both circumferential end faces of both bearing semi-cylindrical bodies. Specifications that are the same throughout, specifications that the thickness of the center part in the circumferential direction of both bearing semi-cylindrical bodies is the smallest and the thickness increases toward both end faces in the circumferential direction, or the inner peripheral surfaces of both bearing semi-cylindrical bodies are curved The specifications formed by a plurality of arcuate surfaces differing from each other may be used, or a pair of bearing semi-cylindrical bodies having different specifications may be used in combination.

また、従来の軸受半円筒体と同じく、軸受半円筒体20A、22Aの内周面側の周方向両端部にクラッシュリリーフ(20c、22c:内径拡大部)を形成してもよい(図2参照)。クラッシュリリーフを形成する場合には、低剛性側ハウジング分割体および高剛性側ハウジング分割体に装着される両軸受半円筒体のクラッシュリリーフ形成領域に直接隣接する軸受半円筒体内周面位置における軸受中心からの半径寸法(r1、r2)が、整合する(図2:r1=r2)ようにすればよい。   Further, as in the conventional bearing semi-cylindrical body, crush reliefs (20c, 22c: inner diameter enlarged portions) may be formed at both ends in the circumferential direction on the inner peripheral surface side of the bearing semi-cylindrical bodies 20A, 22A (see FIG. 2). ). When forming a crush relief, the bearing center at the circumferential surface position in the bearing semi-cylinder body directly adjacent to the crush relief forming area of the two-bearing semi-cylindrical body mounted on the low-rigidity side housing division and the high-rigidity side housing division The radial dimensions (r1, r2) from the second line should be matched (FIG. 2: r1 = r2).

図3を見ながら説明する。本実施例は、実施例1と同じ分割型軸受ハウジング10を用い、アルミニウム合金製低剛性側ハウジング分割体14に、壁厚さが周方向に亘って均一である軸受半円筒体20Bを装着し、高剛性側ハウジング分割体16に、周方向中央部の壁厚さが最も大きく、突き合わせ端面22bに向かって厚さが減少する軸受半円筒体22(後者は、図1に示した軸受半円筒体22と同じ)を装着して、両ハウジング分割体14、16をボルトで締結した時に、一対の軸受半円筒体20B、22の周方向両端面における内周面を整合させた状態を、図3に示す。この構成によれば、膨張変形量の大きな低剛性側ハウジング分割体14に装着された軸受半円筒体20Bの内周面と、被支持軸(図示しない)との間のクリアランスを、軸受半円筒体20Bの内周面全体に亘って小さくできるので、潤滑油の漏れ防止に効果的である。なお、この場合、高剛性側ハウジング分割体16に組み込まれる軸受半円筒体22については、突き合わせ端面で内周面を整合させる限りにおいて形状制限はないが、内燃機関の運転時における静粛性に最も影響するすべり軸受の周方向中央部の軸受クリアランスが小さくなるように、軸受半円筒体の周方向中央部の厚さが最も大きく、周方向両端面(突き合わせ端面)に向かって厚さが減少する軸受半円筒体22を用いることが好ましい。   This will be described with reference to FIG. In the present embodiment, the same split bearing housing 10 as that of the first embodiment is used, and a bearing semi-cylindrical body 20B having a uniform wall thickness in the circumferential direction is mounted on the low rigidity side housing divided body 14 made of aluminum alloy. The semi-cylindrical bearing body 16 has the largest wall thickness in the central portion in the circumferential direction and the thickness decreases toward the butt end face 22b (the latter is the bearing semi-cylindrical shown in FIG. 1). When the housing divided bodies 14 and 16 are fastened with bolts, the inner peripheral surfaces of the pair of bearing semi-cylindrical bodies 20B and 22 are aligned with each other in the circumferential direction. 3 shows. According to this configuration, the clearance between the inner peripheral surface of the bearing semi-cylindrical body 20B mounted on the low-rigidity side housing divided body 14 having a large expansion deformation amount and the supported shaft (not shown) is reduced. Since it can be made small over the entire inner peripheral surface of the body 20B, it is effective for preventing leakage of the lubricating oil. In this case, the bearing semi-cylindrical body 22 incorporated in the high-rigidity side housing divided body 16 is not limited in shape as long as the inner peripheral surface is aligned at the abutting end face, but it is most quiet in operating the internal combustion engine. The thickness of the circumferential center of the bearing semi-cylindrical body is the largest and the thickness decreases toward both circumferential end faces (butting end faces) so that the bearing clearance at the circumferential center of the affected sliding bearing is reduced. It is preferable to use the bearing semi-cylindrical body 22.

図4を見ながら説明する。一対のハウジング分割体14、16から成る分割型軸受ハウジング10は、ボルト18で締結されるが、ボルト締結時の応力で、低剛性側ハウジング分割体14の突き合わせ端面におけるハウジング分割体14の内径が拡大し、両突き合わせ端面を含む仮想平面に対して直角方向でハウジング分割体の内径が小さい楕円形状になるように弾性変形する場合がある。この場合に、通常の均一壁厚さの軸受半円筒体を用いると、低剛性側ハウジング分割体14に装着された軸受半円筒体の内径と、被支持軸であるクランク軸との間の軸受クリアランスが、軸受半円筒体の周方向端面に向かって次第に拡大し、軸受クリアランスの拡大部からの潤滑油の漏れ量が多くなってしまう。その対策として、本実施例では、低剛性側ハウジング分割体14に装着される軸受半円筒体20Cの周方向中央部から周方向端面に向かって壁厚さを増大させている。この結果、軸受半円筒体20Cの周方向端部においても、軸受クリアランスの拡大を抑えて小さく維持することができる。
高剛性側ハウジング分割体16に装着された軸受半円筒体22Bは周方向全長に亘って壁厚さが均一である。軸受半円筒体22Bの壁厚さは、軸受半円筒体20Cの周方向端部の壁厚さに比して小さい。
高剛性側ハウジング分割体16に装着される軸受半円筒体の仕様は、突き合わせ端面における内周面を、軸受半円筒体20Cの突き合わせ端面における内周面と整合させる限りにおいて、特に制約はないが、軸受半円筒体22Bの周方向の全長に亘って軸受クリアランスを可及的に小さくして内燃機関の運転時における静粛性を高めるために、軸受半円筒体の周方向の全長に亘って壁厚さが均一な軸受半円筒体22Bを用いることが好ましい(図4参照)。
This will be described with reference to FIG. The split bearing housing 10 composed of a pair of housing split bodies 14 and 16 is fastened with bolts 18. The inner diameter of the housing split body 14 at the abutting end surface of the low-rigidity side housing split body 14 is due to the stress at the time of bolt fastening. There is a case where it expands and elastically deforms so that the inner diameter of the housing divided body is small in the direction perpendicular to the virtual plane including both butted end faces. In this case, if a bearing semi-cylindrical body having a normal uniform wall thickness is used, a bearing between the inner diameter of the bearing semi-cylindrical body mounted on the low-rigidity side housing divided body 14 and the crankshaft as the supported shaft is used. The clearance gradually increases toward the circumferential end surface of the bearing semi-cylindrical body, and the amount of lubricating oil leaking from the enlarged portion of the bearing clearance increases. As a countermeasure, in the present embodiment, the wall thickness is increased from the circumferential central portion of the bearing semi-cylindrical body 20C attached to the low-rigidity side housing divided body 14 toward the circumferential end surface. As a result, even in the circumferential end portion of the bearing semi-cylindrical body 20C, it is possible to keep the bearing clearance small and keep it small.
The bearing semi-cylindrical body 22B mounted on the high-rigidity side housing divided body 16 has a uniform wall thickness over the entire length in the circumferential direction. The wall thickness of the bearing semi-cylindrical body 22B is smaller than the wall thickness of the circumferential end portion of the bearing semi-cylindrical body 20C.
The specifications of the bearing semi-cylindrical body mounted on the high-rigidity side housing divided body 16 are not particularly limited as long as the inner peripheral surface of the butt end surface is aligned with the inner peripheral surface of the butt end surface of the bearing semi-cylindrical body 20C. In order to reduce the bearing clearance as much as possible over the entire circumferential length of the bearing semi-cylindrical body 22B and to improve the quietness during operation of the internal combustion engine, a wall is formed over the entire circumferential length of the bearing semi-cylindrical body. It is preferable to use a bearing semi-cylindrical body 22B having a uniform thickness (see FIG. 4).

図5を見ながら説明する。本実施例では、相対的に高剛性である鉄合金製ハウジング分割体16に装着される軸受半円筒体22Cに対して、低剛性アルミニウム合金製ハウジング分割体14に装着される軸受半円筒体20Dの周方向両端部の厚さを大きくして一対の軸受半円筒体20D、22Cの突き合わせ面における内周面を整合させる。しかしながら、軸受半円筒体20D、22Cの製造時、および、ハウジング分割体14、16から成る分割型ハウジング10の軸受保持穴12を機械加工する時には、加工誤差が生じ、また、分割型軸受ハウジングに軸受半円筒体20D、22Cを装着して、ボルト18でハウジング分割体14、16を締結する時にも、ハウジング分割体14、16の突き合わせ面(分割型ハウジングの分割面)の僅かな位置ずれを伴うため、一対の軸受半円筒体20D、22Cの一方の側の突き合わせ端面において、半径方向で最大5μm程度の段差(g)が生じる場合がある。   This will be described with reference to FIG. In this embodiment, the bearing semi-cylindrical body 20D mounted on the low-rigidity aluminum alloy housing divided body 14 is used in contrast to the bearing semi-cylindrical body 22C mounted on the relatively high-rigidity iron alloy housing divided body 16. The thickness of both end portions in the circumferential direction is increased to align the inner peripheral surfaces of the butted surfaces of the pair of bearing semi-cylindrical bodies 20D and 22C. However, when the bearing semi-cylindrical bodies 20D and 22C are manufactured and when the bearing holding hole 12 of the split housing 10 formed of the housing split bodies 14 and 16 is machined, a machining error occurs, and the split bearing housing has a problem. Even when the bearing semi-cylindrical bodies 20D and 22C are mounted and the housing divided bodies 14 and 16 are fastened by the bolts 18, a slight misalignment of the abutting surfaces of the housing divided bodies 14 and 16 (divided surfaces of the divided housings) occurs. Therefore, there may be a step (g) of about 5 μm at the maximum in the radial direction at the butt end face on one side of the pair of bearing semi-cylindrical bodies 20D and 22C.

図5は、ハウジング分割体14、16をボルトで締結する時に、ハウジング分割体14、16の突き合わせ面(分割型ハウジングの分割面)で位置ずれが生じて、軸受半円筒体20D、22Cの突き合わせ端面で内周面に段差(g)が生じた状態を示す。図7は、図5における軸受半円筒体20D、22Cの段差形成部Aを拡大して示す。図7では、クランク軸30が示されている。   FIG. 5 shows that when the housing divided bodies 14 and 16 are fastened with bolts, misalignment occurs at the abutting surfaces of the housing divided bodies 14 and 16 (divided surfaces of the divided housings), and the bearing semi-cylindrical bodies 20D and 22C are abutted. A state where a step (g) is generated on the inner peripheral surface at the end surface is shown. FIG. 7 shows an enlarged view of the step forming portion A of the bearing semi-cylindrical bodies 20D and 22C in FIG. In FIG. 7, the crankshaft 30 is shown.

軸受半円筒体20D、22Cは、内周面に多数の周方向溝20d、22dが形成されている点を除いて、実施例3(図3参照)における軸受半円筒体20B、22の仕様と同じである。周方向溝20d、22dの好適溝形状は、図8に示すとおり横断面円弧形状である。図中、Hは周方向溝20d、22dの深さを示す。軸受半円筒体20Cの突き合わせ端面の一部である段差(g)を、図7における矢印Bで指示される方向で見ると、図8に示される周方向溝20dの横断面形状が、突き合わせ端面で開放された状態で現れている。   The bearing semi-cylindrical bodies 20D and 22C are the same as the specifications of the bearing semi-cylindrical bodies 20B and 22 in the third embodiment (see FIG. 3) except that a large number of circumferential grooves 20d and 22d are formed on the inner circumferential surface. The same. The preferable groove shape of the circumferential grooves 20d and 22d is an arc shape in cross section as shown in FIG. In the figure, H indicates the depth of the circumferential grooves 20d and 22d. When the step (g) which is a part of the butted end face of the bearing semi-cylindrical body 20C is viewed in the direction indicated by the arrow B in FIG. 7, the cross-sectional shape of the circumferential groove 20d shown in FIG. Appears in the open state.

軸受半円筒体20D、22Cの突き合わせ端面において、軸受内周面に最大で5μm程度の段差(g)が形成されたとしても、本実施例のように周方向溝20d、22dの内周面に5μm以上20μm以下の周方向溝が存在すれば、周方向溝の深さが段差(g)の大きさと同等以上になるので、クランク軸30の回転方向(図7:矢印X)に流れる潤滑油が、軸受半円筒体20Dの突き合わせ端面に生じた段差(g)で阻害されることなく、周方向溝20d内に進入して円滑に流れる。したがって、段差(g)による潤滑油のワイピング現象を首尾よく防止できる。   Even if a step (g) of about 5 μm at the maximum is formed on the bearing inner peripheral surface at the abutting end surfaces of the bearing semi-cylindrical bodies 20D and 22C, the inner circumferential surface of the circumferential grooves 20d and 22d is formed as in the present embodiment. If there is a circumferential groove of 5 μm or more and 20 μm or less, the depth of the circumferential groove is equal to or greater than the size of the step (g), so that the lubricating oil flows in the rotation direction of the crankshaft 30 (FIG. 7: arrow X). However, it enters into the circumferential groove 20d and smoothly flows without being hindered by the step (g) generated on the end face of the bearing semi-cylindrical body 20D. Therefore, the lubricating oil wiping phenomenon due to the step (g) can be successfully prevented.

これに対して、軸受半円筒体の内周面に周方向溝が形成されていない場合には、軸受半円筒体の突き合わせ端面に生じた段差が、クランク軸の回転方向に流れる潤滑油の進路を妨げる障壁になり、段差による潤滑油のワイピング現象が生じる。この結果、段差位置に達した潤滑油は、段差に沿って軸受の幅方向に流れ易く、十分な軸受の潤滑が保証されない。   On the other hand, when the circumferential groove is not formed on the inner peripheral surface of the bearing semi-cylindrical body, a step generated on the end face of the bearing semi-cylindrical body is a course of the lubricating oil flowing in the rotation direction of the crankshaft. As a barrier, the wiping phenomenon of the lubricating oil due to the level difference occurs. As a result, the lubricating oil that has reached the position of the step easily flows along the step in the width direction of the bearing, and sufficient lubrication of the bearing is not guaranteed.

先に、周方向溝20d、22dの溝深さ(H)を20μm以下にすることについて述べた。その限定理由は、20μmを超えると、内燃機関運転時に、動荷重負荷を主に受けることになる軸受半円筒体の周方向中央部の摺動面で、潤滑油膜の形成が難しくなるからである。より好ましい周方向溝の深さは10μm以上15μ以下である。
また、軸受半円筒体の内周面に形成する周方向溝の軸受幅方向におけるピッチは、0.3mm以上1.5mm以下とするが、この理由は、0.3mm未満であると、周方向溝を形成する山の頂点部分の各断面積が過度に小さく、クランク軸との接触によって容易に摩耗し、摩耗量が増すと、軸受クリアランスが増大して、潤滑油の漏れ量が増加することになるからである。周方向溝のピッチが1.5mmを超えると、クランク軸からの負荷を支えることになる軸受半円筒体の軸受幅方向における山の数が少ないために、一つの山頂点で受ける面圧が高くなり、摩擦熱によって軸受半円筒体の素材強度が低下し、摩耗量の増加を招く。軸受半円筒体の摩耗を少なくするための、より好ましい周方向溝の軸受半円筒体幅方向のピッチは0.5mm〜1.2mmである。
Previously, it was described that the groove depth (H) of the circumferential grooves 20d and 22d was 20 μm or less. The reason for the limitation is that if it exceeds 20 μm, it becomes difficult to form a lubricating oil film on the sliding surface at the center in the circumferential direction of the bearing semi-cylindrical body that is mainly subjected to a dynamic load during operation of the internal combustion engine. . A more preferable circumferential groove depth is 10 μm or more and 15 μm or less.
Moreover, the pitch in the bearing width direction of the circumferential groove formed on the inner peripheral surface of the bearing semi-cylindrical body is 0.3 mm or more and 1.5 mm or less. The reason is that if the pitch is less than 0.3 mm, the circumferential direction Each cross-sectional area of the apex of the crest forming the groove is excessively small, and wears easily due to contact with the crankshaft. When wear increases, bearing clearance increases and the amount of lubricating oil leakage increases. Because it becomes. If the circumferential groove pitch exceeds 1.5 mm, the bearing semi-cylindrical body that supports the load from the crankshaft has a small number of peaks in the bearing width direction, so the surface pressure received at one peak is high. As a result, the material strength of the bearing semi-cylindrical body decreases due to frictional heat, and the amount of wear increases. A more preferable circumferential groove pitch in the width direction of the bearing semi-cylindrical body for reducing the wear of the bearing semi-cylindrical body is 0.5 mm to 1.2 mm.

軸受半円筒体20D、22Cの周方向溝20d、22dは、その全内周面に形成されているが、クランク軸の回転方向とは反対の方向を向いた段差(g)が存在する側の、軸受半円筒体20D、22Cの周方向端面を始点とする所定円周角に相当する周方向長さ範囲にのみ形成してもよい。   The circumferential grooves 20d and 22d of the bearing semi-cylindrical bodies 20D and 22C are formed on the entire inner peripheral surface, but on the side where the step (g) facing the direction opposite to the rotation direction of the crankshaft exists. The bearing semi-cylindrical bodies 20D and 22C may be formed only in a circumferential length range corresponding to a predetermined circumferential angle starting from the circumferential end face.

なお、周方向溝20d、22dの好適溝形状は、図8に示すように、横断面円弧形状であるが、横断面V字形状も好適である。
周方向溝の溝形状が横断面円弧形状の場合、軸受半円筒体の突き合わせ面の一部である段差面の約2/3以上が溝内空間であり、その溝内を潤滑油が流れる。このことは、段差量(g:図7)を実質的に1/3以下にしたのと同等の効果が得られることを示している。
周方向溝の溝形状が横断面V字形状の場合、軸受半円筒体の合わせ面の一部である段差面の約1/2以上が溝内空間であり、その溝内を潤滑油が流れる。このことは、段差量(g:図7)を実質的に1/2以下にしたのと同等の効果が得られることを示している。
周方向溝を形成するためには、刃先が円弧形状またはV字形状の切削刃を用い、旋削加工により、切削刃先の形状を軸受半円筒体の内周面に転写すればよい。
In addition, although the suitable groove shape of the circumferential grooves 20d and 22d is a cross-sectional arc shape as shown in FIG. 8, a cross-sectional V-shape is also suitable.
When the groove shape of the circumferential groove is an arc shape in cross section, about 2/3 or more of the step surface which is a part of the abutting surface of the bearing semi-cylindrical body is the groove inner space, and the lubricating oil flows in the groove. This indicates that the same effect as that obtained when the step amount (g: FIG. 7) is substantially 3 or less can be obtained.
When the groove shape of the circumferential groove has a V-shaped cross section, about 1/2 or more of the step surface which is a part of the mating surface of the bearing semi-cylindrical body is the groove space, and the lubricating oil flows in the groove. . This indicates that the same effect as that obtained when the step amount (g: FIG. 7) is substantially reduced to ½ or less can be obtained.
In order to form the circumferential groove, a cutting blade having a circular arc shape or a V shape may be used, and the shape of the cutting blade tip may be transferred to the inner peripheral surface of the bearing semi-cylindrical body by turning.

ここで、図6に示す周方向溝形成形態の別例について説明する。図6に示す軸受半円筒体20E、22Dは、図5に示す軸受半円筒体20D、22Cと概ね同じ仕様であるが、周方向溝20e、22eの形成範囲が、図5に示す例と異なる。すなわち、周方向溝20e、22eは、軸受半円筒体20E、22Dの各周方向端面を始点とする少なくとも円周角10°、最大で円周角50°に相当する周方向長さ範囲に形成されている。この構成によれば、実施例4の場合と同様に、軸受半円筒体の周方向端面に段差が生じたとしても、潤滑油のワイピング現象を効果的に防止できる。
また、周方向溝20e、22eが形成されない内周面範囲では、クランク軸用の分割型すべり軸受の通常の粗さである3.2μmRz以下になされる。この表面粗さによれば、軸受半円筒体の主荷重部となる周方向中央部の摺動面において油膜が形成され易く、すべり軸受としての十分な負荷能力が保証される。
Here, another example of the circumferential groove forming form shown in FIG. 6 will be described. The bearing semi-cylindrical bodies 20E and 22D shown in FIG. 6 have substantially the same specifications as the bearing semi-cylindrical bodies 20D and 22C shown in FIG. 5, but the formation range of the circumferential grooves 20e and 22e is different from the example shown in FIG. . That is, the circumferential grooves 20e and 22e are formed in a circumferential length range corresponding to at least a circumferential angle of 10 ° and a maximum circumferential angle of 50 ° starting from the circumferential end surfaces of the bearing semi-cylindrical bodies 20E and 22D. Has been. According to this configuration, as in the case of the fourth embodiment, even if a step is generated on the circumferential end surface of the bearing semi-cylindrical body, the wiping phenomenon of the lubricating oil can be effectively prevented.
Further, in the inner peripheral surface range in which the circumferential grooves 20e and 22e are not formed, the roughness is 3.2 μmRz or less, which is a normal roughness of a split slide bearing for a crankshaft. According to this surface roughness, an oil film is easily formed on the sliding surface in the central portion in the circumferential direction which is the main load portion of the bearing semi-cylindrical body, and sufficient load capacity as a sliding bearing is guaranteed.

本発明の実施例1に係る内燃機関のクランク軸用分割型すべり軸受を、互いに剛性差のある軸受ハウジングから成る分割型軸受ハウジングに装着した状態を示す正面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing a state in which a split shaft bearing for a crankshaft of an internal combustion engine according to a first embodiment of the present invention is mounted on a split bearing housing composed of bearing housings having a difference in rigidity. 図1に示した分割型すべり軸受にクラッシュリリーフを付与した状態を示す図1と同様な図面。The same drawing as FIG. 1 which shows the state which provided the crush relief to the split-type slide bearing shown in FIG. 本発明の実施例2に係る内燃機関のクランク軸用分割型すべり軸受を、互いに剛性差のある軸受ハウジングから成る分割型軸受ハウジングに装着した状態を示す正面図。The front view which shows the state which mounted | wore the split-type bearing housing which consists of a bearing housing with a mutually different rigidity in the split-type slide bearing for crankshafts of the internal combustion engine which concerns on Example 2 of this invention. 本発明の実施例3に係る内燃機関のクランク軸用分割型すべり軸受を、互いに剛性差のある軸受ハウジングから成る分割型軸受ハウジングに装着した状態を示す正面図。The front view which shows the state which mounted | wore the split type bearing housing which consists of a bearing housing with a mutually different rigidity in the split type slide bearing for crankshafts of the internal combustion engine which concerns on Example 3 of this invention. 本発明の実施例4に係る内燃機関のクランク軸用分割型すべり軸受を、互いに剛性差のある軸受ハウジングから成る分割型軸受ハウジングに装着した状態を示す正面図。The front view which shows the state which mounted | wore the split type bearing housing which consists of a bearing housing with a mutually different rigidity in the split type slide bearing for crankshafts of the internal combustion engine which concerns on Example 4 of this invention. 本発明の実施例5に係る内燃機関のクランク軸用分割型すべり軸受を、互いに剛性差のある軸受ハウジングから成る分割型軸受ハウジングに装着した状態を示す正面図。The front view which shows the state which mounted | wore the split type bearing housing which consists of a bearing housing with a mutually different rigidity in the split type slide bearing for crankshafts of the internal combustion engine which concerns on Example 5 of this invention. 図5における段差形成部Aを拡大して示す。The level | step difference formation part A in FIG. 5 is expanded and shown. 実施例4に示す分割型すべり軸受を構成する軸受半円筒体の内周面に形成された周方向溝の横断面形状を、軸受半円筒体の周方向端面で見た図。The figure which looked at the cross-sectional shape of the circumferential groove | channel formed in the internal peripheral surface of the bearing semi-cylindrical body which comprises the split-type slide bearing shown in Example 4 in the circumferential direction end surface of the bearing semi-cylindrical body. 互いに剛性の異なる一対の軸受ハウジングから成る分割型軸受ハウジングを組立状態で示す従来例の説明図。Explanatory drawing of the prior art example which shows the split-type bearing housing which consists of a pair of bearing housing from which rigidity differs mutually in an assembly state. 図9に示す分割型軸受ハウジングに、一対の軸受半円筒体から成る分割型すべり軸受を組み付けた状態を示す従来例の説明図。FIG. 10 is an explanatory diagram of a conventional example showing a state in which a split slide bearing including a pair of bearing semi-cylindrical bodies is assembled to the split bearing housing shown in FIG. 9.

符号の説明Explanation of symbols

10 内燃機関のクランク軸用分割型軸受ハウジング
12 軸受保持穴
14 低剛性側ハウジング分割体
16 高剛性側ハウジング分割体
18 ボルト
20 軸受半円筒体
20A 軸受半円筒体
20B 軸受半円筒体
20C 軸受半円筒体
20D 軸受半円筒体
20E 軸受半円筒体
20a 突き合せ端部
20b 突き合せ端面
20c クラッシュリリーフ
20d 周方向溝
20e 周方向溝
22 軸受半円筒体
22A 軸受半円筒体
22B 軸受半円筒体
22C 軸受半円筒体
22D 軸受半円筒体
22a 突き合せ端部
22b 突き合せ端面
22c クラッシュリリーフ
22d 周方向溝
22e 周方向溝
30 クランク軸
DESCRIPTION OF SYMBOLS 10 Split type bearing housing for crankshafts of internal combustion engine 12 Bearing holding hole 14 Low rigidity side housing divided body 16 High rigidity side housing divided body 18 Bolt 20 Bearing semi-cylindrical body 20A Bearing semi-cylindrical body 20B Bearing semi-cylindrical body 20C Bearing semi-cylindrical body Body 20D bearing semi-cylindrical body 20E bearing semi-cylindrical body 20a butt end 20b butt end surface 20c crash relief 20d circumferential groove 20e circumferential groove 22 bearing semi-cylindrical body 22A bearing semi-cylindrical body 22B bearing semi-cylindrical body 22C bearing semi-cylindrical body Body 22D Bearing semi-cylindrical body 22a Butt end 22b Butt end surface 22c Crash relief 22d Circumferential groove 22e Circumferential groove 30 Crankshaft

Claims (28)

一対の軸受半円筒体を互いに組み合わせて円筒形状体として用いられる、内燃機関のクランク軸用分割型すべり軸受であり、その組み合わせ状態と整合する態様で2分割された円筒形状の軸受保持穴を有する分割型軸受ハウジング内に収容して用いられる前記分割型すべり軸受において、
前記分割型軸受ハウジングが、相対的に低剛性のハウジング分割体と、相対的に高剛性のハウジング分割体とから成り、
前記低剛性側ハウジング分割体に支持される前記軸受半円筒体を第一軸受半円筒体と称し、前記高剛性側ハウジング分割体に支持される前記軸受半円筒体を第二軸受半円筒体と称するとき、非装着状態における前記第一および第二軸受半円筒体の寸法関係が、
(1)前記第一および第二軸受半円筒体の外径寸法が等しく、かつ
(2)前記第一軸受半円筒体の周方向両端部の厚さが、前記第二軸受半円筒体の周方向両端部の厚さよりも大きくなされており、
それによって、前記第一および第二軸受半円筒体が組み込まれた状態で一対の前記ハウジング分割体がボルト締結された時、一対の前記ハウジング分割体の突き合わせ端面に、前記剛性の違いに基づいて生じる両ハウジング分割体の変形量の差に起因する段差が生じても、前記第一および第二軸受半円筒体の突き合わせ端面における両軸受半円筒体の内周面が整合状態になることを特徴とする内燃機関のクランク軸用分割型すべり軸受。
A split-type slide bearing for a crankshaft of an internal combustion engine that is used as a cylindrical body by combining a pair of bearing semi-cylindrical bodies with a cylindrical bearing holding hole that is divided into two in a manner that matches the combined state In the split slide bearing used by being housed in a split bearing housing,
The split bearing housing comprises a relatively low-rigidity housing split and a relatively high-rigidity housing split,
The bearing semi-cylindrical body supported by the low-rigidity side housing divided body is referred to as a first bearing semi-cylindrical body, and the bearing semi-cylindrical body supported by the high-rigidity side housing divided body is referred to as a second bearing semi-cylindrical body. When called, the dimensional relationship between the first and second bearing semi-cylindrical bodies in the non-mounted state is
(1) The outer diameters of the first and second bearing semi-cylindrical bodies are equal, and (2) the thicknesses of both ends in the circumferential direction of the first bearing semi-cylindrical body are the circumference of the second bearing semi-cylindrical body. It is made larger than the thickness at both ends in the direction,
Thereby, when the pair of housing divided bodies are bolted in a state where the first and second bearing semi-cylindrical bodies are incorporated, the butt end surfaces of the pair of housing divided bodies are based on the difference in rigidity. The inner peripheral surfaces of the two bearing semi-cylindrical bodies at the abutting end surfaces of the first and second bearing semi-cylindrical bodies are in an aligned state even if a step due to the difference in deformation between the two housing divided bodies occurs. A split slide bearing for a crankshaft of an internal combustion engine.
前記第一軸受半円筒体は、周方向長さの全体に亘ってその厚さが均一であることを特徴とする請求項1に記載された内燃機関のクランク軸用分割型すべり軸受。   2. The split slide bearing for a crankshaft of an internal combustion engine according to claim 1, wherein the thickness of the first bearing semi-cylindrical body is uniform over the entire length in the circumferential direction. 前記第一軸受半円筒体は、周方向長さの中央部分から両突き合わせ端面に向かってその厚さが増大していることを特徴とする請求項1に記載された内燃機関のクランク軸用分割型すべり軸受。   2. The split for a crankshaft of an internal combustion engine according to claim 1, wherein the thickness of the first bearing semi-cylindrical body increases from the central portion of the circumferential length toward both butted end faces. Type slide bearing. 前記第二軸受半円筒体は、周方向長さの全体に亘ってその厚さが均一であることを特徴とする請求項1から請求項3までのいずれか1項に記載された内燃機関のクランク軸用分割型すべり軸受。   The internal combustion engine according to any one of claims 1 to 3, wherein the second bearing semi-cylindrical body has a uniform thickness over the entire length in the circumferential direction. Split type plain bearing for crankshaft. 前記第二軸受半円筒体は、周方向長さの中央部分から両突き合わせ端面に向かってその厚さが小さくなっていることを特徴とする請求項1から請求項3までのいずれか1項に記載された内燃機関のクランク軸用分割型すべり軸受。   The thickness of the second bearing semi-cylindrical body is reduced from the central portion of the circumferential length toward both butted end faces, according to any one of claims 1 to 3. A split slide bearing for a crankshaft of an internal combustion engine as described. 少なくとも前記第二軸受半円筒体の内周面に、周方向に延在する多数の周方向溝が存在し、該第二軸受半円筒体の2つの周方向端面を含む前記第二軸受半円筒体の周方向端部領域に形成された前記周方向溝の深さが5μm以上20μm以下になされていることを特徴とする請求項1から請求項5までのいずれか1項に記載された内燃機関のクランク軸用分割型すべり軸受。   The second bearing semi-cylinder includes a plurality of circumferential grooves extending in the circumferential direction at least on the inner circumferential surface of the second bearing semi-cylindrical body, and includes two circumferential end surfaces of the second bearing semi-cylindrical body. 6. The internal combustion engine according to claim 1, wherein a depth of the circumferential groove formed in a circumferential end region of the body is 5 μm or more and 20 μm or less. Split bearing for engine crankshaft. 前記内周面における前記周方向端部領域が、当該周方向端面を始点とする少なくとも円周角10°、最大で円周角50°に相当する周方向長さで規定される範囲である請求項6に記載された内燃機関のクランク軸用分割型すべり軸受。   The circumferential end region on the inner circumferential surface is a range defined by a circumferential length starting from the circumferential end surface and having a circumferential angle corresponding to at least a circumferential angle of 10 ° and a maximum circumferential angle of 50 °. Item 7. A split slide bearing for a crankshaft of an internal combustion engine according to Item 6. 前記周方向長さで規定される範囲以外の前記内周面の表面粗さが3.2μmRz以下である請求項7に記載された内燃機関のクランク軸用分割型すべり軸受。   The split type plain bearing for a crankshaft of an internal combustion engine according to claim 7, wherein the surface roughness of the inner peripheral surface outside the range defined by the circumferential length is 3.2 µmRz or less. 前記周方向溝のピッチが0.3mm〜1.5mmである請求項6から請求項8までのいずれか一項に記載された内燃機関のクランク軸用分割型すべり軸受。   The split slide bearing for a crankshaft of an internal combustion engine according to any one of claims 6 to 8, wherein a pitch of the circumferential groove is 0.3 mm to 1.5 mm. 前記第二軸受半円筒体の内周面に形成された前記周方向溝の深さが、前記第一および第二軸受半円筒体の突き合わせ端面の間で生じる段差量と同等以上の大きさである請求項6から請求項9までのいずれか一項に記載された内燃機関のクランク軸用分割型すべり軸受。   The depth of the circumferential groove formed on the inner peripheral surface of the second bearing semi-cylindrical body is equal to or greater than the step amount generated between the butted end surfaces of the first and second bearing semi-cylindrical bodies. A split slide bearing for a crankshaft of an internal combustion engine according to any one of claims 6 to 9. 前記第一軸受半円筒体の内周面に、周方向に延在する多数の周方向溝が存在し、該第一軸受半円筒体の2つの周方向端面を含む前記第一軸受半円筒体の周方向端部領域に形成された周方向溝の深さが5μm〜20μmになされている請求項6に記載された内燃機関のクランク軸用分割型すべり軸受。   The first bearing semi-cylindrical body includes a plurality of circumferential grooves extending in the circumferential direction on the inner circumferential surface of the first bearing semi-cylindrical body and includes two circumferential end faces of the first bearing semi-cylindrical body. 7. A split type plain bearing for a crankshaft of an internal combustion engine according to claim 6, wherein the depth of the circumferential groove formed in the circumferential end region of the cylinder is 5 to 20 [mu] m. 前記第一軸受半円筒体の前記内周面における前記周方向端部領域が、当該周方向端面を始点とする少なくとも円周角10°、最大で円周角50°に相当する周方向長さで規定される範囲である請求項11に記載された内燃機関のクランク軸用分割型すべり軸受。   The circumferential end region of the inner circumferential surface of the first bearing semi-cylindrical body has a circumferential length corresponding to at least a circumferential angle of 10 ° and a maximum circumferential angle of 50 ° starting from the circumferential end surface. The split slide bearing for a crankshaft of an internal combustion engine according to claim 11, which is in a range defined by 前記第一軸受半円筒体における、前記周方向長さで規定される範囲以外の前記内周面の表面粗さが3.2μmRz以下である請求項12に記載された内燃機関のクランク軸用分割型すべり軸受。   The division for a crankshaft of an internal combustion engine according to claim 12, wherein a surface roughness of the inner peripheral surface outside the range defined by the circumferential length in the first bearing semi-cylindrical body is 3.2 µmRz or less. Type slide bearing. 前記第一軸受半円筒体における、前記周方向溝のピッチが0.3mm〜1.5mmである請求項11から請求項13までのいずれか一項に記載された内燃機関のクランク軸用分割型すべり軸受。   The split type for a crankshaft of an internal combustion engine according to any one of claims 11 to 13, wherein a pitch of the circumferential groove in the first bearing semi-cylindrical body is 0.3 mm to 1.5 mm. Slide bearing. 一対の軸受半円筒体を互いに組み合わせて円筒形状体として用いられる、内燃機関のクランク軸用分割型すべり軸受と、
前記一対の軸受半円筒体の組み合わせ状態と整合する態様で2分割された円筒形状の軸受保持穴を有し、該軸受保持穴内に前記一対の軸受半円筒体を収容して保持する内燃機関のクランク軸用分割型軸受ハウジングとを含む分割型すべり軸受装置において、
前記分割型軸受ハウジングが、相対的に低剛性のハウジング分割体と、相対的に高剛性のハウジング分割体とから成り、
前記低剛性側ハウジング分割体に支持される前記軸受半円筒体を第一軸受半円筒体と称し、前記高剛性側ハウジング分割体に支持される前記軸受半円筒体を第二軸受半円筒体と称するとき、非装着状態における前記第一および第二軸受半円筒体の寸法関係が、
(1)前記第一および第二軸受半円筒体の外径寸法が等しく、かつ
(2)前記第一軸受半円筒体の周方向両端部の厚さが、前記第二軸受半円筒体の周方向両端部の厚さよりも大きくなされており、
それによって、前記第一および第二軸受半円筒体が組み込まれた状態で一対の前記ハウジング分割体がボルト締結された時、一対の前記ハウジング分割体の突き合わせ端面に、前記剛性の違いに基づいて生じる両ハウジング分割体の変形量の差に起因する段差が生じても、前記第一および第二軸受半円筒体の突き合わせ端面における両軸受半円筒体の内周面が整合状態になることを特徴とする内燃機関のクランク軸用分割型すべり軸受装置。
A split slide bearing for a crankshaft of an internal combustion engine, which is used as a cylindrical body by combining a pair of bearing semi-cylindrical bodies,
An internal combustion engine having a cylindrical bearing holding hole that is divided into two in a manner that matches the combined state of the pair of bearing semi-cylindrical bodies and that houses and holds the pair of bearing semi-cylindrical bodies in the bearing holding holes. In a split slide bearing device including a split bearing housing for a crankshaft,
The split bearing housing comprises a relatively low-rigidity housing split and a relatively high-rigidity housing split,
The bearing semi-cylindrical body supported by the low-rigidity side housing divided body is referred to as a first bearing semi-cylindrical body, and the bearing semi-cylindrical body supported by the high-rigidity side housing divided body is referred to as a second bearing semi-cylindrical body. When called, the dimensional relationship between the first and second bearing semi-cylindrical bodies in the non-mounted state is
(1) The outer diameters of the first and second bearing semi-cylindrical bodies are equal, and (2) the thicknesses of both ends in the circumferential direction of the first bearing semi-cylindrical body are the circumference of the second bearing semi-cylindrical body. It is made larger than the thickness at both ends in the direction,
Thereby, when the pair of housing divided bodies are bolted in a state where the first and second bearing semi-cylindrical bodies are incorporated, the butt end surfaces of the pair of housing divided bodies are based on the difference in rigidity. The inner peripheral surfaces of the two bearing semi-cylindrical bodies at the abutting end surfaces of the first and second bearing semi-cylindrical bodies are in an aligned state even if a step due to the difference in deformation between the two housing divided bodies occurs. A split-type plain bearing device for a crankshaft of an internal combustion engine.
前記第一軸受半円筒体は、周方向長さの全体に亘ってその厚さが均一であることを特徴とする請求項15に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The split slide bearing device for a crankshaft of an internal combustion engine according to claim 15, wherein the thickness of the first bearing semi-cylindrical body is uniform over the entire length in the circumferential direction. 前記第一軸受半円筒体は、周方向長さの中央部分から両突き合わせ端面に向かってその厚さが増大していることを特徴とする請求項15に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The division for a crankshaft of an internal combustion engine according to claim 15, wherein the thickness of the first bearing semi-cylindrical body increases from the central portion of the circumferential length toward both butted end faces. Type sliding bearing device. 前記第二軸受半円筒体は、周方向長さの全体に亘ってその厚さが均一であることを特徴とする請求項15から請求項17までのいずれか1項に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The internal combustion engine according to any one of claims 15 to 17, wherein the second bearing semi-cylindrical body has a uniform thickness over the entire circumferential length. Split-type plain bearing device for crankshaft. 前記第二軸受半円筒体は、周方向長さの中央部分から両突き合わせ端面に向かってその厚さが小さくなっていることを特徴とする請求項15から請求項17までのいずれか1項に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The thickness of the second bearing semi-cylindrical body is reduced from the central portion of the circumferential length toward both butted end faces, according to any one of claims 15 to 17. A split slide bearing device for a crankshaft of an internal combustion engine as described. 少なくとも前記第二軸受半円筒体の内周面に、周方向に延在する多数の周方向溝が存在し、該第二軸受半円筒体の2つの周方向端面を含む前記第二軸受半円筒体の周方向端部領域に形成された前記周方向溝の深さが5μm以上20μm以下になされていることを特徴とする請求項15から請求項19までのいずれか1項に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The second bearing semi-cylinder includes a plurality of circumferential grooves extending in the circumferential direction at least on the inner circumferential surface of the second bearing semi-cylindrical body, and includes two circumferential end surfaces of the second bearing semi-cylindrical body. 20. The internal combustion engine according to claim 15, wherein a depth of the circumferential groove formed in a circumferential end region of the body is 5 μm or more and 20 μm or less. Split slide bearing device for engine crankshaft. 前記内周面における前記周方向端部領域が、当該周方向端面を始点とする少なくとも円周角10°、最大で円周角50°に相当する周方向長さで規定される範囲である請求項20に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The circumferential end region on the inner circumferential surface is a range defined by a circumferential length starting from the circumferential end surface and having a circumferential angle corresponding to at least a circumferential angle of 10 ° and a maximum circumferential angle of 50 °. Item 20. A split slide bearing device for a crankshaft of an internal combustion engine according to Item 20. 前記周方向長さで規定される範囲以外の前記内周面の表面粗さが3.2μmRz以下である請求項21に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The split type plain bearing device for a crankshaft of an internal combustion engine according to claim 21, wherein the surface roughness of the inner peripheral surface outside the range defined by the circumferential length is 3.2 µmRz or less. 前記周方向溝のピッチが0.3mm〜1.5mmである請求項20から請求項22までのいずれか一項に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The split slide bearing device for a crankshaft of an internal combustion engine according to any one of claims 20 to 22, wherein a pitch of the circumferential grooves is 0.3 mm to 1.5 mm. 前記第二軸受半円筒体の内周面に形成された前記周方向溝の深さが、前記第一および第二軸受半円筒体の突き合わせ端面の間で生じる段差量と同等以上の大きさである請求項20から請求項23までのいずれか一項に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The depth of the circumferential groove formed on the inner peripheral surface of the second bearing semi-cylindrical body is equal to or greater than the step amount generated between the butted end surfaces of the first and second bearing semi-cylindrical bodies. 24. A split type plain bearing device for a crankshaft of an internal combustion engine according to any one of claims 20 to 23. 前記第一軸受半円筒体の内周面に、周方向に延在する多数の周方向溝が存在し、被支持軸に摺接する前記第一軸受半円筒体の内周面における周方向端部領域に形成された周方向溝の深さが5〜20μmになされている請求項20に記載された内燃機関のクランク軸用分割型すべり軸受装置。   A plurality of circumferential grooves extending in the circumferential direction are present on the inner circumferential surface of the first bearing semi-cylindrical body, and the circumferential end portions on the inner circumferential surface of the first bearing semi-cylindrical body are in sliding contact with the supported shaft. 21. The split type plain bearing device for a crankshaft of an internal combustion engine according to claim 20, wherein the circumferential groove formed in the region has a depth of 5 to 20 [mu] m. 前記第一軸受半円筒体の前記内周面における前記周方向端部領域が、当該周方向端面を始点とする少なくとも円周角10°、最大で円周角50°に相当する周方向長さで規定される範囲である請求項25に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The circumferential end region of the inner circumferential surface of the first bearing semi-cylindrical body has a circumferential length corresponding to at least a circumferential angle of 10 ° and a maximum circumferential angle of 50 ° starting from the circumferential end surface. 26. The split type plain bearing device for a crankshaft of an internal combustion engine according to claim 25, which is in a range defined by. 前記第一軸受半円筒体における、前記周方向長さで規定される範囲以外の前記内周面の表面粗さが3.2μmRz以下である請求項26に記載された内燃機関のクランク軸用分割型すべり軸受装置。   27. A split for a crankshaft of an internal combustion engine according to claim 26, wherein a surface roughness of the inner peripheral surface of the first bearing semi-cylindrical body outside the range defined by the circumferential length is 3.2 μmRz or less. Type sliding bearing device. 前記第一軸受半円筒体における、前記周方向溝のピッチが0.3mm〜1.5mmである請求項25から請求項27までのいずれか一項に記載された内燃機関のクランク軸用分割型すべり軸受装置。   The split type for a crankshaft of an internal combustion engine according to any one of claims 25 to 27, wherein a pitch of the circumferential groove in the first bearing semi-cylindrical body is 0.3 mm to 1.5 mm. Slide bearing device.
JP2008333843A 2008-12-26 2008-12-26 Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine Expired - Fee Related JP5290738B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008333843A JP5290738B2 (en) 2008-12-26 2008-12-26 Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
DE102009055170A DE102009055170A1 (en) 2008-12-26 2009-12-22 Divided plain bearing for a crankshaft in an internal combustion engine and split journal bearing device
US12/647,160 US8371754B2 (en) 2008-12-26 2009-12-24 Split-type sliding bearing for crankshaft in internal combustion engine and split-type sliding bearing device
US13/750,527 US8556515B2 (en) 2008-12-26 2013-01-25 Split-type sliding bearing for crankshaft in internal combustion engine and split-type sliding bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333843A JP5290738B2 (en) 2008-12-26 2008-12-26 Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010156373A true JP2010156373A (en) 2010-07-15
JP5290738B2 JP5290738B2 (en) 2013-09-18

Family

ID=42285088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333843A Expired - Fee Related JP5290738B2 (en) 2008-12-26 2008-12-26 Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine

Country Status (3)

Country Link
US (2) US8371754B2 (en)
JP (1) JP5290738B2 (en)
DE (1) DE102009055170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212441A (en) * 2010-08-05 2016-12-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089572B2 (en) * 2008-12-26 2012-12-05 大同メタル工業株式会社 Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
CN103362962A (en) * 2013-08-01 2013-10-23 昆山宜德金属工业有限公司 Y axis bearing pedestal of leading screw engraving machine
US9353792B2 (en) 2014-02-19 2016-05-31 Google Inc. Biased compound radial plain bearing for increased life in oscillating pivot motion
CN105697557A (en) * 2014-11-25 2016-06-22 华域三电汽车空调有限公司 Scroll compressor, and mounting structure of sliding bearing
CN104791387B (en) * 2015-03-26 2017-07-07 南宁广发重工集团有限公司 A kind of main bearing of ball grinding mill housing
GB201508231D0 (en) * 2015-05-14 2015-06-24 Rolls Royce Plc A bearing shaft

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951211U (en) * 1982-09-29 1984-04-04 日産自動車株式会社 Internal combustion engine main bearing metal
JPH0314314U (en) * 1989-06-26 1991-02-13
JPH0381549A (en) * 1990-03-16 1991-04-05 Honda Motor Co Ltd Apparatus for supporting crank shaft of multi-cylinder internal combustion engine
JPH03223517A (en) * 1990-01-29 1991-10-02 Taiho Kogyo Co Ltd Connecting rod
JPH051713A (en) * 1991-06-25 1993-01-08 Mazda Motor Corp Bearing structure for engine crankshaft and method for selecting bearing metal therefor
JPH07119735A (en) * 1993-10-20 1995-05-09 Toyota Motor Corp Half split type bearing structure
JPH0821430A (en) * 1994-07-05 1996-01-23 Nissan Motor Co Ltd Bearing structure in connecting rod large end part for internal combustion engine
JP2000199515A (en) * 1998-10-30 2000-07-18 Dana Corp Bearing and bearing assembling structure
JP2002188624A (en) * 2000-12-25 2002-07-05 Daido Metal Co Ltd Split bearing
WO2008052653A1 (en) * 2006-10-30 2008-05-08 Daimler Ag Method and electrode for the production of a radial bearing surface, and connecting rod

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603174A (en) * 1970-01-12 1971-09-07 Allis Chalmers Mfg Co Cap screw with piloting surface
US4307921A (en) * 1980-05-27 1981-12-29 Federal-Mogul Corporation Sleeve bearing
JP3014314U (en) 1994-11-01 1995-08-08 猪三雄 山口 Stepladder
JPH08210355A (en) 1995-02-01 1996-08-20 Toyota Motor Corp Bearing device
US6422755B1 (en) * 1996-05-03 2002-07-23 Gkn Sinter Metals-Germantown, Inc. Precisely repositioning powder metal components
DE29609950U1 (en) * 1996-06-05 1997-10-02 Bruehl Eisenwerk Engine block for a multi-cylinder internal combustion engine
JP3518214B2 (en) 1996-12-13 2004-04-12 トヨタ自動車株式会社 Selective mounting method of bearing metal
JP5340697B2 (en) * 2008-11-12 2013-11-13 大同メタル工業株式会社 Sliding bearing for internal combustion engine and sliding bearing device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951211U (en) * 1982-09-29 1984-04-04 日産自動車株式会社 Internal combustion engine main bearing metal
JPH0314314U (en) * 1989-06-26 1991-02-13
JPH03223517A (en) * 1990-01-29 1991-10-02 Taiho Kogyo Co Ltd Connecting rod
JPH0381549A (en) * 1990-03-16 1991-04-05 Honda Motor Co Ltd Apparatus for supporting crank shaft of multi-cylinder internal combustion engine
JPH051713A (en) * 1991-06-25 1993-01-08 Mazda Motor Corp Bearing structure for engine crankshaft and method for selecting bearing metal therefor
JPH07119735A (en) * 1993-10-20 1995-05-09 Toyota Motor Corp Half split type bearing structure
JPH0821430A (en) * 1994-07-05 1996-01-23 Nissan Motor Co Ltd Bearing structure in connecting rod large end part for internal combustion engine
JP2000199515A (en) * 1998-10-30 2000-07-18 Dana Corp Bearing and bearing assembling structure
JP2002188624A (en) * 2000-12-25 2002-07-05 Daido Metal Co Ltd Split bearing
WO2008052653A1 (en) * 2006-10-30 2008-05-08 Daimler Ag Method and electrode for the production of a radial bearing surface, and connecting rod
JP2010508159A (en) * 2006-10-30 2010-03-18 ダイムラー・アクチェンゲゼルシャフト Method and electrode for manufacturing radial bearing surfaces and connecting rods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212441A (en) * 2010-08-05 2016-12-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display

Also Published As

Publication number Publication date
DE102009055170A1 (en) 2010-10-14
JP5290738B2 (en) 2013-09-18
US8371754B2 (en) 2013-02-12
US20130209014A1 (en) 2013-08-15
US20100166351A1 (en) 2010-07-01
US8556515B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
JP5290738B2 (en) Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
US6585419B2 (en) Shaft bearing member
US6634791B2 (en) Shaft bearing member
JP5340697B2 (en) Sliding bearing for internal combustion engine and sliding bearing device
JP6165827B2 (en) Crankshaft bearing device for internal combustion engine
US20140233874A1 (en) Half thrust bearing and bearing device
JP6185702B2 (en) Slide bearing and bearing device
JP4994356B2 (en) Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
JP6224156B2 (en) Crankshaft bearing device for internal combustion engine
US11572917B2 (en) Sliding bearing and crankshaft support structure
JP2010138753A (en) Bearing device for supercharger
JP5089572B2 (en) Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
JP2008095723A (en) Rolling bearing
JP2015512790A (en) Method and tool for increasing the strength of a shaft, in particular a crankshaft
JP2018155355A (en) bearing
JP2009057992A (en) Multilayer foil bearing assembly
JP6317786B2 (en) Crankshaft bearing device for internal combustion engine
JP2012219831A (en) Bearing device for crankshaft of internal combustion engine
JP2008215454A (en) Roller bearing and its installation structure
JP2007162722A (en) Crankshaft supporting structure
JP2022170586A (en) Bearing metal for engine
JP2007154928A (en) Needle roller bearing, and splitting method of outer ring of needle roller bearing
JP2006177461A (en) Slide bearing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130401

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

LAPS Cancellation because of no payment of annual fees