JP2010153833A - Radio wave absorber - Google Patents

Radio wave absorber Download PDF

Info

Publication number
JP2010153833A
JP2010153833A JP2009265871A JP2009265871A JP2010153833A JP 2010153833 A JP2010153833 A JP 2010153833A JP 2009265871 A JP2009265871 A JP 2009265871A JP 2009265871 A JP2009265871 A JP 2009265871A JP 2010153833 A JP2010153833 A JP 2010153833A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
powder
carbonized
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009265871A
Other languages
Japanese (ja)
Inventor
Minoru Sato
稔 佐藤
Hitoshi Togawa
斉 戸川
Toshimi Mori
聡美 森
Toshihiro Okabe
敏弘 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Tokin Corp
Tokin EMC Engineering Co Ltd
Aomori Prefectural Industrial Technology Research Center
Original Assignee
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Tokin EMC Engineering Co Ltd
NEC Tokin Corp
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER, Tokin EMC Engineering Co Ltd, NEC Tokin Corp, Aomori Prefectural Industrial Technology Research Center filed Critical AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Priority to JP2009265871A priority Critical patent/JP2010153833A/en
Publication of JP2010153833A publication Critical patent/JP2010153833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a radio wave absorber which is compact and has radio wave absorbing performance to enable the absorber to be used even in a radio-wave dark room, the radio wave absorber being usable over a wide band without spoiling the performance. <P>SOLUTION: The radio wave absorber is made thorough steps of: impregnating a woody material with a thermosetting resin and curing it; carrying out carbonization treatment of the cured one; pulverizing the carbonized one and regulating particle sizes into a carbonized powder 3; dispersing the carbonized powder 3 in an organic binder 2 to form a carbon powder absorber and kneading and dispersing the carbon powder absorber, or coating the organic binder 2 on surfaces of grains of the carbonized powder 3 and ramming down it to make it harden; and molding the previous step one in a predetermined shape. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は電波暗室や、電磁波の吸収や遮断を施したい居室などの壁面などに用いるのに好適な電波吸収体に関する。   The present invention relates to a radio wave absorber suitable for use in an anechoic chamber or a wall surface of a living room where electromagnetic waves are to be absorbed or blocked.

電波暗室などに用いられる電波吸収体は軟質樹脂発泡体にカーボンを含浸させたカーボンピラミッドが一般的で、小型化・広帯域化するためにフェライト焼結体からなるフェライトタイルを組み合わせたものが用いられてきた。   Electromagnetic wave absorbers used in anechoic chambers are generally carbon pyramids made of soft resin foam impregnated with carbon, and are combined with ferrite tiles made of sintered ferrite to reduce size and bandwidth. I came.

カーボンピラミッドは特に高い周波数領域で高い性能を示すが、波長の長さに合わせてピラミッドの高さを定めるため、低周波領域では非常に大きなものとなる。フェライトタイルは対応できる周波数範囲が狭いものの、特に波長の長い低周波領域で優れた性能を持ち薄いものでも高い吸収性能を示すことから、カーボンピラミッドと組み合わせることで小さくとも広い周波数帯域で吸収性能を発揮する電波吸収体を構成している。   The carbon pyramid shows high performance particularly in a high frequency region, but the height of the pyramid is determined in accordance with the length of the wavelength, so that the carbon pyramid becomes very large in the low frequency region. Although ferrite tiles have a narrow frequency range that can be used, especially in the low-frequency region with a long wavelength, they exhibit excellent absorption performance even with thin ones. It constitutes an electromagnetic wave absorber to be demonstrated.

特許文献1には、従来用いられてきた軟質樹脂発泡体として、オープンセル構造の発泡ウレタンを用いカーボンと組み合わせた材質のピラミッド型電波吸収体は、1〜2GHzの周波数領域で優れた反射減衰量を呈すが、耐候性が低いことが示されている。また、硬質樹脂発泡体であるクローズドセル構造の発泡ポリスチレンを用いた楔型電波吸収体は耐候性は優れているが電波吸収特性が劣ることが示されている。   In Patent Document 1, as a soft resin foam that has been used in the past, a pyramidal electromagnetic wave absorber made of a combination of carbon and urethane using an open cell structure has excellent return loss in the frequency range of 1 to 2 GHz. However, it is shown that the weather resistance is low. Further, it has been shown that a wedge-shaped wave absorber using foamed polystyrene having a closed cell structure, which is a hard resin foam, has excellent weather resistance but poor wave absorption characteristics.

特開昭63−192299号公報JP-A-63-192299

フェライトタイルは耐候性や強度に優れ、薄いものでも電波吸収特性にも優れている反面、焼結体であるため割れや欠けが発生し易いという欠点を有しており、フェライトタイルを用いずに広帯域化が可能であることが望まれるが、電波吸収体を大型化せずに広帯域化を図ることは非常に困難である。   Ferrite tiles are excellent in weather resistance and strength, and are excellent in both thin and radio wave absorption characteristics, but have the disadvantage that cracks and chips are likely to occur because they are sintered, without using ferrite tiles. Although it is desired that a broad band is possible, it is very difficult to achieve a wide band without increasing the size of the radio wave absorber.

特許文献1では、軟質樹脂発泡体を用いた電波吸収体の欠点である耐候性を向上させるため、硬質樹脂発泡体であるクローズドセル構造を持ち、なおかつ電波吸収特性に優れた導電性架橋ポリエチレンにカーボンを均一に練り込んだ発泡性電波吸収材料が示されているが、第5図によれば30dBの反射減衰量を得るための規格化厚さは1.0であり、対象周波数を本文献で具体的に取り上げている1〜2GHzとした時の電波吸収体の厚さは30cm程度必要であることが分かる。言い換えれば、より低い周波数、例えば300MHzでは1mの厚みが必要であり、耐候性や電波吸収特性が良好なものが得られても、小型に出来ると言うことではないことが分かる。   In Patent Document 1, in order to improve the weather resistance, which is a defect of a radio wave absorber using a soft resin foam, a conductive cross-linked polyethylene having a closed cell structure that is a hard resin foam and excellent in radio wave absorption characteristics is used. Although a foamable electromagnetic wave absorbing material in which carbon is kneaded uniformly is shown, according to FIG. 5, the normalized thickness for obtaining a return loss of 30 dB is 1.0, and the target frequency is It can be seen that the thickness of the radio wave absorber is about 30 cm when the frequency is set to 1 to 2 GHz, which is specifically taken up in FIG. In other words, a thickness of 1 m is necessary at a lower frequency, for example, 300 MHz, and it can be seen that even if a material having good weather resistance and radio wave absorption characteristics can be obtained, it cannot be reduced in size.

また、主要な材料である樹脂発泡体は軟質樹脂発泡体の場合変形しやすく、硬質樹脂発泡体の場合でも大型であるが故に破損の畏れが高い。他の材料であるカーボンは石油系、石炭系の原料を燃焼させて作るため、資源の枯渇、CO排出などの問題を含み、価格も高額である。 In addition, the resin foam as the main material is easily deformed in the case of a soft resin foam, and even in the case of a hard resin foam, the resin foam is large in size and is likely to be damaged. Since carbon, which is another material, is made by burning petroleum and coal-based raw materials, it includes problems such as resource depletion and CO 2 emissions, and is also expensive.

本発明はこれらの状況を鑑み、耐候性・強度に優れ、小型で電波暗室等でも用いることの出来る電波吸収性能を有する電波吸収体を安価に提供すること、また、それらの特性を損なわずに広帯域で使用出来る電波吸収体を提供することを課題とする。   In view of these circumstances, the present invention provides a radio wave absorber having excellent wave resistance and strength, having a radio wave absorption performance that is small and can be used even in an anechoic chamber, and the like, and without impairing those characteristics. It is an object to provide a radio wave absorber that can be used in a wide band.

電波暗室等で用いられる電波吸収体は数百MHz〜数十GHzの周波数領域において後述する吸収特性として反射が−20dB以下であることが要求されるが、本発明によれば、木質材料に熱硬化性樹脂を含浸して硬化させたのち炭化処理し、該炭化した材料を粉砕した炭化粉末と前記炭化粉末を結着して所望の形状を形成するための有機結合材とを主たる材料として構成したことを特徴とする電波吸収体が得られ、電波暗室等での利用にも十分耐え得る。   An electromagnetic wave absorber used in an anechoic chamber or the like is required to have a reflection of −20 dB or less as an absorption characteristic to be described later in a frequency region of several hundred MHz to several tens of GHz. Mainly composed of carbonized powder impregnated with a curable resin, cured, carbonized, and pulverized carbonized material and an organic binder for binding the carbonized powder to form a desired shape A radio wave absorber characterized by the above can be obtained, and it can sufficiently withstand use in an anechoic chamber or the like.

本発明による電波吸収体は、前記炭化粉末を前記有機結合材中に混練・分散させ、成形・硬化させる、若しくは、前記炭化粉末の表面に前記有機結合材を塗布し、押し固めて成形・硬化することによって得られる。   The radio wave absorber according to the present invention is obtained by kneading / dispersing the carbonized powder in the organic binder, molding / curing, or applying the organic binder on the surface of the carbonized powder, pressing and solidifying, molding / curing. It is obtained by doing.

本発明によれば、前記炭化粉末の濃度を順次傾斜させることで、広帯域の反射を抑え、より高い電波吸収性能を得ることが出来る。   According to the present invention, by gradually inclining the concentration of the carbonized powder, broadband reflection can be suppressed and higher radio wave absorption performance can be obtained.

本発明によれば、カーボンブラック、グラファイト、フェライト粉末、絶縁材料からなるビーズのいずれか一つ以上を更に含んだ電波吸収体を得られ、これらは、炭化粉末とは別の層として、或いは、炭化粉末と混合して、前記電波吸収体を構成する。このように他の材料を更に含むことで、例えば、カーボンブラック、グラファイトによって炭化粉末で不足する特性を補ったり、特に低周波領域で発揮されるフェライトの特性を活かして広帯域化を図ったり、吸収体が絶縁材料からなるビーズを含むことにより電磁波の反射が低減し、より電波吸収性能に優れた電波吸収体を得ることが可能となる。   According to the present invention, it is possible to obtain a radio wave absorber further including at least one of carbon black, graphite, ferrite powder, and beads made of an insulating material, and these can be used as a layer separate from the carbonized powder, or The electromagnetic wave absorber is configured by mixing with carbonized powder. By further including other materials in this way, for example, carbon black and graphite can compensate for the shortage of characteristics with carbonized powder, especially by utilizing the characteristics of ferrite that is exhibited in the low frequency range, absorption and absorption When the body includes beads made of an insulating material, the reflection of electromagnetic waves is reduced, and it is possible to obtain a radio wave absorber excellent in radio wave absorption performance.

本発明の電波吸収体は、従来の樹脂発泡体を用いた電波吸収体に比べ、耐候性や強度に優れ、同じ周波数で同じ電波吸収性能を得ようとするときのサイズを格段に小さくすることが可能となった。また、材料の複合化により強度を維持し大型化することなく広帯域にも対応することが可能な電波吸収体をも提供することが可能となった。更に、材料として廃材を利用して作る炭化粉末を用いることで、省資源化に寄与し、コストを10分の1以下に抑えることが可能となった。   The radio wave absorber of the present invention is superior in weather resistance and strength compared to a radio wave absorber using a conventional resin foam, and greatly reduces the size when trying to obtain the same radio wave absorption performance at the same frequency. Became possible. In addition, it has become possible to provide a radio wave absorber capable of supporting a wide band without increasing the size and maintaining the strength by combining the materials. Furthermore, by using carbonized powder made from waste material as a material, it has been possible to contribute to resource saving and to reduce the cost to 1/10 or less.

本発明の四角錐型の電波吸収体ブロック1の概略斜視図である。1 is a schematic perspective view of a quadrangular pyramidal wave absorber block 1 of the present invention. 本発明の実施例4の電波吸収体8aの概略断面図である。It is a schematic sectional drawing of the electromagnetic wave absorber 8a of Example 4 of this invention. 本発明の楔型の電波吸収体ブロック1aの概略斜視図である。It is a schematic perspective view of the wedge-shaped wave absorber block 1a of the present invention. 本発明の実施例5の電波吸収体8bの概略断面図である。It is a schematic sectional drawing of the electromagnetic wave absorber 8b of Example 5 of this invention. 本発明の他の積層例を示す電波吸収体の概略図であって、(a)は電波飛来方向に平行な積層例を示す断面図、(b)は外形形状に相似な積層例を示す断面図である。It is the schematic of the electromagnetic wave absorber which shows the other laminated example of this invention, Comprising: (a) is sectional drawing which shows the laminated example parallel to a radio wave flight direction, (b) is a cross section which shows the laminated example similar to an external shape. FIG. 本発明の実施例6の電波吸収体8eを底面方向から見た概略斜視図である。It is the schematic perspective view which looked at the electromagnetic wave absorber 8e of Example 6 of this invention from the bottom face direction. 本発明の円錐型の電波吸収体ブロック1eの概略斜視図である。It is a schematic perspective view of the conical wave absorber block 1e of the present invention. 本発明の実施例6の電波吸収体の表面状態の模式図である。It is a schematic diagram of the surface state of the radio wave absorber of Example 6 of the present invention. 本発明の絶縁材料からなるビーズを分散させた電波吸収体の内部を示した模式図である。It is the schematic diagram which showed the inside of the electromagnetic wave absorber which disperse | distributed the bead which consists of an insulating material of this invention. 本発明で用いた電波吸収特性の評価システムを示す概略図である。It is the schematic which shows the evaluation system of the electromagnetic wave absorption characteristic used by this invention. 本発明の実施例による電波吸収体の電波吸収特性を示す図である。It is a figure which shows the electromagnetic wave absorption characteristic of the electromagnetic wave absorber by the Example of this invention.

本発明の電波吸収体は、木質材料に熱硬化性樹脂を含浸させて硬化したものを炭化処理し、できた炭化物を粉砕した炭化粉末を、有機結合材に混練・分散させたり、表面に塗布して押し固めたりして吸収体を所定の形状に成形・硬化してなる電波吸収体である。   The radio wave absorber according to the present invention is obtained by carbonizing a wood material impregnated with a thermosetting resin and then carbonizing the resulting carbonized material, and kneading and dispersing the carbonized powder in an organic binder or applying it to the surface. Then, it is a radio wave absorber formed by pressing and hardening the absorber into a predetermined shape and curing.

本発明において、使用するのは木質材料の中でも特に廃材である。本発明は、廃材の再利用や廃棄物の活用を目的としており、その一手段を提案するものであるが、当然のことながら木質の材料であれば、電波吸収特性の優れた電波吸収体が製造可能であり、再利用品や廃棄物以外の木質の材料の使用を制限するものではない。使用するのは主に建築廃材や間伐材の廃棄物、大鋸屑、製材屑、などであるが、これも特に限定されるものではなく、例えば、当初、本願とは別の使用目的であった木質の材料を流用するとか、本願と別の目的にも利用可能であるような木質の材料を利用するものであっても良い。木質材料は含浸させる熱硬化性樹脂が良く染み込むように細かく粉砕する。   In the present invention, waste materials are used among wooden materials. The present invention is aimed at the reuse of waste materials and the utilization of waste, and proposes one means, but of course, if it is a woody material, a radio wave absorber having excellent radio wave absorption characteristics can be obtained. It is manufacturable and does not limit the use of woody materials other than recycled or waste. It is mainly used for building waste and thinned wood waste, large sawdust, sawdust, etc., but this is not particularly limited, for example, wood that was originally intended for use other than this application It is also possible to use a woody material that can be used for other purposes than this application. The wood material is finely pulverized so that the thermosetting resin to be impregnated soaks well.

本発明の炭化処理の工程は高温で行うため、ダイオキシン等の有害ガスの発生の畏れは低いものの、これを防止するために使用する熱硬化性樹脂はハロゲンフリーのものを用いるのが好ましい。熱硬化性樹脂の中でもガラス転移点を持たないフェノール樹脂、ユリア樹脂、メラミン樹脂などが好ましく、その中でもフェノール樹脂が特に好ましい。   Since the carbonization process of the present invention is carried out at a high temperature, the generation of harmful gases such as dioxins is low, but it is preferable to use a halogen-free thermosetting resin to prevent this. Among thermosetting resins, phenol resins, urea resins, melamine resins and the like that do not have a glass transition point are preferable, and among them, phenol resins are particularly preferable.

炭化粉末は熱硬化性樹脂を含浸後硬化させた木質材料を高温で炭化処理して炭化物として、炭化物を粉砕して、作られる。炭化粉末を有機結合材に混練・分散して構成する場合、炭化粉末の大きさは10μm〜1mm程度が好ましく、数十〜数百μmがなお好ましい。また、粉末は同じような大きさに揃っていた方が好ましい。これに対して炭化粉末の表面に有機結合材を塗布して押し固めて構成する場合、炭化粉末の大きさは10μm〜20mm程度が許容され、50μm〜5mm程度が好ましい。隙間が出来やすいので、充填率を上げるため大きさの異なる粉末が混ぜて用いることも好ましい。   The carbonized powder is made by carbonizing a wood material which has been impregnated with a thermosetting resin and then cured at a high temperature to form a carbide, and then pulverizing the carbide. When the carbonized powder is constituted by kneading and dispersing in an organic binder, the size of the carbonized powder is preferably about 10 μm to 1 mm, and more preferably several tens to several hundred μm. Further, it is preferable that the powders have the same size. On the other hand, when the organic binder is applied and pressed on the surface of the carbonized powder, the size of the carbonized powder is allowed to be about 10 μm to 20 mm, and preferably about 50 μm to 5 mm. Since gaps are easily formed, it is also preferable to mix powders of different sizes in order to increase the filling rate.

有機結合材に用いる材料は特に限定されるものではなく、多様な樹脂を適用し得る。電波吸収特性に関わる誘電率や難燃性・不燃性、ハロゲンフリー、生分解性、強度、コストなどそれぞれの要求に応じて適宜選択すればよい。具体的にはフェノール、ユリア、メラミン、ウレタン、ポリエチレン、ポリプロピレン、アクリル、ポリカーボネート、ポリスルフェイト、ポリビニルアルコール、エポキシ、ポリアミド、酢酸ビニルなどの樹脂やゴムである。粉末を混練・分散して作るものと、粉末表面に塗布して作るものとでは例えば粘度などの条件が異なるが、溶媒を添加して粘度調整を行うなどして製法にあったものを用いる。有機結合材の他に難燃剤や難燃助剤、表面処理剤、充填剤、着色剤など公知の添加剤を含むことを妨げない。   The material used for the organic binder is not particularly limited, and various resins can be applied. What is necessary is just to select suitably according to each request | requirement, such as a dielectric constant regarding a radio wave absorption characteristic, a flame retardance / nonflammability, halogen free, biodegradability, intensity | strength, and cost. Specifically, resins and rubbers such as phenol, urea, melamine, urethane, polyethylene, polypropylene, acrylic, polycarbonate, polysulfate, polyvinyl alcohol, epoxy, polyamide, and vinyl acetate. The one prepared by kneading and dispersing the powder and the one prepared by applying to the powder surface have different conditions such as viscosity. For example, the one prepared by adjusting the viscosity by adding a solvent is used. In addition to the organic binder, it does not interfere with the inclusion of known additives such as flame retardants, flame retardant aids, surface treatment agents, fillers, and colorants.

炭化処理により、炭化粉末を作る工程は従来知られている方法を適用する。まず、原料の木質材料となる廃材を一定の大きさに粉砕する。これは均一に含浸がなされるための前処理であって、含浸しにくい材料では小さくした方が好ましい。熱硬化性樹脂の含浸は減圧または加圧下で行い、超音波などを併用して木質材料の組織の道管内部にまで注入されるようにする。熱硬化性樹脂を含浸した木質材料は一旦熱硬化したのち700℃以上の温度、好ましくは900℃以上で炭化処理を行う。700℃より低い温度では炭化処理後に出来る炭化粉末の抵抗率が大きく実用的でない。炭化粉末の抵抗という観点から見るとより高い温度で炭化処理を行うことが好ましいが、1500℃を超えると抵抗率の改善の度合いが小さいにも拘わらず、特殊な炉が必要となり炭化に要するエネルギーも大きくなるので、好ましくない。   A conventionally known method is applied to the step of producing carbonized powder by carbonization. First, the waste material that is the raw wood material is pulverized to a certain size. This is a pretreatment for uniformly impregnating, and it is preferable to make it small for materials that are difficult to impregnate. The thermosetting resin is impregnated under reduced pressure or under pressure, and is injected into the tract of the wood material tissue using ultrasonic waves or the like. The wood material impregnated with the thermosetting resin is once heat-cured and then carbonized at a temperature of 700 ° C. or higher, preferably 900 ° C. or higher. When the temperature is lower than 700 ° C., the resistivity of the carbonized powder formed after carbonization is large and not practical. From the viewpoint of the resistance of the carbonized powder, it is preferable to perform carbonization at a higher temperature. However, if the temperature exceeds 1500 ° C., the degree of improvement in resistivity is small, but a special furnace is required and the energy required for carbonization. Is also not preferable.

炭化処理により、炭化粉末を作る工程として、木質材料を予備炭化した後に、熱硬化性樹脂を含浸させて硬化させ、その後に高温で炭化処理を行う方法を採っても良い。予備炭化は300〜700℃程度の低温度で行う方が、エネルギー的に有利である。   As a process for producing carbonized powder by carbonization treatment, a method of preliminarily carbonizing the wood material, impregnating and curing the thermosetting resin, and then performing carbonization treatment at a high temperature may be employed. It is advantageous in terms of energy to perform preliminary carbonization at a low temperature of about 300 to 700 ° C.

炭化処理は非酸化雰囲気下で行うのが良く、ホルマリン雰囲気下や窒素雰囲気下などの他、密閉炉で行うなどの方法を採ってもよい。   The carbonization treatment is preferably performed in a non-oxidizing atmosphere, and may be performed in a closed furnace other than in a formalin atmosphere or a nitrogen atmosphere.

炭化処理後、木質材料の炭化物を細かく粉砕して、所定の粒径となるようにして、炭化粉末を製造する。   After the carbonization treatment, the carbide of the woody material is finely pulverized to obtain a predetermined particle size, and a carbonized powder is produced.

炭化粉末を有機結合材と均一になるように混練・分散させ、或いは、炭化粉末の表面にスプレー法などによって均一に極薄く有機結合材を塗布して押し固め、四角錐型、円錐型、楔型、平板型等の所望の形状に成形する。成形する形状は電波暗室と、電磁波の吸収や遮断を施したい居室などの壁面とでは要求条件が異なるため、場所によって形状を選択すれば良いが、空間の制約が少なく、高い反射減衰特性を要求される場合は四角錐型や円錐型、楔型が好ましい。平板型の場合は広帯域で反射を抑えるよう炭化粉末の濃度に順次傾斜を持たせたものが良い。   The carbonized powder is kneaded and dispersed so as to be uniform with the organic binder, or the surface of the carbonized powder is uniformly and extremely thinly coated with an organic binder by a spray method or the like, and then pressed, square pyramid, cone, wedge Molding into a desired shape such as a mold or a flat plate mold. The shape to be molded varies depending on the location because the requirements differ between the anechoic chamber and the wall surface of the living room where electromagnetic waves are to be absorbed or blocked, but the shape can be selected depending on the location, but there are few space restrictions and high reflection attenuation characteristics are required. In this case, a quadrangular pyramid shape, a conical shape, and a wedge shape are preferable. In the case of a flat plate type, it is preferable that the concentration of carbonized powder is gradually inclined so as to suppress reflection in a wide band.

炭化粉末の濃度に順次傾斜を持たせた電波吸収体は、炭化粉末の濃度が異なる吸収体(以下、炭化粉末吸収体と称する。)を数種類作成し、それを炭化粉末の濃度の順番に従って、層状に成形していくことで、製造できる。このように、炭化粉末の含有量が異なる炭化粉末吸収体を、炭素粉末の濃度の順に多層化することによって、広帯域の反射を低減できる。電波暗室に用いるような場合には、電磁波飛来方向側の炭化粉末の濃度が低くなるように、電波吸収体に一方向に濃度傾斜を持たせて多層化することが望ましい。なお、濃度傾斜を持たせた電波吸収体を製造する際の成形の順序は、炭化粉末の濃度の高低のどちらからとは限定されず、電波吸収体の形状等により適宜選択すれば良い。また、炭化粉末の含有量の異なる炭化粉末吸収体は成形・硬化までを行ったものを積層しても良いし、途中工程、例えば炭化粉末と有機結合材を混練・分散したスラリーの状態で積層して多層のものを作る方法を採っても良い。   For the radio wave absorber having the slope of the carbonized powder in order, several types of absorbers having different carbonized powder concentrations (hereinafter referred to as carbonized powder absorber) are prepared, and according to the order of the carbonized powder concentration, It can be manufactured by forming into layers. In this way, by reflecting the carbonized powder absorber having different carbonized powder contents in the order of the concentration of the carbon powder, it is possible to reduce broadband reflection. When used in an anechoic chamber, it is desirable that the electromagnetic wave absorber is multi-layered with a concentration gradient in one direction so that the concentration of the carbonized powder on the electromagnetic wave arrival direction side is lowered. In addition, the order of molding when manufacturing a radio wave absorber having a concentration gradient is not limited to the level of carbonized powder concentration, and may be appropriately selected depending on the shape of the radio wave absorber. Carbonized powder absorbers having different carbonized powder contents may be laminated after being molded and cured, or in the middle of a process, for example, in the state of a slurry in which carbonized powder and an organic binder are kneaded and dispersed. Then, you may take the method of making a multilayer thing.

本発明では、カーボンブラック、グラファイト、フェライト粉末、絶縁材料からなるビーズのいずれか若しくは組み合わせて添加することで炭化粉末の特性を補うことも出来る。   In the present invention, the characteristics of the carbonized powder can be supplemented by adding any one or a combination of carbon black, graphite, ferrite powder, and beads made of an insulating material.

カーボンブラック、グラファイトはいずれも炭化粉末と同様、有機結合材と協働して誘電損失体を構成し電磁波を吸収する働きをする。これらの粉末は炭化粉末に比べ微粉末化を図りやすく、高濃度化したいときに添加すると有利である。特にGHz帯の高い周波数領域では炭化粉末濃度が高い吸収体が望まれるが、炭化粉末の充填率を上げることが出来ない場合などに添加することで、優れた電波吸収能を発揮することが出来る。また、粉末を混合するだけでなく、例えばカーボンブラックと有機結合材で構成した吸収体と炭化粉末吸収体を積層する形で用いても良い。   Both carbon black and graphite, like the carbonized powder, cooperate with the organic binder to form a dielectric loss body and function to absorb electromagnetic waves. These powders are easier to atomize than carbonized powder, and it is advantageous to add them when it is desired to increase the concentration. In particular, an absorber with a high carbonized powder concentration is desired in the high frequency range of the GHz band, but when it is not possible to increase the filling rate of the carbonized powder, an excellent radio wave absorption ability can be exhibited. . In addition to mixing powders, for example, an absorber formed of carbon black and an organic binder and a carbonized powder absorber may be laminated.

フェライト粉末は特に低周波領域で優れた電波吸収能が期待でき、フェライト粉末と有機結合材で構成した吸収体(以下、フェライト吸収体と称する。)と炭化粉末吸収体を積層して電波吸収体の広帯域化を図ることができる。この場合、フェライト粉末は透磁率や誘電率、使用する周波数帯域に応じて適宜選択すれば良く、代表的にはNi−Zn系やNi−Zn−Cu系フェライトなどが用いられる。有機結合材には炭化粉末を分散させるのと同種の材料を用いることにより、炭化粉末吸収体とフェライト吸収体との接合界面での反射を防止でき、接着などの工程を経ることなしに強固に接合することが出来る。これにより、割れや欠けが発生しやすいフェライト焼結体を用いることなく広帯域で性能を発揮できる電波吸収体が得られる。また、積層する形ではなく、フェライト粉末を炭化粉末と混合する形で用いても良い。   Ferrite powder can be expected to have excellent radio wave absorption ability especially in a low frequency region. An electromagnetic wave absorber is formed by laminating an absorber composed of ferrite powder and an organic binder (hereinafter referred to as a ferrite absorber) and a carbonized powder absorber. Can be widened. In this case, the ferrite powder may be appropriately selected according to the magnetic permeability, the dielectric constant, and the frequency band to be used, and typically Ni-Zn-based or Ni-Zn-Cu-based ferrite is used. By using the same kind of material as the carbon powder dispersed in the organic binder, reflection at the bonding interface between the carbonized powder absorber and the ferrite absorber can be prevented, and it can be firmly done without going through a process such as bonding. Can be joined. As a result, a radio wave absorber capable of exhibiting performance in a wide band can be obtained without using a ferrite sintered body that easily generates cracks and chips. Further, the ferrite powder may be mixed with the carbonized powder instead of being laminated.

また、本発明の電波吸収体には、更に絶縁材料からなるビーズを含んでも良い。絶縁材料からなるビーズはクローズドセル構造を構成するのと同様の効果をもたらす。用いられる材料は有機結合材の誘電率と同じかそれよりも低い誘電率を持つ材料が好ましく、材質は特に問わない。例えば、有機結合材と同種の樹脂等であっても良いし、ガラスでも良い。また、発泡性樹脂のビーズを用いて、添加したビーズを発泡させることも出来る。材料全体としての誘電率調整などに有用であり、反射の低減などを図ることが出来る。   Moreover, the radio wave absorber of the present invention may further include beads made of an insulating material. Beads made of an insulating material have the same effect as that of a closed cell structure. The material used is preferably a material having a dielectric constant equal to or lower than that of the organic binder, and the material is not particularly limited. For example, the same kind of resin as the organic binder may be used, or glass may be used. Further, the added beads can be foamed using beads of an expandable resin. This is useful for adjusting the dielectric constant of the entire material, and can reduce reflection.

炭化粉末及びカーボンブラック、グラファイト、フェライト粉末、絶縁材料からなるビーズと有機結合材を混練・分散する方法はニーダ(Kneader)、ミキシングロールその他の公知の手段に依れば良く、成形・硬化の方法についても、選択した有機結合材の種類等によって公知の手段のうち最適な手段を適用する。硬化したものを切削などによって成形する方法をとっても良い。   The method of kneading and dispersing the carbonized powder, carbon black, graphite, ferrite powder, beads made of an insulating material and the organic binder may be based on a kneader, a mixing roll or other known means. For the above, the optimum means among known means is applied depending on the type of the organic binder selected. A method of forming a cured product by cutting or the like may be employed.

また、炭化粉末及びカーボンブラック、グラファイト、フェライト粉末、絶縁材料からなるビーズの表面に有機結合材を塗布する方法は、スプレー法が好ましいが他の手段を用いることを妨げるものではない。粉末表面に有機結合材を塗布したものは、加圧して所望の形状に整える。加熱しながら加圧しても良い。   Further, the method of applying the organic binder to the surface of the beads made of carbonized powder and carbon black, graphite, ferrite powder, and insulating material is preferably a spray method, but does not preclude the use of other means. What applied the organic binder to the powder surface pressurizes and arranges in a desired shape. You may pressurize, heating.

以下、図面を用いて本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の実施例1〜7に係る電波吸収体(電波吸収体ブロック)を製造し、電波吸収特性を評価した。   Radio wave absorbers (radio wave absorber blocks) according to the following Examples 1 to 7 were manufactured, and radio wave absorption characteristics were evaluated.

まず、各電波吸収体の構造及び製造方法について説明する。   First, the structure and manufacturing method of each radio wave absorber will be described.

(実施例1)
図1は本発明の電波吸収体ブロック1の概略斜視図である。図1から明らかなように、電波吸収体ブロック1は、四角錐型の電波吸収体8の集合体からなる。
Example 1
FIG. 1 is a schematic perspective view of a radio wave absorber block 1 of the present invention. As is clear from FIG. 1, the radio wave absorber block 1 is composed of a collection of quadrangular pyramid type radio wave absorbers 8.

実施例1では、以下の手順で電波吸収体ブロック1を製造した。   In Example 1, the radio wave absorber block 1 was manufactured by the following procedure.

まず、木質材料として充分に乾燥した建築廃材を10〜20mm程度のチップ状に粉砕し、木質材料80mass%、フェノール樹脂20mass%の割合で混ぜ、減圧下で超音波をかけて2時間含浸させた。これを180℃で加熱硬化したものを1100℃、窒素雰囲気下で炭化処理を行った。炭化処理後の木質材料を平均粒径500μmに粉砕して炭化粉末を得た。   First, building waste that was sufficiently dried as a wood material was crushed into chips of about 10 to 20 mm, mixed at a ratio of wood material 80 mass% and phenol resin 20 mass%, and impregnated with ultrasonic waves under reduced pressure for 2 hours. . This was heat-cured at 180 ° C. and carbonized at 1100 ° C. in a nitrogen atmosphere. The carbonized material after carbonization was pulverized to an average particle size of 500 μm to obtain carbonized powder.

このようにして得られた炭化粉末を35vol%の割合でエポキシ樹脂に混練・分散してこれを図1に示すようなブロック形状に成形・硬化させた。   The carbonized powder thus obtained was kneaded and dispersed in an epoxy resin at a ratio of 35 vol%, and this was molded and cured into a block shape as shown in FIG.

以上の手順により、電波吸収体8の集合体からなる電波吸収体ブロック1を製造した。図1では四角錐が4つ集合したブロックで表されているが、本実施例では四角錐が25個集合した300×300mmのブロックとした。この時の電波吸収体8の厚さtは65mmであった。   The radio wave absorber block 1 made of the aggregate of the radio wave absorbers 8 was manufactured by the above procedure. In FIG. 1, the block is represented by a block in which four quadrangular pyramids are gathered. In the present embodiment, the block is a 300 × 300 mm block in which 25 square pyramids are gathered. At this time, the thickness t of the radio wave absorber 8 was 65 mm.

(実施例2)
実施例1と同様の電波吸収体ブロック1を製造条件を変更して製造した。
(Example 2)
A radio wave absorber block 1 similar to that in Example 1 was manufactured by changing the manufacturing conditions.

具体的には、まず、木質材料として充分に乾燥した建築廃材を10〜20mm程度のチップ状に粉砕し、木質材料80mass%、フラン樹脂20mass%の割合で混ぜ、減圧下で超音波をかけて2時間含浸させた。これを120℃で加熱硬化したものを1100℃、窒素雰囲気下で炭化処理を行った。炭化処理後の木質材料を平均粒径500μmに粉砕して炭化粉末を得た。   Specifically, first, building waste material that has been sufficiently dried as a wood material is crushed into chips of about 10 to 20 mm, mixed at a ratio of 80 mass% of wood material and 20 mass% of furan resin, and ultrasonically applied under reduced pressure. Impregnation for 2 hours. This was heat-cured at 120 ° C. and carbonized at 1100 ° C. in a nitrogen atmosphere. The carbonized material after carbonization was pulverized to an average particle size of 500 μm to obtain carbonized powder.

このようにして得られた炭化粉末を35vol%の割合でエポキシ樹脂に混練・分散して電波吸収体ブロック1を製造した。   The carbonized powder thus obtained was kneaded and dispersed in an epoxy resin at a rate of 35 vol% to produce a radio wave absorber block 1.

(実施例3)
実施例1に用いたものと同様の炭化粉末を35vol%と平均粒径が0.5μmのカーボンブラック粉末を10vol%の割合でポリビニルアルコール樹脂に混練・分散して実施例1と同様の形状に成形し、反応硬化させて電波吸収体8からなる電波吸収体ブロック1を製造した。
(Example 3)
The same carbonized powder as used in Example 1 was kneaded and dispersed in 35% by volume of carbon black powder having an average particle size of 0.5 μm in a proportion of 10% by volume in a polyvinyl alcohol resin to obtain the same shape as in Example 1. The radio wave absorber block 1 made of the radio wave absorber 8 was manufactured by molding and reaction curing.

(実施例4)
図2〜図3に示すような、上部を炭化粉末吸収体30とし、基部をフェライト吸収体41とした積層型の電波吸収体8aからなる電波吸収体ブロック1aを製造した。具体的な構成および製造方法は以下の通りである。
Example 4
As shown in FIGS. 2 to 3, a radio wave absorber block 1 a made of a laminated radio wave absorber 8 a having a carbonized powder absorber 30 as an upper portion and a ferrite absorber 41 as a base portion was manufactured. The specific configuration and manufacturing method are as follows.

まず、構成について説明する。図2に示すように、実施例4の電波吸収体8aは、上部を炭化粉末吸収体30とし、基部をフェライト吸収体41とした積層型の電波吸収体である。図3に示すように、電波吸収体ブロック1aは、楔型の電波吸収体8aが2つあるブロックを互い違いに配置してひとつのブロックとしている。   First, the configuration will be described. As shown in FIG. 2, the radio wave absorber 8 a of Example 4 is a laminated radio wave absorber in which the upper part is a carbonized powder absorber 30 and the base is a ferrite absorber 41. As shown in FIG. 3, the radio wave absorber block 1a is formed by alternately arranging blocks having two wedge-shaped radio wave absorbers 8a.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

実施例1と同様の炭化粉末を35vol%の割合でエポキシ樹脂に混練・分散したスラリーとNi−Zn系フェライト粉末を55vol%の割合でエポキシ樹脂に混練・分散した混合物を用意し、電波吸収体8aの上部に炭化粉末吸収体30、基部にフェライト吸収体41となるように前記混合物を順次、型に充填して硬化させ、積層型の電波吸収体8aとし、その集合体である電波吸収体ブロック1aを製造した。電波吸収体ブロック1aの形状は図3に示した通りで、300×300mmの大きさで厚さtは65mmである。   A mixture obtained by kneading and dispersing the same carbonized powder as in Example 1 in an epoxy resin at a ratio of 35 vol% and a mixture obtained by kneading and dispersing an Ni-Zn ferrite powder in an epoxy resin at a ratio of 55 vol% were prepared. The mixture is sequentially filled in a mold so as to become a carbonized powder absorber 30 at the top of 8a and a ferrite absorber 41 at the base, and cured to form a laminated wave absorber 8a, which is an aggregate of the wave absorber. Block 1a was produced. The shape of the radio wave absorber block 1a is as shown in FIG. 3, and is 300 × 300 mm in size and 65 mm in thickness t.

(実施例5)
炭素粉末の濃度を順次傾斜を持たせた電波吸収体8bを製造した。具体的な構成および製造方法は以下の通りである。
(Example 5)
A radio wave absorber 8b having a slope of the carbon powder concentration was manufactured. The specific configuration and manufacturing method are as follows.

まず、構成について図4および図5を参照して説明する。   First, the configuration will be described with reference to FIG. 4 and FIG.

図4に示すように、本発明の実施例5の電波吸収体8bは、低濃度炭化粉末吸収体31、中濃度炭化粉末吸収体32、高濃度炭化粉末吸収体33と炭化粉末の濃度の異なる炭化粉末吸収体を濃度に従って順次積層した平板型の電波吸収体である。   As shown in FIG. 4, the radio wave absorber 8b of the fifth embodiment of the present invention is different in the concentration of the carbonized powder from the low concentration carbonized powder absorber 31, the medium concentration carbonized powder absorber 32, and the high concentration carbonized powder absorber 33. It is a flat-plate type wave absorber in which carbonized powder absorbers are sequentially laminated according to the concentration.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

まず、実施例1と同様の炭化粉末をそれぞれ5vol%、25vol%、45vol%の割合でポリカーボネート樹脂に混練・分散した混合物を、炭化粉末濃度の濃いものから順番に型に充填して硬化させ、図4に示したように低濃度炭化粉末吸収体31、中濃度炭化粉末吸収体32、高濃度炭化粉末吸収体33が、電波吸収体の厚み方向で各々3分の1ずつになるように電波吸収体8bに成形した。この時の電波吸収体8bの厚さtは30mm、大きさは300×300mmであった。   First, a mixture obtained by kneading and dispersing the same carbonized powder as in Example 1 in a proportion of 5 vol%, 25 vol%, and 45 vol% in a polycarbonate resin is filled in a mold in order from the one with the highest carbonized powder concentration, and cured. As shown in FIG. 4, the low-concentration carbonized powder absorber 31, the medium-concentrated carbonized powder absorber 32, and the high-concentrated carbonized powder absorber 33 are each one-third in the thickness direction of the radio wave absorber. The absorbent body 8b was molded. The thickness t of the radio wave absorber 8b at this time was 30 mm, and the size was 300 × 300 mm.

なお、実施例5では濃度の濃い順に充填して成形したが、順番が逆でも構わない。濃度の異なる吸収体を別々に作りそれを濃度に従って積層したものを接合する形で作っても良い。また、各層の厚みの割合や何層で構成するかなどは本実施例に限るものではない。なお、本実施例の電波吸収体を使用する際には炭素含有量の低い炭化粉末吸収体の層が電磁波飛来方向となるように使用する。本実施例では平板型のものを示したが、四角錐型や円錐型、楔型で濃度傾斜のある構成にしてももちろん良い。参考までに、図5に平板型以外の形状の積層型電波吸収体8c、8dの構成例を断面図で示す。   In addition, although it filled and shape | molded in order of the density | concentration in Example 5, the order may be reverse. It is also possible to make absorbent bodies with different concentrations separately and join them by laminating them according to the concentration. Further, the ratio of the thickness of each layer and the number of layers are not limited to the present embodiment. In addition, when using the electromagnetic wave absorber of a present Example, it uses so that the layer of the carbonized powder absorber with a low carbon content may become the electromagnetic wave flight direction. In the present embodiment, a flat plate type is shown, but it is of course possible to adopt a configuration having a concentration gradient such as a quadrangular pyramid type, a conical type, or a wedge type. For reference, FIG. 5 shows a cross-sectional view of a configuration example of the laminated wave absorbers 8c and 8d having a shape other than the flat plate type.

(実施例6)
外形が円錐形状で、中空の電波吸収体8eからなる電波吸収体ブロック1eを製造した。具体的な構成および製造方法は以下の通りである。
(Example 6)
A radio wave absorber block 1e having a conical outer shape and comprising a hollow radio wave absorber 8e was manufactured. The specific configuration and manufacturing method are as follows.

まず、構成について、図6を参照して説明する。   First, the configuration will be described with reference to FIG.

図6に示すように、電波吸収体8eは空洞を持ち中空状となっており、図7に示すように、電波吸収体ブロック1eは電波吸収体8eの集合体からなる。   As shown in FIG. 6, the radio wave absorber 8e is hollow and has a hollow shape, and as shown in FIG. 7, the radio wave absorber block 1e is composed of an assembly of the radio wave absorbers 8e.

なお、実施例6の電波吸収体8eの表面は、図8に示すような外観を有している。   The surface of the radio wave absorber 8e of Example 6 has an appearance as shown in FIG.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

木質材料として充分に乾燥した建築廃材を10〜20mm程度のチップ状に粉砕し、木質材料80mass%、フェノール樹脂20mass%の割合で混ぜ、減圧下で超音波をかけて2時間含浸させた。これを180℃で加熱硬化したものを1100℃、窒素雰囲気下で炭化処理を行った。炭化処理後の木質材料を平均粒径2mmに粉砕して炭化粉末を得た。本実施例のように炭化粉末の平均粒径が大きいものは低コストで製造できるため非常に有利である。   The building waste material sufficiently dried as a wood material was crushed into chips of about 10 to 20 mm, mixed in a ratio of 80 mass% of the wood material and 20 mass% of the phenol resin, and impregnated with ultrasonic waves under reduced pressure for 2 hours. This was heat-cured at 180 ° C. and carbonized at 1100 ° C. in a nitrogen atmosphere. The carbonized material after carbonization was pulverized to an average particle size of 2 mm to obtain carbonized powder. A carbonized powder having a large average particle size as in this embodiment is very advantageous because it can be produced at low cost.

ポリビニルアルコール樹脂を溶媒で希釈し、炭化粉末にスプレーして塗布した。これを押し固めて成形し、溶媒を蒸散させて硬化させ、中空状の電波吸収体8eの集合体からなる電波吸収体ブロック1eを形成した。電波吸収体ブロック1gは図7に示したように円錐型の電波吸収体8eの集合体で構成されている。図7では円錐が4つ集合したブロックで表されているが、本実施例では円錐が25個集合した300×300mmのブロックとした。この時の電波吸収体8eの厚さtは65mmであった。   A polyvinyl alcohol resin was diluted with a solvent and sprayed onto the carbonized powder. This was pressed and molded, and the solvent was evaporated and cured to form a radio wave absorber block 1e made of an aggregate of hollow radio wave absorbers 8e. As shown in FIG. 7, the radio wave absorber block 1g is composed of an aggregate of conical radio wave absorbers 8e. In FIG. 7, the block is represented by a block in which four cones are gathered. However, in this embodiment, the block is a 300 × 300 mm block in which 25 cones are gathered. At this time, the thickness t of the radio wave absorber 8e was 65 mm.

本実施例では粒径の大きな炭化粉末を用いたため、図8に模式的に示したように凹凸が残る表面状態となっているが、使用する粉末の大きさ等によってもっと滑らかな表面を得ることも出来る。本実施例のように押し固めて電波吸収体を構成する方法では、有機結合材の割合が非常に小さく、全体のかなりの部分を炭化粉末で占められるため非常に高濃度な電波吸収体にすることが出来る。   Since carbonized powder having a large particle size is used in this example, the surface remains uneven as schematically shown in FIG. 8, but a smoother surface can be obtained depending on the size of the powder used. You can also. In the method of constructing a radio wave absorber by pressing and compacting as in this embodiment, the proportion of the organic binder is very small, and a considerable part of the whole is occupied by carbonized powder, so that the radio wave absorber has a very high concentration. I can do it.

(実施例7)
内部にビーズを分散させた電波吸収体を製造した。具体的な構成および製造方法は以下の通りである。
(Example 7)
A radio wave absorber having beads dispersed therein was manufactured. The specific configuration and manufacturing method are as follows.

実施例1と同様の炭化粉末を45vol%の割合でフェノール樹脂に混練・分散した炭化粉末吸収体に更に、絶縁材料からなるビーズ4として、ポリプロピレンビーズを加えて実施例6と同様のブロック形状に成形・硬化し、電波吸収体の集合体からなる電波吸収体ブロックを製造した。但し、本実施例では電波吸収体が空洞を持たないものとした。電波吸収体内部は図9に模式的に示したようにフェノール樹脂マトリックス(有機結合材2)に炭化粉末3と絶縁材料からなるビーズ4が分散しているような構造であった。   In addition to the carbonized powder absorber obtained by kneading and dispersing the same carbonized powder as in Example 1 in a phenolic resin at a ratio of 45 vol%, polypropylene beads are added as beads 4 made of an insulating material to obtain the same block shape as in Example 6. A radio wave absorber block made of an aggregate of radio wave absorbers was produced by molding and curing. However, in this embodiment, the radio wave absorber does not have a cavity. As shown schematically in FIG. 9, the inside of the radio wave absorber had a structure in which beads 4 made of carbonized powder 3 and an insulating material were dispersed in a phenol resin matrix (organic binder 2).

次に、実施例1〜7に係る電波吸収体の電波吸収特性を評価した。具体的な手順は以下の通りである。   Next, the radio wave absorption characteristics of the radio wave absorbers according to Examples 1 to 7 were evaluated. The specific procedure is as follows.

図10に示すように、電波暗室の床面に各実施例で示した300mm×300mmの大きさの電波吸収体ブロックを試料7として設置し、その試料7の周辺にはバックグラウンド吸収用に、カーボンを含浸させたウレタンフォームからなる四角錐型の電波吸収体8を敷き詰め、天井側に送信アンテナ5と受信アンテナ6を配置して電波吸収特性の測定を行った。試料と送受信アンテナの距離は3mとした。電波吸収特性は、試料7と同じ位置に配置した同じ大きさの金属板(本実施例では銅板)からの反射波と試料7からの反射波の比で求めた。測定周波数範囲は100MHz〜20GHzで行い、100MHz〜1GHzまでをヘリカルアンテナで、1GHz〜20GHzまでをホーンアンテナで測定した。   As shown in FIG. 10, the wave absorber block of 300 mm × 300 mm shown in each example is installed as a sample 7 on the floor of the anechoic chamber, and around the sample 7 for background absorption, A quadrangular pyramid wave absorber 8 made of urethane foam impregnated with carbon was laid down, and the transmitting antenna 5 and the receiving antenna 6 were arranged on the ceiling side to measure the radio wave absorption characteristics. The distance between the sample and the transmitting / receiving antenna was 3 m. The radio wave absorption characteristics were determined by the ratio of the reflected wave from the metal plate (copper plate in this embodiment) of the same size arranged at the same position as the sample 7 and the reflected wave from the sample 7. The measurement frequency range was 100 MHz to 20 GHz, and measurement was performed from 100 MHz to 1 GHz with a helical antenna and from 1 GHz to 20 GHz with a horn antenna.

この結果を示したのが図11である。いずれの実施例の場合も、500MHz以上の周波数領域では反射減衰量−20dB以下を達成できることが分かる。   This result is shown in FIG. In any of the examples, it can be seen that a return loss of −20 dB or less can be achieved in a frequency region of 500 MHz or higher.

また、炭化粉末を作る際の熱硬化樹脂の種類の違いは、電波吸収特性には殆んど影響を与えないことが分かった。   It was also found that the difference in the type of thermosetting resin when producing the carbonized powder hardly affects the radio wave absorption characteristics.

個々の実施例について見ると、実施例3は炭化粉末に加えカーボンブラックが添加され、実施例1と比較して含有する炭素の量が多くなっており、特に高周波領域で特性が向上することが確認された。   Looking at individual examples, carbon black is added in addition to carbonized powder in Example 3, and the amount of carbon contained is larger than that in Example 1, and the characteristics are improved particularly in the high frequency region. confirmed.

また、実施例4のフェライト粉末吸収体を基台部に設け、積層した電波吸収体では、低周波側の電波吸収特性が格段に向上した。   Further, in the radio wave absorber in which the ferrite powder absorber of Example 4 was provided on the base portion and laminated, the radio wave absorption characteristics on the low frequency side were significantly improved.

一方、実施例7では、反射が抑えられ、低周波領域では若干電波吸収特性が良かった。   On the other hand, in Example 7, reflection was suppressed and the radio wave absorption characteristics were slightly good in the low frequency region.

(比較例)
次に、比較例1、2に係る電波吸収体を製造し、強度特性を評価した。
(Comparative example)
Next, radio wave absorbers according to Comparative Examples 1 and 2 were manufactured, and strength characteristics were evaluated.

(比較例1) 比較例1として特許文献1記載の発泡性電波吸収体と同様に、カーボンを混入した導電性架橋ポリエチレンにより、本発明の実施例7と同じ形状の電波吸収体ブロックを製造した。この比較例1と絶縁材料からなるビーズ4を含む実施例7とで強度比較試験を行った。ブロック全体ではなく1つの円錐の先端に30mmの板状の治具が当たるようにして上部から垂直に荷重がかかる方式の圧縮強度測定装置を用いて試験した。この結果、比較例1では3kgf(3×9.8N)の荷重で変形を開始した。実施例7の試料にあっては今回の試験上限の50kgf(50×9.8N)でも変形も破壊も生じなかった。比較例1の場合はクローズドセル構造を有している電波吸収体であるのに対し、実施例7の場合は絶縁材料からなるビーズ4を分散させた構造である。電波吸収体として、クローズドセルと絶縁材料からなるビーズ4の分散は、電波吸収の特性としては類似の効果を及ぼすが、強度の面では絶縁材料からなるビーズ4を分散させたほうが良好であった。 (Comparative Example 1) As Comparative Example 1, a radio wave absorber block having the same shape as that of Example 7 of the present invention was manufactured using conductive cross-linked polyethylene mixed with carbon in the same manner as the foamable radio wave absorber described in Patent Document 1. . A strength comparison test was performed between the comparative example 1 and the example 7 including the beads 4 made of an insulating material. The test was performed using a compressive strength measuring device of a type in which a load was applied vertically from the upper part so that a 30 mm plate-shaped jig hits the tip of one cone instead of the entire block. As a result, in Comparative Example 1, deformation was started with a load of 3 kgf (3 × 9.8 N). In the sample of Example 7, neither deformation nor breakage occurred even at the upper limit of 50 kgf (50 × 9.8 N) of this test. The comparative example 1 is a radio wave absorber having a closed cell structure, whereas the example 7 is a structure in which beads 4 made of an insulating material are dispersed. Dispersion of beads 4 made of a closed cell and an insulating material as a radio wave absorber has a similar effect in terms of radio wave absorption characteristics, but in terms of strength, it was better to disperse beads 4 made of an insulating material. .

(比較例2) 比較例2として本発明の炭化粉末の代わりに市販の備長炭を粉砕して平均粒径を500μmとした木炭粉末を用い、35vol%の割合でエポキシ樹脂に混練・分散し、20mm角のブロックを製造した。また、実施例1の炭化粉末を用いで、同じく20mm角のブロックを製造した。これを摩擦試験機に取り付け、10mm/sで100mmを20回往復させて粉末の脱落がないかどうかの確認を行った。摩擦試験の結果、木炭粉末を用いた比較例2では表面にある木炭粉末が脱落し、黒色の粉末が観察されたが、本発明の炭化粉末では全く変化が見られなかった。これは本発明では熱硬化樹脂を含浸させた上で炭化処理を行っているため、炭化粉末はガラス状となっており、木炭のように柔らかく砕けてしまうことがないためと思われる。 (Comparative Example 2) As Comparative Example 2, instead of the carbonized powder of the present invention, a commercially available charcoal powder obtained by pulverizing Bincho charcoal and having an average particle size of 500 μm was kneaded and dispersed in an epoxy resin at a ratio of 35 vol%. A 20 mm square block was produced. Moreover, the 20 mm square block was manufactured similarly using the carbonized powder of Example 1. This was attached to a friction tester, and 100 mm was reciprocated 20 times at 10 mm / s, and it was confirmed whether or not the powder had fallen off. As a result of the friction test, in Comparative Example 2 using the charcoal powder, the charcoal powder on the surface dropped off and a black powder was observed, but no change was observed in the carbonized powder of the present invention. This is presumably because the carbonized powder is in the form of glass because it is impregnated with a thermosetting resin in the present invention, and it is not softly broken like charcoal.

以上、本発明について実施例を説明したが、本発明の構成はこれら実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者であればなし得るであろう各種構成の変更も本発明に含まれることは言うまでもない。   Although the embodiments of the present invention have been described above, the configuration of the present invention is not limited to these embodiments, and various configurations that can be made by those skilled in the art without departing from the gist of the present invention. It goes without saying that modifications are also included in the present invention.

1 電波吸収体ブロック
2 有機結合材
3 炭化粉末
4 絶縁材料からなるビーズ
5 送信用アンテナ
6 受信用アンテナ
7 試料
8 電波吸収体
30 炭化粉末吸収体
31 低濃度炭化粉末吸収体
32 中濃度炭化粉末吸収体
33 高濃度炭化粉末吸収体
41 フェライト粉末吸収体
1 Radio wave absorber block 2 Organic binder 3 Carbonized powder 4 Beads made of insulating material 5 Transmitting antenna 6 Receiving antenna 7 Sample 8 Radio wave absorber 30 Carbonized powder absorber
31 Low concentration carbonized powder absorber
32 Medium concentration carbonized powder absorber
33 High concentration carbonized powder absorber
41 Ferrite powder absorber

Claims (5)

木質材料に熱硬化性樹脂を含浸して硬化させたのち炭化処理し、該炭化した材料を粉砕した炭化粉末と、前記炭化粉末を結着して所望の形状を形成するための有機結合材と、を主たる材料として構成したことを特徴とする電波吸収体。   Carbonized powder obtained by impregnating and curing a woody material with a thermosetting resin and then carbonized, and pulverizing the carbonized material, and an organic binder for binding the carbonized powder to form a desired shape A radio wave absorber characterized by comprising as a main material. 前記炭化粉末を前記有機結合材中に混練・分散させ、成形・硬化させて形成したことを特徴とする請求項1記載の電波吸収体。   2. The radio wave absorber according to claim 1, wherein the carbonized powder is formed by kneading and dispersing, molding and curing in the organic binder. 前記炭化粉末の表面に前記有機結合材を塗布し、押し固めて成形・硬化させて形成したことを特徴とする請求項1記載の電波吸収体。   2. The radio wave absorber according to claim 1, wherein the organic binder is applied to the surface of the carbonized powder, pressed, molded and cured. 前記炭化粉末の濃度を順次傾斜させたことを特徴とする請求項1乃至3のいずれか一項に記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 3, wherein the concentration of the carbonized powder is sequentially inclined. カーボンブラック、グラファイト、フェライト粉末、絶縁材料からなるビーズのいずれか一つ以上を更に含み、前記カーボンブラック、グラファイト、フェライト粉末、絶縁材料からなるビーズのいずれか一つ以上を、前記炭化粉末とは別の層として、或いは、前記炭化粉末と混合して形成したことを特徴とする請求項1乃至3のいずれか一項に記載の電波吸収体。   Carbon black, graphite, ferrite powder, further comprising any one of beads made of an insulating material, and any one or more of the carbon black, graphite, ferrite powder, beads made of an insulating material, the carbonized powder is The radio wave absorber according to any one of claims 1 to 3, wherein the radio wave absorber is formed as a separate layer or mixed with the carbonized powder.
JP2009265871A 2008-11-25 2009-11-24 Radio wave absorber Pending JP2010153833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265871A JP2010153833A (en) 2008-11-25 2009-11-24 Radio wave absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008299069 2008-11-25
JP2009265871A JP2010153833A (en) 2008-11-25 2009-11-24 Radio wave absorber

Publications (1)

Publication Number Publication Date
JP2010153833A true JP2010153833A (en) 2010-07-08

Family

ID=42572519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265871A Pending JP2010153833A (en) 2008-11-25 2009-11-24 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP2010153833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023036A (en) * 2013-07-16 2015-02-02 東レ株式会社 Electromagnetic wave absorber and method of manufacturing the same
WO2015114696A1 (en) * 2014-01-28 2015-08-06 株式会社リケン Wave absorber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162799A (en) * 1990-10-26 1992-06-08 Aomori Pref Gov Electromagnetic shielding material
JP2002094284A (en) * 2000-09-12 2002-03-29 Hiroshima Pref Gov Electromagnetic wave absorption resin composition, and electromagnetic wave absorption building material
JP2007012880A (en) * 2005-06-30 2007-01-18 Tohoku Kako Kk Fire-resistant wave absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162799A (en) * 1990-10-26 1992-06-08 Aomori Pref Gov Electromagnetic shielding material
JP2002094284A (en) * 2000-09-12 2002-03-29 Hiroshima Pref Gov Electromagnetic wave absorption resin composition, and electromagnetic wave absorption building material
JP2007012880A (en) * 2005-06-30 2007-01-18 Tohoku Kako Kk Fire-resistant wave absorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023036A (en) * 2013-07-16 2015-02-02 東レ株式会社 Electromagnetic wave absorber and method of manufacturing the same
WO2015114696A1 (en) * 2014-01-28 2015-08-06 株式会社リケン Wave absorber
JP5855800B2 (en) * 2014-01-28 2016-02-09 株式会社リケン Radio wave absorber

Similar Documents

Publication Publication Date Title
Chithra et al. Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust
CN105733244A (en) Preparation method of sound absorption piece and sound absorption piece
CN102067744A (en) Composite radio wave absorber
US3510392A (en) Glass nodules in cellular polyurethane
CN109659703A (en) A kind of broadband electro-magnetic wave absorption Meta Materials merged based on foam medium sill with metal structure
JP2019519905A (en) Novel materials that absorb electromagnetic waves for various applications
CN101340807B (en) Electromagnetic compatible wood based composite material for engineering and method preparing the same
JPH06314894A (en) Electromagnetic wave absorber and manufacture thereof
JP2010153833A (en) Radio wave absorber
US20080078576A1 (en) Carbon Foam EMI Shield
US5885692A (en) Wave absorber
JP2004146801A (en) Porous magnet, manufacturing method thereof, electric-wave absorber and magnet lens therewith
CN1128485C (en) Electromagnetic wave absorption panels and materials for same
JP4375987B2 (en) Molded body for radio wave absorber, method for producing the same, and radio wave absorber
EP2782436A2 (en) Radio wave invention
CN109546351B (en) Foam medium-based metamaterial with broadband electromagnetic wave absorption function
CN111546719A (en) Magnetic broadband electromagnetic wave-absorbing metamaterial
JP4602429B2 (en) Radio wave absorber
JP2021086865A (en) Carbon fiber-containing radio wave absorber and manufacturing method thereof
JPH01220899A (en) Wave absorber and manufacture thereof
JP2008066585A (en) Radio-wave absorber and method of manufacturing the same
JP2814119B2 (en) Radio wave absorbing material, method of manufacturing the same, and radio wave absorbing plate using the radio wave absorbing material
JP2002094284A (en) Electromagnetic wave absorption resin composition, and electromagnetic wave absorption building material
JP2001320190A (en) Electromagnetic-wave absorbing material and its manufacturing method
Markiewicz et al. Polypropylene-lignocellulosic material composites as promising sound absorbing materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A521 Written amendment

Effective date: 20120724

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A02 Decision of refusal

Effective date: 20131030

Free format text: JAPANESE INTERMEDIATE CODE: A02