JP2010154223A - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP2010154223A
JP2010154223A JP2008330197A JP2008330197A JP2010154223A JP 2010154223 A JP2010154223 A JP 2010154223A JP 2008330197 A JP2008330197 A JP 2008330197A JP 2008330197 A JP2008330197 A JP 2008330197A JP 2010154223 A JP2010154223 A JP 2010154223A
Authority
JP
Japan
Prior art keywords
signal light
signal
optical
optical transmission
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008330197A
Other languages
Japanese (ja)
Inventor
Toshiyuki Miyamoto
敏行 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008330197A priority Critical patent/JP2010154223A/en
Publication of JP2010154223A publication Critical patent/JP2010154223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission system capable of satisfactorily maintaining transmission quality of signal light. <P>SOLUTION: The optical transmission system 1 includes a light-transmitting section 10, an optical transmission line 20, and light-receiving section 30. The light-transmitting section 10 includes transmitters 11, 12 and a multiplexer 13. The transmitter 11 outputs first signal light S<SB>1</SB>of a wavelength λ<SB>1</SB>subjected to intensity modulation by a first transmission signal of a frequency ω<SB>1</SB>. The transmitter 12 outputs second signal light S<SB>2</SB>of a wavelength λ<SB>2</SB>subjected to intensity modulation by a second transmission signal of a frequency ω<SB>2</SB>. The multiplexer 13 multiplexes the signal light S<SB>1</SB>, S<SB>2</SB>outputted from the transmitters 11, 12, respectively, for outputting to the optical transmission line 30. In this case, ω<SB>1</SB><ω<SB>2</SB>, and λ<SB>1</SB>≠λ<SB>2</SB>should be satisfied. The optical transmission line 20 transmits the signal light S<SB>1</SB>, S<SB>2</SB>outputted from the light-transmitting section. The light-receiving section 30 receives the signal light S<SB>1</SB>, S<SB>2</SB>transmitted from the optical transmission line 20 for arrival by one light-receiving section to output first and second transmission signals. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光送信部から送出された信号光を光伝送路により伝送して光受信部により受信する光伝送システムに関するものである。   The present invention relates to an optical transmission system in which signal light transmitted from an optical transmitter is transmitted through an optical transmission path and received by an optical receiver.

波長分割多重(WDM: Wavelength DivisionMultiplexing)の技術を用いて複数の映像信号を伝送する光伝送システムが知られている。この光伝送システムでは、周波数ωの第1伝送信号で強度変調した波長λの第1信号光と、周波数ωの第2伝送信号で強度変調した波長λの第2信号光とは、光送信部により多重化されて光伝送路へ出力され、光伝送路により光受信部まで伝送される。そして、光伝送路により伝送された第1信号光および第2信号光は光受信部により受光されて、第1伝送信号および第2伝送信号が光受信部から出力される。ただし、「ω≠ω」、「λ≠λ」である。 2. Description of the Related Art There is known an optical transmission system that transmits a plurality of video signals by using a wavelength division multiplexing (WDM) technique. In this optical transmission system, the first signal light having the wavelength λ 1 modulated with the first transmission signal having the frequency ω 1 and the second signal light having the wavelength λ 2 modulated with the second transmission signal having the frequency ω 2 are used. Multiplexed by the optical transmitter, output to the optical transmission path, and transmitted to the optical receiver through the optical transmission path. Then, the first signal light and the second signal light transmitted through the optical transmission path are received by the optical receiving unit, and the first transmission signal and the second transmission signal are output from the optical receiving unit. However, “ω 1 ≠ ω 2 ” and “λ 1 ≠ λ 2 ”.

しかしながら、上記のようなWDM光伝送システムにおいて、光伝送路による伝送の際に複数の信号光の間にクロストークが生じる。このクロストークにより、光受信部に到達する波長λの第1信号光は、第1伝送信号で強度変調された本来の信号成分を含むだけでなく、第2伝送信号で強度変調された雑音成分を含むことになる。このことから、この光伝送システムにおける信号光の伝送品質は悪くなる。 However, in the WDM optical transmission system as described above, crosstalk occurs between a plurality of signal lights during transmission through the optical transmission path. Due to this crosstalk, the first signal light having the wavelength λ 1 that reaches the optical receiver not only contains the original signal component that is intensity-modulated by the first transmission signal, but also noise that is intensity-modulated by the second transmission signal. Ingredients will be included. For this reason, the transmission quality of signal light in this optical transmission system deteriorates.

本発明は、上記問題点を解消する為になされたものであり、信号光の伝送品質を良好に保つことができる光伝送システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical transmission system that can maintain good transmission quality of signal light.

本発明に係る光伝送システムは、(1) 周波数ωの第1伝送信号で強度変調した波長λの第1信号光と、周波数ω(ただし、ω<ω)の第2伝送信号で強度変調した波長λ(ただし、λ≠λ)の第2信号光とを、多重化して出力する光送信部と、(2)光送信部から出力された第1信号光および第2信号光を伝送する光伝送路と、(3) 光伝送路により伝送されて来て到達した第1信号光および第2信号光を1つの受光部で受光して、第1伝送信号および第2伝送信号を出力する光受信部と、を備えることを特徴とする。さらに、本発明に係る光伝送システムは、光送信部から出力される第1信号光のパワーをP(真数)とし、光送信部から出力される第2信号光のパワーをP(真数)としたときに、下記(1)式の関係を満たすことを特徴とする。 The optical transmission system according to the present invention includes (1) a first signal light having a wavelength λ 1 that is intensity-modulated by a first transmission signal having a frequency ω 1 and a second transmission having a frequency ω 2 (where ω 12 ). An optical transmitter that multiplexes and outputs the second signal light having the wavelength λ 2 (where λ 1 ≠ λ 2 ) that is intensity-modulated with a signal; and (2) the first signal light output from the optical transmitter and An optical transmission path for transmitting the second signal light; and (3) receiving the first signal light and the second signal light transmitted through the optical transmission path with one light receiving unit, and receiving the first transmission signal and And an optical receiver that outputs the second transmission signal. Furthermore, in the optical transmission system according to the present invention, the power of the first signal light output from the optical transmission unit is P 1 (true number), and the power of the second signal light output from the optical transmission unit is P 2 ( (True number), the following relationship (1) is satisfied.

Figure 2010154223
Figure 2010154223

この光伝送システムでは、周波数ωの第1伝送信号で強度変調した波長λの第1信号光と、周波数ωの第2伝送信号で強度変調した波長λの第2信号光とが、光送信部から多重化されて光伝送路へ出力される。ただし、「ω<ω」、「λ≠λ」である。光伝送路により伝送されて来て光受信部に到達した第1信号光および第2信号光は、1つの受光部で受光されて、第1伝送信号および第2伝送信号が出力される。このような光伝送システムにおいて、上記(1)式の関係が満たされていることにより、信号光の伝送品質が良好に保たれ得る。 In this optical transmission system, the first signal light having the wavelength λ 1 that has been intensity-modulated by the first transmission signal having the frequency ω 1 and the second signal light having the wavelength λ 2 that has been intensity-modulated by the second transmission signal having the frequency ω 2 are included. , Multiplexed from the optical transmitter and output to the optical transmission line. However, “ω 12 ” and “λ 1 ≠ λ 2 ”. The first signal light and the second signal light transmitted through the optical transmission path and reaching the optical receiving unit are received by one light receiving unit, and the first transmission signal and the second transmission signal are output. In such an optical transmission system, the transmission quality of the signal light can be kept good by satisfying the relationship of the expression (1).

本発明に係る光伝送システムは、光送信部から光受信部までの最大伝送距離をL[km]とし、光送信部から出力される第1信号光のパワーをP[W]としたときに、下記(2)式のなる関係を満たすのが好適である。 In the optical transmission system according to the present invention, when the maximum transmission distance from the optical transmission unit to the optical reception unit is L [km] and the power of the first signal light output from the optical transmission unit is P 1 [W] In addition, it is preferable that the relationship represented by the following formula (2) is satisfied.

Figure 2010154223
Figure 2010154223

第1信号光の波長λと第2信号光の波長λとの差が10nm以下であるのが好適である。光送信部から出力される第1信号光のパワーPが10mW以上25.2mW以下であるのが好適である。光送信部から出力される第2信号光のパワーPが1mW以上4mW以下であるのが好適である。また、第1伝送信号がAM-VSB,QAM,OFDMおよびQPSKのうちの何れかの変調方式の信号であるのが好適である。 The difference between the wavelength λ 1 of the first signal light and the wavelength λ 2 of the second signal light is preferably 10 nm or less. Power P 1 of the first signal light output from the optical transmission unit is suitable not more than 25.2mW than 10 mW. It is preferred that the power P 2 of the second signal light output is less than 4mW or more 1mW from the light transmitting unit. In addition, it is preferable that the first transmission signal is a signal of any modulation scheme among AM-VSB, QAM, OFDM and QPSK.

本発明に係る光伝送システムは、信号光の伝送品質を良好に保つことができる。   The optical transmission system according to the present invention can maintain good transmission quality of signal light.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る光伝送システム1の構成図である。この図に示される光伝送システム1は、光送信部10、光伝送路20および光受信部30を備える。また、光送信部10は、送信器11,12および合波器13を含む。   FIG. 1 is a configuration diagram of an optical transmission system 1 according to the present embodiment. The optical transmission system 1 shown in this figure includes an optical transmitter 10, an optical transmission line 20, and an optical receiver 30. The optical transmission unit 10 includes transmitters 11 and 12 and a multiplexer 13.

送信器11は、周波数ωの第1伝送信号で強度変調した波長λの第1信号光Sを出力する。送信器12は、周波数ωの第2伝送信号で強度変調した波長λの第2信号光Sを出力する。合波器13は、送信器11,12から出力された信号光S,Sを多重化して光伝送路30へ出力する。ただし、「ω<ω」、「λ≠λ」である。 The transmitter 11 outputs the first signal light S 1 having the wavelength λ 1 that is intensity-modulated by the first transmission signal having the frequency ω 1 . The transmitter 12 outputs the second signal light S 2 having the wavelength λ 2 that is intensity-modulated by the second transmission signal having the frequency ω 2 . The multiplexer 13 multiplexes the signal lights S 1 and S 2 output from the transmitters 11 and 12 and outputs them to the optical transmission line 30. However, “ω 12 ” and “λ 1 ≠ λ 2 ”.

光伝送路20は、光送信部から出力された信号光S,Sを伝送する。そして、光受信部30は、光伝送路20により伝送されて来て到達した信号光S,Sを1つの受光部で受光して、第1伝送信号および第2伝送信号を出力する。 The optical transmission line 20 transmits the signal lights S 1 and S 2 output from the optical transmission unit. Then, the optical receiver 30 receives the signal lights S 1 and S 2 transmitted through the optical transmission path 20 and received by one light receiver, and outputs a first transmission signal and a second transmission signal.

ところで、伝送信号で強度変調した信号光を出力する送信器11,12として、外部変調型送信器および直接変調型送信器の何れかが用いられる。外部変調型送信器は、線形性に優れた外部変調型の強度変調器を使用することで、低歪み光伝送を実現することができる。また、外部変調型送信器は、外部変調型の位相変調器により信号光に対して位相変調を施したり、信号光源にディザリングを施したりすることにより、光伝送路において生じる誘導ブリルアン散乱(SBS: Stimulated Brillouin Scattering)や、多重反射による光干渉の影響を改善することが可能である。   By the way, any one of an external modulation type transmitter and a direct modulation type transmitter is used as the transmitters 11 and 12 for outputting signal light whose intensity is modulated with a transmission signal. The external modulation type transmitter can realize low distortion optical transmission by using an external modulation type intensity modulator having excellent linearity. The external modulation type transmitter also performs stimulated Brillouin scattering (SBS) that occurs in the optical transmission line by performing phase modulation on the signal light using an external modulation type phase modulator or dithering the signal light source. : Stimulated Brillouin Scattering) and the effect of optical interference due to multiple reflections can be improved.

図2は、外部変調型送信器から出力される信号光の強度変調周波数の配置を示す図である。本来的に伝送すべき伝送信号は、DCから800MHz付近までの周波数を有する。SBS抑圧用の位相変調信号やディザリング用に数GHz帯のRF信号が用いられる。理想的な位相変調器を用いた場合、変調に使用した位相変調信号は、強度変調のスペクトル上には存在しないが、通常は位相変調器が残留強度変調成分を持つため、図2のように周波数軸上にトーン信号スペクトルが表示される。例えば、このような送信器に伝送信号としてBS信号やCS信号を入力する場合、2GHz付近のトーン信号と伝送信号との間でビート雑音が発生するために、歪み特性が劣化してしまい、所望の伝送特性を得ることができなくなる。   FIG. 2 is a diagram illustrating an arrangement of intensity modulation frequencies of signal light output from the external modulation type transmitter. The transmission signal to be originally transmitted has a frequency from DC to around 800 MHz. A phase modulation signal for SBS suppression and an RF signal in several GHz band are used for dithering. When an ideal phase modulator is used, the phase modulation signal used for modulation does not exist on the spectrum of intensity modulation, but normally the phase modulator has a residual intensity modulation component. A tone signal spectrum is displayed on the frequency axis. For example, when a BS signal or a CS signal is input to such a transmitter as a transmission signal, beat noise is generated between a tone signal near 2 GHz and the transmission signal, so that the distortion characteristics are deteriorated and desired. The transmission characteristics cannot be obtained.

一方、レーザ光源を駆動する際に強度変調を行う直接変調型送信器は、レーザ光源が有するチャープ特性により歪み特性が決まってしまうという制限が生じる。この歪み特性は、入力する伝送信号のチャネル数、変調度および変調周波数によっても変化する。   On the other hand, a direct modulation transmitter that performs intensity modulation when driving a laser light source is limited in that distortion characteristics are determined by the chirp characteristics of the laser light source. This distortion characteristic also varies depending on the number of channels of the input transmission signal, the modulation degree, and the modulation frequency.

したがって、低周波数ωの第1伝送信号で強度変調した波長λの第1信号光Sを出力する送信器11として低歪み特性の外部変調型送信器を用い、高周波数ωの第2伝送信号で強度変調した波長λの第2信号光Sを出力する送信器12として直接変調型送信器を用いることで、広帯域の伝送が可能となって好ましい。また、このようにすることにより、比較的ひずみの大きい光伝送路や光増幅器を使用しても光伝送システムを構築することが可能である。比較的ひずみに弱い低周波側の信号光の伝搬用に、低ひずみ特性の外部変調型送信器を用いることができるので、ひずみ特性のよくない伝送路(波長分散や偏波モード分散の大きい伝送路)や、利得傾斜が0.1dB/kmを超えるような光増幅器を使用することも可能である。 Therefore, an external modulation transmitter having a low distortion characteristic is used as the transmitter 11 that outputs the first signal light S 1 having the wavelength λ 1 that is intensity-modulated by the first transmission signal having the low frequency ω 1 , and the first signal light S 1 having the high frequency ω 2 is used. It is preferable to use a direct modulation type transmitter as the transmitter 12 that outputs the second signal light S 2 having the wavelength λ 2 that is intensity-modulated with two transmission signals. In this way, an optical transmission system can be constructed even if an optical transmission line or an optical amplifier having a relatively large distortion is used. Low-distortion external modulation transmitters can be used for propagation of low-frequency signal light, which is relatively weak against distortion, so transmission lines with poor distortion characteristics (transmission with large chromatic dispersion and polarization mode dispersion) Or an optical amplifier having a gain slope exceeding 0.1 dB / km.

図3は、本実施形態に係る光伝送システム1における強度変調周波数の配置を示す図である。同図(a)は、送信器11から出力される波長λの第1信号光Sの強度変調周波数の配置を示す。同図(b)は、送信器12から出力される波長λの第2信号光Sの強度変調周波数の配置を示す。同図(c)は、光受信部30に入力される波長λの第1信号光Sの強度変調周波数の配置を示す。同図(d)は、光受信部30に入力される波長λの第2信号光Sの強度変調周波数の配置を示す。また、同図(e)は、光受信部30に入力される信号光S,Sの強度変調周波数の配置を示す。 FIG. 3 is a diagram illustrating an arrangement of intensity modulation frequencies in the optical transmission system 1 according to the present embodiment. FIG. 4A shows the arrangement of intensity modulation frequencies of the first signal light S 1 having the wavelength λ 1 output from the transmitter 11. FIG. 4B shows the arrangement of intensity modulation frequencies of the second signal light S 2 having the wavelength λ 2 output from the transmitter 12. FIG. 3C shows the arrangement of the intensity modulation frequencies of the first signal light S 1 having the wavelength λ 1 input to the optical receiver 30. FIG. 4D shows the arrangement of intensity modulation frequencies of the second signal light S 2 having the wavelength λ 2 input to the optical receiver 30. FIG. 5E shows the arrangement of intensity modulation frequencies of the signal lights S 1 and S 2 input to the optical receiver 30.

これら同図(a)〜(d)に示されるように、外部変調型の送信器11は、低周波数ωの第1伝送信号で強度変調した波長λの第1信号光Sを出力する。直接変調型の送信器12は、高周波数ωの第2伝送信号で強度変調した波長λの第2信号光Sを出力する。しかし、この場合には、光受信部30において2波長の信号光をニ乗検波により同時に受光するために、1波信号光伝送では問題にならない以下の事象に注意する必要がある。すなわち、光伝送路20において、信号光パワーが高い場合に、誘導ラマン散乱(SRS)によるパワー遷移,相互位相変調(XPM)および光カー効果(OKE)などの非線形光学現象が生じ、結果として、一方の信号光の強度変調の周波数成分が他方の信号光へ乗り移る現象が発生し、雑音が重畳される(同図(c),(d))。 As shown in FIGS. 4A to 4D, the external modulation type transmitter 11 outputs the first signal light S 1 having the wavelength λ 1 that is intensity-modulated with the first transmission signal having the low frequency ω 1 . To do. The direct modulation type transmitter 12 outputs the second signal light S 2 having the wavelength λ 2 that is intensity-modulated by the second transmission signal having the high frequency ω 2 . However, in this case, it is necessary to pay attention to the following events that are not problematic in single-wave signal light transmission because the optical receiver 30 simultaneously receives the signal light of two wavelengths by the second power detection. That is, in the optical transmission line 20, when the signal light power is high, nonlinear optical phenomena such as power transition due to stimulated Raman scattering (SRS), cross-phase modulation (XPM), and the optical Kerr effect (OKE) occur. A phenomenon occurs in which the frequency component of intensity modulation of one signal light is transferred to the other signal light, and noise is superimposed ((c) and (d) in the figure).

光受信部30において、波長λの第1信号光Sと波長λの第2信号光Sとを分波した後に、各々の信号光を受光部により受光し検波する場合には、S/N比よく第1伝送信号および第2伝送信号を得ることができる。しかし、光受信部30において波長λの第1信号光Sと波長λの第2信号光Sとを1つの受光部により受光して検波する場合(同図(e))には、第1伝送信号および第2伝送信号それぞれの強度変調周波数に雑音が重畳されているので、S/N比よく第1伝送信号および第2伝送信号を得ることができない。 In the optical receiver unit 30, and a first signal beam S 1 and the second signal light S 2 wavelengths lambda 2 wavelength lambda 1 after demultiplexing, when received by the light receiving portion of each of the signal light detection is, The first transmission signal and the second transmission signal can be obtained with a high S / N ratio. However, when the detection is received by the first signal beam S 1 and the second signal light having a wavelength lambda 2 S 2 and a single light receiving portion of the wavelength lambda 1 in the optical receiver 30 (FIG. (E)) is Since noise is superimposed on the intensity modulation frequency of each of the first transmission signal and the second transmission signal, the first transmission signal and the second transmission signal cannot be obtained with a high S / N ratio.

本実施形態に係る光伝送システム1は、2波長の信号光の間のパワーの関係およびクロストークの関係を明らかにした上で、上記のような問題を解決することができるものであり、S/N比よく第1伝送信号および第2伝送信号を得ることができる。すなわち、本実施形態では、光送信部10から出力される第1信号光のパワーをP(真数)とし、光送信部10から出力される第2信号光のパワーをP(真数)としたときに、下記(3)式の関係が満たされる。また、光送信部10から光受信部30までの最大伝送距離をL[km]とし、光送信部10から出力される第1信号光のパワーをP[W]としたときに、下記(4)式の関係が満たされるのが好適である。 The optical transmission system 1 according to the present embodiment can solve the above-described problems after clarifying the relationship between power and crosstalk between two wavelengths of signal light. The first transmission signal and the second transmission signal can be obtained with a high / N ratio. That is, in this embodiment, the power of the first signal light output from the optical transmission unit 10 is P 1 (true number), and the power of the second signal light output from the optical transmission unit 10 is P 2 (true number). ) Satisfies the relationship of the following expression (3). Also, the maximum transmission distance from the light transmitting unit 10 and the light receiving section 30 and L [miles], the power of the first signal light output from the optical transmission unit 10 is taken as P 1 [W], the following ( 4) It is preferable that the relationship of the equation is satisfied.

Figure 2010154223
Figure 2010154223

Figure 2010154223
Figure 2010154223

また、第1信号光Sの波長λと第2信号光Sの波長λとの差が10nm以下であるのが好適である。光送信部10から出力される第1信号光SのパワーPが10mW以上25.2mW以下であるのが好適である。光送信部10から出力される第2信号光SのパワーPが1mW以上4mW以下であるのが好適である。また、第1伝送信号がAM-VSB,QAM,OFDMおよびQPSKのうちの何れかの変調方式の信号であるのが好適である。 The difference between the first signal light S 1 of wavelength lambda 1 and wavelength lambda 2 of the second signal light S 2 is 10nm or less of it is preferred. The power P 1 of the first signal light S 1 output from the optical transmitter 10 is preferably 10 mW or more and 25.2 mW or less. It is preferred that the power P 2 of the second signal light S 2 output from the optical transmitting unit 10 is equal to or less than 4mW than 1 mW. In addition, it is preferable that the first transmission signal is a signal of any modulation scheme among AM-VSB, QAM, OFDM and QPSK.

以下では本実施形態について更に詳細に説明する。先ず、二乗検波時の妨害波周波数成分について、波長λの信号光Sの強度変調の周波数ω成分が波長λの信号光Sへ乗り移る場合のみを考えて、以下の2つの周波数成分のみの場合の検出電流を調査する。
下記(5)式は、周波数ωの第1伝送信号で強度変調した波長λの第1信号光Sの電界成分eを表す。下記(6)式は、信号光Sの強度変調の周波数ω成分が乗り移った波長λの第2信号光Sの電界成分eを表す。
Hereinafter, this embodiment will be described in more detail. First, the disturbance frequency component at square law, consider only the case where the frequency omega 1 component of the intensity modulation of the signal light S 1 of wavelength lambda 1 is possess the signal light S 2 wavelengths lambda 2, the following two frequencies Investigate the detected current when only the component is present.
Equation (5) below represents the electric field component e 1 of the first signal light S 1 having the wavelength λ 1 that has been intensity-modulated by the first transmission signal having the frequency ω 1 . The following equation (6) represents the electric field component e 2 of the second signal light S 2 having the wavelength λ 2 to which the intensity modulation frequency ω 1 component of the signal light S 1 is transferred.

Figure 2010154223
Figure 2010154223

Figure 2010154223
Figure 2010154223

上記(5)式および(6)式それぞれに現れるパラメータは以下のとおりである。Pは、第1信号光Sの光パワーである。Pは、第2信号光Sの光パワーである。mは、第1信号光Sの強度変調の光変調度である。m’は、第1信号光Sから第2信号光Sに乗り移った強度変調成分の光変調度である。ωは、第1信号光Sの中心角周波数である。φは、第1信号光Sの強度変調の位相である。φ’は、第2信号光Sの強度変調の位相である。ωc1は、第1信号光Sの光角周波数である。ωc2は、第2信号光Sの光角周波数である。φc1は、第1信号光Sの位相である。φc2は、第2信号光Sの位相である。 The parameters appearing in the equations (5) and (6) are as follows. P 1 is the optical power of the first signal light S 1 . P 2 is the optical power of the second signal light S 2 . m 1 is a light modulation degree of intensity modulation of the first signal light S 1 . m 1 ′ is the light modulation degree of the intensity modulation component that has changed from the first signal light S 1 to the second signal light S 2 . ω 1 is the central angular frequency of the first signal light S 1 . φ 1 is the phase of intensity modulation of the first signal light S 1 . φ 1 ′ is a phase of intensity modulation of the second signal light S 2 . ω c1 is the optical angular frequency of the first signal light S 1 . omega c2 is the second optical angular frequency of the signal light S 2. φ c1 is the phase of the first signal light S 1 . phi c2 is the second signal light S 2 phases.

光受信部30における二乗検波時の検出電流Iは下記(7)式で与えられる。この(7)式より、実際に二乗検波時に同一周波数ωに落ち込む成分は、下記(8)式および(9)式で表される2つとなる。 The detection current I at the time of square detection in the optical receiver 30 is given by the following equation (7). From this equation (7), a component actually falls into the same frequency omega 1 at square law becomes two and represented by the following equation (8) and (9).

Figure 2010154223
Figure 2010154223

Figure 2010154223
Figure 2010154223

Figure 2010154223
Figure 2010154223

(8)式はもともと伝送する第1伝送信号を示しており、(9)式はクロストークにより第2信号光に乗り移った雑音成分を示している。(9)式は(8)式に対して位相が異なっているため、単に妨害波として作用してしまうこととなる。(8)式および(9)式を比較すると、検出電流強度の比は「P’/P」となる。電界成分E,E(P=E ,P=E )で考えると、下記(10)式で表される。 Equation (8) represents the first transmission signal that is originally transmitted, and Equation (9) represents the noise component that has been transferred to the second signal light due to crosstalk. Since the phase of equation (9) is different from that of equation (8), it simply acts as an interference wave. When the expressions (8) and (9) are compared, the ratio of the detected current intensity is “P 2 m 1 ′ / P 1 m 1 ”. Considering the electric field components E 1 and E 2 (P 1 = E 1 2 , P 2 = E 2 2 ), it is expressed by the following equation (10).

Figure 2010154223
Figure 2010154223

したがって、求めたい所望の信号成分に対する妨害波の比であるDUR[dB]は、下記(11)式で与えられる。   Therefore, DUR [dB], which is the ratio of the interference wave to the desired signal component to be obtained, is given by the following equation (11).

Figure 2010154223
Figure 2010154223

同一周波数成分に落ち込んでくる妨害波の一つとして、CTBなどがよく知られている。今回の妨害波成分も、信号成分とは位相成分がランダムにずれている、DURが劣化をしていると、映像主観評価の上ではCTBと同じように画面が白っぽくなる。したがって、DURはー60dB以下であるのが望ましい。仮に、RIN transferが−40dBであれば、「P/P」は0.1以下であることが望ましい。 CTB or the like is well known as one of interference waves that fall into the same frequency component. If the interference component of this time also has a phase component that is randomly deviated from the signal component, or if the DUR has deteriorated, the screen becomes whitish in the same manner as CTB in terms of subjective video evaluation. Therefore, the DUR is desirably -60 dB or less. If RIN transfer is −40 dB, “P 2 / P 1 ” is preferably 0.1 or less.

図4は、光受信部30に入力される第2信号光SのパワーPと、第1信号光Sの強度変調成分におけるCNRとの関係を示す図である。光受信部30に入力される第1信号光SのパワーPを−3dBmとした。この結果を見てわかるように、第2信号光SのパワーPが第1信号光SのパワーPに対して10dB程度小さければ、元の信号のCNR劣化には影響しないことを確認できる。 FIG. 4 is a diagram illustrating a relationship between the power P 2 of the second signal light S 2 input to the optical receiver 30 and the CNR in the intensity modulation component of the first signal light S 1 . The power P 1 of the first signal light S 1 input to the optical receiver 30 is set to −3 dBm. As can be seen from this result, if the power P 2 of the second signal light S 2 is about 10 dB smaller than the power P 1 of the first signal light S 1 , it does not affect the CNR degradation of the original signal. I can confirm.

図5は、光受信部30に入力される第2信号光SのパワーPとCNRとの関係を示す図である。ここでは、第2信号光SをBS信号とした。この結果をみてもわかるように、少なくともチャネルあたりの変調度mが4%以上であれば、CNRが16dB以上となる入力信号光パワーは−14dBm以上となることが確認できる。 FIG. 5 is a diagram illustrating the relationship between the power P 2 and the CNR of the second signal light S 2 input to the optical receiver 30. Here, the second signal light S 2 and the BS signal. As can be seen from this result, it can be confirmed that the input signal light power at which the CNR is 16 dB or more is −14 dBm or more when at least the modulation degree m 2 per channel is 4% or more.

高周波側の第2信号光Sを出力する送信器12としては、位相変調などを用いない直接変調型送信器を使用する。この場合、信号光の線幅は、レーザ光源のディザなどを施さない限り、それほど拡がらず、SBS閾値もそれほど高くならない。通常のDFBレーザのSBS閾値は、長さ20kmのシングルモード光ファイバで5〜6dBm程度である。したがって、高周波側の第2信号光Sは、光伝送路20への入力光パワーをなるべく低くして、変調度を高くすることが望ましい。 The transmitter 12 for outputting a second signal light S 2 of the high-frequency side, using a directly modulated transmitter without using a phase modulation. In this case, the line width of the signal light does not increase so much unless the laser light source is dithered, and the SBS threshold does not increase so much. The SBS threshold of a normal DFB laser is about 5 to 6 dBm for a 20 km long single mode optical fiber. Accordingly, the second signal light S 2 of the high frequency side, the input light power to the optical transmission line 20 to as low as possible, it is desirable to increase the degree of modulation.

次に、RIN transferについて理論検討を行った結果について説明する。図6は、各非線形光学現象に因るRIN transferおよび全体のRIN transferそれぞれの強度変調周波数依存性を示すグラフである。ここでは、伝送距離を30kmとし、低周波側の第1信号光の波長λを1555nmとし、高周波側の第2信号光の波長λを1550nmおよび1560nmとし、光伝送路20への入力光パワーを14dBmとした。この結果より、今回のような波長配置においては、SRSやXPMと比べて、むしろOKEの方が影響が大きいことが確認できる。また、低周波側の方がRINtransferの量が大きいことも確認できる。 Next, the results of a theoretical study on RIN transfer will be described. FIG. 6 is a graph showing the intensity modulation frequency dependence of RIN transfer and overall RIN transfer due to each nonlinear optical phenomenon. Here, the transmission distance is 30 km, the wavelength λ 1 of the first signal light on the low frequency side is 1555 nm, the wavelengths λ 2 of the second signal light on the high frequency side are 1550 nm and 1560 nm, and the input light to the optical transmission line 20 The power was 14 dBm. From this result, it can be confirmed that in the wavelength arrangement as in this time, the influence of OKE is larger than that of SRS and XPM. It can also be confirmed that the amount of RINtransfer is larger on the low frequency side.

図7は、RIN transferの強度変調周波数依存性を示すグラフである。同図(a)では、低周波側の第1信号光Sと高周波側の第2信号光Sとの波長間隔を各値としている。また、同図(b)では、信号光入力パワーを各値としている。この図から判るように、波長間隔が広がると、SRSの効果が大きくなるため、低周波側でのRIN transferの量が大きくなる。一方、低周波側の第1信号光の入力パワーPとRIN transferとは比例関係にある。 FIG. 7 is a graph showing the intensity modulation frequency dependence of RIN transfer. In FIG. (A), and the wavelength interval between the second signal beam S 2 of the first signal beam S 1 and the high-frequency side of the low frequency side and each value. Further, in FIG. 5B, the signal light input power is set to each value. As can be seen from this figure, when the wavelength interval is widened, the effect of SRS increases, so the amount of RIN transfer on the low frequency side increases. On the other hand, the input power P 1 and RIN transfer of the first signal light on the low frequency side is proportional.

図8は、RIN transferの伝送路長依存性を示すグラフである。ここでは、光伝送路20への信号光入力パワーを12dBmとした。観測周波数は、通常の映像伝送で用いられる周波数の下限として90MHzとした。この結果を見てわかるように、今回の理論計算結果から、波長間隔を変化させた場合における最悪値は、伝送距離Lと第1信号光のパワーPと用いて近似的に下記(12)式で表すことが可能である。 FIG. 8 is a graph showing the transmission path length dependency of RIN transfer. Here, the signal light input power to the optical transmission line 20 is 12 dBm. The observation frequency was 90 MHz as the lower limit of the frequency used in normal video transmission. As can be seen from this result, from the theoretical calculation result of this time, the worst value when the wavelength interval is changed is approximated by using the transmission distance L and the power P 1 of the first signal light (12) It can be expressed by a formula.

Figure 2010154223
Figure 2010154223

RIN transferが−35dB以下であれば、入力する信号光パワーの関係を調整することで、DURを抑圧することも可能であるため、F[L,P]は−35dB以下であることが望ましいこととなる。 If RIN transfer is −35 dB or less, it is possible to suppress DUR by adjusting the relationship of the input signal light power. Therefore, it is desirable that F [L, P 1 ] is −35 dB or less. It will be.

本実施形態に係る光伝送システム1の構成図である。1 is a configuration diagram of an optical transmission system 1 according to the present embodiment. 外部変調型送信器から出力される信号光の強度変調周波数の配置を示す図である。It is a figure which shows arrangement | positioning of the intensity | strength modulation frequency of the signal beam | light output from an external modulation type transmitter. 本実施形態に係る光伝送システム1における強度変調周波数の配置を示す図である。It is a figure which shows arrangement | positioning of the intensity | strength modulation frequency in the optical transmission system 1 which concerns on this embodiment. 光受信部30に入力される第2信号光SのパワーPと、第1信号光Sの強度変調成分におけるCNRとの関係を示す図である。And power P 2 of the second signal light S 2 to be input to the optical receiver 30 is a diagram showing the relationship between the CNR in the intensity-modulated component of the first signal light S 1. 光受信部30に入力される第2信号光SのパワーPとCNRとの関係を示す図である。FIG. 4 is a diagram illustrating a relationship between power P 2 and CNR of second signal light S 2 input to the optical receiver 30. 各非線形光学現象に因るRIN transferおよび全体のRINtransferそれぞれの強度変調周波数依存性を示すグラフである。It is a graph which shows the intensity modulation frequency dependence of each RIN transfer resulting from each nonlinear optical phenomenon, and the whole RINtransfer. RIN transferの強度変調周波数依存性を示すグラフである。It is a graph which shows intensity modulation frequency dependence of RIN transfer. RIN transferの伝送路長依存性を示すグラフである。It is a graph which shows the transmission path length dependence of RIN transfer.

符号の説明Explanation of symbols

1…光伝送システム、10…光送信部、11,12…送信器、13…合波器、20…光伝送路、30…光受信部。
DESCRIPTION OF SYMBOLS 1 ... Optical transmission system, 10 ... Optical transmission part, 11, 12 ... Transmitter, 13 ... Multiplexer, 20 ... Optical transmission path, 30 ... Optical reception part.

Claims (6)

周波数ωの第1伝送信号で強度変調した波長λの第1信号光と、周波数ω(ただし、ω<ω)の第2伝送信号で強度変調した波長λ(ただし、λ≠λ)の第2信号光とを、多重化して出力する光送信部と、
前記光送信部から出力された前記第1信号光および前記第2信号光を伝送する光伝送路と、
前記光伝送路により伝送されて来て到達した前記第1信号光および前記第2信号光を1つの受光部で受光して、前記第1伝送信号および前記第2伝送信号を出力する光受信部と、
を備え、
前記光送信部から出力される前記第1信号光のパワーをP(真数)とし、前記光送信部から出力される前記第2信号光のパワーをP(真数)としたときに、
Figure 2010154223

なる関係を満たすことを特徴とする光伝送システム。
The first signal light having the wavelength λ 1 modulated with the first transmission signal having the frequency ω 1 and the wavelength λ 2 modulated with the second transmission signal having the frequency ω 2 (where ω 12 ) (where λ 1 ≠ λ 2 ) and a second signal light that is multiplexed and output,
An optical transmission path for transmitting the first signal light and the second signal light output from the optical transmitter;
An optical receiver that receives the first signal light and the second signal light that have been transmitted through the optical transmission path and received by one light receiving unit, and outputs the first transmission signal and the second transmission signal When,
With
When the power of the first signal light output from the optical transmitter is P 1 (true number) and the power of the second signal light output from the optical transmitter is P 2 (true number) ,
Figure 2010154223

An optical transmission system characterized by satisfying the following relationship.
前記光送信部から前記光受信部までの最大伝送距離をL[km]とし、前記光送信部から出力される前記第1信号光のパワーをP[W]としたときに、
Figure 2010154223

なる関係を満たすことを特徴とする請求項1記載の光伝送システム。
When the maximum transmission distance from the optical transmitter to the optical receiver is L [km] and the power of the first signal light output from the optical transmitter is P 1 [W],
Figure 2010154223

The optical transmission system according to claim 1, wherein:
前記第1信号光の波長λと前記第2信号光の波長λとの差が10nm以下であることを特徴とする請求項1記載の光伝送システム。 The optical transmission system according to claim 1, wherein the difference between the wavelength lambda 2 and wavelength lambda 1 of the first signal light and the second signal light is equal to or is 10nm or less. 前記光送信部から出力される前記第1信号光のパワーPが10mW以上25.2mW以下であることを特徴とする請求項1記載の光伝送システム。 2. The optical transmission system according to claim 1, wherein the power P 1 of the first signal light output from the optical transmission unit is 10 mW or more and 25.2 mW or less. 前記光送信部から出力される前記第2信号光のパワーPが1mW以上4mW以下であることを特徴とする請求項1記載の光伝送システム。 2. The optical transmission system according to claim 1, wherein a power P 2 of the second signal light output from the optical transmission unit is 1 mW or more and 4 mW or less. 前記第1伝送信号がAM-VSB,QAM,OFDMおよびQPSKのうちの何れかの変調方式の信号であることを特徴とする請求項1記載の光伝送システム。
2. The optical transmission system according to claim 1, wherein the first transmission signal is a signal of a modulation scheme of AM-VSB, QAM, OFDM, or QPSK.
JP2008330197A 2008-12-25 2008-12-25 Optical transmission system Pending JP2010154223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330197A JP2010154223A (en) 2008-12-25 2008-12-25 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330197A JP2010154223A (en) 2008-12-25 2008-12-25 Optical transmission system

Publications (1)

Publication Number Publication Date
JP2010154223A true JP2010154223A (en) 2010-07-08

Family

ID=42572779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330197A Pending JP2010154223A (en) 2008-12-25 2008-12-25 Optical transmission system

Country Status (1)

Country Link
JP (1) JP2010154223A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298524A (en) * 1996-04-26 1997-11-18 Sumitomo Electric Ind Ltd Frequency division multiplex optical transmission system
JP2002164868A (en) * 2000-09-14 2002-06-07 Matsushita Electric Ind Co Ltd Wavelength multiplexing optical transmitter, wavelength multiplexing optical receiver, optical transmission device, and optical transmission system
WO2005088877A1 (en) * 2004-03-10 2005-09-22 Matsushita Electric Industrial Co., Ltd. Optical transmission device and optical transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298524A (en) * 1996-04-26 1997-11-18 Sumitomo Electric Ind Ltd Frequency division multiplex optical transmission system
JP2002164868A (en) * 2000-09-14 2002-06-07 Matsushita Electric Ind Co Ltd Wavelength multiplexing optical transmitter, wavelength multiplexing optical receiver, optical transmission device, and optical transmission system
WO2005088877A1 (en) * 2004-03-10 2005-09-22 Matsushita Electric Industrial Co., Ltd. Optical transmission device and optical transmission system

Similar Documents

Publication Publication Date Title
JP5112508B2 (en) Method and apparatus for reduced chirp transmitter in optical fiber communications
US9184864B2 (en) Optical transmission system, optical transmitting apparatus, and optical receiving apparatus
US6490064B1 (en) Wavelength division multiplexing optical transmission system
US20050220397A1 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
JPWO2005088877A1 (en) Optical transmitter and optical transmission system
US8213798B2 (en) Optical transmission apparatus, wavelength division multiplexing optical communication system and optical transmission method
US7310318B1 (en) Method and system for using optical phase conjugation in an optical communications network
US8391723B2 (en) Ramen backpumped near-zero dispersion CWDM system and method
US7439485B2 (en) Multimode optical transmission apparatus and multimode optical transmission system
US7003226B2 (en) Wavelength division multiplex optical transmission system
Singh et al. Investigations on order and width of RZ super Gaussian pulse in different WDM systems at 40 Gb/s using dispersion compensating fibers
JP2010154223A (en) Optical transmission system
US8571417B2 (en) System and method for mitigating four-wave-mixing effects
JP2006287433A (en) Fm modulation method, fm modulation apparatus, and optical transmission system
KR100613905B1 (en) Apparatus and Method for Compensating Distortion of Optical Signal
JP4912971B2 (en) Optical transmitter and optical transmission system
JP6612694B2 (en) Optical transmission system and optical transmission method
Ali et al. First demonstration of optical phase conjugation with real time commercial transceiver
Kavitha et al. Mixed fiber optical parametric amplifiers for broadband optical communication systems with reduced nonlinear effects
US20040179844A1 (en) Wavelength-division-multiplexed metro optical network
JP4654570B2 (en) Stimulated Brillouin scattering suppression device and optical fiber transmission system using the same
WO2023089694A1 (en) Optical transmission system, optical transmission method, and program
JP4977409B2 (en) Multimode optical transmission apparatus and multimode optical transmission system
Kaur et al. CATV transmission in optical communication system
JP5116859B2 (en) SBS generation reduction and distortion generation suppression method in optical signal transmission, and optical transmitter in optical signal transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312