JP2010155332A - Power supply die for wire electric discharge machine - Google Patents

Power supply die for wire electric discharge machine Download PDF

Info

Publication number
JP2010155332A
JP2010155332A JP2009000335A JP2009000335A JP2010155332A JP 2010155332 A JP2010155332 A JP 2010155332A JP 2009000335 A JP2009000335 A JP 2009000335A JP 2009000335 A JP2009000335 A JP 2009000335A JP 2010155332 A JP2010155332 A JP 2010155332A
Authority
JP
Japan
Prior art keywords
die
power supply
electric discharge
wire
discharge machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009000335A
Other languages
Japanese (ja)
Other versions
JP5264514B2 (en
Inventor
Yuji Yamamichi
裕司 山道
Toshiyuki Yamauchi
俊之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009000335A priority Critical patent/JP5264514B2/en
Publication of JP2010155332A publication Critical patent/JP2010155332A/en
Application granted granted Critical
Publication of JP5264514B2 publication Critical patent/JP5264514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply die for preventing impurities from sticking even when the die is used for wire electric discharge machine causing discharge in a working liquid such as ion exchange water. <P>SOLUTION: The power supply die for the wire electric discharge machine includes a body made of cemented carbide and an organic insulating film uniformly coating the body. The carbon amount regarding the total weight of four elements of tungsten, cobalt, carbon and oxygen is 2.8-16 wt.% when energy dispersion type X-ray analysis is executed with acceleration voltage of 15 kV. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ワイヤ放電加工機用の給電ダイスに関する。より具体的には、表面に有機絶縁膜を有し、加工液中で放電加工を繰り返しても不純物が付着しにくいワイヤ放電加工機用の給電ダイスに関する。   The present invention relates to a power feeding die for a wire electric discharge machine. More specifically, the present invention relates to a power feeding die for a wire electric discharge machine that has an organic insulating film on the surface and is less likely to have impurities attached even when electric discharge machining is repeated in a machining liquid.

ワイヤ放電加工機は、髪の毛ほどの太さのワイヤを使って主に金属等の導電性被加工物(金属製被工作物)を加工する機械である。加工原理は、電気の力(主に放電現象に伴って発生する熱)を用い、対象金属性被加工物を溶かして切断することによる。すなわち、ワイヤ放電加工は、被加工物と接触しない非接触加工かつ溶融加工である。   The wire electric discharge machine is a machine that mainly processes a conductive workpiece (metal workpiece) such as metal using a wire as thick as hair. The processing principle is based on melting the target metal workpiece and cutting it using electric power (mainly heat generated by the discharge phenomenon). That is, wire electrical discharge machining is non-contact machining and melt machining that does not contact the workpiece.

ワイヤ放電加工機の一般的な構成を、図1に示す。供給リール1から繰り出されるワイヤ2は、図1中の→の方向に走行し、上部給電ダイス3a、上部ガイド4a、下部ガイド4b、下部給電ダイス3bを経て、排出部5へと排出される。なお、ワイヤの移動方向は、図1中に矢印で示しているとおりである。   A general configuration of a wire electric discharge machine is shown in FIG. The wire 2 fed out from the supply reel 1 travels in the direction of → in FIG. 1 and is discharged to the discharge unit 5 through the upper power supply die 3a, the upper guide 4a, the lower guide 4b, and the lower power supply die 3b. The moving direction of the wire is as indicated by the arrow in FIG.

上部給電ダイス3a及び下部給電ダイス3bは、電源装置6に接続されている。上部給電ダイス3a及び下部給電ダイス3bは、ワイヤ2と接触しているため、ワイヤ2も帯電する。   The upper power supply die 3 a and the lower power supply die 3 b are connected to the power supply device 6. Since the upper feeding die 3a and the lower feeding die 3b are in contact with the wire 2, the wire 2 is also charged.

一方、作業テーブル7も電源装置6に接続されている。そして、作業テーブル7上に設置された金属製の被加工物8も帯電している。その結果、ワイヤ2と被加工物8とが最も接近する部位において、放電スパーク9が発生し、被加工物表面が溶融、飛散、除去され、切断等の処理が行われる。   On the other hand, the work table 7 is also connected to the power supply device 6. And the metal workpiece 8 installed on the work table 7 is also charged. As a result, a discharge spark 9 is generated at a portion where the wire 2 and the workpiece 8 are closest to each other, and the surface of the workpiece is melted, scattered, removed, and processing such as cutting is performed.

通常、放電加工を行う際には、イオン交換水10(加工液)によって被加工物8が完全に水没した状態で加工を行う。これは、放電スパーク9付近の絶縁保持、加工屑の除去のためである(特許文献1参照)。   Usually, when electric discharge machining is performed, machining is performed in a state in which the workpiece 8 is completely submerged by the ion exchange water 10 (machining liquid). This is for maintaining insulation in the vicinity of the discharge spark 9 and removing machining waste (see Patent Document 1).

この場合、被加工物はプラスに帯電しているため、表層の電解腐食が生じやすく、放電加工中に加工部分以外の部分の表層が劣化する畏れがある。こうした被加工物の表層の劣化を防止するため、被加工物にワックス等のさび止め処理剤を塗布する技術が、特許文献2に開示されている。   In this case, since the workpiece is positively charged, electrolytic corrosion of the surface layer is likely to occur, and the surface layer of portions other than the processed portion may deteriorate during electric discharge machining. In order to prevent such deterioration of the surface layer of the workpiece, a technique for applying a rust preventive agent such as wax to the workpiece is disclosed in Patent Document 2.

また、給電ダイスは、耐久性が必要であるために、その材質は超硬合金であることが一般的であるが、超硬合金は固有電気抵抗値が大きいために、超硬給電ダイスとワイヤとの間で電源から供給される電力の一部がジュール熱として散逸し、エネルギーの一部が無駄に消費されることになる。   In addition, since the feed die needs durability, the material is generally a cemented carbide, but the cemented carbide has a large specific electric resistance value, so that the cemented carbide feed die and the wire are used. A part of the electric power supplied from the power source is dissipated as Joule heat, and a part of the energy is wasted.

この問題を解決する手段として、給電ダイスを超硬合金よりも電気抵抗の小さな導電材料とすることが、特許文献3に開示されている。   As means for solving this problem, Patent Document 3 discloses that a power supply die is made of a conductive material having an electric resistance smaller than that of cemented carbide.

特開平6−320339号公報JP-A-6-320339 特開昭59−169715号公報JP 59-169715 A 特開平4−105821号公報Japanese Patent Laid-Open No. 4-105821

イオン交換水は不純物がほとんど取り除かれているが、特許文献1に開示されているような被加工物をイオン交換水に水没させる放電加工の場合、被加工物が切断等されることによって、被加工物に由来する金属イオンがイオン交換水中に溶出する。ワイヤ放電加工機では、ワイヤ2は図1に示すように、被加工物8に対して上方から下方へと垂直に走行しており、下部給電ダイス3bもイオン交換水に水没した状態である。   The ion-exchanged water is almost free of impurities. However, in the case of electric discharge machining in which the workpiece is submerged in ion-exchanged water as disclosed in Patent Document 1, the workpiece is cut and the like. Metal ions derived from the workpiece are eluted in the ion exchange water. In the wire electric discharge machine, as shown in FIG. 1, the wire 2 runs vertically from the upper side to the lower side with respect to the workpiece 8, and the lower power feeding die 3 b is also submerged in the ion exchange water.

下部給電ダイス3bは、マイナスに帯電しているため、イオン交換水中に溶出した金属イオン及び極微量に存在する不純物が電気的に引き寄せられ、表層に付着するという現象が生じる。この不純物は剥離しにくく、電気抵抗が大きい。   Since the lower power feeding die 3b is negatively charged, a phenomenon occurs in which metal ions eluted in ion-exchanged water and impurities existing in a very small amount are electrically attracted and adhere to the surface layer. These impurities are difficult to peel off and have high electrical resistance.

図1に示すようなワイヤ放電加工機では、ワイヤと給電ダイスとが図2に示すような状態で接触している。ここでは、ワイヤ2は、矢印で示すように、上から下へと移動しているが、給電ダイス11のワイヤ2との接触部分は、摩擦によって摩耗する。この状態で1回目の加工を終え、2回目の加工を同磨耗部に接触させて加工を再開すると、ワイヤと給電ダイスが上手く接触しなくなり放電が安定しなくなる。このため、図2(a)に示す第1回目の加工が終われば、第1回目の加工によって生じた溝12とワイヤ2とが接触しないように、図2(b)に示すように給電ダイス2を回転させて第2回目の加工を行う。   In the wire electric discharge machine as shown in FIG. 1, the wire and the power feeding die are in contact with each other in the state shown in FIG. Here, the wire 2 is moving from top to bottom as indicated by the arrow, but the contact portion of the power feeding die 11 with the wire 2 is worn by friction. When the first machining is finished in this state and the second machining is brought into contact with the worn portion and the machining is resumed, the wire and the power feeding die do not come into good contact with each other and the discharge becomes unstable. For this reason, when the first machining shown in FIG. 2 (a) is completed, the feeding die as shown in FIG. 2 (b) is used so that the groove 12 and the wire 2 generated by the first machining do not contact each other. 2 is rotated to perform the second processing.

さらに、第2回目の加工が終われば、第2回目の加工によって生じた溝13とワイヤ2とが接触しないように、図2(c)に示すように給電ダイス2を再び回転させて第3回目の加工を行う。このようにして、毎回、未使用部分とワイヤ2とが接触するように給電ダイスを回転させれば、1個の給電ダイスを繰り返し使用することが可能である。   Further, when the second machining is completed, the feeding die 2 is rotated again as shown in FIG. 2C so that the groove 13 and the wire 2 generated by the second machining are not in contact with each other. Perform the second machining. In this way, if the power feeding die is rotated so that the unused portion and the wire 2 are in contact each time, one power feeding die can be used repeatedly.

ところが、イオン交換水中に溶出した金属イオン等に由来する不純物が給電ダイス表層に付着すると、図2に示すように給電ダイスを回転させても、ワイヤ2と接する給電ダイス表面の通電性が付着物によって低下する。すると、放電加工開始時には、給電ダイスからワイヤへと適切な給電ができなくなり、加工精度が低下する。その結果、本来の寿命を待たずに高価な給電ダイスを交換しなければならなくなり、放電加工コストが上昇することに繋がる。   However, when impurities derived from metal ions or the like eluted in ion-exchanged water adhere to the surface of the power supply die, even if the power supply die is rotated as shown in FIG. It is lowered by. Then, at the start of electric discharge machining, appropriate power supply from the power feeding die to the wire cannot be performed, and the machining accuracy is lowered. As a result, it is necessary to replace an expensive power supply die without waiting for the original life, leading to an increase in electric discharge machining cost.

本発明は、イオン交換水等の加工液中で放電を発生させるワイヤ放電加工機に使用しても、不純物が付着しにくい給電ダイスの提供を目的とする。   An object of the present invention is to provide a power feeding die that hardly adheres to impurities even when used in a wire electric discharge machine that generates electric discharge in a machining fluid such as ion exchange water.

本発明者等は、超硬合金製の給電ダイスについて、特許文献2に開示されているような有機絶縁被膜で覆うことを試みたが、マイナス電気を帯びる給電ダイスに不純物が付着することを防止することは困難であった。一方、不純物の付着を防止するために有機絶縁被膜を厚くすると、放電加工時にワイヤを給電ダイスに当接させて走行させても、有機絶縁皮膜を完全に除去することができず、放電が不安定となってしまった。   The present inventors tried to cover the power supply die made of cemented carbide with an organic insulating film as disclosed in Patent Document 2, but prevented adhesion of impurities to the power supply die having negative electricity. It was difficult to do. On the other hand, if the thickness of the organic insulating film is increased in order to prevent the adhesion of impurities, the organic insulating film cannot be completely removed even when the wire is brought into contact with the power supply die during electric discharge machining, and discharge is not achieved. It has become stable.

しかし、鋭意研究を続けた結果、超硬合金製の給電ダイスの表面を、特定パラメータを示すように有機絶縁膜で被覆することによって、イオン交換水等の中でも不純物の付着が起こらず、かつ、放電も安定することを見出し、本発明を完成させるに至った。   However, as a result of earnest research, the surface of the power die made of cemented carbide is covered with an organic insulating film so as to exhibit a specific parameter, so that impurities do not adhere in ion-exchanged water and the like, and The inventors have found that the discharge is stable and have completed the present invention.

具体的に、本発明は、
超硬合金からなる本体と、
本体を均一に被覆する有機絶縁膜とを有し、
加速電圧15kVでエネルギー分散型X線分析を行った場合における炭素量が、タングステン、コバルト、炭素及び酸素からなる4元素の合計重量に対して、2.8重量%以上16重量%以下であることを特徴とする。
Specifically, the present invention
A body made of cemented carbide,
An organic insulating film that uniformly covers the main body,
The amount of carbon when energy dispersive X-ray analysis is performed at an acceleration voltage of 15 kV is 2.8 wt% to 16 wt% with respect to the total weight of the four elements consisting of tungsten, cobalt, carbon and oxygen And

超硬合金製である給電ダイスを有機絶縁膜で被覆する場合、上述したように、有機絶縁膜は薄くても厚くても問題が生じる。また、有機絶縁膜による不純物の付着量と導電性とは、給電ダイス本体の材質(超硬合金そのもの)によっても影響を受けるため、単純に有機絶縁膜の厚みを調整するだけでは、不純物の付着を防止しつつ、放電性能を安定化することは不可能である。   When a power supply die made of cemented carbide is coated with an organic insulating film, as described above, there is a problem whether the organic insulating film is thin or thick. In addition, the amount of impurities attached to the organic insulating film and the conductivity are affected by the material of the feed die body (the cemented carbide itself), so simply adjusting the thickness of the organic insulating film will prevent the adhesion of impurities. It is impossible to stabilize the discharge performance while preventing this.

しかし、超硬合金製の本体を有機絶縁膜で被覆した状態で、加速電圧15kVという条件で分析を行い、その測定条件における炭素量が、タングステン、コバルト、炭素及び酸素からなる4元素の合計重量に対して2.8重量%以上16重量%以下となるように、給電ダイス中の炭素量と有機絶縁膜の厚みを調整すれば、イオン交換水中における給電ダイスへの不純物の付着を防止しつつ、放電性能を安定化することがはじめて可能となる。   However, analysis is performed under the condition of an acceleration voltage of 15 kV with the cemented carbide body covered with an organic insulating film, and the carbon content under the measurement conditions is the total weight of four elements consisting of tungsten, cobalt, carbon and oxygen. If the amount of carbon in the power supply die and the thickness of the organic insulating film are adjusted so that they are 2.8 wt% or more and 16 wt% or less relative to It becomes possible for the first time to stabilize the performance.

有機絶縁膜としては、ポリエステル、エポキシ樹脂、フェノール樹脂等を使用することができ、その材質は特に限定されない。なお、有機絶縁膜の厚みは、X線分析による炭素重量の比率で限定され、特定の厚みによって限定されるのではない。   As the organic insulating film, polyester, epoxy resin, phenol resin, or the like can be used, and the material is not particularly limited. The thickness of the organic insulating film is limited by the ratio of carbon weight by X-ray analysis and is not limited by a specific thickness.

本発明のワイヤ放電加工機用の給電ダイスは、イオン交換水中で連続使用しても不純物が表面に付着しにくく、放電性能も高い。   The power supply die for the wire electric discharge machine of the present invention is less likely to cause impurities to adhere to the surface even when continuously used in ion-exchanged water, and has high discharge performance.

市販の超硬合金製給電ダイス(三菱電機社製ワイヤ放電加工機、型番PX05の純正部品の給電ダイス、型番DP478A)の表面を、有機絶縁膜としてポリスチレン樹脂で被覆し、複数個の絶縁ダイスを作製した。   The surface of a commercially available cemented carbide power supply die (wire electric discharge machine manufactured by Mitsubishi Electric Corporation, power supply die of genuine part number PX05, model number DP478A) is coated with polystyrene resin as an organic insulating film, and a plurality of insulating dies are coated. Produced.

作製した絶縁ダイスは、堀場製作所製エネルギー分散型X線分析装置EX-220を用いて、加速電圧15kV、視野倍率500倍という条件で炭素、タングステン、コバルト及び酸素を測定した(これら4元素の合計重量が100%となるように測定した)。なお、1つの絶縁ダイスについて5箇所測定し、その平均値を算出した。   The produced insulating die was measured for carbon, tungsten, cobalt, and oxygen using an energy dispersive X-ray analyzer EX-220 manufactured by HORIBA, Ltd. under the conditions of an acceleration voltage of 15 kV and a viewing magnification of 500 times (total of these four elements). The weight was measured to be 100%). In addition, five places were measured for one insulating die, and the average value was calculated.

その後、絶縁ダイスは、上記ワイヤ放電加工機に2個ずつ(上部給電ダイス及び下部給電ダイス)取り付けた。イオン交換水を加工水として使用し、被加工物(超硬)及び下部給電ダイスがイオン交換水に水没した状態で、放電加工を100時間行った。ワイヤは、(沖電線社製の黄銅ワイヤ、線径0.2mm、型番OB-10P(φ0.1mm))を使用した。   Thereafter, two insulating dies (an upper feeding die and a lower feeding die) were attached to the wire electric discharge machine. Ion exchange water was used as machining water, and electric discharge machining was performed for 100 hours in a state in which the workpiece (carbide) and the lower feed die were submerged in the ion exchange water. The wire used was a brass wire (Oki Electric Cable Co., Ltd., wire diameter 0.2 mm, model number OB-10P (φ0.1 mm)).

放電性能については、放電加工開始時に給電が安定しているか否かを、オシロスコープを用い短絡の発生有無で判断するという方法で確認した。また、付着物の有無については、加工終了後、下部給電ダイスを取り外し、表面状態を目視観察し、変色があった場合に付着物があると判断した。   Regarding the discharge performance, whether or not the power supply was stable at the start of electric discharge machining was confirmed by a method of determining whether or not a short circuit occurred using an oscilloscope. In addition, regarding the presence or absence of deposits, after the processing was completed, the lower feeding die was removed, the surface state was visually observed, and when there was discoloration, it was determined that deposits were present.

作製した絶縁ダイスの平均炭素量(重量%)、変色の有無、放電性能を、表1に示す。なお、表1における従来例1及び従来例2は、どちらも有機絶縁被膜を有しない。   Table 1 shows the average carbon content (% by weight), presence / absence of discoloration, and discharge performance of the produced insulating dies. Note that neither Conventional Example 1 nor Conventional Example 2 in Table 1 has an organic insulating film.

Figure 2010155332
Figure 2010155332

従来例1及び従来例2の給電ダイスは、有機絶縁膜を有しておらず、平均炭素量は超硬合金のみの炭素量を示している。比較例1の給電ダイスは、平均炭素量が従来例1及び従来例2の中間である。これらの給電ダイスは、放電性能は安定していたが、変色が認められたため、連続使用すると給電ダイスを回転させた2回目以降の使用ができなくなるという問題を生じうる。   The feeding dies of Conventional Example 1 and Conventional Example 2 do not have an organic insulating film, and the average carbon content indicates the carbon content of cemented carbide only. The power supply die of Comparative Example 1 has an average carbon content intermediate between Conventional Example 1 and Conventional Example 2. Although these power feeding dies have stable discharge performance, discoloration is recognized, and therefore, when used continuously, there is a problem that the power feeding dies cannot be used after the second rotation.

有機絶縁皮膜を有し、かつ、平均炭素量が2.8重量%以上15.9重量%である実施例1〜実施例11の給電ダイスは、放電加工後に変色は認められなかった。また、放電性能も安定していた。   The feed dies of Examples 1 to 11 having an organic insulating film and having an average carbon content of 2.8 wt% or more and 15.9 wt% showed no discoloration after electric discharge machining. Moreover, the discharge performance was stable.

一方、有機絶縁皮膜を有し、かつ、平均炭素量が16.1重量%以上である比較例2〜比較例4の給電ダイスは、放電加工後の変色は認められなかったが、放電性能が不安定であった。このため、比較例2〜比較例4の給電ダイスは、実用性が低いと判断された。   On the other hand, the feeding dies of Comparative Examples 2 to 4 having an organic insulating film and an average carbon content of 16.1% by weight or more showed no discoloration after electric discharge machining, but the discharge performance was unstable. Met. For this reason, it was judged that the power supply dies of Comparative Examples 2 to 4 have low practicality.

なお、実施例1〜実施例11の給電ダイスの有機絶縁膜の厚みは、0.5μm以上5μm以下の範囲内であった。   In addition, the thickness of the organic insulating film of the power supply dies of Examples 1 to 11 was in the range of 0.5 μm to 5 μm.

このように、本発明のワイヤ放電加工機用の給電ダイスは、特定パラメータを示すように、超硬合金製の本体を有機絶縁膜で被覆させることにより、イオン交換水中における不純物の付着が防止され、長期間の使用が可能である。しかも、有機絶縁膜による放電特性への悪影響も見られない。   As described above, the power supply die for the wire electric discharge machine according to the present invention prevents the adhesion of impurities in the ion-exchanged water by covering the cemented carbide body with the organic insulating film so as to show the specific parameter. Can be used for a long time. In addition, there is no adverse effect on the discharge characteristics due to the organic insulating film.

本発明のワイヤ放電加工機用の給電ダイスは、金属加工等の分野において有用である。   The power feeding die for the wire electric discharge machine of the present invention is useful in the field of metal working and the like.

ワイヤ放電加工機の一般的な構成を説明する図である。It is a figure explaining the general structure of a wire electric discharge machine. ワイヤ放電加工機のワイヤと給電ダイスとの接触部分の拡大図であり、(a)は第1回目の加工時、(b)は第2回目の加工時、(c)は第3回目の加工時を示す。It is an enlarged view of a contact portion between a wire and a power supply die of a wire electric discharge machine, where (a) is the first machining, (b) is the second machining, and (c) is the third machining. Indicates the time.

1:供給リール
2:ワイヤ
3a:上部給電ダイス
3b:下部給電ダイス
4a:上部ガイド
4b:下部ガイド
5:排出部
6:電源装置
7:作業テーブル
8:被加工物
9:放電スパーク
10:イオン交換水(加工液)
11:給電ダイス
12:第1回目の加工時に生じた溝
13:第2回目の加工時に生じた溝
1: Supply reel 2: Wire 3a: Upper feed die 3b: Lower feed die 4a: Upper guide 4b: Lower guide 5: Ejector 6: Power supply device 7: Work table 8: Work piece 9: Discharge spark 10: Ion exchange Water (working fluid)
11: Feeding die 12: Groove generated during the first machining 13: Groove generated during the second machining

Claims (1)

超硬合金からなる本体と、
本体を被覆する有機絶縁膜とを有するワイヤ放電加工機用給電ダイスであって、
加速電圧15kVでエネルギー分散型X線分析を行った場合における表層部の炭素量が、タングステン、コバルト、炭素及び酸素からなる4元素の合計重量に対して、2.8重量%以上16重量%以下であることを特徴とする、ワイヤ放電加工機用の給電ダイス。
A body made of cemented carbide,
A power supply die for a wire electric discharge machine having an organic insulating film covering a main body,
When energy dispersive X-ray analysis is performed at an acceleration voltage of 15 kV, the carbon content of the surface layer is 2.8 wt% to 16 wt% with respect to the total weight of the four elements consisting of tungsten, cobalt, carbon, and oxygen. A power feed die for a wire electric discharge machine.
JP2009000335A 2009-01-05 2009-01-05 Feeding die for wire electric discharge machine Expired - Fee Related JP5264514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000335A JP5264514B2 (en) 2009-01-05 2009-01-05 Feeding die for wire electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000335A JP5264514B2 (en) 2009-01-05 2009-01-05 Feeding die for wire electric discharge machine

Publications (2)

Publication Number Publication Date
JP2010155332A true JP2010155332A (en) 2010-07-15
JP5264514B2 JP5264514B2 (en) 2013-08-14

Family

ID=42573614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000335A Expired - Fee Related JP5264514B2 (en) 2009-01-05 2009-01-05 Feeding die for wire electric discharge machine

Country Status (1)

Country Link
JP (1) JP5264514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513624A (en) * 2011-12-14 2012-06-27 南昌大学 Adjusting device for electric sparkle wire cutting conductive block

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169715A (en) * 1983-03-15 1984-09-25 Mitsubishi Electric Corp Wire cut electric discharge machining method
JPH05212625A (en) * 1992-01-31 1993-08-24 I N R Kenkyusho:Kk Combined current-carrying piece and guide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169715A (en) * 1983-03-15 1984-09-25 Mitsubishi Electric Corp Wire cut electric discharge machining method
JPH05212625A (en) * 1992-01-31 1993-08-24 I N R Kenkyusho:Kk Combined current-carrying piece and guide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513624A (en) * 2011-12-14 2012-06-27 南昌大学 Adjusting device for electric sparkle wire cutting conductive block

Also Published As

Publication number Publication date
JP5264514B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
CN105834533B (en) Wire electrode for slow wire feeding spark cutting
KR101711040B1 (en) Electrode wire for wire electric discharge machining, and method for producting same
Khan et al. A study of electrode shape configuration on the performance of die sinking EDM
TWI225810B (en) Wire electrode for spark erosion gutting
Pramanik et al. Effect of reinforced particle size on wire EDM of MMCs
KR20040068601A (en) Wire for high-speed electrical discharge machining
KR100376755B1 (en) wire electrode
CN102922065A (en) Electrode wire for electro-discharge machining and method for manufacturing the same
US10052703B2 (en) Silicon wafer slicing device using wire discharge machining
Guo et al. Experimental investigation into shaping particle-reinforced material by WEDM-HS
WO2007057948A1 (en) Wire electrical discharge machining method, semiconductor wafer manufacturing method and solar battery cell manufacturing method
Patil et al. Some investigations into wire electro-discharge machining performance of Al/SiCp composites
JP6568451B2 (en) Semiconductor material or non-conductor material cutting apparatus and method using wire electric discharge machining
JP5264514B2 (en) Feeding die for wire electric discharge machine
KR101874519B1 (en) Apparatus for electrochemical discharge machining and method therefor
JPH04261714A (en) Wire electrode for cutting work piece by electrical discharge machining
US20160129512A1 (en) Wire electrode for the discharge cutting of objects
Goto et al. Study on electrochemical machining of sintered carbide
TWM545684U (en) Cutting apparatus
CN104400160A (en) High-speed processing plated electrode wire
JP2007307669A (en) Wire electric discharge machine and wire electric discharge machining method
Kuroda et al. Development of high performance coated wire electrodes for high-speed cutting and accurate machining.
JP2010188455A (en) Electric discharge machining wire
JP2005254408A (en) Electrode wire for electric discharge machining, and manufacturing method thereof
CN201105349Y (en) Electrode wire for electro-discharge machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees